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Abstract— We consider the problem of sequentially learning to
estimate, in the mean squared error (MSE) sense, a Gaussian
K-vector of unknown covariance by observing only m < K of
its entries in each round. We first establish a concentration
bound for MSE estimation We then frame the estimation
problem with bandit feedback and propose a variant of the
successive elimination algorithm. We also derive a minimax
lower bound to understand the fundamental limit on the sample
complexity of this problem.

I. INTRODUCTION

Several real-world applications involve collecting local mea-
surements of a physical phenomenon, and then using the
underlying correlation structure to form an estimate of the
physical phenomenon over a wider region. For instance,
using sensors to (i) monitor the temperature over a region
[1] and (ii) detect contamination in a water distribution
network [2]. Traffic monitoring in a cellular network is
another application [3], where the underlying correlation
structure plays a major role. To elaborate, the aim here is
to collect traffic load measurements from a handful of base
stations to form an estimate of the load on all base stations.

We assume that the underlying distribution is K-dimensional
Gaussian with covariance matrix Σ: a model that has been
shown to be practically viable in [3]. We employ the mean
squared error (MSE) objective to capture the underlying
correlation structure. For a m-subset A, the MSE ψ(A) is
given by

ψ(A) = Tr
(
ΣA′A′ − ΣA′A

(
ΣAA

)−1
ΣAA′

)
, (1)

where A′ is [K] \A, and ΣAA,ΣA′A′ ,ΣA′A,ΣAA′ are sub-
matrices of Σ in obvious notation (See Section II for the
details). We first consider the problem of estimating the MSE
of a m-subset, say A, given a batch of i.i.d. samples for
each of the sub-matrices listed above. This problem is non-
adaptive in the sense that each sub-matrix entry is pulled
equally. An adaptive version of this problem is when we
are provided entry-wise estimates of Σ, with non-uniform
sampling. Such a set of samples facilitates estimation of MSE
of any m-subset A.

From a statistical learning viewpoint, significant progress has
been made on the problem of covariance matrix attention
(cf. [4]). However, the problem of MSE estimation has not
received enough attention, and there are no concentration
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bounds available for the problem of estimating (1), to the
best of our knowledge. We propose a natural MSE estimator
based on sample-averages for the non-adaptive as well as the
adaptive settings. Since the sample average estimator of ΣAA

may not be invertible, we perform an eigen-decomposition
followed by projection of eigenvalues to the positive side.
Next, we derive concentration bounds for the MSE estima-
tion problem in the non-adaptive and adaptive settings. The
bounds that we derive exhibit an exponential tail decay in
either case.

We then frame the adaptive estimation problem with bandit
feedback in the best-arm identification framework setting [5].
We apply the successive elimination technique [6] to cater
to the adaptive estimation problem. We present an upper
bound on the sample complexity of this algorithm. Further, to
understand the fundamental limit on the sample complexity
of this adaptive estimation bandit problem, we derive an
information-theoretic lower bound. We construct a set of
covariance matrices that are rich enough to include the least
favorable instance for any bandit algorithm. We establish
the lower bound using the well-known standard change of
measure argument by constructing problem transformations
based on the aforementioned set of covariance matrices, but
the technical steps require significant deviations in terms of
algebraic effort. Moreover, the setting we consider involve
sampling more than one arm, which is strictly necessary
for estimating the underlying correlation. This sampling
change implies additional effort in computing certain KL-
divergences, which are then related to the sub-optimality gap
in MSEs.

Related work. Previous works such as [7], [8], [9] feature
bandit formulations where the underlying correlation struc-
ture appears in the objective. In [7], the aim is to find
the maximum correlated subset, i.e., a set that has highly
correlated members. In contrast, our goal is to find a subset
that best captures information about other, as quantified
by the MSE objective. In addition, unlike [7], we do not
assume unit variances in the underlying model. Next, in
[8], which is the closest related work, the authors propose
an MSE-based objective for a simplified version of the
problem where the goal is to find an arm (or 1-subset)
that is most correlated to the remaining K − 1 arms in the
MSE sense. Our problem formulation is more general as
we consider MSE of m-subsets, with 1 ≤ m ≤ K. This
generalization leads to bigger technical challenges in MSE
estimation and concentration, as well as in the lower bound
analysis. Finally, in [9], the authors assume that the arms are
correlated through a latent random source, and the objective



is to identify the arm with the highest mean. In [10], the
authors study the impact of correlation on the regret, while
featuring a regular bandit formulation, i.e.. of identifying the
arm with the highest mean.

The rest of the paper is organized as follows: In Section II,
we formally define the notion of MSE. In Sections III and
IV, we describe MSE estimation in the non-adaptive and
adaptive settings, respectively. In Section V, we formulate
the adaptive MSE estimation problem with bandit feedback,
and we present a variant of successive elimination algo-
rithm for solving this problem. In Section VI, we present
a minimax lower bound on the sample complexity of the
adaptive estimation problem in a BAI framework. Due to
space limitations, we provide detailed proofs in the longer
version of the paper, which is available in [11]. Finally, in
Section VII we provide our concluding remarks.

II. PRELIMINARIES

We consider a jointly Gaussian K-vector X =
(X1, . . . , XK), with mean zero and covariance matrix
Σ ≜ E[XTX]:

Σ =


σ2
1 ρ12σ1σ2 . . . ρ1Kσ1σK

ρ12σ1σ2 σ2
2 . . . ρ2Kσ2σK

...
...

. . .
...

ρ1Kσ1σK ρ2Kσ2σK . . . σ2
K

 , (2)

where σ2
i , i ∈ [K] is the variance of arm i and ρij , i, j =

1, . . . ,K, i ̸= j, the correlation coefficient between arms i
and j. Here [n] = {1, . . . , n}, for any natural number n.

Let A denote the set of subsets of [K] with cardinality
m. The mean-squared error (MSE) for a given subset A =
{i1, . . . , im} ∈ A is defined as

ψ(A) ≜
K∑
j=1

E[(Xj − E[Xj |Xi1 , . . . , Xim ])2]. (3)

As shown in [12], the above definition is equivalent to

ψ(A) = Tr
(
ΣA′A′ − ΣA′A

(
ΣAA

)−1
ΣAA′

)
, (4)

where Tr denotes the trace function, A′ = [K] \ A is the
complement of A, ΣA′A′ (resp. ΣAA) is the covariance
matrix, which is obtained by restricting Σ to the set A′ (resp.
A).

We consider three problems related to the estimation of the
MSE defined above.

III. NON-ADAPTIVE ESTIMATION

To estimate ψ(A), it is apparent from (4) that we require an
estimate of the sub-matrices ΣAA,ΣA′A,ΣAA′ , and ΣA′A′ .
In the non-adaptive setting, we are given i.i.d. samples for
each of the sub-matrices ΣAA,ΣA′A′ ,ΣA′A, and ΣAA′ , for
a given subset A. Using these samples from the underlying
multivariate Gaussian distribution, we form the sample co-
variance matrices Σ̂AA, Σ̂AA′ , Σ̂A′A, and Σ̂A′A′ to estimate
the aforementioned four sub-matrices.

The ‘sample-average’ estimator Σ̂AA is not guaranteed to be
invertible (though it is positive definite with high probabil-
ity), while MSE estimation requires an estimate of Σ−1

AA.

To handle invertibility, we form the matrix Σ̂A′A′
+

by
performing an eigen-decomposition of Σ̂AA, followed by a
projection of eigenvalues to the positive side. Formally, for
i = 1, . . . ,m, let λ̂i denote the eigenvalue of Σ̂AA, with
corresponding eigenvector vi. The estimator Σ̂+

AA is defined
by

Σ̂+
AA ≜

m∑
i=1

λ̂+i viv
⊺
i , (5)

where λ̂+i =

{
λ̂i if |λ̂i| ≥ ζ,

ζ otherwise,

for i = 1, . . . ,m. It is easy to see that Σ̂+
AA is positive

definite.

The MSE ψ(A) associated with set A is then estimated as
follows:

ψ̂(A) ≜ Tr
(
Σ̂A′A′ − Σ̂A′A

(
Σ̂AA

+)−1
Σ̂AA′

)
. (6)

Next, we proceed to analyze the concentration properties of
the estimator defined above. For the sake of analysis, we
make the following assumptions:

(A1). 0 < l = min
i
σ2
i , σ

2
i ≤ 1 for i = 1, . . . ,K.

(A2). max (||ΣAA||2, ||ΣA′A′ ||2) ≤M0, and
||Σ−1

AA||2 ≤ 1
M1

, where || · ||2 is the operator norm.

Assumption (A1) is used for the simpler 1-subset MSE
estimation in [8], while (A2) is common in the analysis
of covariance matrix estimates (cf. [13]). We now present
a concentration bound for the MSE estimator (6).

Proposition 1 (MSE concentration: Non-adaptive case).
Assume (A1) and (A2). Let nAA, nA′A, nAA′ , nA′A′ denote
the number of samples used to form Σ̂AA, Σ̂A′A, Σ̂AA′ , and
Σ̂A′A′ , respectively.
Set the projection parameter ζ in (5) as ζ =

M0 min

(√
m+log( 1

δ )

nAA
,
m+log( 1

δ )

nAA

)
and

n′ = min (nAA, nA′A′ , nAA′ , nA′A).

Then, for any 0 < ϵ < η ≜ min (2K,λmin(ΣAA))
1, the

MSE estimate ψ̂(A) defined by (6) satisfies

P
(
|ψ̂(A)− ψ(A)| ≥ ϵ

)
≤

C0 exp

[
−n′

mK2(1 + η)3
min

[
ϵ

12G0
,
ϵ2

G2
0

]]
︸ ︷︷ ︸

(I)

+ 2mK exp

[
− n′ϵ2

72 C2
3m

2K4(1 + η)3

]
︸ ︷︷ ︸

(II)

, (7)

1λmin(AA) denotes the smallest eigenvalue of the matrix AA.



where c = 1
[λmin(ΣAA)−ϵ] , C0 =

[
13mK + em+K

]
,

C1 = 108
√
2

l

(
c+ 1

M1

)
, C2 =

(
3cM0

M1

)
, C3 =

(
c+ 1

M1

)
,

and

G0 = max
(√

m(K −m)2(1 + η) C1,√
m(K −m)2(1 + η) C2, 3(K −m)M0

)
.

Proof. The proof is available in Appendix A of [11].

In the result above, we have ϵ ≤ 2K, and this constraint is
not restrictive since the MSE ψ(A) ≤ K for any subset A
in lieu of (A1). A similar observation holds for the adaptive
case handled later.

To understand the terms (I) and (II) in (7), we have to look
at the following decomposition of the MSE estimation error:

ψ̂(A)− ψ(A)

= Tr

((
Σ̂A′A′ − ΣA′A′

)
−
[
Σ̂A′A

(
Σ̂AA

+
)−1

×(
Σ̂AA′ − ΣAA′

)
+ Σ̂A′A

[(
Σ̂AA

+
)−1

− Σ−1
AA

)
ΣAA′

+
(
Σ̂A′A − ΣA′A

)
Σ−1

AAΣAA′

]]
. (8)

The first and third terms on the RHS above relate to
estimation of a covariance matrix and its inverse. These terms
lead to the term (I) in the bound (7) above. On the other
hand the second and fourth terms on the RHS above relate
to concentration of sample standard deviation and sample
correlation coefficient, in turn leading to the term (II) in the
bound (7).

IV. ADAPTIVE ESTIMATION

In the adaptive setting, we consider non-uniform sampling
of the underlying covariance matrix, with the aim of reusing
samples to estimate the MSE for different subsets.

The estimate in (6) is useful if one is concerned with
estimating the MSE for a given subset. On the other hand,
if one has to reuse sample information to estimate MSE for
many subsets, then an approach that could be adopted is to
maintain an estimate of each entry of the covariance matrix,
and then, form MSE estimates for any subset by extracting
the relevant information from the sample covariance matrix.
We present a MSE estimation scheme based on this approach
below.

For a subset A = {i1, . . . , im}, the MSE ψ(A), given in (4),
can be re-written as follows:

ψ(A) =

K∑
j=1

[
σ2
j − Cj(Σ

−1
AA)C

⊺
j

]
, (9)

where ΣAA is as defined before, and Cj =
[ρji1σi1σj . . . ρjimσimσj ]. The MSE expressions in
(3), (4) and (9) are equivalent. We have chosen to use

(9) for adaptive estimation as it can be related easily to
the MSE estimate presented below. Notice that, unlike the
non-adaptive setting, the same sample set here can be used
to estimate the MSE of any subset A ∈ A.

From (9), it is apparent that one requires an estimate of the
underlying variances, and correlation coefficients. Formally,
we are given ni samples for the variance σ2

i , and nij samples
for the correlation coefficient ρij , i, j ∈ [K], i ̸= j. The aim
is to estimate (9) using these samples. For j = 1, . . . ,K
and k = 1, . . . ,m, let ρ̂jik denote the sample correlation
coefficient, and let σ̂j2 denote the sample variance. These
quantities are formed using nj and njik samples, respec-
tively, as follows:

σ̂2
j = Xj

2
, ρ̂jik =

XjXik

σ̂j σ̂ik
, where Xj

2
=

1

nj

nj∑
t=1

X2
jt,

XjXik =
1

njik

njik∑
t=1

XjtXikt.

Using the sample variance and sample correlation coeffi-
cients, we estimate the MSE ψ(A) as follows:

ψ̂(A) =

K∑
j=1

[
σ̂j

2 − Ĉj

(
Σ̂AA

+)−1
Ĉj

⊺]
. (10)

where Ĉj =
[
ρ̂ji1 σ̂i1 σ̂j . . . ρ̂jim σ̂im σ̂j

]
, Σ̂AA formed

by using the relevant sample correlation coefficients
ρ̂ikil , ik, il ∈ A, and sample variances σ̂2

ik
, ik ∈ A, and Σ̂+

AA

is defined in (5).

Under the assumptions that are identical to the non-adaptive
setting, we present a concentration bound for the MSE
estimator (10) in the result below.

Proposition 2 (MSE concentration: Adaptive case). As-
sume (A1) and (A2). Set the projection parameter ζ in (5)
as follows:

ζ =

√
(1 + η)3(m2 −m)

n′′l2

√
log

(
15(m2 −m)

δ

)

+

√
m log

(
m
δ

)
n′′

,

where η ≜ min (2K,λmin(ΣAA)). Then, for any 0 < ϵ < η,
the MSE estimate formed using (10) satisfies

P
(
|ψ̂(A)− ψ(A)| ≥ ϵ

)
≤

14mK exp

[
− n′′

G1
min

[
lϵ

12
√
2 G2

,
l2ϵ2

G2
2 m(1 + η)2

]]
+ 30m2K exp

(
− n′′l2ϵ2

G3 (m4 −m2)(1 + η)7

)
, (11)

where n′′ = min (ni, nj , nij , (i, j) ∈ [K], i ̸= j), C4 is a

universal constant. C5 = 160
(
c+ 1

M1

)
, C6 =

(
3c
M1

)
,

C7 =
(
c+ 1

M1

)
, G1 = max

(
8,m(1 + η)3

)
,

G2 = max (1, C5), and G3 = max
(
C4, C4 C

2
6 , 72 C

2
7

)
.



Proof. The proof is available in Appendix B of [11].

V. ADAPTIVE ESTIMATION WITH BANDIT FEEDBACK

We consider the fixed confidence variant of the best-arm
identification framework [5]. In this setting, the interaction
of a bandit algorithm with the environment is given below.

Adaptive estimation with bandit feedback
Input: set of m-subsets A.
For all t = 1, 2, . . . , repeat

1) Select an m-subset At ∈ A.
2) Observe a sample from the multi-variate Gaussian

distribution corresponding to the arms in the set At.
3) Choose to continue, or stop and output an m-subset.

A subset that has the lowest MSE is considered optimal, i.e.,

A∗ ∈ argmin
A∈A

ψ(A).

The aim in this setting is to devise an algorithm that outputs
the best m-subset with high probability, while using a low
number of samples. More precisely, for a given confidence
parameter δ ∈ (0, 1), an algorithm is δ-PAC if it stops after
τ rounds, and outputs a set Aτ that satisfies P (Aτ ̸= A∗) ≤
δ. Among δ-PAC algorithms, the algorithm with minimum
sample complexity E[τ ] is preferred.

For any set A, define

∆(A) ≜ ψ(A)− ψ(A∗), and ∆ = min
A∈A

∆(A). (12)

In the above, ∆(A) denotes the gap in MSE associated with
a subset A, while ∆ denotes the smallest gap. The upper
and lower bounds that we derive subsequently features these
quantities.

Successive Elimination For Correlated Bandits

In the fixed confidence setting that we consider, a naive
algorithm based on Algorithm 1 in [6] would pull each subset
equal number of times. Such an uniform sampling will be
useful if all the subsets can capture the same amount of
information about other subsets, i.e., when the underlying
correlations and the variances are similar. However, with
uneven correlations, uniform sampling does not make sense.
The possible set of candidates for the most informative subset
need to sampled more than the other subsets in order to
reduce the probability of error in identifying the best m-
subset, and successive elimination [6] is an approach that
embodies this idea.

We propose a variant of the successive elimination algorithm
that is geared towards finding the best m- subset under the
MSE objective. The algorithm maintains an active set, which
is initialized to the set of all m-subsets A. In each round t,
the algorithm pulls each active m-subset once, and its MSE is
estimated using (10). Following this, the algorithm eliminates
all subsets whose confidence intervals are clearly separated

from the confidence interval of the empirically best subset
seen so far, i.e., the one with the least MSE estimate. The
algorithm terminates when there is only one m-subset left in
the active set, and this event occurs with probablity one.

For deriving the confidence width to be used in the successive
elimination algorithm, we first re-write the bound derived in
Proposition 2 as follows:

P
(
|ψ̂(A)− ψ(A)| ≥ ϵ

)
≤K

((
13m+ 1 +

(
30m2 − 26m

))
exp

(
− n′′c3ϵ

2

c1 + c2ϵ

))
,

(13)

where c1 =
G1 G2

2 m (1+η)2

l2 , c2 = 12
√
2 G1 G2

l and c3 =
l2

G2 (m4−m2) (1+η)7
.

Inverting the tail bound in (13) leads to the following
confidence width:

αt =

c2 log

[
70 (Km)Km2t2

δ

]
2c3 t

+

√√√√√c1 log

(
70 (Km)Km2t2

δ

)
2c3 t

.

(14)

The complete algorithm is given below.

Successive elimination for correlated bandits
Input: set of all m-subsets A, |A| =

(
K
m

)
, δ > 0.

Initialization: set of active subsets S = A
For all t = 1, 2, . . ., repeat

1) Select all active m-subsets At ∈ S.
2) Observe a sample from the m-variate Gaussian distri-

bution corresponding to the arms in each of the active
sets At.

3) Remove those subsets from S such that ψ̂A∗
t
− ψ̂At

≥
2αt, where αt is defined in (14) and A∗

t is any active
optimal subset at time t with minimum MSE , i.e.,
A∗

t ∈ argmin
At∈S

ψ(At).

4) Continue until there is only one active m-subset in S.

Fig. 1: Operational flow of successive elimination for corre-
lated bandits.

We now present a bound on the sample complexity of the
successive elimination algorithm for correlated bandits.

Theorem 1. Assume (A1) and (A2) for every A ∈ A.
The successive elimination algorithm is (0, δ)-PAC for any
δ ∈ (0, 1), and w.p. at least 1− δ, it’s sample complexity is
bounded by

O

(∑
A∈A

1

∆(A)
log

((
K
m

)
Km2 log

(
∆(A)−1

)
δ

))
,

where ∆(A) is defined in (12).



Proof. The proof is available in Appendix C of [11].

The sample complexity bound in the result above features
the total number of m-subsets

(
K
m

)
, and is of the form

O

(
(Km)
∆ log

((
K
m

)
/δ
))

, where ∆ denotes the smallest gap.

It is unclear if this bound can be improved without additional
assumptions on the underlying covariance matrix Σ, and we
believe the number of m-subsets

(
K
m

)
has to appear in the

sample complexity bound for a general covariance matrix Σ.

VI. LOWER BOUND

We consider a special case of the adaptive estimation prob-
lem, where the goal is to identify the best pair of arms, i.e.,

(i∗1, i
∗
2) ∈ argmin

(i,j)∈[K]×[K],i̸=j

ψ({i, j}).

Let Alg(δ,K) denote the class of algorithms that are δ-PAC
for the best pair identification problem. A lower bound on
the sample complexity of this problem is presented below.

Theorem 2. For any δ-PAC algorithm, there exists a bandit
problem instance governed by a covariance matrix Σ such
that the sample complexity EΣ[τδ] of this algorithm satisfies

EΣ[τδ] ≥
log( 1

2.4δ )

∆
. (15)

where ∆ denotes the smallest gap on the problem instance
governed by Σ.

Comparing the lower bound to the upper bound for succes-
sive elimination in Theorem 1, we observe that the depen-
dence on the minimum gap ∆ is the same in either bound.
However, the lower bound does not have a dependency on
m and K through the number of arms

(
K
m

)
— a dependency

that is present in the upper bound. We believe the lower
bound is sub-optimal from the dependence on the number of
m-subsets (or arms), and it would be an interesting future
direction of future work to establish a lower bound that
involves the

(
K
m

)
factor.

The proof strategy is to use the following class of covariance
matrices parameterized by ρ:

Σ =


1 ρ ρ ρ . . . ρ
ρ 1 ρ2 ρ2 . . . ρ2

ρ ρ2 1 ρ3 . . . ρ3

...
...

...
...

. . .
...

ρ ρ2 ρ3 . . . ρK−1 1

 (16)

Using Sylvester’s criterion, it is easy to see that the matrix
defined above is positive semi-definite.

For a K-armed Gaussian bandit instance with the underlying
distribution governed by Σ defined above, the pair {1, 2} has
the least MSE.

We form (2K − 4) transformations of the bandit instance
described in (16). The transformations are achieved by
relabelling the mth row as either the first or second row
of Σ,m = 3, . . . ,K. Let us denote the pdf associated with

the original bandit instance by G and Gkm is the probability
density function (pdf) of the transformed bandit instance
obtained by relabelling the kth(k = 1 or 2) row and the
mth row of Σ.

The underlying covariance matrix for the problem
instance corresponding to the mth transformation is
Σkm with mth row re-labelled as either row 1 or
2. Let KLkm

ij
∆
= KL(νiνj ||ν′iν′j) specify the KL-divergence

between νiνj and ν′iν
′
j , with the latter distribution derived

from Gkm.

In the proof, we first show that

min
{wij}

E[τδ]

≥
log( 1

2.4δ )

max
w∈∆

(K2 )
min

Σ′∈Alt(Σ)

∑
i,j

wijKL
[
ΣXiXj ||Σ′

XiXj

] , (17)

where ∆(K2 )
is the set of probability distributions on the

arm-pairs, and Alt(Σ) = {Σ1m,Σ2m,m > 3} is the set
of transformed covariance matrices. While derivation of the
inequality above is a straightforward variation to the proof in
the classic bandit setting (cf. [14]), the rest of the proof in our
case requires significant deviations. In particular, unlike the
regular bandit case, the KL-divergences in the RHS above
are not univariate. Moreover, deriving an upper bound on
the max-min, which is defined in the RHS above, requires
arguments that are specific to our correlated bandit setting.

We would like to note that the authors in [8] provide a
lower bound for the correlated bandit problem with m = 1.
The proof of the lower bound for the case of m = 2 is
significantly different from the proof for m = 1. In particular,
it is challenging since the proof involves KL-divergences for
bivariate distributions and relating these KL-divergences to
the underlying gaps involves tools from optimization (see the
proof sketch below), as well as significant algebraic effort to
simplify KL-divergence bounds inside the max-min in (17),
and then, relating the simplified expression to the gap in
MSEs of the original problem instance. Further, unlike [8],
the ideas in our proof for m = 2 could be generalized to
m > 2.

Proof. (Theorem 2) We provide a sketch of the proof here.
The reader is referred to Appendix D of [11] for a detailed
proof.

Notice that EΣ[τδ] =
∑
(i,j)

E[Nij(τδ)]. For any Σ′ ∈ Alt(Σ),

from Lemma 1 and Remark 2 of [14], we have∑
(i,j)

E[Nij(τδ)]KL
(
ΣXiXj ||Σ′

XiXj

)
≥ log

(
1

2.4δ

)
.

Consider the following optimization problem, with
αij ≜ E[Nij(τδ)]:



min
{αij}

∑
(i,j)

αij s.t. for any Σ′ ∈ Alt(Σ)

E[τδ]
∑
(i,j)

αij

E[τδ]
KL

(
ΣXiXj

||Σ′
XiXj

)
≥ log

(
1

2.4δ

)
.

Letting wij ≜
αij

E[τδ] , the problem defined above is equivalent
to the problem (17) defined earlier in Section VI.

Next, we sketch the derivation of an upper bound on the
max-min in the denominator of (17).
Let f(w,Σ′) ≜

∑
(i,j)

wijKL
(
ΣXiXj ||Σ′

XiXj

)
. Then,

f(w,Σ13)

= w12KL
13
12 + w14KL

13
14 + . . .+ w1KKL

13
1K

+ w23KL
13
23 + w34KL

13
34 + . . .+ w3KKL

13
3K

≤ ρ2

2(1− ρ2)
×(

w12(1− ρ2) + (w14 + . . .+ w1K)(1− ρ4)

+w23(1− ρ) + (w34 + . . .+ w3K)(1− ρ2)
)
,

where we applied a standard result for the KL-divergence
between multivariate Gaussian distributions to bound KL13

ij

above. Along similar lines, we can bound f(w,Σ1j), j =
4, . . . ,K, and f(w,Σ2j), j = 3, . . . ,K.

Using these bounds, and letting
H = {α1, α2, . . . , αK ≥ 0, α1 + α2 + . . . + αK = 1}, we
have

min
w
f(w,Σ1m) ≥ max

w
f(w,Σ2m),

and

max
w

min
(
f(w,Σ23), f(w,Σ24), . . . , f(w,Σ2K)

)
= max

w
min
H

{
α1f(w,Σ

23) + . . .+ αKf(w,Σ
2K)
}

≤ min
H

max
w

{
α1f(w,Σ

23) + . . .+ αKf(w,Σ
2K)
}

≤ max
w
f(w,Σ23) ( choosing α1 = 1, αi = 0, i ≥ 2)

= max
w

{
ρ4

2(1− ρ4)

(
(1− ρ2)(w24 + . . .+ w2K)

+(1− ρ)(w34 + . . .+ w3K))

}
=

ρ4

2(1 + ρ2)
,

where the final inequality holds for any ρ ∈ [0, 1], with the
following optimal weights:

K∑
j=4

w2j = 1, and
K∑
j=4

w3j = 0.

Notice that the smallest gap ∆ = ψ({2, 3})− ψ({1, 2}) for
the bandit instance governed by Σ simplifies to

∆ =
1

(1− ρ4)

[
(K − 3)

(
ρ2 + 3ρ4 + 2ρ6 − 2ρ7

)
+(2ρ4 + 3ρ6 − ρ2)

]
.

A simple calculation yields ρ4

4(1+ρ2) ≤ ∆, which implies

E[τδ] ≥
log( 1

2.4δ )

∆ .

VII. CONCLUSIONS

For the problem of estimation of the MSE of a given
subset, with a multivariate Gaussian model, we proposed a
natural estimator, and derived tail bounds that exponentially
concentrate. Next, we framed the estimation problem with
bandit feedback in the best-subset identification setting, and
proposed a variant of the successive elimination technique.
Finally, we also derived a minimax lower bound to under-
stand the fundamental limit on the sample complexity of the
aforementioned estimation problem with bandit feedback.
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APPENDIX I
PROOFS

A. MSE Estimation: Non-adaptive setting

In this section, we prove the MSE concentration result for the non-adaptive setting. For ease of readability, we restate the
concentration bound in Proposition 1 from the main paper.

Proposition 3. Assume (A0) and (A1). Let nAA, nA′A, nAA′ , nA′A′ denote the number of samples used to form

Σ̂AA, Σ̂A′A, Σ̂AA′ , and ΣA′A′ , respectively. Let ζ = M0 min

(√
m+log( 1

δ )

nAA
,
m+log( 1

δ )

nAA

)
. Then, for any 0 < ϵ < η ≜

min (2K,λmin(ΣAA)), the MSE estimate ψ̂(A) defined by (6) satisfies

P
(
|ψ̂(A)− ψ(A)| ≥ ϵ

)
≤ (13m (K −m) + exp (m+K)) exp

(
− n′

m(K −m)2(1 + η)3

min

(
ϵ

12
√
2G0

,
ϵ2

G2
0

))
+ (2m(K −m)) exp

(
− n′

72 (m(K −m)2)
2
(1 + η)3

ϵ2

C2
3

)
,

where n′ = min (nAA, nA′A′ , nAA′ , nA′A), c = 1
[λmin(ΣAA)−ϵ] , C1 = 108

√
2

l

(
c+ 1

M1

)
, C2 =

(
3cM0

M1

)
, C3 =

(
c+ 1

M1

)
,

and G0 = max
(√

m(K −m)2(1 + η) C1,
√
m(K −m)2(1 + η) C2, 3(K −m)M0

)
.

Proof. Notice that

ψ̂(A)− ψ(A) = Tr
((

Σ̂A′A′ − ΣA′A′

)
−
(
Σ̂A′A

(
Σ̂AA

+)−1
Σ̂AA′ − ΣA′AΣ

−1
AAΣAA′

))
. (18)

The second term on the RHS of (18), can be re-written as follows:

(II) = Σ̂A′A

(
Σ̂AA

+
)−1

Σ̂AA′ − ΣA′A (ΣAA)
−1

ΣAA′

= Σ̂A′A

((
Σ̂AA

+
)−1

Σ̂AA′ − Σ−1
AAΣAA′

)
+
(
Σ̂A′A − ΣA′A

)
Σ−1

AAΣAA′

= Σ̂A′A

((
Σ̂AA

+
)−1 (

Σ̂AA′ − ΣAA′

)
+

((
Σ̂AA

+
)−1

− Σ−1
AA

)
ΣAA′

)
+
(
Σ̂A′A − ΣA′A

)
Σ−1

AAΣAA′

= Σ̂A′A

(
Σ̂AA

+
)−1 (

Σ̂AA′ − ΣAA′

)
+ Σ̂A′A

((
Σ̂AA

+
)−1

− Σ−1
AA

)
ΣAA′

+
(
Σ̂A′A − ΣA′A

)
Σ−1

AAΣAA′ . (19)

Using the definition of the positive definite estimator Σ̂+, we have

||Σ̂+
AA − ΣAA||2 ≤ ||Σ̂+

AA − Σ̂AA||+ ||Σ̂AA − ΣAA||2 ≤ 2ζ + ||Σ̂AA − ΣAA||2. (20)

Using Theorem 5.7 of [15] in conjunction with (A1), w.p. (1− δ), we have

||Σ̂AA − ΣAA||2 ≤ ||ΣAA||2 min

(√
m+ log( 1δ )

nAA
,
m+ log( 1δ )

nAA

)
≤M0 min

(√
m+ log( 1δ )

nAA
,
m+ log( 1δ )

nAA

)
, and

||Σ̂A′A′ − ΣA′A′ ||2 ≤M0 min

(√
K −m+ log( 1δ )

nA′A′
,
K −m+ log( 1δ )

nA′A′

)
.

(21)

With c = 1
[λmin(ΣAA)−ϵ] , consider the event

B̃ = {σ2
i − ϵ ≤ σ̂i

2 ≤ σ2
i + ϵ, i = [K], ρikj − ϵ ≤ ρ̂ikj ≤ ρikj + ϵ, for (k, j) ∈ [K], k ̸= j, ||

(
Σ̂+

AA

)−1

||2 ≤ c}. (22)

On the event B̃, w.p. (1− δ), we have

||
(
Σ̂AA

+
)−1

− Σ−1
AA||2 = ||

(
Σ̂AA

)−1 (
ΣAA − Σ̂AA

+)
Σ−1

AA||2 ≤ ||
(
Σ̂AA

+
)−1

||2 ||ΣAA − Σ̂AA

+
||2 ||Σ−1

AA||2



≤
(

c

M1

)2ζ +M0 min

(√
m+ log( 1δ )

nAA
,
m+ log( 1δ )

nAA

)
=

3cM0

M1
min

(√
m+ log( 1δ )

nAA
,
m+ log( 1δ )

nAA

)
,

where we used (20), (21), and substituted the value of ζ specified in the proposition statement.

Letting η = min (2K,λmin(ΣAA)), we obtain ||Σ̂AA′ ||2 ≤
√
m(K −m) (1 + η) , ( since σ̂2

j ≤ σ2
j + ϵ ≤ 1 + η on B̃) and

||ΣAA′ ||2
√
m(K −m) (1 + η). Similarly, ||Σ̂A′A||2 ≤

√
m(K −m)(1 + η) and ||ΣA′A||2 ≤

√
m(K −m)(1 + η). Thus,

P
(
||Σ̂AA′ − ΣAA′ ||22 ≥ ϵ2, B̃

)
≤ P

(
||Σ̂AA′ − ΣAA′ ||2F ≥ ϵ2, B̃

)
=

m∑
k=1

K−m∑
j=m+1

P

(
|ρ̂jik σ̂ik σ̂j − ρjikσikσj | ≥

ϵ√
m(K −m)

, B̃

)

=

m∑
k=1

K−m∑
j=m+1

P

(
|ρ̂jik σ̂ik (σ̂j − σj) + ρ̂jikσj (σ̂ik − σik) + σikσij (ρ̂jik − ρjik) | ≥

ϵ√
m(K −m)

, B̃

)

≤
m∑

k=1

K−m∑
j=m+1

(
P

(
ρ̂jik σ̂ik (σ̂j − σj) ≥

ϵ

3
√
m(K −m)

, B̃

)

+P

(
ρ̂jikσj (σ̂ik − σik) ≥

ϵ

3
√
m(K −m)

, B̃

)
+ P

(
σikσj (ρ̂jik − ρjik) ≥

ϵ

3
√
m(K −m)

, B̃

))

≤
m∑

k=1

K−m∑
j=m+1

(
P

(
(σ̂j − σj) ≥

ϵ

3
√
m(K −m)(1 + η)

)
+ P

(
(σ̂ik − σik) ≥

ϵ

3
√
m(K −m)(1 + η)

)

+P

(
(ρ̂jik − ρjik) ≥

ϵ

3
√
m(K −m)(1 + η)

, B̃

))(
since σ̂2

j ≤ σ2
j + ϵ ≤ 1 + η, on B̃, σ2

i , ρ̂ij ≤ 1
)

≤
m∑

k=1

K−m∑
j=m+1

(
exp

(
− nAA′ϵ2

72m(K −m)(1 + η)

)
+ exp

(
− nAA′ϵ2

72m(K −m)(1 + η)

)

+13 exp

(
−nAA′

8

1

36(1 + η)
min

(
lϵ

9
√
m(K −m)(1 + η)

,
l2ϵ2

81m(K −m)(1 + η)2

)))

≤ (m(K −m))

(
2 exp

(
− nAA′ϵ2

72m(K −m)(1 + η)

)
+13 exp

(
−nAA′

8

1

36(1 + η)
min

(
lϵ

9
√
m(K −m)(1 + η)

,
l2ϵ2

81m(K −m)(1 + η)2

)))
. (23)

Now, using (23), w.p. (1− δ), we have

||Σ̂AA′ − ΣAA′ ||2

≤
(
1 + η

l

)(
108
√
2m (K −m)

)
min


√√√√ (1 + η) log

(
13m(K−m)

δ

)
nAA′

,

12
√
2(1 + η) log

(
13m(K−m)

δ

)
nAA′

+

√√√√72m(K −m)(1 + η) log
(

2m(K−m)
δ

)
nAA′

.

Similarly, w.p. (1− δ), we obtain

||Σ̂A′A − ΣA′A||2



≤
(
1 + η

l

)(
108
√
2m (K −m)

)
min


√√√√ (1 + η) log

(
13m(K−m)

δ

)
nA′A

,

12
√
2(1 + η) log

(
13m(K−m)

δ

)
nA′A

+

√√√√72m(K −m)(1 + η) log
(

2m(K−m)
δ

)
nA′A

.

Now, the term (II) can be bounded on the event B̃, w.p. (1− δ), as follows:

(II) ≤ ||Σ̂A′A||2||
(
Σ̂AA

+
)−1

||2
(
||Σ̂AA′ − ΣAA′ ||2

)
+ ||Σ̂A′A||2||Σ̂AA′ ||2

(
||
(
Σ̂AA

+
)−1

− Σ−1
AA||2

)
+ ||ΣAA′ ||2||Σ−1

AA||2
(
||Σ̂A′A − ΣA′A||2

)
≤ 108

√
2 (cm(K −m))

(
(1 + η)2

l

)
min


√√√√ (1 + η) log

(
13m(K−m)

δ

)
nAA′

,

12
√
2(1 + η) log

(
13m(K−m)

δ

)
nAA′



+ c
√
m(K −m) (1 + η)


√√√√72m(K −m)(1 + η) log

(
2m(K−m)

δ

)
nAA′


+ 3

(
m(K −m)(1 + η)2

)( c

M1

)2ζ +M0 min

(√
m+ log( 1δ )

nAA
,
m+ log( 1δ )

nAA

)

+ 108
√
2

(
m(K −m)

M1

)(
(1 + η)2

l

)
min


√√√√ (1 + η) log

(
13m(K−m)

δ

)
nA′A

,

12
√
2(1 + η) log

(
13m(K−m)

δ

)
nA′A



+

(√
m(K −m)

M1

)
(1 + η)


√√√√72m(K −m)(1 + η) log

(
2m(K−m)

δ

)
nA′A



≤
(
m(K −m)(1 + η)2

)C1 min


√√√√ (1 + η) log

(
13m(K−m)

δ

)
n′

,

12
√
2(1 + η) log

(
13m(K−m)

δ

)
n′

+ C2 min

(√
m+ log( 1δ )

n′
,
m+ log( 1δ )

n′

)

+
√
m(K −m) (1 + η)C3


√√√√72m(K −m)(1 + η) log

(
2m(K−m)

δ

)
n′

 ,

where n′ = min (nAA, nA′A′ , nAA′ , nA′A) , C1 = 108
√
2

l

(
c+ 1

M1

)
, C2 =

(
3cM0

M1

)
and C3 =

(
c+ 1

M1

)
.

From the foregoing,

P
(
|ψ̂(A)− ψ(A)| ≥ ϵ, B̃

)



≤ 13 (m(K −m)) exp

(
− n′

m(K −m)2(1 + η)3
min

(
ϵ

12
√
2C1

,
ϵ2

m(K −m)2(1 + η)2C2
1

))
+ exp

(
m− n′

m(K −m)2(1 + η)2
min

(
ϵ

C2
,

ϵ2

m(K −m)2(1 + η)2C2
2

))
+ (2m(K −m)) exp

(
− n′

72 (m(K −m)2)
2
(1 + η)3

ϵ2

C2
3

)

+ exp

(
(K −m)− n′ min

(
ϵ

(K −m)M0
,

ϵ2

(K −m)2M2
0

))
+

6m(K −m)(1 + η)2cζ

M1
. (24)

Let λmin(ΣAA) and λmin

(
Σ̂AA

+
)

be the smallest eigenvalues of ΣAA and Σ̂AA

+
respectively. Then, for 0 < ϵ < η, we

have

P
(
λmin

(
Σ̂AA

+
)
≤ λmin(ΣAA)− ϵ

)
= P

(
λmin

(
Σ̂AA

+
)
≤ 1/c

)
= P

(
1/λmin

(
Σ̂AA

+
)
≥ c)

= P
(
||
(
Σ̂AA

+
)−1

||2 ≥ c).

Using a corollary of the Weyl’s theorem (cf. p. 161 of [4]), we obtain

P
(
λmin

(
Σ̂AA

+
)
− λmin(ΣAA) ≥ ϵ

)
= P

(
||
(
Σ̂AA

+
)−1

||2 ≥ c
)
≤ P

(
||Σ̂AA

+
− ΣAA||2 ≥ ϵ

)
.

From (21) and (20), w.p. at least (1− δ), we have

||Σ̂AA

+
− ΣAA||2 ≤ 2ζ +M0 min

(√
m+ log( 1δ )

nAA
,
m+ log( 1δ )

nAA

)
= 3M0 min

(√
m+ log( 1δ )

nAA
,
m+ log( 1δ )

nAA

)
,

where the final equality is obtained by substituting the value of ζ specified in the proposition statement. Hence,

P
(
B̃′
)
≤ exp

(
m− nAA min

(
ϵ

3M0
,
ϵ2

9M2
0

))
. (25)

Combining (24) and (25), we obtain

P
(
|ψ̂(A)− ψ(A)| ≥ ϵ

)
≤ P

(
|ψ̂(A)− ψ(A)| ≥ ϵ, B̃

)
+ P(B̃′)

≤ 13 (m(K −m)) exp

(
− n′

m(K −m)2(1 + η)3
min

(
ϵ

12
√
2C1

,
ϵ2

m(K −m)2(1 + η)2C2
1

))
+ exp

(
m− n′

m(K −m)2(1 + η)2
min

(
ϵ

C2
,

ϵ2

m(K −m)2(1 + η)2C2
2

))
+ (2m(K −m)) exp

(
− n′

72 (m(K −m)2)
2
(1 + η)3

ϵ2

C2
3

)

+ exp

(
(K −m)− n′ min

(
ϵ

(K −m)M0
,

ϵ2

(K −m)2M2
0

))
+ exp

(
m− nAA min

(
ϵ

3M0
,
ϵ2

9M2
0

))
≤ (13m (K −m) + exp (m+K)) exp

(
− n′

m(K −m)2(1 + η)3
min

(
ϵ

12
√
2G0

,
ϵ2

G2
0

))
+ (2m(K −m)) exp

(
− n′

72 (m(K −m)2)
2
(1 + η)3

ϵ2

C2
3

)
,

where G0 = max
(√

m(K −m)2(1 + η) C1,
√
m(K −m)2(1 + η) C2, 3(K −m)M0

)
.

B. MSE Estimation: Adaptive setting

We restate the main result in the adaptive setting for the sake of readability.

Proposition 4. Assume (A0) and (A1). Set the projection parameter ζ as follows:

ζ =

√
(1 + η)3(m2 −m)

n′′l2

√
log

(
15(m2 −m)

δ

)
+

√
m log

(
m
δ

)
n′′

.



Then, for any 0 < ϵ < η ≜ min (2K,λmin(ΣAA)), the MSE estimate formed using (10) satisfies

P
(
|ψ̂(A)− ψ(A)| ≥ ϵ

)
≤ K

(
(13m+ 1) exp

(
− n′′

G1
min

(
lϵ

12
√
2 G2

,
l2ϵ2

G2
2 m(1 + η)2

))
+
(
30m2 − 26m

)
exp

(
− n′′l2ϵ2

G3 (m4 −m2)(1 + η)7

))
,

where n′′ = min (ni, nj , nij , (i, j) ∈ [K], i ̸= j), C4 is a universal constant, C5 = 108
√
2
(
c+ 1

M1

)
, C6 =

(
3c
M1

)
,

C7 =
(
c+ 1

M1

)
, G1 = max

(
8,m(1 + η)3

)
, G2 = max (1, C5) , and G3 = max

(
C4, C4 C

2
6 , 72 C

2
7

)
.

The proof of the result above requires two lemmas, which we state and prove below.

Lemma 1. Under conditions of Proposition 4, we have

P
(
||Σ̂AA − ΣAA||2 ≥ ϵ, B̃

)
≤ m exp

(
−n

′′ϵ2

C4m

)
+ 15(m2 −m) exp

(
− n′′ l2ϵ2

C4(1 + η)3(m2 −m)

)
,

where the symbols are as defined in the statement of Proposition 2.

Proof. Notice that

||Σ̂AA − ΣAA||2F =
∑

(i,j)∈A

(
Σ̂AA(i, j)− ΣAA(i, j)

)2
=

∑
i ̸=j,(i,j)∈A

(
Σ̂AA(i, j)− ΣAA(i, j)

)2
+

∑
i=j,(i,j)∈A

(
Σ̂AA(i, j)− ΣAA(i, j)

)2
=
∑
i ̸=j

(ρ̂ij σ̂iσ̂j − ρijσiσj)
2
+
∑
i=j

(
σ̂i

2 − σ2
i

)2
.

Now,

P
(
||Σ̂AA − ΣAA||22 ≥ ϵ2, B̃

)
≤ P

(
||Σ̂AA − ΣAA||2F ≥ ϵ2, B̃

)
= P

∑
i ̸=j

(ρ̂ij σ̂iσ̂j − ρijσiσj)
2
+
∑
i=j

(
σ̂i

2 − σ2
i

)2 ≥ ϵ2, B̃


≤ P

∑
i ̸=j

(ρ̂ij σ̂iσ̂j − ρijσiσj)
2

 ≥ ϵ2

2
, B̃

+ P

∑
i=j

(
σ̂i

2 − σ2
i

)2 ≥ ϵ2

2


≤
∑
i̸=j

P
(
(ρ̂ij σ̂iσ̂j − ρijσiσj)

2 ≥ ϵ2

2(m2 −m)
, B̃
)
+
∑
i=j

P
((
σ̂i

2 − σ2
i

)2 ≥ ϵ2

2m

)

≤
∑
i̸=j

P

(
(ρ̂ij σ̂i (σ̂j − σj) + ρ̂ijσj (σ̂i − σi) + σiσj (ρ̂ij − ρij)) ≥

ϵ√
2(m2 −m)

, B̃

)

+
∑
i=j

P
(
(σ̂i − σi) ≥

ϵ√
2m

)

≤
∑
i̸=j

(
P

(
(ρ̂ij σ̂i (σ̂j − σj)) ≥

ϵ

3
√

2(m2 −m)
, B̃

)

+P

(
(ρ̂ijσj (σ̂i − σi)) ≥

ϵ

3
√
2(m2 −m)

, B̃

)
+ P

(
σiσj (ρ̂ij − ρij) ≥

ϵ

3
√

2(m2 −m)
, B̃

))

+
∑
i=j

P
(
(σ̂i − σi) ≥

ϵ√
2m

)

≤
∑
i̸=j

(
P

(
(σ̂j − σj) ≥

ϵ

3
√
2(1 + η)(m2 −m)

)
+ P

(
(σ̂i − σi) ≥

ϵ

3
√
2(1 + η)(m2 −m)

)



+ P

(
(ρ̂ij − ρij) ≥

ϵ

3(1 + η)
√
2(m2 −m)

))
+
∑
i=j

exp

(
−ni

8

ϵ2

2m

)
( since σ̂2

i ≤ σ2
i + ϵ ≤ 1 + η on B̃ where η = min (2K,λmin(ΣAA)) , ρ̂ij ≤ 1).

≤
∑
i̸=j

(
2 exp

(
−min(ni, nj)

8

ϵ2

18 (1 + η)(m2 −m)

)

+13 exp

(
−nij

8

1

36(1 + η)
min

(
lϵ

9(1 + η)
√

2(m2 −m)
,

l2ϵ2

162(1 + η)2(m2 −m)

)))

+
∑
i=j

exp

(
−ni

8

ϵ2

2m

)
≤ 2

(
m2 −m

)
· exp

(
− n′′ϵ2

C4(1 + η)(m2 −m)

)
+m · exp

(
−n

′′ ϵ2

C4m

)
+ 13(m2 −m) exp

(
− n′′ l2ϵ2

C4(1 + η)3(m2 −m)

)
≤ 15(m2 −m) exp

(
− n′′l2ϵ2

C4(1 + η)3(m2 −m)

)
+m exp

(
−n

′′ ϵ2

C4m

)
,

where n′′ = min (ni, nj , nij , (i, j) ∈ [K], i ̸= j) and C4 is a universal constant.

Hence,

P
(
||Σ̂AA − ΣAA||2 ≥ ϵ, B̃

)
≤ 15(m2 −m) exp

(
− n′′ l2ϵ2

C4(1 + η)3(m2 −m)

)
+m exp

(
−n

′′ϵ2

C4m

)
. (26)

Lemma 2. Under conditions of Proposition 4, we have

P
(
||
(
Σ̂AA

+
)−1

− Σ−1
AA||2 ≥ ϵ, B̃

)
≤ 15(m2 −m) exp

(
− n′′M2

1 l
2ϵ2

9 C4 (1 + η)3 (m2 −m) c2

)
+m exp

(
− n′′M2

1 ϵ
2

9 C4 m c2

)
,

where B̃, as defined in (22), is an event that satisfies

P
(
B̃′
)
≤ 15(m2 −m) exp

(
− n′′l2ϵ2

9 C4(1 + η)3(m2 −m)

)
+m exp

(
− n′′ϵ2

9 C4m

)
. (27)

In the above, the symbols are as defined in the statement of Proposition 4.

Proof. Using (26), we obtain the following bound, which holds w.p. (1− δ),

||Σ̂AA − ΣAA||2 ≤
√
C4(1 + η)3(m2 −m)

n′′l2

√
log

(
15(m2 −m)

δ

)
+

√
C4m log

(
m
δ

)
n′′

.

On the event B̃,w.p. (1− δ), we have

||
(
Σ̂AA

+
)−1

− Σ−1
AA||2 ≤

(
3c

M1

)(√
C4(1 + η)3(m2 −m)

n′′l2

√
log

(
15(m2 −m)

δ

)

+

√
C4m log

(
m
δ

)
n′′

 . (28)

The inequality above follows by using (20) and

||
(
Σ̂AA

+
)−1

− Σ−1
AA||2 = ||

(
Σ̂AA

)−1 (
ΣAA − Σ̂AA

+)
Σ−1

AA||2

≤ ||
(
Σ̂AA

+
)−1

||2 ||ΣAA − Σ̂AA

+
||2 ||Σ−1

AA||2.



From (28), we obtain

P
(
||
(
Σ̂AA

+
)−1

− Σ−1
AA||2 ≥ ϵ, B̃

)
≤ 15(m2 −m) exp

(
− n′′M2

1 l
2ϵ2

9 C4 (1 + η)3 (m2 −m) c2

)
+m exp

(
− n′′M2

1 ϵ
2

9 C4 m c2

)
.

Using an argument similar to the one employed in the proof of Proposition 1 in conjunction with (26), we obtain

P
(
B̃′
)
≤ 15(m2 −m) exp

(
− n′′ l2ϵ2

9 C4(1 + η)3(m2 −m)

)
+m exp

(
− n′′ϵ2

9 C4m

)
. (29)

Proof of Proposition 4:

Proof. From (9) and (10), we have

ψ̂(A)− ψ(A) =

K∑
j=1

[(
σ̂j

2 − σ2
j

)
−
(
Ĉj

(
Σ̂AA

+)−1
Ĉj

⊺
− Cj(Σ

−1
AA)C

⊺
j

)]
. (30)

The second term on the RHS of (30) can be re-written as follows:

(II) = Ĉj

(
Σ̂AA

+)−1
Ĉj

⊺
− Cj(Σ

−1
AA)C

⊺
j

= Ĉj

((
Σ̂AA

+
)−1

Ĉj

⊺
− Σ−1

AAC
⊺
j

)
+

(
Ĉj − Cj

)
Σ−1

AAC
⊺
J

= Ĉj

((
Σ̂AA

+
)−1 (

Ĉj

⊺
− C⊺

j

)
+ C⊺

J

((
Σ̂AA

+
)−1

− Σ−1
AA

))
+

(
Ĉj − Cj

)
Σ−1

AAC
⊺
J

= Ĉj

(
Σ̂AA

+
)−1

(
Ĉj

⊺
− C⊺

j

)
+ ĈjC

⊺
j

((
Σ̂AA

+
)−1

− Σ−1
AA

)
+

(
Ĉj − Cj

)
Σ−1

AAC
⊺
J . (31)

Letting η = min (2K,λmin(ΣAA)), we obtain ||Ĉj ||2 ≤
√
m (1 + η)

2 ≤
√
m (1 + η) .( since σ̂2

j ≤ σ2
j + ϵ ≤ 1 +

η on B̃, ρ̂ji ≤ 1) and ||Cj ||2 ≤
√
m (1 + η)

2 ≤
√
m (1 + η) . Similarly, ||Ĉj

⊺
||2 ≤

√
m(1 + η) and ||C⊺

j ||2 ≤
√
m(1 + η).

P
(
||Ĉj − Cj ||22 ≥ ϵ2, B̃

)
≤ P

(
||Ĉj − Cj ||2F ≥ ϵ2, B̃

)
=

m∑
k=1

P
(
|ρ̂jik σ̂ik σ̂j − ρjikσikσj | ≥

ϵ√
m
, B̃
)

=

m∑
k=1

P
(
|ρ̂jik σ̂ik (σ̂j − σj) + ρ̂jikσj (σ̂ik − σik) + σikσij (ρ̂jik − ρjik) | ≥

ϵ√
m
, B̃
)

≤
m∑

k=1

(
P
(
ρ̂jik σ̂ik (σ̂j − σj) ≥

ϵ

3
√
m
, B̃
)
+ P

(
ρ̂jikσj (σ̂ik − σik) ≥

ϵ

3
√
m
, B̃
)

+P
(
σikσj (ρ̂jik − ρjik) ≥

ϵ

3
√
m
, B̃
))

≤
m∑

k=1

(
P

(
(σ̂j − σj) ≥

ϵ

3
√
m(1 + η)

)
+ P

(
(σ̂ik − σik) ≥

ϵ

3
√
m(1 + η)

)

+P
(
(ρ̂jik − ρjik) ≥

ϵ

3(1 + η)
√
m
, B̃
))(

since σ̂2
j ≤ σ2

j + ϵ ≤ 1 + η, on B̃, σ2
i , ρ̂ij ≤ 1

)
≤

m∑
k=1

(
exp

(
− njϵ

2

72m(1 + η)

)
+ exp

(
− nikϵ

2

72m(1 + η)

)
+13 exp

(
−njik

8

1

324
√
m(1 + η)2

min

(
lϵ

1
,

l2ϵ2

9
√
m(1 + η)

)))
≤ m

(
exp

(
− n′′ϵ2

72m(1 + η)

)
+ exp

(
− n′′ϵ2

72m(1 + η)

)



+13 exp

(
−n

′′

8

1

324
√
m(1 + η)2

min

(
lϵ,

l2ϵ2

9
√
m(1 + η)

)))
, (32)

where n′′ = min (ni, nj , nij , (i, j) ∈ [K], i ̸= j). Now, using (32), we obtain the following bound, which holds w.p. (1−δ):

||Ĉj − Cj ||2 ≤
[
108

√
2m(1 + η)

l

]
min

√ (1 + η) log
(
13m
δ

)
n′′

,

[
12

√
2(1 + η) log

(
13m
δ

)
n′′

]
+

√
72m(1 + η) log

(
2m
δ

)
n′′

.

Similarly, w.p. (1− δ),

||Ĉj

⊺
− C⊺

j ||2 ≤
[
108

√
2m(1 + η)

l

]
min

√ (1 + η) log
(
13m
δ

)
n′′

,

[
12

√
2(1 + η) log

(
13m
δ

)
n′′

]
+

√
72m(1 + η) log

(
2m
δ

)
n′′

.

On the event B̃, using (28), we obtain the following bound, which holds w.p. (1− δ):

||
(
Σ̂AA

+
)−1

− Σ−1
AA||2 ≤

(
3c

M1

)(√
C4(1 + η)3(m2 −m)

n′′l2

√
log

(
15(m2 −m)

δ

)

+

√
C4m log

(
m
δ

)
n′′

 .

Now, the term (II) can be bounded on the event B̃, w.p. (1− δ), as follows:

(II)

≤ ||Ĉj ||2 ||
(
Σ̂AA

+
)−1

||2 ||Ĉj

⊺
− C⊺

j ||2 + ||Ĉj ||2 ||C⊺
j ||2 ||

(
Σ̂AA

+
)−1

− Σ−1
AA||2

+ ||Ĉj − Cj ||2 ||Σ−1
AA||2 ||C⊺

J ||2

≤
(
108

√
2c
)(m(1 + η)2

l

)min

√ (1 + η) log
(
13m
δ

)
n′′

,

(
12

√
2(1 + η) log

(
13m
δ

)
n′′

)
+ (c m(1 + η))

√72(1 + η) log
(
2m
δ

)
n′′


+
(
m(1 + η)2

)( 3c

M1

)√C4(1 + η)3(m2 −m)

n′′l2

√
log

(
15(m2 −m)

δ

)
+

√
C4m log

(
m
δ

)
n′′


+
(
108

√
2M1

)(m(1 + η)2

l

)min

√ (1 + η) log
(
13m
δ

)
n′′

,

(
12

√
2(1 + η) log

(
13m
δ

)
n′′

)
+
m(1 + η)

M1

√72(1 + η) log
(
2m
δ

)
n′′


≤ C5

(
m(1 + η)2

l

)min

√ (1 + η) log
(
13m
δ

)
n′′

,

(
12
√
2(1 + η) log

(
13m
δ

)
n′′

)
+ C6

(
m(1 + η)2

)√C4(1 + η)3(m2 −m)

n′′l2

√
log

(
15(m2 −m)

δ

)
+

√
C4m log

(
m
δ

)
n′′


+ C7 (m(1 + η))

√72(1 + η) log
(
2m
δ

)
n′′

 ,



where C5 = 108
√
2
(
c+ 1

M1

)
, C6 =

(
3c
M1

)
and C7 =

(
c+ 1

M1

)
.

From the foregoing,

P
(
|ψ̂(A)− ψ(A)| ≥ ϵ, B̃

)
≤ K

(
exp

(
−n

′′

8
min

(
ϵ, ϵ2

))
+ 13m exp

(
− n′′

m(1 + η)3
min

(
lϵ

12
√
2 C5

,
l2ϵ2

C2
5 m(1 + η)2

))
+15

(
m2 −m

)
exp

(
− n′′l2ϵ2

C4C2
6 (m4 −m2)(1 + η)7

)
+m exp

(
− n′′ϵ2

C4C2
6 m

2(1 + η)4

)
+2m exp

(
− n′′

72 m2(1 + η)2
ϵ2

C2
7

))
. (33)

From (29), we have

P
(
B̃′
)
≤ 15(m2 −m) exp

(
− n′′ l2ϵ2

9 C4(1 + η)3(m2 −m)

)
+m exp

(
− n′′ϵ2

9 C4m

)
.

Combining (33) and (29), we obtain,

P
(
|ψ̂(A)− ψ(A)| ≥ ϵ

)
≤ K

(
exp

(
−n

′′

8
min

(
ϵ, ϵ2

))
+ 13m exp

(
− n′′

m(1 + η)3
min

(
lϵ

12
√
2 C5

,
l2ϵ2

C2
5 m(1 + η)2

))
+15

(
m2 −m

)
exp

(
− n′′l2ϵ2

C4C2
6 (m4 −m2)(1 + η)7

)
+m exp

(
− n′′ϵ2

C4C2
6 m

2(1 + η)4

)
+2m exp

(
− n′′

72 m2(1 + η)2
ϵ2

C2
7

)
+ 15(m2 −m) exp

(
− n′′ l2ϵ2

9 C4(1 + η)3(m2 −m)

)
+m exp

(
− n′′ϵ2

9 C4m

))
≤ K

(
(13m+ 1) exp

(
− n′′

G1
min

(
lϵ

12
√
2 G2

,
l2ϵ2

G2
2 m(1 + η)2

))
+
(
30m2 − 26m

)
exp

(
− n′′l2ϵ2

G3 (m4 −m2)(1 + η)7

))
,

where G1 = max
(
8,m(1 + η)3

)
, G2 = max (1, C5) and G3 = max

(
C4, C4 C

2
6 , 72 C

2
7

)
.

C. Successive elimination

For deriving the confidence width αt used in the successive elimination algorithm for correlated bandits (see Section V),
we start by deriving an alternative form of the bound on the MSE estimate stated in Proposition 2.

P
(
|ψ̂(A)− ψ(A)| ≥ ϵ

)
≤ K

(
(13m+ 1) exp

(
− n′′

G1
min

(
lϵ

12
√
2 G2

,
l2ϵ2

G2
2 m(1 + η)2

))
+
(
30m2 − 26m

)
exp

(
− n′′l2ϵ2

G3 (m4 −m2)(1 + η)7

))
≤ K

(
(13m+ 1) exp

(
− n′′l2ϵ2

12
√
2 l G1G2ϵ+G1G2

2 m(1 + η)2

)
+
(
30m2 − 26m

)
exp

(
− n′′l2ϵ2

G3 (m4 −m2)(1 + η)7

))
≤ K

(
(13m+ 1) exp

(
− n′′ ϵ2

c1 + c2ϵ

)
+
(
30m2 − 26m

)
exp

(
−n′′c3ϵ2

))
≤ K

((
13m+ 1 +

(
30m2 − 26m

))
exp

(
−n

′′ min(c3, 1) ϵ
2

c1 + c2ϵ

))
,

where c1 =
G1 G2

2 m (1+η)2

l2 , c2 = 12
√
2 G1 G2

l and c3 = l2

G2 (m4−m2) (1+η)7
.



Therefore,

P
(
|ψ̂(A)− ψ(A)| ≥ ϵ

)
≤ K

((
13m+ 1 +

(
30m2 − 26m

))
exp

(
− n′′c3ϵ

2

c1 + c2ϵ

))
, since c3 ≤ 1. (34)

From (34), w.p. 1− δ, we obtain

|ψ̂(A)− ψ(A)| ≤

c2 log
(

K(13m+1+(30m2−26m))
δ

)
n′′c3

+

√√√√c1 log
(

K(13m+1+(30m2−26m))
δ

)
n′′c3

 . (35)

Now, from (35), we obtain the following form for the confidence width αt:

αt =


c2 log

(
70 (Km)Km2t2

δ

)
2c3 t

+

√√√√√c1 log

(
70 (Km)Km2t2

δ

)
2c3 t

 . (36)

For the sake of readability, we restate below the main result concerning the successive elimination algorithm in the correlated
bandit framework.

Theorem 3. The successive elimination algorithm is (0, δ)-PAC and w.p. at least 1− δ, it’s sample complexity is bounded
by

O

(∑
A∈A

1

∆(A)
log

((
K
m

)
Km2 log

(
∆(A)−1

)
δ

))
.

Proof.
Define the event E =

{
|ψ̂At

− ψA| < αt, ∀t = 1, 2, . . . and ∀At ∈ A
}
.

We establish below that P (E′) ≤ δ.

P (E′) = P

( ∞∑
t=1

∑
A

(
|ψ̂At − ψA| ≥ αt

))

≤
∞∑
t=1

∑
A

P
((

|ψ̂At − ψA| ≥ αt

))
≤

∞∑
t=1

∑
A

2K

((
13m+ 1 +

(
30m2 − 26m

))
exp

(
− n′′c3α

2
t

c1 + c2αt

))

≤
∞∑
t=1

∑
A

2K

(13m+ 1 +
(
30m2 − 26m

))
exp

−
n′′ log

(
70 (Km)(Km2)t2

δ

)
2t




≤
∞∑
t=1

∑
A
K

((
13m+ 1 +

(
30m2 − 26m

))
exp

(
− log

(
70
(
K
m

)
(Km2)t2

δ

)))
since n′′ ≥ t

≤
∞∑
t=1

∑
A
K
((
13m+ 1 +

(
30m2 − 26m

)))( δ

70
(
K
m

)
(Km2)t2

)

≤ K
((
13m+ 1 +

(
30m2 − 26m

))) ∞∑
t=1

(
1

t2

)∑
A

(
δ

70
(
K
m

)
(Km2)

)

≤ K
((
13m+ 1 +

(
30m2 − 26m

)))∑
A

(
δ

70
(
K
m

)
(Km2)

)
≤ δ.

Now, we show that with probability 1 − δ, the best subset can never be eliminated. The best subset A∗ gets eliminated if
at some time t, for some suboptimal subset At, the following condition holds

ψ̂At + αt < ψ̂A∗ − αt (37)



On the event E,

ψA∗ ≥ ψ̂A∗ − αt, ψ̂At
+ αt ≥ ψAt

(38)

Substituting (38) in (37), we obtain the following: ψA∗ ≥ ψ̂A∗ − αt ≥ ψ̂At
+ αt ≥ ψAt

, and this leads to a contradiction.
Hence, w.p. 1− δ, the best subset is never eliminated, and the successive elimination algorithm is (0, δ) - PAC.

Next, we derive a bound on sample complexity of the successive elimination algorithm.

Notice that, on the event E, from (38), we have ψ̂A∗ ≤ ψA∗ + αt, ψ̂At
≥ ψA − αt.

Now, ψ̂A∗ + αt ≤ ψA∗ + 2αt ≤ ψA − 2αt ≤ ψ̂At
− αt which holds if ψA − ψA∗ ≥ 4αt or,

equivalently ∆(A) ≥ 4αt.

From (36), we have

αt =
√
a
(
c2
√
a+ c1

)
, where a =

 log

(
70 (Km)Km2t2

δ

)
2c3 t

 .

Solving ∆(A)− 4
(
c2a+

√
c1
√
a
)
≥ 0, we obtain, as a solution for a, 0 ≤ a ≤

−2c22

√
c1(c1+c2∆(A))

c42
+2c1+c2∆(A)

4c22
. Therefore,

a ≤ 2c1+c2∆(A)
4c22

. Finally, by solving the equation

 log

(
70 (Km)Km2t2

δ

)
2c3 t

 ≤ 2c1+c2∆(A)
4c22

, we obtain

t(A) = O

(
1

∆(A)
log

((
K
m

)
Km2 log

(
∆(A)−1

)
δ

))
where c4 is a constant. Therefore, w.p. 1− δ, the overall sample complexity is bounded above by∑

A∈A
t(A) = O

(∑
A∈A

1

∆(A)
log

((
K
m

)
Km2 log

(
∆(A)−1

)
δ

))
.

D. Lower Bound

Proof. The basis of all the calculations is an established result for the KL-divergence between multivariate Gaussian
distributions stated below.

Lemma 3. Let N0,N1 be two k-dimensional normal distribution with zero-mean and covariance matrix A0, A1, respectively,

KL (N0||N1) =
1

2

[
Tr(A−1

1 A0)− k + ln

(
det(A1)

det(A0)

)]
Using this standard result, we bound KL-divergence between original and transformed problem instances below.

Case m < j < k:

When the ith (i ∈ {1, 2}) and the mth row of Σ are relabeled, the matrices A0 and A1 are
[
1 ρi

ρi 1

]
and

[
1 ρm

ρm 1

]
.

Thus,

KL1m
1j =

1

2

(
2
(1− ρm+1)

(1− ρ2m)
− 2 + ln

(
1− ρ2m

1− ρ2

))
≤ ρ2

2

(
2
(ρ2m−2 − ρm−1)

(1− ρ2m
) +

1− ρ2m−2

1− ρ2

)
≤ ρ2

2

(
1− ρ2(m−1)

1− ρ2

)
.

Similarly,KL2m
2j ≤ ρ4

2

(
1−ρ2(m−2)

1−ρ4

)
,KL1m

mj ≤ ρ2

2

(
1−ρm−1

1−ρ2

)
, and KL2m

mj ≤ ρ4

2

(
1−ρm−2

1−ρ4

)
. Case 1 < j <m :

KL1m
1j ≤ ρ2

2

(
1− ρ2(j−1)

1− ρ2

)
,KL2m

2j ≤ ρ4

2

(
1− ρ2(j−2)

1− ρ4

)
,KL1m

mj ≤ ρ2

2

(
1− ρj−1

1− ρ2

)
, and



KL2m
mj ≤ ρ4

2

(
1− ρj−2

1− ρ4

)
KLim

im = 0 for i ∈ {1, 2}, KLkm
ij = 0 for k ∈ {1, 2}, i /∈ {1, 2,m} ∩ j /∈ {1, 2,m}.

Notice that EΣ[τδ] =
∑
(i,j)

E[Nij(τδ)]. For any Σ′ ∈ Alt(Σ), from Lemma 1 and Remark 2 of [14], we have

∑
(i,j)

E[Nij(τδ)]KL
(
ΣXiXj ||Σ′

XiXj

)
≥ log

(
1

2.4δ

)
.

Consider the following optimization problem, with αij ≜ E[Nij(τδ)]:

min
{αij}

∑
(i,j)

αij subject to E[τδ]
∑
(i,j)

αij

E[τδ]
KL

(
ΣXiXj ||Σ′

XiXj

)
≥ log

(
1

2.4δ

)
,∀Σ′ ∈ Alt(Σ).

Letting wij ≜
αij

E[τδ] , the problem defined above is equivalent to the following:

min
{wij}

E[τδ] subject to E[τδ] min
Σ′∈Alt(Σ)

∑
(i,j)

wijKL
(
ΣXiXj

||Σ′
XiXj

)
≥ log

[
1

2.4δ

]
.

Hence,

min
{wij}

E[τδ] ≥
log( 1

2.4δ )

max
w∈∆

(K2 )
min

Σ′∈Alt(Σ)

∑
(i,j)

wijKL
(
ΣXiXj ||Σ′

XiXj

) .
Next, we derive an upper bound on the max-min in the denominator above.
Let f(w,Σ′) ≜

∑
(i,j)

wijKL
(
ΣXiXj ||Σ′

XiXj

)
. Then, we have

f(w,Σ13)

= w12KL
13
12 + w14KL

13
14 + . . .+ w1KKL

13
1K + w23KL

13
23 + w34KL

13
34 + . . .+ w3KKL

13
3K

≤ ρ2

2(1− ρ2)

(
w12(1− ρ2) + (w14 + . . .+ w1K)(1− ρ4) + w23(1− ρ) + (w34 + . . .+ w3K)

(1− ρ2)
)
,

...

f(w,Σ1m) =

K∑
j=2
j ̸=m

(
w1jKL

1m
1j + wmjKL

1m
mj

)
≤ ρ2

2(1− ρ2)

 ∑
2≤j<m

w1j(1− ρ2(j−1)) +

∑
m<j≤K

w1j(1− ρ2(m−1)) +
∑

2≤j<m

wmj(1− ρj−1) +
∑

m<j≤K

wmj(1− ρm−1)

 .

Along similar lines,

f(w,Σ23) ≤ ρ4

2(1− ρ4)

(
(1− ρ2)(w24 + . . .+ w2K) + (1− ρ)(w34 + . . .+ w3K)

)
,

...

f(w,Σ2m) =

K∑
j=3
j ̸=m

(
w2jKL

2m
2j + wmjKL

2m
mj

)
≤ ρ4

2(1− ρ4)

 ∑
3≤j<m

w2j(1− ρ2(j−2))+

∑
m<j≤K

w2j(1− ρ2(m−2)) +
∑

3≤j<m

wmj(1− ρj−2) +
∑

m<j≤K

wmj(1− ρm−2)

 .

Notice that min
w
f(w,Σ1m) ≥ max

w
f(w,Σ2m). This inequality holds because ρ2(1− ρ2(m−2)) ≥ (1+ ρ2)(1− ρ) for m ≥ 3,

and ρ ∈ [−1, 1].



Now,

max
w

min
(
f(w,Σ23), f(w,Σ24), . . . , f(w,Σ2K)

)
= max

w
min

α1,α2,...,αK≥0
α1+α2+...+αK=1

{
α1f(w,Σ

23) + α2f(w,Σ
24) + . . .+ αKf(w,Σ

2K)
}

≤ min
α1,α2,...,αK≥0

α1+α2+...+αK=1

max
w

{
α1f(w,Σ

23) + α2f(w,Σ
24) + . . .+ αKf(w,Σ

2K)
}

≤ max
w
f(w,Σ23) ( choosing α1 = 1, αi = 0, i = 2, . . . ,K)

= max
w

{
ρ4

2(1− ρ4)

(
(1− ρ2)(w24 + . . .+ w2K) + (1− ρ)(w34 + . . .+ w3K)

)}
=

ρ4

2(1 + ρ2)
,

where the final inequality holds for any ρ ∈ [0, 1], with the following optimal weights:
K∑
j=4

w2j = 1, and
K∑
j=4

w3j = 0.

Notice that the smallest gap ∆ for the bandit instance governed by Σ is given by

∆ = ψ({2, 3})− ψ({1, 2}) = 1

(1− ρ4)

[
(K − 3)

(
ρ2 + 3ρ4 + 2ρ6 − 2ρ7

)
+ (2ρ4 + 3ρ6 − ρ2)

]
.

A simple calculation yields ρ4

4(1+ρ2) ≤ ∆, which implies E[τδ] ≥
log( 1

2.4δ )

∆ . Hence proved.
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