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ABSTRACT
The objective in a traditional reinforcement learning (RL)
problem is to find a policy that optimizes the expected value
of a performance metric such as the infinite-horizon cumula-
tive discounted or long-run average cost/reward. In practice,
optimizing the expected value alone may not be satisfactory,
in that it may be desirable to incorporate the notion of risk
into the optimization problem formulation, either in the
objective or as a constraint. Various risk measures have
been proposed in the literature, e.g., exponential utility,
variance, percentile performance, chance constraints, value
at risk (quantile), conditional value-at-risk, prospect theory
and its later enhancement, cumulative prospect theory.
In this monograph, we consider risk-sensitive RL in two set-
tings: one where the goal is to find a policy that optimizes
the usual expected value objective while ensuring that a risk
constraint is satisfied, and the other where the risk measure
is the objective. We survey some of the recent work in this
area specifically where policy gradient search is the solution
approach. In the first risk-sensitive RL setting, we cover
popular risk measures based on variance, conditional value-
at-risk, and chance constraints, and present a template for

Prashanth L. A. and Michael C. Fu (2022), “Risk-Sensitive Reinforcement Learning
via Policy Gradient Search”, Foundations and Trends® in Machine Learning: Vol. 15,
No. 5, pp 536–692. DOI: 10.1561/2200000091.
©2022 Prashanth L. A. and M. C. Fu



537

policy gradient-based risk-sensitive RL algorithms using a
Lagrangian formulation. For the setting where risk is incor-
porated directly into the objective function, we consider an
exponential utility formulation, cumulative prospect theory,
and coherent risk measures. This non-exhaustive survey
aims to give a flavor of the challenges involved in solving
risk-sensitive RL problems using policy gradient methods, as
well as outlining some potential future research directions.



Preface

Reinforcement learning (RL) is one of the foundational pillars of ar-
tificial intelligence and machine learning. An important consideration
in any optimization or control problem is the notion of risk, but its
incorporation into RL has been a fairly recent development. This mono-
graph surveys research on risk-sensitive RL that uses policy gradient
search, i.e., policy optimization in a stochastic formulation, as opposed
to robust optimization approaches and methods that focus on the value
function.

We have tried to make the exposition completely self-contained but
also organized in a manner that allows expert readers to skip background
sections. In particular, those readers already familiar with Markov
decision processes (MDPs), risk measures, and stochastic gradient-
based search (specifically, stochastic approximation) can skip Sections
2, 3, and 4, respectively.

We have benefited from the feedback of many who read earlier drafts
of the manuscript. We begin by thanking Prof. Vivek Borkar, who gen-
erously offered valuable detailed comments regarding the content, and
provided material and references for the sections on the exponential
cost formulation. Next, we thank Prof. Shalabh Bhatnagar for helpful
discussions on the convergence analysis in the risk-as-constraint setting,
and Prof. Armand Makowski for critical observations. We’d also like
to thank two anonymous reviewers, whose comments and suggestions
helped us improve the exposition considerably. Lastly, we thank several
of our Ph.D. students — Xingyu Ren, Erfaun Noorani, Mehrdad Mohar-
rami, Nithia Vijayan, Yi Zhou, and Mengting Chao, who read through
various portions and stages of the manuscript and caught numerous
typos. Any remaining errors are of course our responsibility alone.

One final note: We have chosen to include references at the end of
the section in bibliographic remarks rather than cite them in the main
text, so as not to interrupt the expositional flow.



1
Introduction

Markov decision processes (MDPs) provide a general framework for
modeling a wide range of problems involving sequential decision making
under uncertainty, which arise in many areas of applications, such
as transportation, computer/communication systems, manufacturing,
and supply chain management. MDPs transition from state to state
probabilistically over time due to chosen actions taken by the decision
maker, incurring state/action-dependent costs/rewards at each instant.
The goal is to find a policy (sequence of decision rules) for choosing
actions that optimizes a long-run objective function, e.g., the cumulative
sum of discounted costs or the long-run average cost.

The traditional MDP setting assumes that (i) the transition dy-
namics (probabilities) and costs/rewards are fully specified/known, and
(ii) the objective function and constraints involve standard expected
value criteria. However, in a myriad of settings of practical interest,
neither of these conditions holds, i.e., only samples of transitions (and
costs/rewards) can be observed (e.g., in a black-box simulation model or
an actual system) and/or performance measures that incorporate risk
really need to be considered in the problem. In the case of the former,
reinforcement learning (RL) techniques can be employed, and in the
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latter setting, risk-sensitive approaches are appropriate. Although there
is abundant research on both of these settings dating back decades,
the work combining both aspects is more recent. Furthermore, the
two settings have been predominantly pursued independently by dif-
ferent research communities, with RL a focus of CS/AI researchers
and risk-sensitive MDPs a focus of stochastic control and operations
research/management science/mathematical finance researchers.

Why risk? (Avoid merely expectations?)

The focus of this monograph is not on why risk is important nor on
what is the best way to incorporate it into decision making but rather
on finding good risk-sensitive policies via RL policy gradient algorithms.
However, to provide some motivation for incorporating risk into decision
making, we briefly describe two everyday illustrative examples. The
first example has to do with financial investments, where the primary
objective is generally to maximize expected return. Clearly, this is not
sufficient for most decision makers, who would very much like to take
into consideration the “risk” of the investments, in this case taken to
mean mitigating the potential downside losses. The second example
is your daily commute to work. In this case, your primary objective
is likely to minimize expected travel time. However, if you have an
important early morning meeting, you might want to reduce the “risk”
of being late by choosing an alternative that has a higher expected
travel time but is unlikely to suffer a huge delay from an unexpected
but rare event such as an overturned tractor-trailer. A colleague of ours
avoids taking the highway to/from work for this very reason (along with
safety considerations). In other words, most decision makers consider
more than merely expectations. Both of these examples also serve to
illustrate the more general observation that real-world decisions involve
multiple objectives, where at least one of them involves the notion of
risk, extending beyond the usual expected value performance measures
considered in standard MDP and RL models (including commonly used
metrics for analysis purposes such as expected regret in multi-armed
bandit models).
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Types of risk and ways to incorporate risk

As in any multi-objective optimization problem, there are many ways
to incorporate risk. Again, our focus is not on advocating for one
formulation over another, but to provide several different alternatives,
with a solution approach for each of them. Which formulation is “better”
will depend on both the problem and the problem solver(s). We illustrate
this concept by revisiting our two examples.

One way to address risk in the investment problem is to minimize
some measure of volatility, which could take the form of putting an
upper bound on the variance of return. Thus, the decision problem
becomes a constrained optimization of maximizing the objective of
expected return subject to a constraint on the variance of return. This is
the classic mean-variance portfolio optimization problem in finance for
which Harry Markowitz was awarded the 1990 Nobel Prize in Economics.

It can be easily argued that variance is not the best measure of
risk for this problem, since it also penalizes excessive upside moves, so
maybe focusing on one tail (the downside risk) is more appropriate. One
way to address this would be to limit the probability of a high loss to
some acceptable level such as 5% or 1% or even smaller. This is known
as a chance constraint. Conversely, one might have an upper bound on
the amount of loss that might occur at a certain low probability, i.e.,
putting a constraint on a quantile of the loss distribution, which the
financial industry defines as value-at-risk (VaR). A more sophisticated
extension of VaR is conditional value-at-risk (CVaR), which also has
some other nice properties that VaR does not, most notably that it is a
coherent risk measure. Exponential utility is another way of capturing
risk preferences and implicitly capturing higher moments beyond the
second moment. Section 3 provides a more formal review of all of these
risk concepts and metrics.

Similarly, revisiting risk in the commuting problem where the ob-
jective is to minimize travel time, a constrained optimization problem
formulation would be to minimize expected travel time subject to an
upper bound on the variability of travel time, or alternatively, one could
instead employ a chance constraint by specifying the probability of the
travel time exceeding an acceptable threshold, e.g., requiring that at
least 99% of the time the travel time will be less than an hour.
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Realistic problems may involve multiple constraints that need to be
satisfied concurrently, such as bounds on both the variability and the
probability of a rare event. In our setting, this can be easily handled,
but for the sake of simplicity we will only explicitly consider the case of
a single constraint, as the extension using the policy gradient approach
would just involve additional Lagrange multiplier gradient estimates,
but the general approach would be the same.

Finally, rather than formulating the problem with risk as a constraint,
another approach is to try and include it in the objective function.
Perhaps the simplest way would be as a weighted combination of the
multiple objectives. While we don’t address the weighed objectives
formulation explicitly, it should be clear how it could also be handled
as an easy special case using the techniques of this monograph. Instead,
we consider more general formulations: the use of expected utility (an
exponential cost formulation), which modifies the output performance
measure (corresponding to investment return or travel time in the two
examples), and a risk measure called cumulative prospect theory (CPT)
that “distorts” the perceived probabilities due to the decision maker’s
view of the world. Demonstrating that prospect theory and CPT are
able to model certain aspects of actual observed human behavior that
utility theory was unable to capture was a key contribution for which
(behavioral psychologist) Daniel Kahneman was awarded the 2002 Nobel
Prize in Economics. Our treatment also extends the CPT formulation
to a framework encompassing general coherent risk measures.

Objectives of this monograph
The main purpose of this monograph is to introduce and survey re-
search results on policy gradient methods for reinforcement learning
with risk-sensitive criteria, as well as to outline some promising av-
enues for future research following the risk-sensitive RL framework. We
consider both constrained formulations where the traditional expected
value performance measure is augmented with a risk constraint and
problem formulations where the risk measure is explicitly in the ob-
jective function being optimized. Some well-known examples of risk
measures to be considered as constraints, most of which were illustrated



543

by the two earlier examples, include variance (or higher moments), prob-
abilities (in the form of chance constraints), quantiles or value-at-risk
(VaR), and conditional value-at-risk (CVaR). As also mentioned in the
examples, risk measures used explicitly as the objective function include
exponential utility and some very recent work on using CPT with RL.

To be specific, the constrained risk-sensitive RL problem will be an
optimization problem of the following general form:

min
θ∈Θ

J(θ) ≜ E [D(θ)] subject to G(θ) ≤ κ, (1.1)

where θ denotes the policy parameter, Θ represents the policy space,
D(θ) is a (stochastic) cost function, G(θ) is a risk measure, and κ denotes
the acceptable risk level. In the MDP setting, the quantities may also
depend on the initial state of the MDP, which is not indicated here. The
most common choices for D(θ) in the MDP setting include the infinite-
horizon cumulative discounted cost, total cost in a stochastic shortest
path problem, and the long-run average cost. Note that we will be
minimizing cost (as in the commuting example), which is more common
in MDP formulations than in the RL setting, which often focuses on
maximizing reward (as in the investment example). The classic “risk-
neutral” formulation simply minimizes J(·) without the risk constraint
in (1.1). Also, in contrast to the traditional setting of risk-sensitive
control where J and G functions are analytically available in the MDP
model, in the RL setting, J and G are unknown or cannot be calculated
directly, but noisy estimates of J and G are available, e.g., samples
of D could provide an unbiased estimator of J . Thus, as in the usual
RL setting, traditional MDP techniques cannot be applied, whereas
RL algorithms suitably adapted provide one avenue to attack such
risk-sensitive MDPs, i.e., a setting when the MDP model is unknown
and all the information about the system is obtained from samples
resulting from the decision maker’s interaction with the environment.

We propose to solve the constrained optimization problem (1.1) by
performing gradient descent search on the Lagrangian objective function.
As depicted in Figure 1.1, the risk-sensitive policy gradient algorithm
requires estimators ∇̂J(θ), ∇̂G(θ) and Ĝ(θ) of ∇J(θ), ∇G(θ) and
G(θ), respectively. Then, two-timescale gradient-based search algorithms
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θn, λn

Using policy µθn,

sample/simulate

underlying system

Data Collection

Estimate ∇J(θ)

Policy Gradient

Estimate G(θ)

Risk Estimation

Estimate ∇G(θ)

Risk Gradient

Update θn

Update λn

Policy Update

θn+1, λn+1

Figure 1.1: Schematic of risk-sensitive policy gradient algorithm for constrained
optimization (underlying system could be a simulation model or a real system).

taking the following form will be developed (where λ is the Lagrange
multiplier to be optimized along with the policy parameter θ):

λn+1 =
[
λn + ζ1(n)

(
Ĝ(θn)− κ

)]+
,

θn+1 = Γ
[
θn − ζ2(n)

(
∇̂J(θn) + λn∇̂G(θn)

)]
,

where [x]+ = max(0, x), Γ is a projection into Θ, and {ζ1(n), ζ2(n)}
are step-size sequences selected such that the θ update is on the faster
timescale and the λ update is on the slower timescale (see Section 5.2
for details).

In addition to the risk-constrained problem (1.1), we also consider a
risk-sensitive problem where the risk measure is explicitly incorporated
into the objective function, i.e., the following optimization problem:

min
θ∈Θ

G(θ), (1.2)

where G is a risk objective function involving exponential utility, CPT,
or a coherent risk measure. For solving the problem (1.2), we propose
a policy gradient algorithm that incorporates the following iterative
update:
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θn+1 = Γ
[
θn − ζ(n)∇̂G(θn)

]
,

where {ζ(n)} is a step-size sequence, ∇̂G(θn) is an estimate of ∇G(θn),
and Γ is a projection operator that keeps the iterate θn bounded within
the set Θ as in the case of the risk-constrained policy gradient algorithm
above (see Section 5.1 for details).

Challenges in risk-sensitive RL

Risk-sensitive RL is generally more challenging than its risk-neutral
counterpart. For instance, for a discounted-cost MDP, there exists a
Bellman equation for the variance of the return, but the underlying
Bellman operator is not necessarily monotone, so that policy iteration
is no longer guaranteed to lead to an optimal policy. Moreover, finding
a globally mean-variance optimal policy in a discounted-cost MDP is
NP-hard, even in the classic MDP setting where the transition model is
known. Average-cost MDP problems also are generally NP-hard, e.g.,
consider a risk measure that is not the plain variance of the average
cost and instead is a variance of a quantity that measures the deviation
of the single-stage cost from the average cost. Finally, in comparison
to variance/CVaR, CPT is a non-coherent and non-convex measure,
ruling out the usual Bellman equation-based dynamic programming
(DP) approaches when optimizing the MDP CPT-value.

The computational complexity results summarized in the previous
paragraph imply that finding guaranteed global optima of risk-sensitive
MDP formulations described by (1.1) or (1.2) is not computation-
ally practical, motivating the need for algorithms that approximately
solve such MDP formulations. In this monograph, we focus on policy
gradient-type learning algorithms where the policies are parameterized
in a continuous space, and an iterative search for a better policy occurs
through a gradient-descent update. Actor-critic methods are a popular
subclass of policy gradient methods and were among the earliest to be
investigated in RL. They are comprised of an Actor that improves the
current policy via gradient descent (as in policy gradient schemes) and
a Critic that incorporates feature-based representations to approximate
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the value function. The latter approximation is necessary to handle the
curse of dimensionality. Regular policy gradient schemes usually rely on
Monte Carlo methods for policy evaluation, an approach that suffers
from high variance as compared to actor-critic schemes. On the other
hand, function approximation introduces a bias in the policy evaluation.
A policy gradient/actor-critic scheme with provable convergence to
a locally risk-optimal policy would require careful synthesis of tech-
niques from stochastic approximation, stochastic gradient estimation
approaches, and importance sampling.

Several of the constituent solution pieces require significant research
for various risk measures. For example, consider the “policy evaluation”
part of the overall algorithm in a risk-sensitive MDP, which requires
estimating J(θ) and G(θ), given samples obtained by simulating the
MDP with policy θ. If J(θ) is one of the usual MDP optimization
objectives such as discounted total cost, long-run average cost, or total
cost (in a finite-horizon MDP), then estimating J(θ) can be performed
using one of the existing algorithms. Temporal difference (TD) learning is
a well-known algorithm that can learn the objective value along a sample
path for a given θ. However, estimating G(θ) using TD-type learning
algorithms is infeasible in many cases. For instance, consider variance
as the risk measure in a discounted-cost MDP. In this case, even though
there is a Bellman equation, the operator underlying this equation is
not monotone, ruling out a TD-type learning algorithm. More recently,
CVaR-constrained MDPs have been considered, though a variance-
reduced CVaR estimation algorithm is still needed. In other words, there
is no algorithm in an RL context that incorporates a variance reduction
technique such as importance sampling and is provably convergent. Note
that variance reduction is necessary, because CVaR is based on the tail
of the distribution.

Going beyond the prediction problem, designing policy gradient algo-
rithms is challenging for a risk-sensitive MDP, as it requires estimating
the (policy) gradient of the risk measure considered, a nontrivial task
in the RL context. For instance, in a discounted-cost MDP context, the
policy gradient theorem variant that accounts for the variance of the
cumulative discounted cost does not lend itself to an RL algorithm. An
alternative is to apply a finite differences method such as simultaneous
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perturbation stochastic approximation (SPSA), which amounts to treat-
ing the MDP as a black box, and such an approach would ignore the
underlying Markovian structure of the problem, which is the case with
the existing policy gradient algorithms for optimizing the CPT-value in
any of the MDP settings.

Outline of the remaining sections

Section 2 provides an overview of MDPs and outlines the standard
formulations for discounted-cost and average-cost MDPs and stochastic
shortest path total-cost MDP problems. Examples and basic theoretical
results are included for the benefit of readers less familiar with MDPs.
Section 3 introduces all of the risk measures used in the monograph,
namely exponential cost, variance, CVaR, coherent risk measures, chance
constraints, and CPT. Section 4 provides an introduction to temporal
difference learning and two gradient estimation techniques, namely
simultaneous perturbation (stochastic approximation) and the likelihood
ratio method. Section 5 presents two templates for risk-sensitive policy
gradient algorithms, one for the setting where the risk measure is the
objective, and the other for the setting where the risk measure is featured
in the constraint. This chapter also presents a convergence analysis of
the template algorithms for both settings. Section 6 develops policy
gradient algorithms for four special cases of risk-sensitive MDPs for the
constrained optimization problem posed in (1.1), with variance, CVaR,
and a chance constraint used as the risk measure constraint. Section
7 develops policy gradient algorithms for three risk-sensitive MDP
formulations in the unconstrained optimization setting of (1.2) with risk
explicitly as the objective: exponential cost, CPT, and coherent risk
measures. Finally, Section 8 provides concluding remarks and identifies
some interesting future research directions.

A brief note on notation

Throughout the monograph, the functions J , G, and D may show one,
two, or no arguments, depending on the context. Specifically, the two
possible arguments would be θ, the policy parameter, as in (1.1) or (1.2),
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or a state of the MDP (e.g., x0, x, i, j), as described in Section 2. This is
particularly relevant to Sections 5, 6, and 7. The same “convention” is
used for other analogous counterparts such as the variance and squared
versions of these quantities. On the other hand, dependence on an
entire MDP policy µ is represented as subscript, e.g., Jµ. Gradients
represented by ∇ are assumed to be with respect to θ unless otherwise
indicated, e.g., ∇λ denoting a gradient with respect to the Lagrange
multiplier λ. Finally, all vectors will be assumed to be column vectors,
and superscript “T” will be used to denote the matrix/vector transpose
operation.

Bibliographic remarks

MDPs have a long history dating back to the work of Richard E.
Bellman. For a rigorous introduction, the reader is referred to the
books by Puterman (1994) and Bertsekas (2007), and for reinforcement
learning, the books by Bertsekas and Tsitsiklis (1996), Sutton and Barto
(2018), and Szepesvári (2011). Material in this book drawn from our
own research includes Prashanth and Ghavamzadeh (2013), Prashanth
and Ghavamzadeh (2016), Prashanth (2014), Prashanth et al. (2016),
and Gopalan et al. (2017). Cumulative prospect theory (CPT) was
introduced by Tversky and Kahneman (1992) as a successor to prospect
theory, which was one of the central contributions cited for Daniel
Kahneman receiving the Nobel Memorial Prize in Economic Sciences in
2002.

References for the various risk measures include the following: mean-
variance tradeoff (Markowitz, 1952), exponential utility (Arrow, 1971;
Howard and Matheson, 1972), the percentile performance (Filar et
al., 1995), the use of chance constraints (Prekopa, 2003), stochastic
dominance constraints (Dentcheva and Ruszczynski, 2003), value at risk
(VaR), and conditional value-at-risk (CVaR) (Rockafellar and Uryasev,
2000; Ruszczyński, 2010; Shen et al., 2013). The concept of a coherent
risk measure was introduced by Artzner et al. (1999), see also Föllmer
and Schied (2004), with the extension to multi-period settings treated
in Riedel (2004), Ruszczyński and Shapiro (2006), Ruszczyński (2010),
Cavus and Ruszczynski (2014), Tallec (2007), and Choi (2009).
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The large body of literature utilizing the exponential utility formu-
lation includes the classic formulation by Howard and Matheson (1972);
related work includes Whittle (1990), Browne (1995), Fleming and
McEneaney (1995), Hernández-Hernández and Marcus (1996), Marcus
et al. (1997), Fernández-Gaucherand and Marcus (1997), Hernández-
Hernández and Marcus (1999), Coraluppi and Marcus (1999a), Coraluppi
and Marcus (1999b), Coraluppi and Marcus (2000), Borkar and Meyn
(2002), and Bäuerle and Rieder (2014). For a survey of risk-sensitive
RL under the exponential utility formulation, the reader is referred to
Borkar (2010).

Another approach to risk/uncertainty is the robust optimization
approach. In the setting of Markov decision processes, Iyengar (2005)
is an early seminal work in this area, where a robust optimal policy is
defined relative to uncertainty in the underlying transition probabilities.
We do not pursue the robust approach in this monograph.

The existence of a Bellman equation for the variance of the return,
where the underlying Bellman operator is not necessarily monotone,
can be found in Sobel (1982). The result that finding a globally mean-
variance optimal policy in a discounted-cost MDP is NP-hard can be
found in Mannor and Tsitsiklis (2013). The use of variance of a quantity
that measures the deviation of the single-stage cost from the average
cost can be found in Filar et al. (1989). The result that solving an
average-cost MDP under this notion of variance is NP-hard is shown in
Filar et al. (1989).

Actor-critic methods investigated in RL are found in Barto et al.
(1983) and Sutton (1984). Temporal difference (TD) learning can be
found in Sutton (1988). More recently, CVaR-constrained MDPs have
been considered in Borkar and Jain (2010), Prashanth (2014), and
Tamar et al. (2014a), though a variance-reduced CVaR estimation
algorithm is still needed.

The application of simultaneous perturbation stochastic approxima-
tion (SPSA) to policy gradient search for mean-variance optimization
in discounted-cost MDPs is considered in Prashanth and Ghavamzadeh
(2016) and for optimizing CPT-value in Prashanth et al. (2016).

Prospect theory (PT) was introduced in Kahneman and Tversky
(1979), and cumulative prospect theory (CPT) in Tversky and Kahne-
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man (1992), with experiments on humans reported in Starmer (2000)
and Tversky and Kahneman (1992). More work adopting this approach
includes Lin (2013), Lin and Marcus (2013b), Lin and Marcus (2013a),
and Lin et al. (2018); see also Cavus and Ruszczynski (2014).

Variance as a risk measure in a discounted-cost and average-cost
MDP, respectively, are based on Prashanth and Ghavamzadeh (2013)
and Prashanth and Ghavamzadeh (2016). CVaR as a risk measure
is based on Prashanth (2014). CPT as the risk measure is based on
Prashanth et al. (2016) and Jie et al. (2018).

A sampling but nowhere near exhaustive list of other risk-sensitive
RL work includes the following. In Tamar et al. (2012), variance as risk
is considered in a stochastic shortest path context, and a policy gradient
algorithm using the likelihood ratio method is provided. In Mihatsch and
Neuneier (2002), a modified temporal differences algorithm is proposed
and connected to the exponential utility approach. A general policy
gradient algorithm that handles a class of risk measures that includes
CVaR is presented in Tamar et al. (2015b). An early work that considers
a constrained MDP setting similar to that in (1.1) is Borkar (2005),
where the objective is average cost and the constraint is also an average-
cost function different from the objective function. A modification of
this formulation to a discounted-cost MDP, incorporating function
approximation, was treated in Bhatnagar (2010). CVaR optimization
in a constrained MDP setup was also explored in Borkar and Jain
(2010), but the algorithm proposed there requires that the single-stage
cost be separable. Optimization of risk measures that include CVaR
in an unconstrained MDP setting using RL algorithms with function
approximation can be found in Jiang and Powell (2017).



2
Markov Decision Processes

A Markov decision process (MDP) is a discrete-time stochastic process
that transitions from one state to the next in a probabilistic fashion
after the execution of an action, on the way possibly accumulating costs
(or rewards). The objective of an MDP is to minimize some cost function
(or maximize some reward function) over the horizon of interest, which
may be finite (possibly random) or infinite. In this section, we provide
a basic overview of MDP theory for several of the most commonly
used settings. A reader familiar with the theory of MDPs can skip this
section and move to the description of risk measures and risk-sensitive
RL algorithms in the subsequent sections.

We consider an MDP {xt, t = 0, 1, . . .} with state space X and
action space A (both assumed to be finite), and starting in state x0.
Let P (·|x, a) denote the state transition probability distribution from
state x under action a, k(x, a) denote the single-stage cost incurred in
state x under action a, and A(x) ⊂ A denote the set of feasible actions
in state x (all assumed to be stationary). The sequence of actions
{at, t = 0, 1, . . .} follows a policy µ (also assumed to be stationary).
For simplicity, we consider nonrandomized policies, i.e., µ : X −→ A.
We extend to randomized policies at the end of the section when we
introduce the policy parameterization to be considered in Section 5. We
introduce MDPs under three different (risk-neutral) objectives/settings:
infinite-horizon discounted cost, stochastic shortest path total cost, and
infinite-horizon average cost, described in Sections 2.1, 2.2, and 2.3,
respectively.
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2.1 Discounted-cost MDP

The infinite-horizon cumulative discounted cost for an MDP trajectory
(or sample path) under policy µ, starting in state x0, is given by

Dµ(x0) =
∞∑
m=0

γmk(xm, am), (2.1)

where γ ∈ [0, 1) is the discount factor and am = µ(xm).
In a risk-neutral setting, the performance measure (or value function)

associated with a policy µ is the expected total discounted cost denoted
by

Jµ(x0) ≜ E [Dµ (x0)] ,

and the objective is to find the optimal cost or value function

J∗ ≜ min
µ∈Ξ
{Jµ} (2.2)

and/or the associated optimal policy µ∗ ≜ arg minµ∈Ξ {Jµ}, where Ξ
denotes the set of admissible policies. A policy µ is admissible if it
considers only feasible actions in any given state, i.e., µ(x) ∈ A(x).

For an |X |-dimensional vector J ≜ [J(x)]x∈X , define the (Bellman
optimality) operator T as follows:

(TJ)(x) ≜ min
a∈A(x)

{
k(x, a) + γ

∑
y∈X

P (y|x, a)J(y)
}
, ∀x ∈ X , (2.3)

where A(x) denotes the set of feasible actions in state x. Next, we define
another (Bellman policy) operator Tµ specific to a given policy µ:

(TµJ)(x) ≜ k(x, µ(x)) + γ
∑
y∈X

P (y|x, µ(x))J(y), ∀x ∈ X . (2.4)

The first important result is the following, which forms the basis for
the value-iteration algorithm for policy evaluation.

Proposition 2.1. Tmµ J −→ Jµ as m→∞, ∀J ≜ [J(x)]x∈X ,

where Jµ ≜ [Jµ(x)]x∈X is the unique solution of

Jµ = TµJµ. (2.5)
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Value iteration relies on the result in Proposition 2.1, as it repeatedly
applies the Tµ operator for the expected cost Jµ defined by (2.4), starting
with an arbitrary J0, i.e., the following update rule for computing Jµ:

Jk+1(x) = k(x, µ(x)) + γ
∑
y∈X

P (y|x, µ(x))Jk(y), ∀x ∈ X .

Important properties of the Bellman optimality operator T and its
relationship to the optimal value function J∗ are summarized here.

Proposition 2.2.
(i) J∗ ≜ [J∗(x)]x∈X is the unique solution to J∗ = TJ∗.

(ii) For any J ≜ [J(x)]x∈X , TmJ −→ J∗ as m→∞,
(iii) A policy µ is optimal if and only if TµJ∗ = TJ∗.

The fixed-point equation in (i) is referred to as the Bellman (optimality)
equation, and the corresponding value iteration update for computing
the optimal value J∗ is the following:

J∗
k+1(x) = min

a∈A(x)

k(x, a) + γ
∑
y∈X

P (y|x, a)J∗
k (y)

 , ∀x ∈ X .
We now present a simple illustrative example where the optimal

policy is found using the Bellman equation.

Example 2.1. (machine replacement problem)
A machine can be in any of n states, denoted 1, 2, . . . , n, where state 1
corresponds to a machine in perfect condition, and higher-valued states
indicate deteriorating conditions (e.g., age of the machine), for which
it is more costly to operate the machine. The goal is to decide when
to replace the machine to minimize the long-run discounted operating
cost.

Let k(i) denote the cost of operating the machine in state i in any
time period (in this case with no direct dependence on the action), with

k(1) ≤ k(2) . . . ≤ k(n).

The machine deteriorates stochastically according to transition matrix
P = [pij ], where pij is the probability that the machine goes from
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state i to j. Assume the machine can never improve its state without
intervention, which implies pij = 0 for j < i. The state of the machine
at the beginning of each time period is known, and there are just two
possible actions: (i) do nothing, or (ii) replace the machine with a new
machine (state 1) at cost R. The problem is to choose the actions to
minimize the infinite-horizon discounted cost. Intuitively, it makes little
sense to replace the machine when it is almost new, i.e., the state is close
to 1, and it turns out that a policy that uses a threshold to determine
whether to replace or not is optimal.

For a machine in state i, if the action chosen is to replace the
machine, then the machine will go to state 1 for the next period,
incurring immediate cost R+ k(1) and a future discounted (optimal)
expected cost from state 1; otherwise, it deteriorates to state j ≥ i

according to the state transition probabilities pij , incurring immediate
cost k(i) and a corresponding future discounted (optimal) expected cost.
Putting these together for the RHS of (2.3), the Bellman equation is
obtained by applying Proposition 2.2(i):

J∗(i) = min
{
R+ k(1) + γJ∗(1), k(i) + γ

n∑
j=i

pijJ
∗(j)

}
.

Letting Pi,: denote the ith row of P, so ∑n
j=1 pijJ

∗(j) = Pi,: · J∗, the
optimal action is to replace a machine in state i if

R+ k(1) + γJ∗(1) ≤ k(i) + γPi,: · J∗,

and do nothing otherwise.

To establish that the optimal policy is threshold-based requires the
following additional assumption (besides the previous assumption that
the machine cannot get better on its own):

pij ≤ p(i+1)j , i < j,

which implies that the machine is more likely to jump to a worse state
from a state that is closer to it than from a state that is farther away.
For J satisfying J(1) ≤ J(2) ≤ . . . ≤ J(n), and ∀i ∈ {1, 2, . . . , n− 1},

Pi,: · J ≤ Pi+1,: · J =⇒ k(i) + γPi,: · J ≤ k(i+ 1) + γPi+1,: · J,
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where the RHS inequality used the assumption that k(i) is nondecreasing.
Thus, (TJ)(i) is nondecreasing in i if J is nondecreasing. Using this
observation together with the fact that T is a monotone operator,
(TmJ)(i) is nondecreasing in i for any m ≥ 1, which implies that
J∗(i) = limm→∞(TmJ)(i) is nondecreasing in i.

The foregoing implies that the function h(i) = k(i) + γPi,: · J∗ is
nondecreasing in i. Let i∗ denote the smallest state satisfying R+k(1) +
γJ∗(1) ≤ k(i) + γPi,: · J∗. As illustrated in Figure 2.1, it is easy to
infer that the following policy is optimal for the machine replacement
problem: replace if i ≥ i∗; else, do nothing.

state (i)

h(i) = k(i) + γ
∑n

j=i
pijJ∗(j)

R + k(1) + γJ∗(1)

i∗ n

do nothing replace

Figure 2.1: The optimal threshold-based policy for the machine replacement problem
(For ease of illustration, h(i) is plotted as a continuous function.).

2.2 Stochastic shortest path MDP

In a stochastic shortest path (SSP) problem, the horizon is finite but
unknown (random), as the MDP terminates when it enters a prede-
termined state (or possibly set of states in a generalized setting). The
basic version of a shortest path problem is to traverse from a source
(origin) node to a sink (destination) node, hence the term stochastic
shortest path problem.

An episode is a sample path using a policy µ that starts in state
x0 ∈ X , visits {x1, . . . , xτ−1} before ending in the (cost-free) absorbing
state 0 ∈ X , where τ is the first passage time to state 0 ∈ X . Let
Dµ(x0) =

τ−1∑
m=0

k(xm, am) denote the total cost from an episode, with



556 Markov Decision Processes

the actions {am} chosen according to policy µ, i.e., am = µ(xm). In
a risk-neutral setting, the performance measure (or value function)
associated with a policy µ is

Jµ(x0) ≜ E [Dµ (x0)] .

We consider policies that ensure that the absorbing state 0 is recurrent
and the remaining states transient in the underlying Markov chain.
Such policies are referred to as “proper”, and we formalize this notion
in the following definition:

Definition 2.1. A stationary policy µ is proper if ∀x ∈ X , there exists
M > 0 s.t.

ρµ = max
x∈X

P (xM ̸= 0 | x0 = x, µ) < 1.

The condition in Definition 2.1 ensures that there exists a path
of positive probability from any state to the absorbing state 0. To
understand the need for the notion of a proper policy, consider a three-
state deterministic shortest path example shown in Figure 2.2, where
the costs (rather than transition probabilities) are shown on the arcs.

1

2

0

ϵ

1

1

ϵ

Figure 2.2: Three-state deterministic shortest path example (costs on the arcs).

It is obvious that the least-cost path from node 1 (or 2) to 0 follows
the edge connecting it to 0 in one step, with a total cost of 1. However,
one improper policy is a policy that leads to a path that loops between
1 and 2. Since the edge costs are positive, it is clear that such an
improper policy would incur infinite cost. On the other hand, having
zero cost edges between 1 and 2 (i.e., letting ϵ → 0) would mean
the improper policy would incur zero cost in the long run – one type
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of pathological scenario that we would like to avoid, motivating the
following assumptions for the analysis of SSPs:

A2.1. There exists at least one proper policy.

A2.2. For every improper policy µ, the associated cost Jµ(x0) is infinite
for at least one state x0.

The risk-neutral objective in an SSP context is to minimize the
expected total cost, i.e.,

min
µ∈Ξ
{Jµ(x0)} , (2.6)

where Ξ denotes the set of admissible policies that satisfy A2.1 and
A2.2.

As in the discounted-cost setting, for an |X |-dimensional vector
J ≜ [J(x)]x∈X , define the (Bellman optimality) operator T :

(TJ)(x) ≜ min
a∈A(x)

{
k(x, a) +

∑
y∈X

P (y|x, a)J(y)
}
, ∀x ∈ X , (2.7)

and also the operator specific to a given policy µ, Tµ, defined as

(TµJ)(x) ≜ k(x, µ(x)) +
∑
y∈X

P (y|x, µ(x))J(y), ∀x ∈ X . (2.8)

Now, we state a few important properties of the Tµ operator in the
proposition below.

Proposition 2.3. Assume A2.1 and A2.2. Then, for any proper
policy µ and any J ≜ [J(x)]x∈X ,

lim
m→∞

(Tmµ J)(x) = Jµ(x), ∀x ∈ X , (2.9)

where Jµ ≜ [Jµ(x)]x∈X is the unique solution of the fixed-point
equation

Jµ = TµJµ.

As in the discounted case, the convergence result given by (2.9) can be
used to establish convergence of the value iteration algorithm, which
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repeatedly applies the Tµ operator given by (2.8), starting with an
arbitrary J0.

We now turn our attention to the Bellman optimality operator T ,
and state a few important properties concerning this operator. First we
define the optimal cost (value) function:

J∗(x0) ≜ min
µ∈Ξ

Jµ(x0), ∀x0 ∈ X .

Proposition 2.4. Assume A2.1 and A2.2. Then,

1. J∗ ≜ [J∗(x)]x∈X is the unique solution to the fixed-point
equation

J∗ = TJ∗. (2.10)

2. For any J ≜ [J(x)]x∈X ,

lim
m→∞

(TmJ)(x) = J∗(x), ∀x ∈ X .

3. A stationary policy µ is optimal if and only if

TµJ
∗ = TJ∗.

We illustrate the usage of Bellman equation (2.10) for finding the optimal
policy in the example below.

Example 2.2. (the spider and the fly)
A spider hunts a fly on the one-dimensional line of integers ...,−1, 0,
+1, ... In each period/stage, the fly jumps forward or backward 1 unit
with probability p and remains in the same position with probability
1−2p. The spider jumps (1 unit) towards the fly if the distance between
them is greater than 1 unit. If the distance between them is exactly 1
unit, the spider can choose to stay in its position hoping the fly will
come to it or go 1 unit forward. The game (and the fly) ends when
the spider is in the same position as the fly. The goal is to decide the
actions of the spider to minimize the expected time to catch the fly.

This problem can be formulated as an SSP, with the state as the
distance between the spider and the fly. The terminal state is state
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0, which is reached when the spider and fly are in the same position.
Note that given an initial distance between the spider and the fly,
the subsequent distance between them can never be greater than this
distance, so that the number of states is finite. Specifically, assuming
that the spider and fly are initially at a separation of n, the state space
is X = {0, 1 . . . n}. The transition probabilities are obtained as follows:
When the state is 2 or more, the spider has to jump towards the fly,
leading to

pi,i−2 = p, pi,i−1 = 1− 2p, and pi,i = p, for i ≥ 2,

where pi,j denotes the probability that the system transitions from state
i to j, when the spider jumps, for i ≥ 2. Since the optimal action for
the spider is to jump in this situation, we drop the dependence on the
spider’s action in the transition probabilities for i ≥ 2.

When the state is 1, the spider has two possible actions. Denoting
M and M as the actions “move” and “don’t move”, respectively, the
transition probabilities as a function of the spider’s action are given by

p1,1(M) = 2p, p1,0(M) = 1− 2p, and
p1,2(M) = p, p1,0(M) = p, and p1,1(M) = 1− 2p.

To find the minimum expected time to catch the fly, we set all the
single-stage costs to 1.

We now derive the Bellman equation (2.10) for this problem by
finding the RHS of (2.7) for each state. As there is only one action to
take for states i > 1, the Bellman equation for i > 1 is

J∗(i) = 1 + pi,i−2J
∗(i− 2) + pi,i−1J

∗(i− 1) + pi,iJ
∗(i)

= 1 + pJ∗(i− 2) + (1− 2p)J∗(i− 1) + pJ∗(i).

For state 1, we have to take the minimum over two actions, leading to

J∗(1) = 1 + min (2pJ∗(1), pJ∗(2) + (1− 2p)J∗(1)) .

Therefore, we have

J∗(i) =


1 + pJ∗(i− 2) + (1− 2p)J∗(i− 1) + pJ∗(i) i ≥ 2,
1 + min(2pJ∗(1), pJ∗(2) + (1− 2p)J∗(1)) i = 1,
0 (cost-free absorbing state) i = 0.



560 Markov Decision Processes

Straightforward calculations involving J∗(2) and J∗(1) lead to the
spider’s optimal action in state 1 being to move if the probability of the
fly jumping is under 1/3, leading to the spider’s overall optimal policy
(for p = 1/3, either action is optimal in state i = 1):

µ(i) =


M i = 1 and p < 1

3 ,

M i = 1 and p > 1
3 ,

M i ≥ 2.

2.3 Average-cost MDP
The average cost under policy µ is defined as

Jµ(x) ≜ lim
T→∞

1
T
E
[
T−1∑
m=0

k(xm, am)
∣∣∣∣∣x0 = x

]
, (2.11)

where am = µ(xm).
Under the following unichain assumption, the infinite-horizon aver-

age cost in (2.11) is identical for all initial states x0 ∈ X :
A2.3. The Markov chain generated by any policy µ is irreducible and
positive recurrent.

Under A2.3, we can drop the dependence in (2.11) on the initial
state and simply use Jµ to denote a scalar rather than a vector as in
the two previous settings.

The goal in the standard (risk-neutral) average-cost formulation is
min
µ∈Ξ

Jµ,

where, as before, Ξ denotes the set of admissible policies.
For any policy µ, we associate an expected differential value function

defined as follows:

Qµ(x, a) ≜
∞∑
m=0

E
[
k(xm, am)− Jµ | x0 = x, a0 = a, µ

]
, (2.12)

Vµ(x) ≜ Qµ(x, µ(x)), (2.13)
where Vµ(x) is the expected sum of the differences between the single-
stage cost and the average cost Jµ under the policy µ with initial state
x ∈ X , and Qµ(x, a) has an analogous connotation. Vµ and Qµ are
referred to as the differential value and Q-value functions, respectively.
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Proposition 2.5. Assume A2.3. The differential value and Q-value
functions satisfy the following Poisson equations:

Jµ + Vµ(x) = k(x, µ(x)) +
∑
y∈X

P (y|x, µ(x))Vµ(y), (2.14)

Jµ +Qµ(x, a) = k(x, a) +
∑
y∈X

P (y|x, a)Vµ(y).

A well-known algorithm for computing the differential value function
of a given policy using the Poisson equation, is ‘relative value iteration’,
which employs the following update rule:

Vm+1(x) = k(x, µ(x)) +
∑
y∈X

P (y|x, µ(x))Vm(y)− Vm(xf ), ∀x ∈ X ,

where xf is a fixed state. Vm converges asymptotically to the differen-
tial value function Vµ, although the proof is more delicate than in the
discounted-cost or SSP settings, where the Tµ operator is a contrac-
tion, which is not the case for the average-cost setting. In addition to
computing the differential value, relative value iteration can be used to
obtain the average cost Jµ, since the term Vm(xf ) converges to Jµ.

We now turn our attention to the optimal average cost, and its
associated Bellman (optimality) equation.

Proposition 2.6. Assume A2.3. Let J∗ = minµ∈Ξ Jµ denote the
optimal average cost. Let µ∗ denote the optimal policy, and let
V ∗ = Vµ∗ denote the differential value function associated with the
optimal policy µ∗. Then, (J∗, V ∗(x)), x ∈ X , satisfy the following
Bellman equation:

J∗ + V ∗(x) = min
a∈A(x)

{
k(x, a) +

∑
y∈X

P (y|x, a)V ∗(y)
}
, ∀x ∈ X .

The ‘relative value iteration’ for computing the optimal average cost
employs the following update rule:

V ∗
m+1(x) = min

a∈A(x)

(
k(x, a) +

∑
y∈X

P (y|x, a)V ∗
m(y)

)
− V ∗

m(xf ), ∀x ∈ X ,
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where xf is a fixed state. Again, Vm converges asymptotically to the
optimal differential value function V ∗, and Vm(xf ) converges to J∗.

Example 2.3. (machine replacement problem revisited)
Consider the machine replacement example again, with the average-cost
objective in place of discounted cost. Using the same notation, the
Bellman equation for the average-cost problem is given by

J∗ + V ∗(i) = min
{
R+ k(1) + V ∗(1), k(i) +

n∑
j=1

pijV
∗(j)

}
, i = 1, . . . , n,

where the action that minimizes the RHS of the Bellman equation is
the optimal action in state i.

What is needed to ensure that the Bellman equation is solvable for
the average-cost version of this problem? First, observe that not all
polices necessarily satisfy the unichain assumption now, i.e., there exists
policies that do not satisfy A2.3. To see this, consider a policy that
replaces the machine in all states i < n, and in state n does nothing.
Such a policy clearly results in two disjoint recurrent classes, and hence
the underlying Markov chain is not unichain. A more general assumption
that ensures solvability of the Bellman equation is the following:

A2.4. The state space can be partitioned into two disjoint classes X1
and X2 such that (i) all states in X1 are transient in the Markov chain
generated by any policy µ; and (ii) there exists a policy, say µ̃, and a
positive integer M such that P (xM = x′|x0 = x, µ̃) > 0, ∀x, x′ ∈ X2.

This assumption is an intuitive extension of the unichain assumption,
allowing the presence of transient states, whereby the MDP eventually
acts as if it were unichain once it leaves the set of transient states.

Under the assumption above, the average cost J is identical for
all initial states, as in the unichain setting. Moreover, it can be easily
verified that the machine replacement problem satisfies A2.4, implying
the Bellman equation is solvable. Furthermore, the arguments used for
discounted-cost MDPs to show that the form of the optimal policy is
threshold-based can be extended to the average-cost setting, as well,
and we omit the details.
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2.4 Randomized policies and policy parameterization

Nonrandomized policies µ specify a single action for a given state, i.e.,
µ(x), x ∈ X , whereas a randomized policy µ specifies a probability
distribution over the feasible action space, i.e., µ(·|x) will be used to
denote a distribution over A(x). For the discrete state/action space
setting, µ(a|x) is simply the probability of taking action a in state x, and
a randomized policy µ is admissible if the policy puts nonzero probability
on only feasible actions in any given state, i.e., µ(a|x) > 0 implies
a ∈ A(x) ∀x, a. Various definitions would be adjusted accordingly, by
summing over the action space. For instance, for the discounted-cost
setting, the Tµ operator given by (2.4) becomes

(TµJ)(x) ≜
∑

a∈A(x)
µ(a|x)

[
k(x, a) + γ

∑
y∈X

P (y|x, a)J(y)
]
, ∀x ∈ X ,

and for the average-cost setting, Equations (2.13) and (2.14) become

Vµ(x) ≜
∑

a∈A(x)
µ(a|x)Qµ(x, a)

and

Jµ + Vµ(x) =
∑

a∈A(x)
µ(a|x)

[
k(x, a) +

∑
y∈X

P (y|x, a)Vµ(y)
]
,

respectively.
Our focus in policy gradient risk-sensitive RL will be on parame-

terized randomized policies µθ, where θ denotes the policy parameter,
which appears in the distribution. For example, in the machine replace-
ment problem, a randomized policy would specify the probability of
replacing the machine (or doing nothing), and in ‘the spider and the fly’
example, a randomized policy would specify the probability of moving
(or not moving) in each state, e.g., specified as follows:

µθ(M |i) = θi, µθ(M |i) = 1− θi, θ = [θ0 θ1 · · · θn],

where θi denotes the probability of the spider moving when in state i.
Policy gradient methods require estimators for ∇J(θ), the gradient of
the objective function (i.e., total cost or average cost) with respect to
the policy parameters.
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2.5 Bibliographic remarks

MDPs have a long history dating back to the seminal work of Richard E.
Bellman in the 1950s (Bellman, 1957). For a more complete treatment,
the reader may refer to the books by Derman (1970), Ross (1983), Puter-
man (1994), Bertsekas (2007), Bertsekas (2012), and Sutton and Barto
(2018), where the last text focuses on reinforcement learning. We as-
sume finite state and action spaces throughout, as the infinite, especially
uncountable, space setting involves deeper mathematics beyond the
scope of this work; a comprehensive review in the average-cost setting
is Arapostathis et al. (1993). The presentation of the discounted-cost
MDP in Section 2.1 is based on material from Chapter 1 of Bertsekas
(2012). In Section 2.2, the notion of a proper policy is based on the
treatment of SSPs from Bertsekas (2012, Chapter 2). The latter chapter
is also the source for the presentation of Bellman operator and ‘the
spider and the fly’ example in Section 2.2. For the Poisson and Bellman
equations in the average-cost MDP from Section 2.3, the reader can
refer to either Puterman (1994) or Bertsekas (2012, Chapter 4). The
unichain Assumption A2.3, as well as its relaxation in Assumption
A2.4, is also based on material from Chapter 4 of Bertsekas (2012).
For simulation-based approaches, see Chang et al. (2007), Chang et al.
(2013), and Gosavi (2003).



3
Risk Measures

In this section, we introduce risk measures that can be incorporated
into risk-sensitive RL, whether explicitly in the objective function or
implicitly as a constraint. The first risk measure involves a modified func-
tional form of exponential utility serving as the objective function in an
average-cost MDP, which we will refer to throughout as exponential cost.
This measure has been analyzed in depth in the risk-sensitive stochastic
control community, but there remains a dearth of computationally prac-
tical policy gradient algorithms for high-dimensional state-space RL
settings. The second and third risk measures are based on two different
interpretations of variance in discounted-cost and average-cost MDPs,
described in Sections 3.2 and 3.3, respectively. The fourth risk measure,
described in Section 3.4, is conditional Value-at-Risk (CVaR), widely
used in finance. The fifth risk measure, detailed in Section 3.5, are
chance constraints commonly used in stochastic optimization problem
formulations, as briefly mentioned in the commuting example of Sec-
tion 1. The sixth risk measure, described in Section 3.6, is the class of
coherent risk measures, which includes CVaR. The final risk measure,
described in Section 3.7, is based on cumulative prospect theory (CPT),
which has been found to model human decision making well.

565
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3.1 Exponential cost in average-cost MDPs

As mentioned in Section 1, an exponential utility function is one way
commonly used to capture risk preferences. For average-cost MDPs,
the corresponding risk measure takes the following form (referred to
henceforth as exponential cost):

Gµ ≜ lim sup
T→∞

1
T

1
β

logE
[
exp

(
β
T−1∑
n=0

k(xn, an)
)]

,

where β is a parameter that controls risk sensitivity. Assuming that the
single-stage costs are positive, i.e., k(·, ·) > 0, β > 0 corresponds to the
risk-averse setting and β < 0 to the risk-seeking setting, and in the limit
β → 0, the exponential cost approaches the classic (risk-neutral) average
cost. If the Markov chain generated by the policy µ is irreducible and
positive recurrent, i.e., satisfies A2.3, then the lim sup in the definition
(3.1) can be replaced by an ordinary limit.

3.2 Variance in discounted-cost MDPs

For discounted MDPs with starting state x0, we consider a variability
risk measure defined as follows:

Gµ(x0) ≜ Var [Dµ(x0)] = Uµ(x0)− Jµ(x0)2, (3.1)

where Jµ(x) ≜ E [Dµ(x)] and Uµ(x) ≜ E
[
(Dµ(x))2

]
.

This risk measure is the overall variance of the cumulative discounted
cost. An alternative is to consider per-period variance, i.e., the deviations
of the single-stage costs, which we will consider for the average-cost
MDP in Section 3.3. Setting aside the question of which is the most
appropriate notion of variability for the underlying MDP, we shall
design algorithms for overall variance in the discounted-cost case and
per-period variance in the average-cost case in Sections 6.1–6.2, although
the constituent pieces of these algorithms can also be easily incorporated
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to handle the cases of per-period variance in a discounted cost MDP
and overall variance in an average cost MDP.

The variance risk measure G(x) defined by (3.1) satisfies the follow-
ing fixed-point equation for any x ∈ X :

Gµ(x) = χµ(x) + γ2 ∑
y∈X

P (y|x, µ(x))Gµ(y), (3.2)

where
χµ(x) = γ2

(∑
y∈X P (y|x, µ(x))Jµ(y)2 −

(∑
y∈X P (y|x, µ(x))Jµ(y)

)2
)

.

Remark 3.1. The exponential cost risk measure implicitly incorpo-
rates the mean-variance trade-off. To see this, let D = ∑T−1

n=0 k(xn, an)
denote the total cost r.v. Using a Taylor’s series expansion, we have
1
β logE[eβD(θ)] = E[D(θ)] + β

2 Var[D(θ)] +O(β2); hence, the exponential
cost risk measure incorporates all higher moments of D. On the other
hand, a mean-variance constrained optimization formulation would
involve a variance constraint in (1.1), while minimizing the usual ex-
pected cost objective function. Each formulation has its advantages
and disadvantages. For example, the constraint formulation eschews
choosing the risk parameter β, although its value can be imputed from
the choice of the constraint threshold κ in (1.1), where κ may have a
more intuitive meaning in many practical applications. However, the
fixed-point relation in (3.2) lacks monotonicity, ruling out policy itera-
tion as a candidate for optimizing variance, whereas the exponential
cost satisfies a multiplicative form of Bellman equation (see Section
7.1), making it more amenable to dynamic programming algorithms.

3.3 Variance in average-cost MDPs

For average-cost MDPs, we consider the variance defined by deviations
of single-stage cost from the average cost (as opposed to the variance of
the average cost itself), viz.:
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Gµ ≜ lim
T→∞

1
T
E
[
T−1∑
n=0

(
k(xn, an)− Jµ

)2]
, (3.3)

where the actions an are governed by policy µ, and Jµ is the average cost
of the policy µ. To see the rationale behind the definition above for vari-
ability, consider two stream of cost: a policy µ1 results in (0, 0, 0, 0, . . .),
while another policy µ2 gives (100,−100, 100,−100, . . .). The average
cost as well as the variance of the average cost is zero for both policies.
On the other hand, from the point of the variance as defined by (3.3),
policy µ1 is better than µ2.

A straightforward calculation yields

Gµ = ηµ − J2
µ,

where ηµ = ∑
x,a π(x, a)k(x, a)2 is the average squared cost, with π(x, a)

denoting the stationary distribution of the state-action pair (x, a) under
policy µ.

Along the lines of (2.12) and (2.13), the squared-cost counterparts
W and U of Q and V are defined as follows:

Wµ(x, a) ≜
∞∑
n=0

E
[
k(xn, an)2 − ηµ | x0 = x, a0 = a, µ

]
,

Uµ(x) ≜
∑
a

µ(a|x)Wµ(x, a).

These differential-value and Q-value functions U and W for the square
cost, which are defined above, satisfy the Poisson equations given by

ηµ + Uµ(x) =
∑
a

µ(a|x)
[
k(x, a)2 +

∑
y

P (y|x, a)Uµ(y)
]
,

ηµ +Wµ(x, a) = k(x, a)2 +
∑
y

P (y|x, a)Uµ(y).

3.4 Conditional Value-at-Risk (CVaR)

For any random variable (r.v.) X, the Value-at-Risk (VaR) at level
α ∈ (0, 1) is defined as

VaRα(X) ≜ inf {ξ | P (X ≤ ξ) ≥ α} ,
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which mathematically is just an α-quantile, since if F is the cumulative
distribution function (c.d.f.) of X, VaR is equivalently defined as

VaRα(X) ≜ inf {ξ | F (ξ) ≥ α} = F−1(α).

VaR is a commonly used risk measure in the financial industry, where it
represents a level of assets needed to cover a potential loss. VaR as a risk
measure has several drawbacks, which precludes using standard stochas-
tic optimization methods; most prominently, VaR is not a coherent risk
measure (see Section 3.6 for a definition). On the other hand, another
closely related risk measure also widely used in the financial industry
called CVaR is coherent and thus lends itself to stochastic programming
techniques. CVaR is a conditional mean over the tail distribution as
delineated by the VaR, defined as follows:

CVaRα(X) ≜ E [X|X ≥ VaRα(X)] .

In a stochastic shortest path problem, CVaR is defined as:

Gµ(x0) ≜ CVaRα

[
τ−1∑
m=0

k(xm, am)
∣∣∣∣∣x0

]
, (3.4)

where τ is the first visit time to absorbing state 0 and am ∼ µ (·|xm).

3.5 Chance constraints

A chance constraint takes the form

P(g(X) ≥ 0) ≤ α, (3.5)

where X is again some random variable of interest and α is a small
number (e.g., 0.1, 0.05, 0.001) referred to as the risk tolerance level.
This fits into the general constrained formulation given by (1.1) by
taking G ≜ P(g(X) ≥ 0).

3.6 Coherent risk measures

A risk measure ρ(·) is coherent if it satisfies the following conditions
(where X and Y are random variables):
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• Monotonicity: If X ≤ Y a.s. (almost surely), then ρ(X) ≤ ρ(Y ).

• Sub-additivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

• Positive homogeneity: ρ(λX) = λρ(X) for any λ ≥ 0.

• Translation invariance: For constant a > 0, ρ(X + a) = ρ(X) + a.

The sub-additivity requirement is vital, and in the context of portfolio
optimization implies diversification cannot lead to increased risk. Note
that VaR violates this condition, whereas CVaR is a coherent risk
measure.

In the context of an MDP, the r.v. X could correspond to the total
cost in an SSP problem, or the cumulative cost in a discounted MDP,
or the long-run average cost.

3.7 Cumulative prospect theory (CPT)

CPT is a risk measure that captures human attitudes towards risk. For
any r.v. X, the CPT-value is defined as

C(X) ≜
∫ ∞

0
w+

(
P
(
u+(X) > z

))
dz −

∫ ∞

0
w− (P (u−(X) > z

))
dz,

(3.6)

where u+, u− : R→ R+ are the utility functions that are assumed to be
continuous, with u+(x) = 0 when x ≤ 0 and increasing otherwise, and
with u−(x) = 0 when x ≥ 0 and decreasing otherwise, w+, w− : [0, 1]→
[0, 1] are weight functions assumed to be continuous, non-decreasing
and satisfy w+(0) = w−(0) = 0 and w+(1) = w−(1) = 1. Note that
CPT-value is a generalization of the classic expected value, which can
be seen by taking w+, w− as the identity functions, u+(x) = x+ and
u−(x) = x−, where x+ ≜ max(x, 0), x− ≜ max(−x, 0), leading to
C(X) = E

[
X+]− E [X−] .

The human preference to play safe with gains and take risks with
losses is captured by a concave gain-utility u+ and a convex disutility
−u−. The weight functions w+, w− capture the observed empirical
behavior that the value seen by a human subject is nonlinear in the
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Losses

u+

−u−

Gains

Utility

Figure 3.1: An example of a utility function. A reference point on the x axis
serves as the point of separating gains and losses. For losses, the disutility −u− is
typically convex and for gains, the utility u+ is typically concave; both functions are
non-decreasing and take the value of zero at the reference point.

underlying probabilities. In particular, humans deflate high probabilities
and inflate low probabilities. Examples of utility and weight functions
used in practice are shown in Figures 3.1 and 3.2, respectively.
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Figure 3.2: An example of a weight function. A typical CPT weight function inflates
small probabilities and deflates large probabilities, capturing the tendency of humans
doing the same when faced with decisions of uncertain outcomes.
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A risk measure based on CPT in a typical MDP setting could apply
the CPT-functional to a risk-neutral objective. For instance, take the
r.v. X in (3.6) to be either the total cost in an SSP problem or the
infinite-horizon cumulative cost in a discounted MDP. However, to carry
out dynamic programming would require a Bellman optimality equation,
which is not readily available, given the non-convex structure of the
CPT-value. A different approach is to use a nested formulation, together
with the CPT-style probability distortion. Basically, the formulation is
equivalent to optimizing the sum of CPT-value period costs rather than
the CPT-value of the sum, and by doing so guarantees the existence of a
Bellman optimality equation. Intuitively, it makes sense to incorporate
CPT for the total reward rather than applying it separately to the
reward in each period.

3.8 Bibliographic remarks

What we defined as the “exponential cost” risk measure in Section 3.1
to be used primarily in Section 7 has an extensive literature in the
control and the finance/economics/operations research communities,
usually referred to as simply risk-sensitive control and exponential utility,
respectively; see the bibliographic remarks in Section 1 for numerous
references.

The risk measure of Section 3.2 for discounted-cost MDPs was
introduced by Sobel (1982), who also derived a fixed-point equation
for it. However, as shown there, the operator underlying this equation
for variance lacks the monotonicity property. The approach of deriving
a fixed-point equation for the square value function U and using it to
estimate the variance was introduced in an SSP context in Tamar et al.
(2013), and later extended to the discounted MDP context in Prashanth
and Ghavamzadeh (2016). Establishing T as a contraction mapping can
be found in Prashanth and Ghavamzadeh (2016, Lemma 2). For the
average-cost MDP, the single-stage variance definition can be found in
Filar et al. (1989).

For CVaR and chance constraints, see Rockafellar and Uryasev (2000)
and Nemirovski and Shapiro (2007). Chance-constrained optimization
problems were introduced in Charnes et al. (1958); see also Miller and
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Wagner (1965) and Prékopa (1970). The seminal paper introducing
coherent risk measures is Artzner et al. (1999).

Empirical evidence on human behavior such as the observation
that they deflate high probabilities and inflate low probabilities can
be found in Tversky and Kahneman (1992) and Barberis (2013). For
the weight functions, Tversky and Kahneman (1992) recommend w(p) =

pη

(pη+(1−p)η)1/η , whereas Prelec (1998) recommends w(p) = exp(−(− ln p)η),
with 0 < η < 1. Figure 3.2 is an example of the former with p = 0.69.
In both forms, the weight function has an inverted-s shape, which is
seen to be a good fit from empirical tests on human subjects, as re-
ported by numerous researchers (Conlisk, 1989; Camerer, 1989; Camerer,
1992; Harless, 1992; Sopher and Gigliotti, 1993; Camerer and Ho, 1994;
Gonzalez and Wu, 1999; Abdellaoui, 2000).

The nested formulation approach for CPT was adopted by Lin in his
PhD dissertation (Lin, 2013); see also Lin and Marcus (2013b), Lin and
Marcus (2013a), Lin et al. (2018), and Cavus and Ruszczynski (2014).

Finally, we note that there are several risk measures that have not
been explored directly in the risk-sensitive RL literature. For instance,
spectral risk measure (SRM) (Acerbi, 2002) and utility-based shortfall
risk (UBSR) (Föllmer and Schied, 2002). SRM generalizes CVaR, while
retaining coherency. In particular, SRM employs a ‘risk-aversion’ func-
tion to weigh losses. Note that VaR gives a zero weight for each loss
beyond a given quantile, while CVaR assigns a constant weight in the
tail region beyond VaR. On the other hand, the risk-aversion function
in SRM allows one to assign larger weights to higher losses, and thus
model a user’s risk attitude better. Moreover, a positive, increasing risk-
aversion function that integrates to one would imply coherency of SRM.
Finally, SRMs are also equivalent to the class of distortion risk measures
(DRMs), when the risk-aversion function satisfies the aforementioned
properties (Balbás et al., 2009). DRM employs a weight function to
distort probabilities, and a concave weight function ensures coherency
of DRMs. The CPT risk measure that we presented is more general
than DRMs, as the weight function employed there is neither convex
nor concave. Next, UBSR is a special instance of a convex risk measure,
which is a generalization of coherency. This can be inferred from the fact
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that subadditivity and positive homogeneity – properties imposed for
coherency – imply convexity. UBSR involves a utility function that can
be chosen to encode the risk associated with each value of the r.v. X,
allowing more flexibility in modeling a user’s risk attitude, as compared
to CVaR. See Föllmer and Schied (2016) for a textbook introduction to
the class of convex risk measures in general and UBSR in particular.



4
Background on Policy Evaluation and Gradient

Estimation

TD-learning and gradient estimation serve as building blocks for policy
gradient algorithms, in both the risk-neutral and risk-sensitive MDP
contexts. This section provides the basic background on these two topics
needed to understand the remainder of the monograph. Two of the
most commonly used gradient estimation approaches in policy gradient
algorithms, simultaneous perturbation stochastic approximation (SPSA)
and the likelihood ratio (LR) method, are covered, as they are employed
in the policy gradient algorithms of Sections 5, 6, and 7. A reader
familiar with this background material can skip this section.

4.1 Stochastic approximation (SA)

The goal of stochastic approximation (SA) is to find a root of an unknown
real-valued function, denoted here by H : Rd −→ R. Specifically, SA
aims to find a θ∗ ∈ Rd that solves the equation H(θ∗) = 0, where only
noisy estimates of H are available, i.e., an estimator Ĥ = H + ξ, where
ξ is a random variable representing the noise. If ξ is zero mean, then
the estimator Ĥ is said to be unbiased. The primary setting of interest
in this monograph is where H represents a gradient such that a zero of
H(θ), say θ∗, corresponds to a (local) optimum.

575



576 Background on Policy Evaluation and Gradient Estimation

4.1.1 Basic algorithm

The seminal Robbins-Monro (RM) algorithm solved this problem by
employing the following SA iterative update rule:

θn+1 = θn + ζ(n)(H(θn) + ξn), (4.1)

where {ζ(n)} is a step-size sequence; commonly used choices include
ζ(n) = c/n and ζ(n) = c, for some constant c > 0. In the original
RM setting, {ξn} is an i.i.d. zero-mean sequence, but more generally
it could be a martingale-difference sequence (see A4.4 below). In the
optimization setting where an unbiased estimator can be obtained such
as through the LR method described in Section 4.5, the parameter
update will take the form (4.1), with the gradient estimator given by
Ĥ = H + ξ.

The RM algorithm can converge even if the function measurements
contain an additional bias term that vanishes asymptotically, in which
case the SA update iteration takes the following form in place of (4.1):

θn+1 = θn + ζ(n)(H(θn) + ξn + βn), (4.2)

where βn is an asymptotically vanishing bias term (see A4.2 below).
In applications involving biased function measurements, such as SPSA
discussed in Section 4.4, the parameter update will take the form (4.2),
with (biased) gradient estimator Ĥ = H + ξ + β, where the bias term
βn vanishes asymptotically.

4.1.2 Asymptotic convergence

For the asymptotic analysis of (4.1) and (4.2), we follow the ordinary
differential equation (ODE) approach, where the main idea is to show
that the algorithm in (4.1) or (4.2) is a noisy discretization of the
following ODE:

θ̇(t) = H(θ(t)). (4.3)

In the absence of ξn and βn, it is apparent that (4.2) is a Euler dis-
cretization of the ODE defined above, and hence the algorithm (4.2)
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would converge to the equilibria of the aforementioned ODE. The anal-
ysis under the ODE approach would show that the algorithm (4.2)
tracks the above ODE, even in the presence of noise ξn and bias βn. For
establishing this claim, we make the following assumptions:

A4.1. H : Rd −→ R is Lipschitz continuous.

A4.2. The sequence {βn} is a bounded random sequence with βn → 0
almost surely (a.s.) as n→∞.

A4.3. The sequence {ζ(n)} satisfies ζ(n)→ 0 and ∑∞
n=0 ζ(n) =∞.

A4.4. {ξn} is a sequence such that for any ϵ > 0,

lim
n→∞

P
(

sup
m≥n

∥∥∥∥∥
m∑
i=n

ζ(i)ξi
∥∥∥∥∥ ≥ ϵ

)
= 0.

A4.5. supn ∥θn∥ <∞ a.s.

We now discuss these assumptions. A4.1 ensures that the ODE (4.3)
is well-posed. A4.2 ensures that the bias βn vanishes asymptotically.
A4.3 contains standard stochastic approximation conditions on the
step sizes {ζ(n)}. The condition ∑n ζ(n) =∞ ensures that the entire
time axis is covered, since ζ(n) can be seen as the discrete time steps,
while ζ(n)→ 0 ensures the discretization errors can be ignored. A4.4
imposes conditions on the noise ξn that ensure the effect of noise is
asymptotically negligible.

A typical SA convergence result for the RM algorithm is as follows.

Theorem 4.1. Assume A4.1–A4.5. Then θn governed by (4.2) con-
verges a.s. to the set {θ∗ | H(θ∗) = 0}.

Note that for the original RM algorithm given by (4.1), where the bias
term is absent, A4.2 is automatically satisfied. This particular result
is often referred to in the SA literature as the Kushner-Clark Lemma.
Convergence to a set is interpreted as follows. If the set consists of a
single point, then the convergence would be to that point. If all the
elements in the set are disconnected, then convergence would be to a
single point in the set, with the specific point to which the algorithm
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H(θ)

θ

H(θ)

θ

Figure 4.1: Functions illustrating the two main types of SA convergence to the
zero(s) of the function. In the left graph, the SA algorithm would converge to one of
the three points at which the function crosses the x-axis (indicated by the large red
circles), where which one it reaches depends on the starting point and the noise. In
the right graph, the SA algorithm would eventually bounce between points in the
interval (circled in red) on the x-axis unless the noise goes to zero.

converges depending on the initial condition, the step-size sequence,
and the noise. If some of the points are connected, then the algorithm
could “bounce” between such points and not converge to a single point.
These possibilities are illustrated in Figure 4.1.

The noise sequence {ξn} is generally assumed to be a martingale
difference, i.e., E(ξn | Fn) = 0, where Fn = σ(θm,m ≤ n) denotes the
underlying σ-field, in which case, A4.3 and A4.4 can be replaced with
the following:

A4.6. The sequence {ζ(n)} satisfies ∑∞
n=0 ζ(n) =∞,∑∞

n=0 ζ(n)2 <∞.

A4.7. {ξn} is a square-integrable martingale-difference sequence satis-
fying E[∥ξn∥2 | Fn] ≤ C0(1 + ∥θn∥2) ∀n ≥ 0, for some constant C0.

To see that the above two assumptions in conjunction with A4.5
imply A4.4, we use Doob’s martingale inequality, given as follows:
For a martingale sequence {Wm},

P
(

sup
m≥0
∥Wm∥ ≥ ϵ

)
≤ 1
ϵ2

lim
m→∞

E ∥Wm∥2 . (4.4)
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Apply the inequality above to {∑l
n=k ζ(n)ξn}l≥k to obtain

lim
k→∞

P
(

sup
l≥k

∥∥∥∥∥
l∑

n=k
ζ(n)ξn

∥∥∥∥∥ ≥ ϵ
)
≤ 1
ϵ2

lim
k→∞

∞∑
n=k

ζ(n)2E ∥ξn∥2

≤const
ϵ2

lim
k→∞

∞∑
n=k

ζ(n)2 = 0,

where the final inequality used the following facts: (i) E ∥ξn∥2 is bounded
above since the iterate θn is bounded a.s. from A4.5 and the noise satisfies
a linear growth condition as specified in A4.7; (ii) the step sizes are
square summable from A4.6. Thus, A4.4 is satisfied.

SA is useful in solving several subproblems in risk-sensitive RL. For
example, TD-learning is an instance of an SA algorithm that incor-
porates a fixed-point iteration. While regular TD-learning is useful in
estimating J(θ), a variant will be useful in estimating variance indi-
rectly (see Section 6.1). Moreover, VaR estimation is performed using
an SA scheme that features a stochastic gradient descent-type update
iteration, while CVaR estimation is a plain averaging rule that can be
done through SA, as well.

If H represents a gradient, say H = ∇h, the RM algorithm becomes
a stochastic gradient descent (for minimization problems) scheme with
the following SA iterate updating equation:

θn+1 = θn − ζ(n)∇̂h(θn), (4.5)

where ∇̂h(θn) = ∇h(θn) + ξn + βn denotes the gradient estimator.
In the context of RL, the policy parameter updates in a policy

gradient algorithm for solving risk-neutral/risk-sensitive MDPs are of
this form. A straightforward specialization of the result in Theorem 4.1
leads to the following result:

Theorem 4.2. Assume A4.1–A4.5. Then θn governed by (4.5) con-
verges a.s. to the set {θ∗ | ∇h(θ∗) = 0}.

As in the root-finding setting, if the set consists of a single point, then
the convergence would be to that point. Otherwise, the meaning of
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h(θ)

θ

h(θ)

θ

Figure 4.2: Two graphs illustrating the types of SA convergence for stochastic
optimization. In the left graph, an SA algorithm for minimization would converge
to one of the two local minima or the local maximum indicated by the filled (red)
circles, where which one it reaches depends on the starting point and the noise. In
the right graph, the SA algorithm could converge to the saddle point indicated by
the filled (red) circle or would eventually bounce between points in the circled (in
red) interval unless the noise goes to zero. As long as the gradient estimate remains
appropriately noisy, the SA algorithm would eventually move away from the local
maximum in the left graph and away from the saddle point in the right graph.

convergence to a set is depicted by two graphs in Figure 4.2. If all the
elements in the set are disconnected, then convergence would be to a
single point in the set, with the specific point to which the algorithm
converges depending on the initial condition, the step-size sequence, and
the noise, as illustrated in the left graph of Figure 4.2, which contains
two local minima and one local maximum. If some of the points are
connected, then the algorithm could “bounce” between such points and
not converge to a single point, as illustrated in in the right graph of
Figure 4.2, which contains a flat local minimal region and a saddle point.
“Unstable” points such as local maxima (in minimization problems) and
saddle points can be avoided by ensuring that the gradient estimate is
suitably noisy, to be described in more detail now.

Since the ODE tracked by the iteration (4.5) is θ̇(t) = ∇h(θ(t)), we
know that its stationary points will be local maxima or minima, saddle
points, or points of inflection. If these points are isolated, then the
algorithm (4.5) will a.s. converge to a sample path-dependent stationary
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point. Under additional assumptions, one can ensure convergence to a
local minimum, i.e., avoid local maxima and saddle points. One such
assumption is that the stationary points are hyperbolic, i.e., the Hessian
∇2h does not have eigenvalues on the imaginary axis. Then locally, it
has a ‘stable manifold’ of dimension equal to the number of eigenvalues
in the left half plane and an unstable manifold with the complementary
dimension. A trajectory on the former converges to the stationary point
along the stable manifold, whereas one on the latter moves away from
it on the unstable manifold. A trajectory initiated anywhere else also
eventually moves away. Thus, if there is at least one unstable eigenvalue,
the trajectories move away from the stationary point except on the
stable manifold, a set of zero Lebesgue measure. Hence, if the noise is
omnidirectional, i.e., rich in all directions in a certain precise sense, the
iterations will be pushed away from the stable manifold often enough
for the iterates to move away from the stationary point for good, a.s.
Then the iterates will a.s. converge to a local minimum, where there
are no unstable directions. In case the conditions on noise cannot be
verified for the problem at hand, one can always add extraneous i.i.d.
zero mean noise, i.e., an SA update iteration of the form

θn+1 = θn − ζ(n)(∇̂h(θn) + φn), (4.6)
where φn is extraneous noise added to ensure that the algorithm avoids
saddle points/local maxima. A simple choice is to sample φn from the
d-dimensional unit sphere uniformly. In practice, it may not be necessary
to add such a noise factor extraneously, since the algorithm has an
inherent noise component in the gradient estimates.

4.1.3 Projected stochastic approximation

Theorem 4.1 imposes a stability requirement on the iterates, i.e., the
condition supn ∥θn∥ <∞. This requirement is not easy to ensure in RL
applications, where one considers a policy gradient-type algorithm for
finding the optima of a non-convex objective function. In such situations,
an alternative is to employ projections to artificially ensure stability of
iterates.

A projected stochastic approximation algorithm would involve the
following update iteration:
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θn+1 = Γ(θn + ζ(n)(H(θn) + ξn + βn)), (4.7)

where Γ is a projection into a compact and convex set, say Θ ⊂ Rd.
The ODE associated with (4.7) is given by

θ̇ = Γ̌(H(θ)), (4.8)

where Γ̌ is a projection operator that keeps the ODE evolution within
the set Θ, defined as follows: For any bounded continuous function f(·),

Γ̌
(
f(θ)

)
= lim

τ→0

Γ
(
θ + τf(θ)

)
− θ

τ
.

The limit defined above exists because Θ is convex. Furthermore, for θ
in the interior of Θ, the projection Γ̌(f(θ)) = f(θ), while for θ on the
boundary of Θ, Γ̌(f(θ)) is the projection of f(θ) onto the tangent space
of the boundary of Θ at θ.

The following theorem presents an asymptotic convergence result
for the projected SA iteration (4.7), with assumptions similar to those
used in Theorem 4.1 (sans the stability requirement A4.5).

Theorem 4.3. (Projected stochastic approximation) Assume A4.1–
A4.4. Let Θ∗ = {θ | Γ̌(H(θ))) = 0} denote the set of limit points
of the ODE (4.8). Then θn governed by (4.7) converges a.s. to the
set Θ∗.

This result is the projected form of the Kushner-Clark Lemma.

4.1.4 A stability result
Recall that the asymptotic convergence result in Theorem 4.1 requires
that the iterate θn remains bounded a.s. The variant in Theorem 4.3
ensured stability through a projection operator Γ. However, one can do
away with the projection operator under certain conditions, and infer
both boundedness as well as convergence. The result in this section
presents conditions for ensuring stability, and these conditions are
usually satisfied in the context of policy evaluation, esp. through TD
learning methods (see Section 4.3).
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A4.8. For any η ∈ R, define
Hη(θ) = H(ηθ)/η. (4.9)

Then, there exists a continuous function H∞ such that Hη → H∞ as
η → ∞ uniformly on compact sets. Furthermore, θ∗ is the (unique)
globally asymptotically stable equilibrium for the ODE

θ̇(t) = H∞(θ(t)).
Assumption A4.8 can be interpreted intuitively as follows: Consider

the scaled ODE (4.9), which arises by scaling the iterate to lie within a
unit ball and linearly interpolating between the scaled iterate values.
The assumption requires that the limit of these scaled functions Hη exist,
and the limiting ODE has a globally asymptotically stable equilibrium.
Under these conditions, together with A4.7, which implies the effects of
the noise is asymptotically negligible, we obtain the following stability
result for the original (unprojected) SA algorithm.

Theorem 4.4. Assume A4.1, A4.7, and A4.8. Then for θn governed
by (4.1), supn ∥θn∥ <∞ a.s. for any θ0. Furthermore, θn converges
a.s. to the set {θ∗ | H(θ∗) = 0}.

4.2 Contractive stochastic approximation

In many RL problems, the underlying operator is contractive in nature,
and the goal is to find the fixed point of such a contraction mapping by
observing a sample path of the underlying MDP. Stochastic approxima-
tion facilitates finding such a fixed point, and we formalize this claim
below.

Given a vector ν = (ν(1), ..., ν(|X |)), with ν(i) > 0, ∀i, define the
weighted maximum norm of a vector θ = (θ(1), . . . , θ(|X |)) by

∥θ∥ν = max
i

|θ(i)|
ν(i) .

If ν(i) = 1, ∀i, then ∥·∥ν is the max-norm or ℓ∞ norm.
Suppose that H is a weighted max-norm contraction, i.e. ∃ a positive

vector ν = (ν(1), ..., ν(|X |)), and a constant β ∈ [0, 1) such that∥∥H(θ)−H(θ′)
∥∥
ν ≤ β

∥∥θ − θ′∥∥ ∀θ, θ′ ∈ R|X |.
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It is well known that there exists an θ∗ that is the unique fixed point of
the contraction mapping H, i.e. H(θ∗) = θ∗.

To see the connection of the norm defined above, recall from the
theory of MDPs in Section 2 that (i) in an SSP with all policies proper,
the Bellman operator T , as well as the policy-specific operator Tµ, are
contractions under a weighted-max norm; and (ii) in a discounted MDP
with bounded single-stage cost, the Bellman operator T , as well the
policy-specific operator Tµ, are contractions under the max-norm. For
the Bellman operator, the fixed point θ∗ would correspond to the optimal
cost, while θ∗ would be the expected total cost for the policy-specific
operator Tµ.

An SA iteration for finding θ∗ would take the following form:

θn+1 = θn + ζ(n)(H(θn) + ξn − θn), (4.10)

where ξn is the noise element and ζ(n) is the step size, as in the previous
section. The SA algorithm uses the noisy observation H(θn)(i) + ξn(i)
to perform an incremental update in each component i. In RL settings,
each component would denote a state, and θn would be an estimate of
the value function or the optimal value function, based on whether the
problem is value prediction or control, respectively.

We now state an asymptotic convergence result for the iterate θn to
the fixed point θ∗ of H.

Theorem 4.5. Assume A4.3, A4.4, A4.5, and that H is a weighted
max-norm contraction. Then θn governed by (4.10) converges a.s.
to the fixed point of H, i.e., θn −→ θ∗ a.s., where θ∗ = H(θ∗).

4.3 Temporal-difference (TD) learning

A key algorithm for policy evaluation in RL is TD learning. The objective
of TD-learning is to estimate the value function Jµ(x) for a given policy
µ. In this section, we first present tabular TD learning, i.e., a setting
where the state space is small allowing one to store a lookup table
with an entry for each state. Subsequently, we cover TD learning with
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linear function approximation – an algorithm that can handle large
state spaces by employing feature-based representations.

4.3.1 Tabular TD learning

For ease of exposition, we consider the TD(0) algorithm in a discounted-
cost MDP setting. Recall that the value function Jµ(x) satisfies the
following fixed point relation:

Jµ(x) = E [k(x, a) + γJµ(y)] , (4.11)

where the expectation is over the random action a chosen accord-
ing to µ(·|x), and the next state y, which is sampled from P (·|x, a).
Now, in order to estimate the expectation, we take a sample of the
expression within the expectation, and apply the update rule as shown
below: Starting with any J0, the TD(0) algorithm iteratively updates
an estimate Jn+1 at iteration n + 1 using the observed sample cost
k(xn, an), an ∼ µθ (·|xn), and previous estimate Jn as follows:

Jn+1(x)=Jn(x)+ζ(ν(x, n))I {xn = x}[k(xn, an)+γJn(xn+1)−Jn(xn)],
(4.12)

where xn+1 ∼ P (·|xn, an), ν(x, n) =
n∑

m=0
I {xm = x} is the number of

visits to state x, and {ζ(·)} is a step-size sequence. Note that (4.12) is
an iterative means of trying to find the zero of the fixed-point equation
given by (4.11) by taking the difference between estimates of the value
function given by Jn(xn) for the LHS of (4.11) and that given by
k(xn, an) + γJn(xn+1) for the RHS of (4.11).

Since E [k(x, a) + γJ(y)] = TµJ(x), the TD(0) update rule (4.12) is
equivalent to

Jn+1(x) = Jn(x) + ζ(ν(x, n))I {xn = x} (TµJn(x)− Jn(x) + ξn(x)),

where ξn is the noise term. From the equation above, we can draw the
parallel to the stochastic approximation algorithm presented in the
previous section, in particular, to observe the ξn term is conditionally
zero mean, and satisfies the linear growth condition in Theorem 4.5,
leading to the following convergence result:
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Theorem 4.6. For a discounted MDP with bounded single-stage
cost, the TD(0) algorithm (4.12) using step sizes satisfying A4.6
converges a.s., i.e.,

Jn → Jµ a.s as n→∞.

A similar claim can be made for the case of other MDPs (SSP and
average cost), and we omit the details.

4.3.2 TD learning with linear function approximation

While the TD(0) algorithm described above is provably convergent to
the true value Jµ(x0), this algorithm employs full-state representation,
i.e., it requires a lookup table entry for each state x ∈ X , and thus
would be subject to the curse of dimensionality, in terms of potentially
intractable growth of the size of the state space. A practical approach
to address this problem is to employ feature-based representations and
function approximation by approximating the value function as follows:

Jµ(x) ≈ vTϕ(x),

where ϕ(x) is a d-dimensional feature (column) vector corresponding to
the state x, with d≪ |X | and v is a tunable d-dimensional parameter.
Given this approximation architecture, an important question is how to
choose v so that we obtain a good enough approximation of Jµ within
a linear space. The TD approach is to find a v that solves the following
projected system of equations:

Φv =ΠTµ(Φv), (4.13)

where Φ is a matrix with rows ϕ(x)T ∀x ∈ X , TµJ = k + γPµJ is the
discounted-cost MDP Bellman operator (2.4) underlying the fixed-point
equation for policy µ given in Proposition 2.1, with Pµ representing the
transition probability matrix of the Markov chain generated by µ, and
Π is an operator that projects onto the linear space S = {Φv|v ∈ Rd}.
More precisely, assuming a stationary distribution, say ψ, exists for the
Markov chain generated by policy µ, we have Π = Φ(ΦTDΦ)−1(ΦTD),
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with D denoting a diagonal matrix with entries from the distribution
ψ. Define a weighted ℓ2-norm as

∥J∥2ψ =
|X |∑
i=1

ψ(i)J(i)2, for any J ∈ R|X |.

Then, Π can be seen as the orthogonal projection operator onto the set
S under the norm defined above, i.e., for any J ,

ΠJ = arg min
J̄∈S

||J − J̄ ||2ψ.

The projected fixed-point relation in (4.13) can be written equiva-
lently as a linear system of equations, i.e.,

Φv = ΠTµ(Φv)⇔ Cv = d, where
C = ΦTD(I − γPµ)Φ, d = ΦTDk,

and k is a |X |-dimensional vector with elements ∑a k(x, a)µ(a|x). The
above equivalence can be seen by noting the following:

Cv − d = ΦTD(I − γPµ)Φv − ΦTDk

=
∑
x,y

ψ(x)Pxyϕ(x)
(
ϕ(x)Tv − γϕ(y)Tv −

∑
a

k(x, a)µ(a|x)
)

= Eψ

[
ϕ(x)

(
ϕ(x)Tv − γϕ(y)Tv −

∑
a

k(x, a)µ(a|x)
)]

,

where Eψ denotes expectation with respect to one step in a Markov
chain generated by policy µ that starts in the stationary distribution ψ
and Pxy is the x-yth entry in the one-step transition matrix Pµ.

Thus, finding the TD fixed point is equivalent to obtaining a v such
that the expectation on the RHS above is zero. The obvious method
for finding such a v requires sampling a state x from the stationary
distribution ψ and the next state y from Px· ≜ P (·|x, µ(x)). However,
in practice, the stationary distribution ψ is unknown, so sampling from
it may not be feasible. Instead, assuming an initial distribution ν0,
the samples seen by TD(0) would be coming from ν0P

n
µ , which under

suitable mixing assumptions converges to the stationary distribution ψ.
This motivates the following update rule for the TD(0) algorithm:
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vn+1 = vn + ζ(n)ϕ(xn)(k(xn, an) + γvT
nϕ(xn+1)−vT

nϕ(xn)),
(4.14)

where v0 is set arbitrarily, an ∼ µ(·|xn) and {ζ(n)} is a step-size sequence
satisfying standard SA conditions.

The convergence analysis of the TD(0) algorithm utilizing (4.14) is
more complicated than the usual RM-based TD algorithms presented
previously. The stochastic approximation schemes presented in earlier
sections assumed that the noise elements came from a martingale
difference sequence, whereas iteration (4.14) has a transient mixing
phase before the samples are seen from the stationary distribution ψ.

To show that TD(0) with linear function approximation converges
to solution of Cv − d = 0, we make the following assumptions:

A4.9. The Markov chain induced by the policy µ is irreducible and
aperiodic. Moreover, there exists a stationary distribution ψ(= ψµ) for
this Markov chain. Let Eψ denote the expectation w.r.t. this distribution.

A4.10. The matrix Φ with rows ϕ(x)T,∀x ∈ X has full column rank.

A4.11. The single-period cost function satisfies Eψ(k2(x, µ(x))) <∞,
∀x ∈ X .

A4.12. The feature vector ϕi(x) satisfies Eψ(ϕ2
i (x)) < ∞, ∀x ∈ X ,

i = 1, . . . , d.

A4.13. For the Markov chain {xt} with stationary distribution ψ in-
duced by policy µ, there exists a non-negative bounded function B(·)
such that for any q > 1, there exists a non-negative constant Kq <∞
satisfying E[Bq(xm) | x0] ≤ KqB

q(x0) for all x0 ∈ X . Furthermore,
∞∑
n=0
∥E[k(xn, µ(xn)) ϕ(xn)|x0]− Eψ[k(xn, µ(xn))ϕ(xn)]∥ ≤ B(x0),

∞∑
n=0
∥E[ϕ(xn)ϕ(xn+m)T | x0]− Eψ[ϕ(xn)ϕ(xn+m)T]∥ ≤ B(x0).

We briefly discuss the assumptions. A4.9 is an ergodicity require-
ment that is necessary to ensure that the operator ΠTµ is a contraction
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mapping w.r.t. the weighted max-norm ∥·∥ψ, with the weights coming
from the stationary distribution vector ψ. A full column rank feature
matrix (assumed in A4.10) together with the fact that ΠTµ is a con-
traction mapping imply that the fixed point v is unique. Next, A4.11
and A4.12 are integrability requirements, which ensure that the effect
of noise in the TD(0) update vanishes asymptotically. The conditions
in A4.13 are related to the mixing of the Markov chain generated by
the given policy µ. These conditions ensure that taking expectation of
quantities relevant to the update (4.14) w.r.t. the distribution ν0P

n,
where ν0 is the initial distribution, is close to the one with the stationary
distribution.

The main result establishing asymptotic convergence of TD(0) with
linear function approximation is given below.

Theorem 4.7. For a discounted MDP, assume A4.9–A4.13. Then
the TD(0) algorithm for vn governed by (4.14) using step sizes
satisfying A4.6 converges a.s. to the fixed-point solution of the
following projected Bellman equation:

Φv = ΠTµ(Φv),

where Tµ is the Bellman operator corresponding to policy µ and Π
is the orthogonal projection onto the linearly parameterized space
{Φv | v ∈ Rd}, with Φ denoting the feature matrix with rows
ϕ(x)T, ∀x ∈ X .

4.3.3 Average-cost TD learning

TD-learning can be employed to estimate the differential value function
V (θ, x) in an average-cost MDP setting, with the Poisson equation
in (2.14) as the basis. Notice that the latter equation contains the
average cost J(θ), which has to be estimated from sample data, and
then plugged into the TD-learning update rule for estimating V . The
TD(0) variant in this case, with policy µθ, would update the estimate
Vn+1 as follows:
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Vn+1(x) = Vn(x) + ζ(ν(x, n))I {xn = x}
(
k(xn, an)− Ĵn

+ Vn(xn+1)− Vn(xn)
)
, (4.15)

Ĵn+1 = (1− αn)Ĵn + αnk(xn, an), (4.16)

where Ĵn is the average of the sample single-stage costs seen up to n,
an ∼ µθ(·|xn), and αn ∈ (0, 1).

The parameter update rule in (4.15) can be understood using ar-
guments analogous to those used in the discounted-cost setting for
(4.12), modulo the additional need to estimate the average cost of the
given policy, a quantity denoted by Ĵn, which is also updated iteratively
using (4.16), necessitated by the fact that the differential value function
satisfies a fixed-point relationship that involves the true average cost
(refer to Proposition 2.5 and (2.14).)

The function-approximation variant of TD in the average-cost setting
would involve the following update iterations:

δn = k(xn, an)− Ĵn+1 + vT
nϕ(xn+1)− vT

nϕ(xn),
vn+1 = vn + αnδnϕ(xn),

where Ĵn is updated using (4.16), as in the tabular TD(0) case.

4.4 Simultaneous perturbation stochastic approximation (SPSA)

Suppose we want to solve the optimization problem

min
θ
h(θ) ≜ E

[
ĥ(θ, ξ)

]
,

where ĥ denotes a noisy unbiased estimator for h, which itself is not
directly available, and ξ denotes the underlying randomness (noise).
For this stochastic optimization problem, the Kiefer-Wolfowitz (KW)
algorithm performs gradient descent using a finite-differences estimate
for ∇h as follows:
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θn+1 = θn − ζ(n)∇̂h(θn), (4.17)

∇̂ih(θn) =
(
ĥ(θn + δnei, ξ

+
n,i)− ĥ(θn − δnei, ξ−

n,i)
2δn

)
, i = 1, . . . , d,

(4.18)

where {ζ(n)} is a step-size sequence satisfying standard SA conditions,
∇̂ih denotes the ith element of the gradient estimator, {δn} is a sequence
of positive perturbation constants, ξ+

n,i and ξ−
n,i are the noise components,

and ei is the unit vector in the ith direction. It can be shown that ∇̂ih(θ)
approaches ∇ih(θ) if δn → 0 as n → ∞. However, this symmetric
finite-differences gradient estimator (4.18) requires 2d samples of ĥ for
each iteration of (4.17), whereas the SPSA algorithm requires only
two samples in each iteration, regardless of the parameter dimension d,
estimating the gradient as follows:

∇̂ih(θn) =
(
ĥ(θn + δn∆(n), ξ+

n )− ĥ(θn − δn∆(n), ξ−
n )

2δn∆i(n)

)
, (4.19)

where ∆(n) = (∆1(n), . . . ,∆d(n))T is a random perturbation vector,
with each ∆i(n) chosen to be symmetric ±1-valued Bernoulli r.v.s, and
ξ+
n and ξ−

n are the analogous noise components as before in (4.17). Note
that in (4.19), the numerator is the same for each component of the
gradient estimate vector, and only the denominator is changed, so that
in each iteration, there are only two distinct values among the gradient
estimate components. One can also rescale the gradient estimate if
needed by generalizing the scalar δn to a direction-dependent vector.

Like all gradient estimators based on finite differences, the SPSA
gradient estimator is generally biased, but the bias can be controlled
using the perturbation constant δn. In the following, we present a result
that establishes that the bias is only of order O(δ2

n), hence asymptotically
unbiased. For this result, we make the following assumptions:

A4.14. Let η±
n = ĥ(θn ± δn∆(n), ξ±

n )− h(θn). Let Fn = σ(θm,m < n)
denote the underlying σ-field. For all n ≥ 1, the η±

n satisfy

E[η+
n − η−

n | Fn] = 0, and E[(η+
n − η−

n )2| Fn] ≤ σ2 <∞ .



592 Background on Policy Evaluation and Gradient Estimation

A4.15. The function h is three times continuously differentiable, with∣∣∣∇3
i1i2i3h(θ)

∣∣∣ < B̃ < ∞, for i1, i2, i3 = 1, . . . , d, θ ∈ Rd, for some
positive constant B̃. Furthermore, the function estimator ĥ satisfies
E[ĥ(θn ± δn∆(n))2] ≤ B <∞ n ≥ 1, for some positive constant B.

Proposition 4.1. Assume A4.14–A4.15. Then the SPSA gradient
estimator defined by (4.19) satisfies∣∣∣E [∇̂ih(θn)

]
−∇ih(θn)

∣∣∣ ≤ C1δ
2
n, for i = 1, . . . , d, and

E
[∥∥∥∇̂h(θn)− E

[
∇̂h(θn) | Fn

]∥∥∥2
]
≤ C2
δ2
n

,

for some positive constants C1 and C2.

Proof. Using a Taylor series expansion of h around θn, we obtain

h(θn ± δn∆(n)) = h(θn)± δn ∆(n)T∇h(θn) + δ2
n

2 ∆(n)T∇2h(θn)∆(n)

± δ3
n

6 ∇
3h(θ̃±

n )(∆(n)⊗∆(n)⊗∆(n)),

where ⊗ denotes the Kronecker product, and θ̃+
n (resp. θ̃−

n ) is on the
line segment between θn and (θn + δn∆(n)) (resp. (θn − δn∆(n))).

Thus, we have

E
[
h(θn + δn∆(n))− h(θn − δn∆(n))

2δn∆i(n)

∣∣∣∣Fn

]
= E

(
∆(n)T∇h(θn)

∆i(n)

+ δ2
n

12∆i(n) (∇3h(θ̃+
n ) +∇3h(θ̃−

n )(∆(n)⊗∆(n)⊗∆(n))
∣∣Fn

)
= ∇ih(θn) + E

[
δ2

n

12∆i(n) (∇3h(θ̃+
n ) +∇3h(θ̃−

n )(∆(n)⊗∆(n)⊗∆(n)) | Fn

]
.

To arrive at the final inequality, we used

E

[
∆(n)T∇h(θn)

∆i(n)

∣∣∣∣∣Fn

]
= ∇ih(θn) + E

 d∑
j=1,j ̸=i

∆j(n)
∆i(n)∇jh(θn)

 = ∇ih(θn),
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since ∆(n) is a vector of i.i.d. symmetric ±1-valued Bernoulli r.v.s.
Using

(i) E[∇̂ih(θn)] = E
[
h(θn + δn∆(n))− h(θn − δn∆(n))

2δn∆i(n)

]
;

(ii) |∇3h(θ̃±
n )| < B̃; and

(iii) E
[

1
∆i(n) |∇

3h(θ̄n)(∆(n)⊗∆(n)⊗∆(n))|
]
≤ B̃d3 for any θ̄n,

we have ∣∣∣E [∇̂ih(θn)
]
−∇h(θn)

∣∣∣ ≤ C1 δ
2
n , where C1 = B̃d3

6 .

Next, we prove the second claim concerning the variance of ∇̂h(θn).
Notice that

E
∣∣∣∇̂ih(θn)

∣∣∣2
= E

( η+
n − η−

n

2δn∆i(n)

)2

+2
(
η+
n − η−

n

2δn∆i(n)

)(
h(θn + δn∆(n))− h(θn − δn∆(n))

2δn∆i(n)

)

+
(
h(θn + δn∆(n))− h(θn − δn∆(n))

2δn∆i(n)

)2]

= E

(η+
n − η−

n

2δn

)2
+ E

((
h(θn + δn∆(n))− h(θn − δn∆(n))

2δn

)2)

≤ C2
δ2
n

where C2 =
(
σ2 + 2B2) /4. The last equality above uses ∆i(n)2 = 1 and

A4.14, while the final inequality uses A4.14 and A4.15. Then the second
claim in the proposition follows by using E

∥∥∥∇̂h(θn)− E∇̂h(θn)
∥∥∥2
≤

4E
∥∥∥∇̂h(θn)

∥∥∥2
in conjunction with the inequality above.
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Remark 4.1. A variant of (4.19) is to use a one-sided estimate, i.e.,
given sample observations at θn + δn∆(n) and θn, use the following
gradient estimator:

∇̂iĥ(θn) =
(
ĥ(θn + δn∆(n), ξ+

n )− ĥ(θn, ξn)
δn∆i(n)

)
,

where δn and ∆(n) are as defined earlier. For solving constrained op-
timization problems, one-sided estimates are efficient, since a sample
observation at the unperturbed value of the underlying parameter is
necessary for performing the dual ascent on the Lagrange multiplier.
The overall SPSA-based policy gradient algorithm would estimate the
necessary gradient, as well as the risk measure, using two sample obser-
vations corresponding to θn + δn∆(n) and θn. On the other hand, using
a balanced estimate, as defined in (4.19) would require an additional
observation with the underlying parameter set to θn − δn∆(n).

The following result establishes that the SPSA algorithm converges
to a zero of the gradient, where the SPSA algorithm is defined by the
gradient-based SA iteration in (4.17) driven by biased (but asymptoti-
cally unbiased) stochastic gradient estimates given by (4.19).

Theorem 4.8. Assume A4.14–A4.15. Let Θ∗ ≜ {θ | ∇h(θ) = 0}.
Then θn governed by (4.17) using step sizes satisfying A4.6, with
∇̂h(θ) ≜ [∇̂ih(θ)] defined by (4.19), converges a.s. to a zero of the
gradient of h, i.e.,

θn → Θ∗ a.s. as n→∞.

The proof involves an application of Theorem 4.1, and we omit the
details. A policy gradient algorithm with SPSA-based gradient estimates
is analyzed in Section 5.3, and the proof of Theorem 4.8 would go through
using arguments similar to those employed in the proof of Theorem 5.1
in Section 5.3.
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4.5 Direct single-run gradient estimation using the likelihood ratio
(LR) method

When the system is a complete black box, SPSA is an effective way
to carry out gradient-based policy optimization. However, in many
settings, more is known about the system, and more efficient direct
gradient estimation techniques may be applicable, where “direct” means
that the gradient estimator is unbiased (as opposed to asymptotically
unbiased when finite difference methods such as SPSA are used). The
main approaches are perturbation analysis, the likelihood ratio method
(also known as the score function method), and weak derivatives (also
known as measure-valued differentiation). Here, we consider only the
likelihood ratio (LR) method, which is a single-run method for gradients
where θ parameterizes the input distribution(s) of the system. “Single-
run” means that a gradient estimate can be obtained using a single
sample path (or simulation) of the system, in contrast to SPSA, which
requires multiple sample paths to estimate the gradient. To motivate
the more general case, we first illustrate the idea using a single (discrete-
valued) random variable example:

E[X] =
∑
x

xPθ(X = x) =
∑
x

xpθ(x),

where pθ denotes the probability mass function of X. Differentiating
with respect to θ (assuming the differentiation operator can be brought
inside the summation),

dE[X]
dθ

=
∑
x

x
dPθ(X = x)

dθ
=
∑
x

x
d ln pθ(x)

dθ
pθ(x) = E

[
X
d ln pθ(X)

dθ

]
,

and thus the LR derivative estimator for this simple example is given
by

X
d ln pθ(X)

dθ
.

Now consider a Markov chain {Xn} with a single recurrent state 0,
transient states 1, . . . , r, and (one-step) transition probability matrix
P (θ) := [pij(θ)]ri,j=0, where pij(θ) denotes the (one-step transition)
probability of going from state Xn = i to Xn+1 = j and is parameterized
by θ. Let τ denote the first passage time to the recurrent state 0 and
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X := (X0, . . . , Xτ−1)T denote the corresponding sequence of states
(sample path). Assuming θ occurs only in the transition probabilities,
an unbiased single-run sample path LR gradient estimator for ∇h(θ) is
given by

∇̂h(θ) = ĥ(X)∇ ln pX0X1···Xτ (θ) = ĥ(X)
τ−1∑
m=0

∇pXmXm+1(θ)
pXmXm+1(θ) ,

where the single random variable is replaced by a function of the Markov
chain states visited and the single probability mass function is replaced
by a joint distribution pX0X1···Xτ that is the product of the individual
one-step transition probabilities pij .

It can be shown under mild conditions on the transition probabilities
that the LR gradient estimator is unbiased, i.e.,

E[∇̂h(θ)] = ∇h(θ), (4.20)

which follows by invoking the dominated convergence theorem to in-
terchange expectation and differentiation operators. Unbiasedness is a
desirable property, because it generally leads to a faster convergence
rate for gradient-based algorithms, e.g., an asymptotic rate of 1/

√
n

in (4.1) rather than 1/n1/3 for the typical finite-difference gradient
estimate (see, e.g., Theorem 5.2). However, it should also be noted that
if θ is a common parameter that appears in all of the probabilities, then
this LR estimator will have the undesirable property of its variance
increasing linearly with the sample path length.

Remark 4.2. Using the LR gradient estimator in the stochastic gradient
algorithm (4.17) would ensure that the resulting algorithm converges
to the set of stationary points of the objective, i.e., Theorem 4.8 holds
for the LR case, as well.

4.6 Bibliographic remarks

Stochastic approximation has a long history, starting with the seminal
paper of Robbins and Monro (1951), where the iterative algorithm (4.1)
is used to solve a stochastic root-finding problem. For a proof of the
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asymptotic convergence claim in Theorem 4.1 for a Robbins-Monro
stochastic approximation scheme, the reader is referred to Theorem
2.3.1 of Kushner and Clark (1978), which is what is referred to in the SA
literature as the Kushner-Clark Lemma. For a rigorous introduction to
the ODE approach for analyzing stochastic approximation algorithms,
the reader is referred to Borkar (2008). The claim in Theorem 4.5 is
a special case of the result in Theorem 4.1 for a general stochastic
approximation scheme, and the interested reader is referred to Chap-
ters 4 and 5 of Bertsekas and Tsitsiklis (1996) for the proof as well as
RL applications. The convergence result for the projected stochastic
approximation scheme in Theorem 4.3 is the projected form of the
Kushner-Clark Lemma, which is Theorem 5.3.1 of Kushner and Clark
(1978). The noise conditions referred to in Section 4.1 for avoiding traps
(e.g., local maxima, saddle points) are given in Pemantle (1990); see
also Section 4.3 of Borkar (2008). The stability result presented in
Theorem 4.4 is the Borkar-Meyn theorem; see Theorems 2.1-2.2(i) of
Borkar and Meyn (2000) and also Chapter 3 of Borkar (2008). A popular
idea that improves the convergence guarantees for general stochastic
approximation algorithms is iterate averaging, proposed independently
by Polyak (Polyak and Juditsky, 1992) and Ruppert (Ruppert, 1991).
The idea behind this scheme is to use larger step-sizes of Θ(1/nς) for
some ς ∈ (1/2, 1) to perform the update iteration (4.2), and then use
the averaged iterate θ̄n+1 = 1

n

∑n
k=1 θk instead of the last iterate θn for

providing the convergence guarantees. For the special class of stochas-
tic gradient algorithms that solve a minimization problem, popular
approaches for improving the convergence rate is to incorporate second-
order information and/or variance reduction, see Bottou et al. (2018)
and Gower et al. (2020) for recent surveys on these topics.

The method of temporal differences for policy evaluation was pro-
posed by Sutton (1988). For an analysis of TD learning, the reader is
referred to either Chapters 5 and 6 of Bertsekas and Tsitsiklis (1996)
or Chapter 6 of Sutton and Barto (2018). An analysis of the extension
of TD to incorporate linear function function approximation can be
found in Tsitsiklis and Van Roy (1997). The stability of the TD iterate
can also be inferred using the Borkar-Meyn theorem, referred above.
Non-asymptotic analysis of TD with linear function approximation has
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received a lot of attention recently, and a few representative works are
Prashanth et al. (2021), Dalal et al. (2018), Bhandari et al. (2018), and
Srikant and Ying (2019). Average-cost TD learning algorithm with
full state representations and its convergence analysis can be found in
Konda and Borkar (1999), in particular, the faster timescale recursion in
Algorithm 4 there. Also related is the average-cost Q-learning algorithm
with full state representations, which has been proposed/analyzed by
Abounadi et al. (2001). For general conditions to infer stability of TD/Q-
learning algorithms in an average-cost MDP, see Abounadi et al. (2002).
Finally, for the extension of average-cost TD algorithm to incorporate
feature-based representations and linear function approximation, see
Tsitsiklis and Van Roy (1999).

Kiefer and Wolfowitz (1952) extended the Robbins-Monro algorithm
for root finding to optimizing a function through gradient search. The
Kiefer-Wolfowitz algorithm requires 2d function evaluations/estimates
per iteration to estimate the gradient, whereas the SPSA algorithm
proposed by Spall (1992) estimates the gradient using only two function
evaluations/estimates per iteration, regardless of the problem dimension
d. For a closely related random directions SA algorithm, see Kushner and
Clark (1978, pp. 58-60) and Prashanth et al. (2018), and for a detailed
introduction to such gradient estimation methods, see Bhatnagar et al.
(2013). The convergence analysis of the SPSA algorithm presented here,
in particular, the main result in Theorem 4.8 can be inferred by an
application of the Kushner-Clark Lemma (Kushner and Clark, 1978).

The likelihood ratio (LR) method for gradient estimation, also
known as the score function method, has its roots in a 1968 Russian
paper (Aleksandrov et al., 1968), but the technique appeared to be
unknown to the rest of the world until it was “rediscovered” by several
different researchers in parallel (Rubinstein, 1989; Glynn, 1987; Reiman
and Weiss, 1989); see Fu (2006) and Fu (2015) for an introduction and
overview. For the mild conditions justifying the unbiasedness of (4.20),
the reader is referred to Section VII.3 of Asmussen and Glynn (2007).
The weak derivatives (WD) method, also known as measure-valued
differentiation (Pflug, 1989; Pflug, 1996; Heidergott and Vázquez-Abad,
2000), could also be applied in the Markov chain context, but it would
generally require multiple sample paths of the chain or appropriate ran-
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domization; however, unlike finite-difference-based methods, including
the gradient estimators used in SPSA, LR and WD gradient estimators
are generally unbiased (as opposed to asymptotically unbiased).



5
Policy Gradient Templates for Risk-sensitive RL

In this section, we present and analyze template algorithms for two
risk-sensitive RL settings. The first setting, described in Section 5.1,
incorporates the risk measure directly in the objective function, whereas
the second setting, described in Section 5.2, considers the risk measure
in a constrained formulation, with the usual (risk-neutral) cost function
as the objective. Sections 5.3 and 5.4 analyze the convergence of the
template algorithms for the risk-as-objective and risk-as-constraint
settings, respectively.

Recall that
{
µθ(·|x), x ∈ X , θ ∈ Θ ⊆ Rd

}
is a parameterized set of

randomized policies, and the goal is to find a policy that optimizes a risk
measure as an objective, or optimizes the usual risk-neutral objective
(cost/reward) function while satisfying a risk constraint. The policy
parameterization is assumed to be smooth (cf. Sections 5.3 and 5.4),
and a commonly used class of distributions that ensures a smooth
parameterization is the ‘Boltzmann family’ taking the form

µθ(a|x) = exp(θT
ϕx,a)∑

a′∈A(x) exp(θTϕx,a′)
, ∀x ∈ X , ∀a ∈ A(x),

where θ is constrained to be in a convex and compact set Θ ⊂ Rd and
{ϕx,a} is a set of state-action features.

600
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The proposed policy gradient algorithms attempt to find a ‘good
enough’ policy that optimizes a risk-sensitive objective by performing
gradient descent in the policy space, where the concept of a ‘good
enough’ policy will be made precise in the convergence analysis of these
algorithms.

For notational convenience, we define

J(θ) ≜ Jµθ , D(θ) ≜ Dµθ , G(θ) ≜ Gµθ

in MDP contexts where the objective is independent of the initial state,
e.g., average-cost MDPs. Analogously, for the discounted-cost MDPs
and SSP settings, which depend on the initial state, we define

J(θ, x) ≜ Jµθ (x), D(θ, x) ≜ Dµθ (x), G(θ, x) ≜ Gµθ (x), ∀x ∈ X .

5.1 Template for the setting with risk as objective

This setting considers the following optimization problem:

min
θ∈Θ

G(θ),

where G involves one of the risk measures presented in Section 3. Solving
the problem (5.1) via a policy gradient algorithm invokes the following
stochastic approximation (SA) iterative update:

θn+1 = Γ
[
θn − ζ(n)∇̂G(θn)

]
, (5.1)

where {ζ(n)} is a step-size sequence, ∇̂G(θn) is an estimate of ∇G(θn),
and Γ is a projection operator that keeps the iterate θn bounded within
a convex and compact set Θ. A simple choice for the projected re-
gion is Θ := ∏d

i=1[θ(i)
min, θ

(i)
max], which leads to the following simple

implementation for the projection operator: For any θ ∈ Rd, Γ(θ) =
(Γ(1)(θ(1)), . . . ,Γ(d)(θ(d)))T , with Γ(i)(θ(i)) := min(max(θ(i)

min, θ
(i)), θ(i)

max).
The convergence analysis of the policy update algorithm in (5.1) is

presented in Section 5.3. In particular, we provide both asymptotic and
non-asymptotic convergence guarantees there.
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5.2 Template for the setting with risk as constraint

Recall that the setting incorporating risk as constraint is given by the
following problem:

min
θ∈Θ

J(θ) subject to G(θ) ≤ κ, (5.2)

where J is the usual risk-neutral MDP objective, while the constraint
G involves one of the risk measures presented in Section 3. In an
average-cost formulation, the objective/constraint do not depend on
the initial state, whereas they do in total-cost formulations such as SSP
and discounted problems. In either case, the template for solving the
problem remains the same, and to keep the presentation simple, we have
chosen to have the policy parameter only in J and G. In the special
cases of Section 6, we shall include the initial state as necessary.

If there is a policy in Θ that satisfies the constraint in (5.2), then it
can be inferred that there exists an optimal policy.

Using the Lagrangian approach, we consider the following relaxed
MDP problem:

max
λ

min
θ

(
L(θ, λ) ≜ J(θ) + λ

(
G(θ)− κ

))
,

where λ is the Lagrange multiplier. The goal here is to find the saddle
point of L(θ, λ), i.e., a point (θ∗, λ∗) that satisfies

L(θ, λ∗) ≥ L(θ∗, λ∗) ≥ L(θ∗, λ),∀θ ∈ Θ, ∀λ > 0.

For a standard convex optimization problem where the objective L(θ, λ)
is convex in θ and concave in λ, one can ensure the existence of a unique
saddle point under mild regularity conditions. Further, convergence to
this point can be achieved by descending in θ and ascending in λ using
∇θL(θ, λ) and ∇λL(θ, λ), respectively.

However, in the risk-sensitive RL setting, the Lagrangian L(θ, λ) is
not necessarily convex in θ, which implies there may not be an unique
saddle point. Hence, performing primal descent and dual ascent, one
can only get to a local saddle point, i.e., a point (θ∗, λ∗) that is a local
minima w.r.t. θ, and local maxima w.r.t λ of the Lagrangian. The
problem is further complicated by the fact in a typical RL setting,
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closed-form evaluation of the Lagrangian for any given policy parameter
θ and Lagrange multiplier λ is not feasible. Instead, one can run sample
trajectories after fixing the parameters θ and λ, and obtain estimates
of the Lagrangian corresponding to the policy parameter.

For the purpose of finding an optimal risk-sensitive policy, a standard
procedure would update the policy parameter θ and Lagrange multiplier
λ in two nested loops: an inner loop that descends in θ using the gradient
of the Lagrangian L(θ, λ) w.r.t. θ, and an outer loop that ascends in λ

using the gradient of the Lagrangian L(θ, λ) w.r.t. λ.
We operate in a setting where we only observe simulated costs of

the underlying MDP. Thus, it is required to estimate both J and G for
a given θ and then use these estimates to compute an estimate of the
gradient of the Lagrangian w.r.t. θ and λ. The gradient ∇λL(θ, λ) has
a particularly simple form of (G(θ)− κ), suggesting that a sample of
the risk measure can be used to perform the dual ascent for Lagrange
multiplier λ. On the other hand, the policy gradient∇θL(θ, λ) = ∇J(θ)+
λ∇G(θ) is usually complicated and does not lend itself to stochastic
programming techniques in a straightforward fashion. We shall address
the topic of gradient estimation in the next section, but for presenting the
template of the risk-sensitive policy gradient algorithm, we assume the
availability of estimators ∇̂J(θ), ∇̂G(θ) and Ĝ(θ) of ∇J(θ), ∇G(θ) and
G(θ), respectively. Then, using two-timescale stochastic approximation,
the inner and outer loops mentioned above can run in parallel, as follows
(please refer to Figure 5.1):

λn+1 =
[
λn + ζ1(n)

(
Ĝ(θn)− κ

)]+
, (5.3)

θn+1 = Γ
[
θn − ζ2(n)

(
∇̂J(θn) + λn∇̂G(θn)

)]
, (5.4)

where [x]+ = max(0, x) for any real x, Γ is a projection operator that
keeps the iterate θn stable by projecting onto a compact and convex
set Θ, as in the setting considered in Section 5.1; and {ζ1(n), ζ2(n)}
are step-size sequences selected such that the θ update is on the faster
timescale, and the λ update is on the slower timescale.

The template for a risk-sensitive policy gradient algorithm would
involve the following components:
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θn, λn

Using policy µθn,

simulate the

underlying MDP

Simulation

Estimate ∇J(θ)

Policy Gradient

Estimate G(θ)

Risk Estimation

Estimate ∇G(θ)

Risk Gradient

Update θn using (5.4)
Update λn using (5.3)

Policy Update

θn+1, λn+1

Figure 5.1: Overall flow of risk-sensitive policy gradient algorithm.

1. A two-timescale update rule for the policy parameter θ and the
Lagrange multiplier λ;

2. Estimates of the objective J(·) and the risk measure G(·), which
can be obtained by sampling from the underlying MDP with the
current policy parameter, and then using a suitable estimation
scheme, usually based on stochastic approximation (in RL, this
would be equivalent to some form of TD-learning), or based on
Monte Carlo averaging; the estimate of the objective would feed
into estimating the policy gradient (see step below), while the
estimate of the risk measure is necessary for the gradient of the
Lagrangian, as well as for the dual ascent procedure;

3. Estimates of the gradients ∇J(·) and ∇G(·) for primal descent,
which may be challenging to obtain if the underlying risk measure
has no structure that can be exploited in an MDP framework.

The convergence analysis of the two-timescale SA algorithm given
by (5.3) – (5.4) is presented in Section 5.4.

5.3 Convergence analysis in the setting with risk as objective

The following assumptions are used for the convergence analysis of the
SA recursive parameter update given by (5.1) in Section 5.1. First, let
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Fn = σ (θm,m < n) denote the underlying σ-field.

A5.1. The risk measure G is a continuously differentiable function of
the policy parameter θ.

A5.2. For all n, the gradient estimator ∇̂G(θn) satisfies

E
(
∇̂G(θn) | Fn

)
= ∇G(θn), and E

∥∥∥∇̂G(θn)−∇G(θn)
∥∥∥2
≤ σ2 <∞.

A5.3. For all n, the gradient estimator ∇̂G(θn) depends on a parameter
δn > 0 and satisfies∥∥∥E (∇̂G(θn) | Fn

)
−∇G(θn)

∥∥∥ = C1δ
2
n, and E

∥∥∥∇̂G(θn)
∥∥∥2
<
C2
δ2
n

,

where C1 and C2 are dimension-dependent constants.

A5.4. The step-size sequence {ζ(n)} satisfies∑
n

ζ(n) =∞, and
∑
n

ζ(n)2 <∞.

A5.5. δn → 0 as n→∞, and the step-size sequence {ζ(n)} satisfies

∑
n

ζ(n) =∞,
∑
n

[
ζ(n)
δn

]2
<∞.

We now discuss the assumptions. Assumption A5.1 imposes a
smoothness requirement on the risk measure G, when viewed as a
function of the policy parameter θ. A similar requirement, i.e., the value
function J is smooth in θ, holds when the underlying policy parame-
terization is smooth, i.e., µθ is a continuously differentiable function of
θ. While a smooth policy parameterization ensures J is smooth, one
cannot infer the same for an abstract risk measure G. As an exam-
ple, one could consider the VaR risk measure. Hence, the second part
of A5.1 explicitly imposes the smoothness condition on G, and this
condition together with the fact that J is smooth is necessary for the
ordinary differential equation (ODE) underlying the θ-recursion to be
well-posed. Assumption A5.2 requires that the risk gradient estimator
be unbiased with finite variance, which is a standard assumption in
the analysis of stochastic gradient schemes, and is generally satisfied
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using likelihood ratio-based gradient estimators. Assumption A5.3 is
a relaxed variant of A5.2, where the gradient estimators may not be
unbiased, as in the case of finite-difference estimators that depend on a
difference (perturbation) parameter δn, which can be used to control the
bias-variance tradeoff — lower δn results in lower gradient estimation
bias but higher variance, and vice versa. The SPSA approach presented
in Section 4.4, as well as the general class of simultaneous perturbation
schemes, meet the conditions in A5.3. For convergence, δn has to vanish
asymptotically, but not too fast, as outlined in the second part of A5.5.
The conditions on the step-size sequence {ζ1(n)} in A5.4 are standard
stochastic approximation requirements (see A4.6). Assumption A5.5 is
a variant of A5.4, and has to be coupled with A5.3, in the sense that the
gradient estimates have a O(δ2

n) bias, but ∑n

(
ζ2(n)
δn

)2
<∞. The latter

requirement ensures that the effect of noise in gradient estimation can
be (eventually) ignored, while ensuring asymptotic convergence. Such
a requirement that couples the step-size sequence and finite-difference
gradient estimator perturbation sequence arises when a biased gradient
estimation scheme such as SPSA is employed.

Consider the following ODE underlying the policy update in (5.1):

θ̇(t) = Γ̌ (−∇G(θ(t))) , (5.5)

where Γ̌(·) is a projection operator that ensures the evolution of θ via
the ODE (5.5) stays within the set Θ and is defined as follows: For any
bounded continuous function f(·),

Γ̌
(
f(θ)

)
= lim

τ→0

Γ
(
θ + τf(θ)

)
− θ

τ
. (5.6)

The limit defined above may not exist and in that case, one can define
Γ̌(f(θ)) to be the set of all possible limit points. Further, for θ in the
interior of Θ, Γ̌(f(θ)) = f(θ), while for θ on the boundary of Θ, Γ̌(f(θ))
is the projection of f(θ) onto the tangent space of the boundary of Θ
at θ.

The main result establishing asymptotic convergence of the policy
gradient algorithm (5.1) is given below.
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Theorem 5.1. Assume that A5.1, (A5.2 + A5.4) or (A5.3 + A5.5)
hold. For θn governed by (5.1),

θn → Z a.s. as n→∞,

where Z =
{
θ ∈ Θ : Γ̌

(
∇G(θ(t))

)
= 0

}
is the set of limit points of

the ODE (5.5).

Proof. The proof involves an application of the Kushner-Clark lemma
for projected stochastic approximation, provided in Section 4.1.3 as
Theorem 4.3.

We first rewrite the recursion (5.4) as follows:

θn+1 =Γ
(
θn + ζ(n)

(
∇G(θn) + ξn

))
, (5.7)

where ξn =∇̂G(θn)−∇G(θn).

Application of Theorem 4.3 requires the conditions A4.1–A4.4 to hold,
and we verify these conditions for the recursion in (5.7) in the case
where we assume A5.1, A5.2, and A5.4. We shall later provide the
deviations necessary to handle the case when A5.3, and A5.5 are used
in place of A5.2, and A5.4, respectively.

• The smoothness condition in A5.1 implies A4.1.

• Since A5.2 implies an unbiased gradient estimator, the assumption
A4.2 trivially holds.

• A5.4 implies A4.3.

• The verification of A4.4 requires the application of a martin-
gale inequality attributed to Doob, which is given in (4.4). We
apply this inequality in our setting to the martingale sequence
{
∑l
n=k ζ(n)ξn}l≥k to obtain

lim
k→∞

P
(

sup
l≥k

∥∥∥∥∥
l∑

n=k
ζ(n)ξn

∥∥∥∥∥ ≥ ϵ
)
≤ 1
ϵ2

lim
k→∞

∞∑
n=k

ζ(n)2E ∥ξn∥2

≤C3
ϵ2

lim
k→∞

∞∑
n=k

ζ(n)2 = 0,
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where the final inequality uses E ∥ξn∥2 ≤ C3 <∞, which can be
inferred from the second condition in A5.2, while the final equality
follows from the square summability of the step-size ζ(n), which
is assumed in A5.4. Thus, A4.4 is satisfied.

• Zλ is an asymptotically stable attractor for the ODE (5.5), with
G(θ) itself serving as a strict Lyapunov function. This can be
inferred as follows:

dG(θ)
dt

= ∇G(θ)θ̇ = ∇G(θ)Γ̌
(
−∇G(θ)

)
< 0, ∀θ /∈ Zλ.

The claim now follows by an application of Theorem 4.3.
For the case when A5.3 and A5.5 are used in place of A5.2, and A5.4,

the proof again follows by verifying conditions A4.1–A4.4 of Theorem
4.3. Of these, A4.1 and A4.3 hold as shown above. The conditions A4.2
and A4.4 require a few deviations from the proof above, and we provide
the details below. We rewrite the θ-recursion as follows:

θn+1 =Γ
(
θn + ζ(n)

(
∇G(θn, λ) + ξ1,n + ξ2,n

))
,

where

ξ1,n =E
(
∇̂G(θn) | Fn

)
−∇G(θn),

ξ2,n =∇̂G(θn)− E
(
∇̂G(θn) | Fn

)
.

• From A5.3, we have that ξ1,n = O(δ2
n). Using A5.5, we have

ξ1,n → 0 as n→∞. This verifies A4.2.

• For verifying A4.4, first note that E ∥ξ2,n∥2 ≤ C4 <∞ using the
last condition in A5.10. As before, applying Doob’s martingale
inequality and using square-summability of step-sizes {ζ(n)}, we
obtain

lim
k→∞

P
(

sup
l≥k

∥∥∥∥∥
l∑

n=k
ζ(n)ξ2,n

∥∥∥∥∥ ≥ ϵ
)
≤ 1
ϵ2

lim
k→∞

∞∑
n=k

ζ(n)2E ∥ξ2,n∥2

≤C4
ϵ2

lim
k→∞

∞∑
n=k

ζ(n)2

δ2
n

= 0.

Thus A4.4 holds.
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Hence, the claim follows for the case with assumptions A5.1, A5.3, and
A5.5.

Interestingly, one can derive a non-asymptotic bound for the policy
gradient algorithm in a setting where optimizing a risk measure is
the objective. The asymptotic result in the theorem above guarantees
convergence to a point θ∗ where the gradient of the objective vanishes.
The non-asymptotic bound that we present next establishes a non-
asymptotic bound on the norm of the gradient E∥∇G(θR)∥2, where
θR is a point picked uniformly at random from the set {θ1, . . . , θn}.
Notice the resemblance of this scheme of picking a random iterate
uniformly to the well-known Polyak-Ruppert averaging scheme for
stochastic approximation. In the latter, the averaging is explicit, while
the former achieves the same in expectation. However, we note that the
non-asymptotic bounds presented below are for a constant step-size,
while the Polyak-Ruppert averaging scheme uses diminishing step-sizes
of the form 1

kα , for some α ∈ (1/2, 1).
Recall that the update rule of the algorithm in the unconstrained in-

volved a projection operator, which is not needed for the non-asymptotic
bound that we present below. In other words, we shall analyze the follow-
ing projection-free variant of the risk-sensitive policy gradient algorithm
from a non-asymptotic viewpoint:

θn+1 = θn − ζ(n)∇̂G(θn). (5.8)

We require the following assumption for deriving the non-asymptotic
bound:

A5.6. There exists a constant L1 > 0 such that

∥∇G(θ)−∇G(θ′)∥ ≤ L1∥θ − θ′∥, ∀θ, θ′ ∈ Rd.

The smoothness requirement on the risk objective is not stringent,
considering one would require such an assumption for obtaining the
gradient estimates in A5.2/A5.3.

The main result providing the non-asymptotic bound of the policy
gradient algorithm in (5.1) is given below.
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Theorem 5.2.
(i) Assume A5.2 and A5.6 hold. Set ζ(k) = min

{
1
L1
, 1√

n

}
for k =

1, . . . , n. Let θR be chosen uniformly at random from {θ1, . . . , θn},
and let θ∗ be a global optima of G. Then, for any n ≥ 1,

E ∥∇G (θR)∥2 ≤ 2L1 (G(θ1)−G(θ∗))
n

+
[
2 (G(θ1)−G(θ∗)) + L1σ

2]
√
n

.

(5.9)

(ii) If instead A5.3 and A5.6 hold and ∥∇G (θ) ∥1 ≤ B for any

θ ∈ Rd, then setting ζ(k) = min
{

1
L1
, 1
n2/3

}
and δk = 1

n1/6 , for
k = 1, . . . , n,

E ∥∇G (θR)∥2 ≤
2 (G(θ1)−G(θ∗))

n
max

{
L1, n

2/3
}

+ 4BC1 + L1C2
n1/3 + L1dC

2
1

n4/3 ,

(5.10)

where the constants C1 and C2 are given in assumption A5.3.

The non-asymptotic bound in the result above of the order O
(

1√
n

)
for

the case when unbiased gradient estimates are available. On the other
hand, the corresponding bound for the case of biased gradient estimates
is O

(
1

n1/3

)
. The weaker rate is a result of the fact that the gradient

estimates exhibit a bias variance tradeoff via the perturabation constant
δn, i.e., decreasing δn leads to a gradient estimate that has lower bias,
though this is at the cost of increasing variance.

Proof. We first prove part (i), where (5.9) provides a finite-time bound
for the SA iterative update (5.8) using unbiased gradient estimates with
bounded variance, i.e., gradient estimators satisfying A5.2.

Using A5.6, we have

G (θk+1) ≤ G (θk) + ⟨∇G (θk) , θk+1 − θk⟩+ L1
2 ∥θk+1 − θk∥2

= G (θk)− ζ(k)
〈
∇G (θk) , ∇̂G(θk)

〉
+ L1

2 ζ(k)2
∥∥∥∇̂G(θk)

∥∥∥2
.
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Note that the search point θk is a function of the history {θm,m <

k}, and is random. Let Ek denote the expectation w.r.t. the sigma
field Fk = σ(θm,m < k). Taking expectations with respect to Ek on
both sides of above equation, and noting that from A5.2, we have
Ek
[
∇̂G(θk)

]
= ∇G (θk) , and Ek

[∥∥∥∇̂G(θk)
∥∥∥2
]
≤ ∥∇G(θn)∥2 + σ2 , we

obtain

Ek[G (θk+1)] ≤ G (θk)− ζ(k) ∥∇G (θk)∥2 + L1
2 ζ(k)2

[
∥∇G (θk)∥2 + σ2

]
= G (θk)−

(
ζ(k)− L1

2 ζ(k)2
)
∥∇G (θk)∥2 + L1

2 ζ(k)2σ2.

Rearranging the terms, we obtain(
ζ(k)− L1

2 ζ(k)2
)
∥∇G (θk)∥2 ≤ G (θk)− Ek[G (θk+1)] + L1

2 ζ(k)2σ2

=⇒ ζ(k) ∥∇G (θk)∥2 ≤
2 [G (θk)− Ek[G (θk+1)]]

(2− L1ζ(k)) + L1ζ(k)2σ2

(2− L1ζ(k)) .

Now summing up the above inequality from k = 1 to n, we obtain
n∑
k=1

ζ(k) ∥∇G (θk)∥2

≤ 2
n∑
k=1

[G (θk)− Ek[G (θk+1)]]
(2− L1ζ(k)) + L1σ

2
n∑
k=1

ζ(k)2

(2− L1ζ(k)) .

Taking expectations on both sides of the equation above, we obtain
n∑
k=1

ζ(k)En ∥∇G (θk)∥2

≤ 2
n∑
k=1

[En [G (θk)]− En [G (θk+1)]]
(2− L1ζ(k)) + L1σ

2
n∑
k=1

ζ(k)2

(2− L1ζ(k))

= 2
[

G (θ1)
(2− L1ζ1) −

n∑
k=2

( 1
(2− L1ζk−1) −

1
(2− L1ζ(k))

)
En [G (θk)]

−En [G (θn+1)]
(2− L1ζn)

]
+ L1σ

2
n∑
k=1

ζ(k)2

(2− L1ζ(k)) .
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Notice that since step sizes {ζ(k)}k≥1 are non-increasing, we have(
1

(2−L1ζk−1) −
1

(2−L1ζ(k))

)
≥ 0 and using the fact that En [G (θk)] ≥

G(θ∗), where θ∗ is a local optima, we obtain
n∑

k=1
ζ(k)En ∥∇G (θk)∥2

≤ 2
[

G(θ1)
(2− L1ζ1) −G(θ∗)

n∑
k=2

(
1

(2− L1ζk−1) −
1

(2− L1ζ(k))

)
− G(θ∗)

(2− L1ζn)

]

+ L1σ
2

n∑
k=1

ζ(k)2

(2− L1ζ(k))

= 2 (G(θ1)−G(θ∗))
(2− L1ζ1) + L1σ

2
n∑

k=1

ζ(k)2

(2− L1ζ(k)) .

Let R be a r.v. with the following mass function:

PR(k) := P (R = k) = ζ(k)∑n
k=1 ζ(k) , k = 1, . . . , n.

It follows from the definition of PR above that,

E
[
∥∇G (θR)∥2

]
=
∑n
k=1 ζ(k)En ∥∇G (θk)∥2∑n

k=1 ζ(k) .

Thus, we conclude

E
[
∥∇G (θR)∥2

]
≤ 1∑n

k=1 ζ(k)

[
2 (G(θ1)−G(θ∗))

(2− L1ζ1) + L1σ
2

n∑
k=1

ζ(k)2

(2− L1ζ(k))

]
.

(5.11)

The bound in the equation above holds for a general step-size choice.
Specializing the bound in (5.11) to the case of a constant step size

ζ(k) =
{
ζ = min

{
1
L1
, 1√

n

}}
,∀k ≥ 1, we obtain

E
[
∥∇G (θR)∥2

]
≤ 1∑n

k=1 ζ(k)

[
2 (G(θ1)−G(θ∗))

(2− L1ζ1) + L1σ
2

n∑
k=1

ζ(k)2

(2− L1ζk)

]

= 1
nζ

[
2 (G(θ1)−G(θ∗))

(2− L1ζ)
+ L1σ

2n
ζ2

(2− L1ζ)

]
≤ 1
nζ

[
2 (G(θ1)−G(θ∗)) + L1σ

2nζ2]
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= 2 (G(θ1)−G(θ∗))
nζ

+ L1σ
2ζ

≤ 2 (G(θ1)−G(θ∗))
n

max
{
L1,
√
n

}
+ L1σ

2 1√
n

≤ 2L1 (G(θ1)−G(θ∗))
n

+ 2 (G(θ1)−G(θ∗))√
n

+ L1σ
2 1√

n

= 2L1 (G(θ1)−G(θ∗))
n

+ 1√
n

[
2 (G(θ1)−G(θ∗)) + L1σ

2] ,
establishing (5.9) to complete the proof of part (i).

Proof of part (ii). Now we prove the second part of the theorem,
specifically the finite-time bound (5.10) for the SA iterative update
(5.8) using biased gradient estimators satisfying A5.3. As before, using
A5.6, we have

G (θk+1) ≤ G (θk)− ζ(k)
〈
∇G (θk) , ∇̂G(θk)

〉
+ L1

2 ζ(k)2
∥∥∥∇̂G(θk)

∥∥∥2
.

(5.12)

Taking expectations w.r.t. Ek on both sides of (5.12), followed by an
application of the inequalities in A5.3, we obtain

Ek [G (θk+1)]

≤ Ek [G (θk)]− ζ(k)
〈
∇G (θk) ,∇G (θk) + C1δ

2
k1d×1

〉
+ L1

2 ζ(k)2
[∥∥∥Ek [∇̂G(θk)

]∥∥∥2
+ C2
δ2
k

]
≤ G (θk)− ζ(k) ∥∇G (θk)∥2 + C1δ

2
kζ(k)Ek∥∇G (θk) ∥1

+ L1
2 ζ(k)2

[
∥∇G (θk)∥2+ 2C1δ

2
kEk∥∇G (θk) ∥1+ dC2

1δ
4
k + C2

δ2
k

]
(5.13)

≤ G (θk)−
(
ζ(k)− L1

2 ζ(k)2
)
∥∇G (θk)∥2 + C1δ

2
kB

(
ζ(k) + L1ζ(k)2

)

+ L1
2 ζ(k)2

[
dC2

1δ
4
k + C2

δ2
k

]
, (5.14)

where the inequality in (5.13) uses −∥θ∥1 ≤
∑d
i=1 θi for any vector θ,

while the final inequality uses ∥∇G (θk) ∥1 ≤ B, which holds by an
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assumption in the theorem statement. A straightforward rearrangement
of the terms in (5.14) leads to

ζ(k) ∥∇G (θk)∥2 ≤
2

(2− L1ζ(k))

[
G (θk)− EkG (θk+1)

+ C1δ
2
k

(
ζ(k) + L1ζ(k)2

)
B

]
+ L1ζ(k)2

(2− L1ζ(k))

[
dC2

1δ
4
k + C2

δ2
k

]
.

Now, summing up the inequality above for k = 1 to n, and taking
expectations, we obtain

n∑
k=1

ζ(k)En ∥∇G (θk)∥2

≤ 2
n∑

k=1

(EnG (θk)− EnG (θk+1))
(2− L1ζ(k)) + 2

n∑
k=1

C1δ2
kB

(
ζ(k) + L1ζ(k)2

2− L1ζ(k)

)
+ L1

n∑
k=1

ζ(k)2

(2− L1ζ(k))

[
dC2

1 δ4
k + C2

δ2
k

]

= 2

[
G (θ1)

(2− L1ζ(1)) −
n∑

k=2

(
EnG (θk)

(2− L1ζ(k − 1)) −
EnG (θk)

(2− L1ζ(k))

)
− En [G (θn+1)]

(2− L1ζ(n))

]

+ 2
n∑

k=1

C1δ2
kB

(
ζ(k) + L1ζ(k)2

2− L1ζ(k)

)
+ L1

n∑
k=1

ζ(k)2

(2− L1ζ(k))

[
dC2

1 δ4
k + C2

δ2
k

]
.

Using En [G (θk)] ≥ G(θ∗), and
(

1
(2−L1ζ(k−1)) −

1
(2−L1ζ(k))

)
≥ 0, we

obtain
n∑

k=1
ζ(k)En ∥∇G (θk)∥2 ≤ 2 ((G(θ1)−G(θ∗)))

(2− L1ζ(1))

+ 2
n∑

k=1
C1δ

2
kB

(
ζ(k) + L1ζ(k)2

2− L1ζ(k)

)
+ L1

n∑
k=1

ζ(k)2

(2− L1ζ(k))

[
dC2

1δ
4
k + C2

δ2
k

]
.

Using the fact that P (R = i) = 1/n, i = 1, . . . , n, we have

E
[
∥∇G (θR)∥2

]
≤ 1∑n

k=1 ζ(k)

[2 (G(θ1)−G(θ∗))
(2− L1ζ(1)) +

2B
n∑
k=1

C1δ
2
k

[
ζ(k) + L1ζ(k)2

2− L1ζ(k)

]
+

n∑
k=1

L1ζ(k)2

(2− L1ζ(k))

[
dC2

1δ
4
k + C2

δ2
k

]]
.

(5.15)
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We now specialize the result obtained in the equation above, to derive
the bound in (5.10). Using ζ(k) ≜

{
ζ = min

{
1
L1
, 1
n2/3

}}
, and δk ≜{

δ = 1
n1/6

}
in (5.15), we obtain

E
[
∥∇G (θR)∥2

]
≤ 1
nζ

[
2 (G(θ1)−G(θ∗)) + 4nζBC1δ

2 + L1nζ
2
[
dC2

1δ
4 + C2

δ2

]]
≤ 2 (G(θ1)−G(θ∗))

n
max

{
L1, n

2/3
}

+ 4BC1
n1/3 + L1

n2/3

[
dC2

1
n2/3 + C2

n−1/3

]
,

where the first inequality above follows by using the fact that ζ ≤ 1/L1,
while the final inequality follows by using the definition of ζ and δ. The
final bound in (5.10) then follows by rearranging terms.

5.4 Convergence analysis in the setting with risk as constraint

In this section, we analyze the convergence properties of the two-
timescale SA algorithm given by (5.3)–(5.4) in Section 5.2. The con-
vergence analysis using the ODE approach on the two timescales in
(5.3) and (5.4) is based on the following intuition, to be made rigorous:
the faster timescale recursion in (5.4) sees the iterate λn on the slower
timescale as quasi-static, while the slower timescale recursion in (5.3)
sees the iterate θn on the faster timescale as equilibrated. In essence,
this viewpoint is equivalent to assuming that slower timescale iterate
as constant while analyzing the faster timescale recursion, and using
converged values of the faster timescale iterate for analysis of the slower
timescale recursion.

We make the following assumptions for the convergence analysis
of the two-timescale SA recursions given by (5.3) and (5.4). Again, let
Fn = σ (θm,m ≤ n) denote the underlying σ-field.

A5.7. The policy µθ(·|x) is a continuously differentiable function of
θ, for any x ∈ X and a ∈ A. Furthermore, the risk measure G is a
continuously differentiable function of the policy parameter θ.
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A5.8. The risk-measure estimator Ĝ(·) satisfies E
(
Ĝ(θn) | Fn

)
= G(θn)

A5.9. The gradient estimators ∇̂J(θn) and ∇̂G(θn) satisfy

E
(
∇̂J(θn) | Fn

)
= ∇J(θn),E

(
∇̂G(θn) | Fn

)
= ∇G(θn),

and E
∥∥∥∇̂J(θn)

∥∥∥2
+ E

∥∥∥∇̂G(θn)
∥∥∥2
<∞.

A5.10. The gradient estimators ∇̂J(θn) and ∇̂G(θn) with perturbation
δn > 0 satisfy∥∥∥E (∇̂J(θn) | Fn

)
−∇J(θn)

∥∥∥ = C5 δ
2
n,∥∥∥E (∇̂G(θn) | Fn

)
−∇G(θn)

∥∥∥ = C6 δ
2
n,

and
(
E
∥∥∥∇̂J(θn)

∥∥∥2
+ E

∥∥∥∇̂G(θn)
∥∥∥2
)
<
C7
δ2
n

,

where C5, C6, and C7 are dimension-dependent constants.

A5.11. The step-size sequences {ζ1(n), ζ2(n)} satisfy∑
n

ζ1(n) =
∑
n

ζ2(n) =∞,
∑
n

(ζ1(n)2 + ζ2(n)2) <∞,

ζ1(n) = o
(
ζ2(n)

)
.

A5.12. The gradient estimator perturbation δn → 0 as n → ∞, and
the step-size sequences {ζ1(n), ζ2(n)} satisfy

∑
n

ζ1(n) =
∑
n

ζ2(n) =∞,
∑
n

[
ζ1(n)2 +

[
ζ2(n)
δn

]2]
<∞,

ζ1(n) = o
(
ζ2(n)

)
.

We now discuss the assumptions. The first part in assumption A5.7
is a standard requirement in the analysis of policy gradient-type RL
algorithms. The second part imposes a smoothness requirement on the
risk measure G, when viewed as a function of the policy parameter
θ. As mentioned earlier, for an abstract risk measure G, one cannot
infer smoothness of G based only on the policy parameterization being
smooth. This smoothness condition together with the fact that J is
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smooth ensures that the ODE underlying the θ-recursion is well-posed.
Assumption A5.8 is an unbiasedness requirement on the risk measure
estimate that is used for dual ascent in (5.3). Assumptions A5.9 and
A5.10 are unbiasedness/asymptotic unbiasedness requirements on the
estimators of the gradient of the objective and risk measure, and are
necessary to ensure that the θ-recursion in (5.4) is descending in the
Lagrangian objective. Assumption A5.9 requires that the estimators of
the gradient of J and G be unbiased, and also that the variance of the
these gradient estimates is bounded. Such requirements are common
in the analysis of stochastic gradient schemes, and estimators formed
using the likelihood ratio method (described in the next section) usually
satisfy A5.9. Assumption A5.10 is a relaxed version of A5.9, where
the gradient estimators are asymptotically unbiased, i.e., the gradient
estimators have a perturbation parameter δn, which can be used to
control the bias-variance tradeoff. The SPSA technique for gradient
estimation, presented in Section 4.4, as well as the general class of
simultaneous perturbation schemes, satisfy the conditions in A5.10.
For convergence, δn has to vanish asymptotically, but not too fast, as
outlined in the second part of A5.12.

The first two conditions on the step-sizes {ζ1(n), ζ2(n)} in A5.11
are standard stochastic approximation requirements. The condition
ζ1(n) = o

(
ζ2(n)

)
is required for the standard two-timescale view, i.e., the

policy recursion in (5.4) views the Lagrange multiplier as quasi-static,
while the Lagrange multiplier recursion views the policy parameter
as almost equilibrated. This view is made precise in the convergence
analysis presented in Section 5.4 below. Two-timescale updates are
convenient because both policy and Lagrange multiplier can be updated
in parallel, albeit with varying step-sizes. The latter are chosen carefully
so that one is able to mimic a two-loop behavior, with policy updates
in the inner loop and Lagrange multiplier updates in the outer loop.
Assumption A5.12 is a variant of A5.11, which when coupled with (A3’)
ensures that the bias O(δ2

n) of gradient estimates vanish asymptotically.
Further, the noise in gradient estimates can be ignored in the asymptotic
analysis owing to the condition ∑n

(
ζ2(n)
δn

)2
<∞.
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We adopt the ODE approach for analyzing the template algorithm
in (5.3)–(5.4). In particular, under the assumptions listed above, the
ODE governing the policy update, for any given Lagrange multiplier λ,
is given by

θ̇(t) = Γ̌ (−∇J(θ(t))− λ∇G(θ(t))) , (5.16)

where Γ̌(·) is a projection operator that ensures the evolution of θ via
the ODE (5.16) stays within the set Θ and is defined as in (5.6).

Remark 5.1. (Two-timescale view) In describing the ODE governing
the policy recursion, we have assumed that the Lagrange multiplier is
constant, and this view can be justified as follows: First rewrite the
λ-recursion as

λn+1 =
[
λn + ζ2(n)

(
ζ1(n)
ζ2(n) (G(θn)− κ+ ς1,n)

)]+
,

where ς1,n is a martingale difference sequence (a consequence of (A1)).
Considering that we have a finite-dimensional MDP setting, together
with the fact that ζ1(n)

ζ2(n) = o(1) (see (A4)), it is clear that the λ-recursion
above tracks the ODE λ̇(t) = 0.

The claim that the λ-recursion views the policy parameter as almost
equilibrated requires a more sophisticated argument, and we provide a
proof sketch below. We first rewrite the λ update iteration as follows:

λn+1 =
[
λn + ζ1(n) (G(θλn)− κ+ ς2,n)

]+
,

where ς2,n = G(θn)−G(θλn). The noise factor ς2,n is defined using the
fast timescale parameter θλn with the slow timescale iterate λn. The
parameter θλn is a limiting point of the θ-recursion, with the Lagrange
multiplier λn. Owing to the convergence of θ-recursion, one can infer
that ς2,n = o(1), i.e., ς2,n adds an asymptotically vanishing bias term to
the λ-recursion above. Thus, it is apparent that the λ-recursion views
the policy parameter as almost equilibrated, and the technical proof
proceeds by showing that the λ-recursion tracks the following ODE:

λ̇(t) = Γ̌λ
[
G(θλ(t))− κ

]
,
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where Γ̌λ is a projection operator that is defined as follows: For any
bounded continuous function f(·),

Γ̌λ
(
f(λ)

)
= lim

τ→0

(λ+ τf(λ))+ − λ
τ

. (5.17)

The projection operator Γ̌ ensures that the λ-recursion stays within
[0,∞). The tools used in establishing such a claim are classic for stochas-
tic approximation schemes, e.g., Theorem 4.1 in the previous section.

5.4.1 Convergence of policy parameter

Theorem 5.3. Assume A5.7, A5.8, (A5.9 + A5.11) or (A5.10 +
A5.12). If λn = λ ∀n, then for θn governed by (5.4),

θn → Zλ a.s. as n→∞,

where Zλ =
{
θ ∈ Θ : Γ̌

(
−∇J(θ(t))− λ∇G(θ(t))

)
= 0

}
is the set

of limit points of the ODE (5.16).

Proof. The proof again involves an application of the Kushner-Clark
lemma for projected stochastic approximation, i.e., Theorem 4.3 in
Section 4.1.3.

We first rewrite the recursion (5.4) as follows (with λn = λ):

θn+1 = Γ
(
θn − ζ2(n)

(
∇L(θn, λ) + ξn

))
,

where

L(θ, λ) = J(θ) + λ
(
G(θ)− κ

)
,

ξn = ∇̂J(θn) + λ∇̂G(θn)−∇L(θn, λ).

We now verify conditions A4.1–A4.4 of Theorem 4.3 for (5.4.1) in
the case where we assume A5.7, A5.8, A5.9, and A5.11. Later we provide
the deviations necessary to handle the case when A5.10 and A5.12 are
used in place of A5.9 and A5.11, respectively.

• From A5.7, we have that the policy µθ is a continuously dif-
ferentiable function of θ, which implies the value function J is
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continuously differentiable in θ, as well. This fact combined with
the second part of A5.7, which imposed a smoothness requirement
on the risk measure G, imply that the condition A4.1 follows for
∇L(θn, λ).

• Since A5.9 implies unbiased gradient estimators, the assumption
A4.2 trivially holds.

• A5.11 implies A4.3.

• Using the third condition in A5.9, it is easy to infer that
E ∥ξn∥2 ≤ C8 < ∞. Using this fact in conjunction with Doob’s
martingale inequality stated earlier, we obtain

lim
k→∞

P
(

sup
l≥k

∥∥∥∥∥
l∑

n=k
ζ2(n)ξn

∥∥∥∥∥ ≥ ϵ
)
≤ 1
ϵ2

lim
k→∞

∞∑
n=k

ζ2(n)2E ∥ξn∥2

≤C8
ϵ2

lim
k→∞

∞∑
n=k

ζ2(n)2 → 0,

where the last limit follows from the square summability of the
step-size ζ2(n), which is assumed in A5.11. Thus, A4.4 is satisfied.

• Zλ is an asymptotically stable attractor for the ODE (5.16), with
L(θ, λ) itself serving as a strict Lyapunov function. This can be
inferred as follows:
dL(θ, λ)

dt
= ∇L(θ, λ)θ̇ = ∇L(θ, λ)Γ̌

(
−∇L(θ, λ)

)
< 0, ∀θ /∈ Zλ.

The claim now follows by an application of Theorem 4.3. □

For the case when A5.10 and A5.12 are used in place of A5.9
and A5.11, the proof again follows by verifying conditions A4.1–A4.4
of Theorem 4.3. Of these, A4.1 and A4.3 hold as shown above. The
conditions A4.2 and A4.4 require a few deviations from the proof above,
and we provide the details below.

First, we rewrite the θ-recursion as follows:

θn+1 =Γ
(
θn − ζ2(n)

(
∇L(θn, λ) + ξ1,n + ξ2,n

))
,
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where

ξ1,n =E
(
∇̂J(θn) + λ∇̂G(θn) | θn

)
−∇L(θn, λ),

ξ2,n =∇̂J(θn) + λ∇̂G(θn)− E
(
∇̂J(θn) + λ∇̂G(θn) | θn

)
.

• From A5.10, we have ξ1,n = O(δ2
n). Using A5.12, we have ξ1,n → 0

as n→∞. This verifies A4.2.

• For verifying A4.4, first note that E ∥ξ2,n∥2 ≤ C9 <∞ using the
last condition in A5.10. As before, applying Doob’s martingale
inequality and using square-summability of step-sizes {ζ2(n)},

lim
k→∞

P
(

sup
l≥k

∥∥∥∥∥
l∑

n=k
ζ2(n)ξ2,n

∥∥∥∥∥ ≥ ϵ
)
≤ 1
ϵ2

lim
k→∞

∞∑
n=k

ζ2(n)2E ∥ξ2,n∥2

≤C9
ϵ2

lim
k→∞

∞∑
n=k

ζ2(n)2

δ2
n

→ 0.

Thus A4.4 holds.

Hence, the claim follows for the case with assumptions A5.7, A5.8,
A5.10, and A5.12.

Remark 5.2. The policy update (5.4) might not converge to a local
minimum, and instead get trapped in undesirable equilibria. As dis-
cussed earlier in Section 4.1, stochastic (i.e., inherently noisy) gradient
estimators that drive the policy update may ensure avoidance of traps.
An alternative is to add extraneous noise, as in (4.6).

5.4.2 Convergence of Lagrange multiplier

We now turn to the analysis of λ-recursion in (5.3). The ODE underlying
the Lagrange multiplier is given below:

λ̇(t) = Γ̌λ
[
G(θλ(t))− κ

]
, (5.18)

where θλ(t) is the converged value of the θ-recursion, when the Lagrange
multiplier is set to λ(t), and the operator Γ̌λ is defined in (5.17).
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Theorem 5.4. Assume A5.7, A5.8, (A5.9 + A5.11) or (A5.10 +
A5.12). Then, for λn governed by (5.3),

λn → Z a.s. as n→∞,

where Z =
{
λ ∈ [0,∞) : Γ̌λ (G(θλ)− κ) = 0, θλ ∈ Zλ

}
is the set of

limit points of the ODE (5.18) and Zλ is defined in Theorem 5.3.

Proof. Let H(λ) = minθ∈Θ L(θ, λ). Note that the function H is a
pointwise infimum of a family of affine functions of λ, hence concave.
Thus it is differentiable except at at most countably many points, where
its has right and left derivatives. Furthermore, the right derivative
at a point does not exceed the left derivative and both right and let
derivatives are monotone decreasing. For simplicity of exposition, we
assume below that H is differentiable everywhere, the argument can
easily be adapted to the more general case by using super-gradients
where needed. Also, H attains its maximum at a unique point, viz., the
Lagrange multiplier λ∗. It follows that H(λ) ↓ −∞ as λ→ ±∞. In fact,
we have some C, c > 0 such that

H ′(λ) < −cλ,∀λ ≥ C, (5.19)
H ′(λ) > cλ,∀λ ≤ −C. (5.20)

The Lagrange multiplier iterate λn tracks the following ODE:

λ̇(t) = H ′(λ(t)).

In view of (5.19)–(5.20), a straightforward adaptation of the arguments
of Theorem 4.4 ensure the a.s. stability of the iterates.
Given that the λ iteration is stable, the rest of the proof follows by using
arguments similar to those employed in proving convergence of standard
stochastic approximation algorithms, and we omit the details.

So far, we have shown that (θn, λn) converges to (θλ∗ , λ∗), for some
λ∗ satisfying Γ̌λ (G(θλ)− κ) = 0, and θλ∗ ∈ Zλ∗ . For a given λ, the
condition Γ̌λ(G(θλ)− κ) = 0 is the same as Γ̌λ(∇λL(θλ, λ)) = 0.

We now state a result that helps us understand if the limit (θλ∗ , λ∗)
of the tuple (θn, λn) is a local saddle point of the Lagrangian, and if
θλ∗ satisfies the risk constraint.
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Theorem 5.5. Let H(λ) = minθ∈Θ L(θ, λ). The ODE underlying
the λ-recursion in (5.18) is the same as

λ̇(t) = Γ̌λ
[
∇λH(λ(t))

]
, (5.21)

where the latter ODE is to be interpreted in the ‘Caratheodory’
sense, i.e.,

λ(t) = λ(0) +
∫ t

0
Γ̌λ
[
∇λH(λ(s))

]
ds, t ≥ 0. (5.22)

Thus, the iterate λn governed by (5.3) converges to a local minima
of H.

Proof. (Sketch) For inferring the main claim in the result above, one
invokes the envelope theorem of mathematical economics. In particular,
using this theorem, it follows that at every point λ(t) where the function
H̃ = Γ̌λH(·) is differentiable, the RHS of the ODE (5.21) coincides with
that in the integral equation (5.22). At points where the function H̃

is not differentiable, it can be argued that the ODE spends zero time,
provided they are not the global minima of H̃.

Remark 5.3. Notice that the limiting policy θλ∗ corresponding to λ∗ ∈ Z
satisfies the risk constraint G(θλ∗) ≤ κ, since λ∗ corresponds to the
equilibrium of the ODE λ̇(t) = ∇λH(λ(t)) that is constrained to remain
in [0,∞), implying ∇λH(λ∗) = 0.

To summarize, the two-timescale risk-sensitive policy gradient al-
gorithm with iterate (θn, λn) converges to a local saddle point of the
Lagrangian L(·, ·), i.e., to a point that is a local minimum w.r.t. θ and
a local maximum w.r.t. λ. Moreover, the limit is a policy that satisfies
the risk constraint.

5.4.3 Projection of Lagrange multiplier onto a finite interval

In practice, one may want to project λ iterate in (5.3) onto a finite
interval, say [0, λmax], i.e., the following update iteration:

λn+1 = Γλ
[
λn + ζ1(n)

(
Ĝ(θn)− κ

)]
,

where Γλ denotes the projection operator onto [0, λmax].
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The analysis of this projected λ iteration would be similar to the
case analyzed before. In particular, a variant of Theorem 5.4 can be
claimed easily, without a detailed argument for stability of iterates
owing to the projection onto a finite interval. However, the observation
in Remark 5.3 regarding the risk constraint is not true in the case when
there is projection. In other words, the λ-recursion in (5.3) involves
projection on to the interval [0, λmax], and this recursion tracks the
ODE given in (5.21).

However, it is possible to establish the following claims concerning
the limit (θλ∗ , λ∗).

Theorem 5.6. Consider the limit set Z defined in Theorem 5.4.

(i) For the following “truncated” version of Z,

Ẑ =
{
λ ∈ [0, λmax) : Γ̌λ (G(θλ)− κ) = 0, θλ ∈ Zλ

}
,

the policy θλ̂ corresponding to a λ̂ ∈ Ẑ satisfies the risk
constraint G(θλ̂) ≤ κ.

(ii) For λ∗ ∈ Z, if G(θλ∗) < κ, then λ∗ = 0, and L(θλ∗ , λ∗) =
J(θλ∗). Thus, the risk-sensitive policy gradient algorithm
converges to a local minimum of J while satisfying the risk
constraint.

(iii) Call λ∗ ∈ Z a spurious stationary point of (5.18) if λ∗ is not a
stationary point of the ODE λ̇(t) = G(θλ(t))− κ. For λ∗ ∈ Z,
if G(θλ∗) > κ, then λ∗ = λmax, and such a λ∗ corresponds to
a spurious stationary point.

Proof. We prove the claim in (i) by contradiction. Assume that G(θλ̂) >
κ for λ̂ ∈ Ẑ. Then, we have

Γ̌λ(G(θλ̂)− κ) = lim
η→0

Γλ(λ̂+ η(G(θλ̂)− κ))− λ̂
η

= G(θλ̂)− κ > 0,

(5.23)

which leads to a contradiction since Γ̌λ(G(θλ̂)− κ) = 0 as λ̂ ∈ Ẑ. The
equality in (5.23) follows by using the facts that λ̂ ≥ 0, and G(θλ̂) > κ

to infer that for small enough η > 0,
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Γλ(λ̂+ η(G(θλ̂)− κ)) = λ̂+ η(G(θλ̂)− κ).
We now proceed to prove the claim in (ii). In the case where λ∗ = 0,

we have Γλ(λ∗ + η(G(θλ∗)− κ)) = 0 for any η > 0, since G(θλ∗) < κ.
Next, the case of λ∗ > 0 is not possible, and this can be argued as

follows: Suppose that λ∗ > 0. Then, for small enough η > 0

Γλ(λ∗ + η(G(θλ∗)− κ)) = λ∗ + η(G(θλ∗)− κ) > 0, implying
Γ̌λ(G(θλ∗)− κ) < 0,

which leads to a contradiction since λ∗ ∈ Z.
For the final claim in (iii), observe that Γλ(λ∗+η(G(θλ∗)−κ)) = λmax

leading to Γ̌λ(G(θλ̂)− κ) = 0, since λ∗ + η(G(θλ∗)− κ) > λmax for any
η > 0.

Thus, when one projects the Lagrange multiplier onto a finite interval,
the convergence guarantee is to a local saddle point of the Lagrangian, as
before. However, the limiting policy may not necessarily satisfy the risk
constraint due to finite projection for the Lagrange multiplier. The latter
can be avoided in practice by choosing a large enough value for λmax.
However, the only way to theoretically guarantee avoidance of spurious
limiting policies (i.e., ones that do not satisfy the risk constraint) is to
eliminate the projection, i.e., to allow λ to be any positive real number.

5.5 Bibliographic remarks

For constrained MDPs, a textbook reference is Altman (1999). In Section
5.2, we invoke Theorem 3.8 from there to infer that there exists an
optimal policy for the risk-constrained MDP in (5.2), whenever there
is a policy that satisfies the risk constraint for this problem. A classic
reference for the regularity conditions for ensuring the existence of a
unique saddle point of the Lagrangian of the problem (5.2) is Sion
(1958). Mean-variance optimization of MDPs has been shown to be
NP-hard in Mannor and Tsitsiklis (2013).

Our template algorithm for the ‘risk as constraint’ setting incorpo-
rates two-timescale stochastic approximation (Borkar, 1997; Borkar,
2008). Two-timescale algorithms are popular for solving the problem
of control in the context of reinforcement learning, where they are
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usually referred to as actor-critic algorithms, cf. Konda and Borkar
(1999), Borkar (2005), Bhatnagar et al. (2009), Bhatnagar (2010), and
Prashanth and Ghavamzadeh (2016). Several simulation-based opti-
mization algorithms also involve multiple timescales, see the textbook
by Bhatnagar et al. (2013) for several examples. From the field of
simulation optimization, the simultaneous perturbation method for gra-
dient estimation is particularly relevant for solving risk-sensitive MDPs,
when the underlying risk measure does not possess the structure to
enable direct gradient estimation schemes such as the likelihood ratio
method; see the case studies involving variance and CPT risk measures
in Sections 6 and 7 for concrete examples.

Borkar (2008, Theorem 2 in Chapter 6) provides a justification
of the standard two-timescale viewpoint, i.e., the λ-recursion on the
slower timescale sees the policy parameter as almost equilibrated, while
the θ-recursion on the faster timescale sees the Lagrange multiple
λ as quasi-static. The Kushner-Clark Lemma (Kushner and Clark,
1978) is a classic result that can be invoked to establish asymptotic
convergence of stochastic approximation schemes. The proof of Theorem
5.4 follows by using arguments similar to those employed in the proof
of Theorem 2 in Chapter 2 of Borkar (2008). For the claim that the
two-timescale algorithm in the constrained setting converges to a policy
that satisfies the constraint in (5.2), one invokes the envelope theorem of
mathematical economics (Mas-Colell et al., 1995). The reader is referred
to Borkar (2005) or Bhatnagar (2010) for further details.

The convergence guarantees in Section 5.4 for the template algorithm
with risk as constraint are asymptotic in nature, and we have not
provided any convergence rate results for this algorithm. Deriving
such a rate result is challenging, as there are no rate rate results for
general two-timescale stochastic approximation schemes, barring a few
exceptions that we note next. In Konda and Tsitsiklis (2004), the authors
handle the case of linear recursions, and provide an asymptotic rate
result through a central limit theorem (CLT)-type result. In Mokkadem
and Pelletier (2006), the authors extend this result to handle nonlinear
recursions, and it is not clear if the assumptions for invoking this result
are satisfied by the template algorithm that uses the update iterations
(5.3)–(5.4). More recently, in Dalal et al. (2018) and Dalal et al. (2020),
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the authors derive non-asymptotic bounds for two-timescale stochastic
approximation, albeit with linear recursions.

The non-asymptotic analysis in the ‘risk as objective’ setting is
based on the randomized stochastic gradient algorithm proposed in
Ghadimi and Lan (2013). In particular, the proof of the non-asymptotic
bound in Theorem 5.2 follows by a completely parallel argument to the
proof of Theorem 2.1 in Ghadimi and Lan (2013).

The theoretical guarantees in this section establish convergence
of the risk-sensitive policy gradient algorithms to a stationary point,
a standard notion often employed in the analysis of policy gradient
algorithms. As noted in Section 4.1, one can avoid saddle points/local
maxima (minima for maximization problems) and ensure convergence
to a local minimum (resp. maximum) if the gradient estimator has
sufficient noise in all directions; see Pemantle (1990) and Brandiere and
Duflo (1996) for a precise set of conditions, and a textbook reference for
the topic of avoidance of such undesirable stationary point “traps” is
Section 4.3 of Borkar (2008). A recent result in this direction is Barakat
et al. (2021). If the gradient estimation noise is lacking, extraneous noise
can be added in the policy gradient update, as in (4.6). Such an approach
has been explored in a non-RL context in Ge et al. (2015) and Jin et al.
(2017). Recent work in the policy gradient literature has tried to go
beyond stationary convergence, e.g., using second-order information
and/or incorporating variance reduction, e.g., Papini et al. (2018), Shen
et al. (2019), and Zhang et al. (2020); however, providing guarantees
beyond stationary convergence and characterizing the optima is beyond
the scope of our monograph, as such considerations are not specific to
a risk-sensitive context but apply to any policy gradient algorithm.



6
MDPs with Risk as the Constraint

Recall that the main ingredients in each iteration n of the risk-sensitive
RL algorithm in the constrained setting are as follows:

(i) Simulation of the underlying MDP. For the case of non-pertur-
bation-based approaches, such as the likelihood ratio method,
one simulation with policy θn would suffice. On the other hand,
for SPSA-based approaches, an additional simulation using a
perturbed policy parameter would be necessary (see Section 4.4).

(ii) Estimation of ∇J(θn) and ∇G(θn). These estimates are fed into
the primal descent update for θn.

(iii) Estimation of G(θn) using sample data. This estimate is used for
dual ascent.

(iv) Estimation of J(θn) using sample data. This estimate is used for
primal descent. Note that in the case of SPSA, we would require
estimate of J for the perturbed policy as well, while additional
function estimates are not necessary using the likelihood ratio
method.

628
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In the four special cases that we discuss in detail below, we shall address
the items above in a variety of MDP contexts, under mean-variance,
CVaR, and chance constraints. In particular, Table 6.1 presents the
combinations for the objective J and risk measure G in (1.1).

Table 6.1: Risk-sensitive MDPs considered in this monograph.

MDP type objective J constraint G

Case 1 discounted cost cumulative cost overall variance
(see (2.2)) (see (3.1))

Case 2 average cost average cost per-period variance
(see (2.11)) (see (3.3))

Case 3 SSP total cost CVaR
(see (2.6)) (see (3.4))

Case 4 discounted cost total/discounted chance
or SSP cost (see (3.5) )

Section 4 presented the necessary background material on TD algo-
rithms and two widely used approaches for gradient estimation, which
serve as building blocks for the four special cases in Table 6.1 described in
the rest of this section. The presentation presumes the reader is familiar
with the theory of risk-neutral RL. The references in the bibliographic
remarks provide more details for the interested reader.

6.1 Case 1: Discounted-cost MDP + variance as risk

We consider the following constrained problem: For a given κ > 0 and
initial state x0 of the discounted-cost MDP,

min
θ
J(θ, x0) subject to G(θ, x0) ≤ κ,

where J(θ, x) = E [D(θ, x)] and G(θ, x) = U(θ, x) − J(θ, x)2 are the
expectation and variance of the cumulative cost r.v., respectively, with
D(θ, x) denoting the discounted total cost, which was defined in (2.1).
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Gradient of the Lagrangian
Defining L(θ, λ) ≜ J(θ, x0) + λ

(
G(θ, x0)− κ

)
, the necessary gradients

of the Lagrangian are given by

∇θL(θ, λ) = ∇J(θ, x0) + λ∇G(θ, x0)
= ∇J(θ, x0) + λ (∇U(θ, x0)− 2J(θ, x0)∇J(θ, x0)) ,

∇λL(θ, λ) = G(θ, x0)− κ.

The expressions for ∇J(θ, x0) and ∇U(θ, x0) require a counterpart of
U(·) with initial state-action pair (x, a) under policy θ, defined by

W (θ, x, a) △= E

( ∞∑
n=0

γnk(xn, an)
)2
∣∣∣∣∣∣x0 = x, a0 = a, θ

 .
Similar to U , the function W also satisfies a fixed point equation:

W (θ, x, a) = k(x, a)2 + γ2∑
y

P (y|x, a)U(θ, y)

+ 2γk(x, a)
∑
y

P (y|x, a)J(θ, y).

We now provide expressions for the gradients ∇J(θ, x0) and ∇U(θ, x0).

Lemma 6.1.

∇J(θ, x0) =
∑
x,a

πθγ(x, a|x0)∇ logµθ(a|x)Q(θ, x, a), (6.1)

∇U(θ, x0) =
∑
x,a

π̃θγ(x, a|x0)∇ logµθ(a|x)W (θ, x, a)

+ 2γ
∑
x,a,y

π̃θγ(x, a|x0)P (y|x, a)k(x, a)∇J(θ, y), (6.2)

where Q(θ, x, a) = E
[ ∞∑
n=0

γnk(xn, an)
∣∣∣∣∣ x0 = x, a0 = a, θ

]
,

πθγ(x, a|x0) = (1− γ)
∞∑
n=0

γnP (xn = x|x0; θ)µθ(a|x),

π̃θγ(x, a|x0) = (1− γ2)
∞∑
n=0

γ2nP (xn = x|x0; θ)µθ(a|x).
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Note that Q(θ, ·, ·) is the Q-value function associated with policy µθ,
while πθγ and π̃θγ are the respective γ and γ2-discounted visiting distri-
butions of the state-action pair (x, a) under policy µθ.

Proof. We derive the expression for ∇U(θ, x0), as the proof for the case
of ∇J(θ, x0) is standard. Using U(θ, x) = ∑

a µ
θ(x|a)W (θ, x, a), and

differentiating w.r.t. θ, we have
∇U(θ, x0) =

∑
a

∇µθ(a|x0)W (θ, x0, a) +
∑
a

µθ(a|x0)∇W (θ, x0, a)

=
∑
a

∇µθ(a|x0)W (θ, x0, a) +
∑
a

µθ(a|x0)

×∇
[
k(x0, a)2 + γ2∑

y

P (y|x0, a)U(θ, y)

+ 2γk(x0, a)
∑
y

P (y|x0, a)J(θ, y)
]

=
∑
a

∇µθ(a|x0)W (θ, x0, a) + 2γ
∑
a,y

µθ(a|x0)k(x0, a)P (y|x0, a)∇J(θ, y)︸ ︷︷ ︸
h(θ,x0)

+ γ2∑
a,y

µθ(a|x0)P (y|x0, a)∇U(θ, y)

= h(θ, x0) + γ2∑
x

P (x1 = x|x0; θ)∇U(θ, x)

= h(θ, x0) + γ2∑
x

P (x1 = x|x0; θ)
[
h(θ, x) + γ2∑

x

· · ·
]

Repeated application of the above relationship yields

∇U(θ, x0) =
∞∑
n=0

γ2n∑
x

P(xn = x|x0; θ)h(θ, x)

=
∞∑
n=0

γ2n
[∑
x,a

P (xn = x|x0; θ)µθ(a|x)∇ logµθ(a|x)W (θ, x, a)

+ 2γ
∑
x,a,y

P(xn = x|x0; θ)µθ(a|x)k(x, a)P (y|x, a)∇J(θ, y)
]

= 1
1− γ2

[∑
x,a

π̃γ(x, a|x0)∇ logµθ(a|x)W (θ, x, a)

+2γ∑x,a,y π̃γ(x, a|x0)k(x, a)P (y|x, a)∇J(θ, y)
]
.
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θn

+

δn∆(n)
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J(θn + δn∆(n))

G(θn + δn∆(n))
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for J(θn), G(θn)
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Control

θn+1

Obtain
mn length trajectory
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Figure 6.1: Overall flow of SPSA-based risk-sensitive policy gradient algorithm in
a discounted cost MDP setting.

Estimating ∇J(θ, x0) and ∇U(θ, x0) is challenging due to the following
reasons:

i) Two different sampling distributions are used for ∇J(θ, x0) and
∇U(θ, x0). In particular, the distributions πθγ and π̃θγ involve fac-
tors γ and γ2, respectively.

ii) ∇J(θ, y) appears in the second summation on the RHS of (6.2),
and this makes the estimation task hard in practice, as one needs
an estimate of the gradient of the value function J(θ, y) at every
state y of the MDP, and not just at the initial state x0.

To overcome these issues, we use SPSA to estimate ∇J(θ, x0) and
∇U(θ, x0). As illustrated in Figure 6.1, such an estimation scheme
requires running two trajectories corresponding to policy parameters
θn + δn∆(n) (where δn and ∆(n) are described in Section 4.4) and θn.
The samples from the trajectories would be used to estimate J(θn +
δn∆(n)), J(θn), U(θn+δn∆(n)) and U(θn), which in turn help in forming
the estimates of the gradient of J(θ, x0) and U(θ, x0) as follows: For
i = 1, . . . , ∥X∥,

∇̂iJ(θn, x0) = Ĵ(θn + δn∆(n), x0)− Ĵ(θn, x0)
δn∆i(n) , and

∇̂iU(θn, x0) = Û(θn + δn∆(n), x0)− Û(θn, x0)
δn∆i(n) . (6.3)

In the above, Ĵ(θ, x0) (resp. Û(θ, x0)) denotes an estimate of J(θ, x0)
(resp. U(θ, x0)), for any θ ∈ Θ.
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Policy evaluation using TD

The task of estimating J is straightforward, and the regular TD algo-
rithm described earlier in Section 4.3 can be employed. Notice that
the policy parameter update would use an estimate of ∇θL(θ, λ) to
perform an incremental update. In this case, this gradient features a
factor of the form in the template algorithm (5.4) that is the product
J(θ, x0)∇J(θ, x0), and to ensure independence, we use double sampling
to form estimates Ĵ and ˆ̂J of J(θ, x0). The first estimate would be
employed in (6.3), while the second one would be used in the first term
of the aforementioned product.

Recall that the value function J satisfies a fixed-point equation.
One could possibly combine both J and G, or view the fixed-point
equation for J in (2.5) together with the equation (3.2) over 2|X | vari-
ables. However, relying on the equation (3.2) for policy optimization
is challenging owing to the fact that variance lacks the monotonicity
property. Monotonicity is required in classic policy improvement al-
gorithms, and one cannot derive meaningful convergence guarantees
in the absence of monotone operators. Alternatively, one can derive
a fixed-point equation for the squared value function U , where the
operator underlying this equation is a contraction mapping, and the
variance can then be estimated using U and J , where estimation of the
latter quantities is facilitated through TD-type learning algorithms. The
following proposition presents the fixed-point equation for the squared
value function.

Proposition 6.1. The squared value function U(θ, x) satisfies

U(θ, x) =
∑
a

µθ(a|x)k(x, a)2 + γ2∑
a,y

µθ(a|x)P θ(y|x, a)U(θ, y)

+ 2γ
∑
a,y

µθ(a|x)P θ(y|x, a)k(x, a)J(θ, y). (6.4)



634 MDPs with Risk as the Constraint

Proof.

U(θ, x) = E
[
(D(θ, x))2 | x0 = x

]
= E

(k(x, a0) +
∞∑

m=1
γmk(xm, am)

)2


= E
[
k(x, a0)2]+ E

( ∞∑
m=1

γmk(xm, am)
)2

| x0 = x


+ 2γE

[
k(x, a0)×

( ∞∑
m=0

γmk(xm, am)
)
| x0 = x

]
=
∑

a

µθ(a|x)k(x, a)2 + γ2
∑
a,y

µθ(a|x)P θ(y|x, a)U(θ, y)

+ 2γ
∑
a,y

µθ(a|x)P θ(y|x, a)k(x, a)J(θ, y).

Let kθ be a |X | vector of single-stage costs for each state, and Kθ

be a |X |×|X | matrix with the entries ∑a µ
θ(a|x)k(x, a) for each state x

along the diagonal and zeroes elsewhere. For any (J ,U) ∈ R2|X |, where
J and U denote the first and last |X | entries, respectively, define

T θ(J ,U) =
[
T θ1 (J)

T θ2 (J ,U)

]
, where

T θ1 (J) = kθ + γP θJ , and
T θ2 (J ,U) = Kθkθ + 2γKθP θJ + γ2P θU .

Using the notation above, the fixed-point equations for J in (2.5) and
U in (6.4) can be combined together as

(Jθ,Uθ) = T θ(Jθ,Uθ),

where Jθ = [J(θ, x)]x∈X and Uθ = [U(θ, x)]x∈X .
Let dθ denote the stationary distribution of the Markov chain un-

derlying policy θ. We shall assume that such a distribution exists —
an assumption that is easily satisfied for unichain policies (i.e., the
underlying Markov chain is irreducible and positive recurrent). We now
focus on establishing that the operator T θ is a contraction mapping
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w.r.t. a weighted norm, for any policy θ. The weighted norm, denoted
by ∥·, ·∥ν , is defined as follows: for any (J, U) ∈ R2|X |,

∥J, U∥ν = ν∥J∥dθ + (1− ν)∥U∥dθ ,

where ∥x∥dθ =
√∑|X |

i=1 d
θ(i)x2

i for any x ∈ R|X |.

Proposition 6.2. There exists a ν ∈ (0, 1) and γ̄ < 1 such that∥∥∥T θ(J, U)− T θ(J̄, Ū)
∥∥∥
ν
≤ γ̄

∥∥∥(J, U)− (J̄, Ū)
∥∥∥
ν
,∀J, J̄, U, Ū ∈ R|X |.

Proof. First, we show that T θ1 is a contraction mapping. This can be
inferred as follows: For any y, ȳ ∈ R2|X |,

||P θJ ||2dθ =
|X |∑
i=1

dθ(i)(
|X |∑
j=1

P θ(j|i)J(j))2 ≤
|X |∑
i=1

dθ(i)
|X |∑
j=1

(P θ(j|i)J(j)2)

=
|X |∑
j=1

(
|X |∑
i=1

dθ(i)P θ(j|i))(J(j))2 =
|X |∑
j=1

dθ(j)(J(j))2 = ||J ||2dθ .

Using ||P θJ ||dθ ≤ ||J ||dθ , we have

∥T θ1 (J)− T θ1 (J̄)∥dθ = γ∥P θJ − P θJ̄∥dθ ≤ γ∥J − J̄∥dθ .

Now, for any J, J̄, U, Ū ∈ R|X |, we have

∥T θ2 (J, U)− T θ2 (J̄, Ū)∥dθ

=∥2γKθP θJ − 2γKθP θJ̄ + γ2P θU − γ2P θŪ∥dθ

≤2γ∥KθP θJ −KθP θJ̄∥dθ + γ2∥U − Ū∥dθ

≤γC1∥J − J̄∥dθ + γ2∥U − Ū∥dθ ,

for some C1 <∞. The first inequality above follows by using ||P θJ ||dθ ≤
||J ||dθ , while the second inequality follows by using the equivalence of
norms.

Now, setting ν = γC1
ϵ+ γC1

, with ϵ satisfying γ + ϵ < 1, we have

∥T θ(J, U)− T θ(J̄, Ū)∥ν
=ν∥T θ1 J − T θ1 J̄∥dθ + (1− ν)∥T θ2U − T θ2 Ū∥dθ
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≤νγ∥J − J̄∥dθ + (1− ν)γC1∥J − J̄∥dθ + (1− ν)γ2∥U − Ū∥dθ

≤ν(γ + ϵ)∥J − J̄∥dθ + (1− ν)γ∥U − Ū∥dθ

≤(γ + ϵ)∥(J, U)− (J̄, Ū)∥ν .

The claim follows by setting γ̄ = γ + ϵ.

We now have what we need to estimate the squared value function
U using a TD-type algorithm, as U satisfies the fixed-point equation
(6.4), and the T θ operator underlying this equation is well behaved, in
the sense that Proposition 6.2 establishes that it leads to a contraction
mapping that is amenable for stochastic approximation, so the results
of Sections 4.2 and 4.3 are applicable. On the other hand, note that
estimating variance directly would not help, because the corresponding
underlying operator is not monotone.

From the foregoing, we have the following TD-type update for
estimating U :

Un+1(x) = Un(x) + ζ(ν(x, n))I {xn = x}
(
k(xn, an)2

+2γk(xn, an)Jn(xn+1)+γ2Un(xn+1)−Un(xn)
)
, (6.7)

where ν(x, n) =
n∑

m=0
I {xm = x} and xn+1 is a r.v. sampled from P (· |

xn, an). Notice that the factor J goes into the fixed-point equation for
U , and hence, the TD algorithm for U has to employ the TD-based
estimate of J for estimating U .

Algorithm 1 presents the pseudocode for the risk-sensitive policy-
gradient algorithm for the discounted-cost setting. In a nutshell, this
algorithm uses multi-timescale stochastic approximation to perform
the following tasks: (i) run the TD algorithm on the fastest timescale
to estimate both J and U ; (ii) use an SPSA-based gradient descent
scheme on the intermediate timescale for solving the primal problem
in (1.1); and (iii) perform dual ascent on the Lagrange multiplier using
the sample variance constraint (using the estimate of U) on the slowest
timescale. The latter two-timescale updates follow the template provided
in Section 5.
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Algorithm 1: Policy gradient algorithm under variance as a
risk measure in a discounted-cost MDP setting

Input : initial parameter θ0 ∈ Θ, perturbation constants {δn}, trajectory
lengths {mn}, step sizes {ζ1(n)}, {ζ2(n)}, projection operators Γ
and Γλ, # iterations M .

1 for n← 0 to M − 1 do
2 Set ∆(n) using symmetric ±1-valued Bernoulli distribution;
3 for m← 0 to mn − 1 do
4 /* Unperturbed policy simulation */
5 Use the policy µθn to draw action am ∼ µθn (· | xm);
6 Observe next state xm+1 and cost k(xm, am);
7 Use (4.12) and (6.7) to form estimates Ĵ(θn, x0) and Ĝ(θn, x0) of

J(θn) and G(θn), respectively;
8 Use another independent sample trajectory to form the estimate

ˆ̂J(θn, x0) of J(θn);
9 /* Perturbed policy simulation */

10 Use the policy µθn+δn∆(n) to generate the state x+
m, draw action

a+
m ∼ µθn+δn∆(n) (· | x+

m

)
;

11 Observe next state x+
m+1 and cost k(x+

m, a+
m);

12 Use (4.12) and (6.7) to form estimates Ĵ(θn + δn∆(n), x0) and
Ĝ(θn + δn∆(n), x0) of J(θn + δn∆(n)) and G(θn + δn∆(n)),
respectively;

13 end
14 Gradient estimate for the objective:

∇̂iJ(θn, x0) = Ĵ(θn + δn∆(n), x0)− Ĵ(θn, x0)
δn∆i(n) ;

15 Gradient estimate for the constraint:

∇̂iU(θn, x0) = Û(θn + δn∆(n), x0)− Û(θn, x0)
δn∆i(n) ;

16 /* Policy update: Gradient descent using SPSA */

17 θn+1 = Γ
[

θn − ζ2(n)
(
∇̂J(θn, x0) +

λn

(
∇̂U(θn, x0)− 2 ˆ̂J(θn, x0)∇̂J(θn, x0)

))]
;

18 /* Lagrange multiplier update: Dual ascent */

19 λn+1 = Γλ

[
λn + ζ1(n)

(
Û(θn, x0)− 2 ˆ̂J(θn, x0)− κ

) ]
;

20 end
Output : Policy θM
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θ
Measurement

Oracle f(θ) + ξ

Zero mean

(a) Simulation optimization setting

θ, ϵ TD-based Estimator f(θ) + ϵ

Controlled bias

(b) Typical RL setting

Figure 6.2: Illustration of the difference between classic simulation optimization
and optimization of the variance risk measure in an RL setting. In the latter setting,
the error ϵ in function estimates can be controlled and made very low at the cost of
additional simulations.

On the batch size mn

To understand the challenge in choosing an appropriate batch size
mn for policy evaluation in Step 2 of Algorithm 1, so that the overall
algorithm converges, consider a simpler setting of optimizing a smooth
function f , i.e.,

find θ∗ = arg min
θ∈Θ

f(θ), (6.8)

where Θ is a convex and compact subset of Rd. In a classic stochastic
optimization setting, one has an oracle that supplies noisy function
measurements, but the noise is usually zero mean. On the other hand,
in a typical RL setting, the function f that has to be estimated from
sample trajectories is the value J(θ) associated with a given policy
θ, as illustrated in Figure 6.2. For the sake of simplicity, we drop the
dependence on the parameter θ, and instead, study the value estimation
problem. Subsequently, when we analyze the policy gradient scheme in
Algorithm 1 for CPT-value optimization, we shall make the dependence
on the policy parameter explicit.

For a given policy with a fixed start state x0, let m denote the
length of the sample trajectory used to form an estimate Jm, using
(4.12), of the value J(x0). One can derive a bound on the estimation
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error |Jm − J(x0)|, and such a bound would aid the proof of asymptotic
convergence of the risk-sensitive policy gradient in Algorithm 1. An
informal statement of such a finite-time bound for TD is as follows:
Using a step size ζ(n) = c/n with a suitable choice for the constant c,

E
∥∥∥Ĵm − J(x0)

∥∥∥ = O

( 1√
m

)
. (6.9)

We avoid a detailed discussion of the derivation of such a bound, as
it is quite technical, and deviates from the focus of optimizing risk in
an RL setting. However, in passing, we note that the step size c in the
bound above would require information about the underlying transition
dynamics, and such a problematic dependence can be avoided by using
Polyak-Ruppert iterate averaging, where one employs a bigger step size
c/nα, with α ∈ (1/2, 1) together with averaging of the iterates. Such an
approach would result in a bound of the order O

(
1

mα/2

)
.

In the following discussion, we shall use f to denote the smooth
objective function that we want to minimize. From the foregoing, it is
apparent that we have a setting where f is not perfectly observable,
and instead, one can obtain biased measurements of f at any input
parameter θ. Choosing larger values of the batch size m leads to an
increase in the accuracy of the function measurement. In particular,
from (6.9), the estimation bias is of order O( 1√

m
). Figure 6.2 illustrates

this difference in estimation between a classic optimization setting,
and a typical RL setting, where the policy evaluation is performed for
estimation of the value of a given policy.

A stochastic gradient-descent scheme to solve the problem defined
in (6.8) would update as follows:

θn+1 = Γ
(
θn − γn∇̂f(θn)

)
, (6.10)

where {γn} is a step-size sequence that satisfies standard stochastic
approximation conditions, Γ = (Γ1, . . . ,Γd) is an operator that ensures
that the update (6.10) stays bounded within the compact and convex
set Θ, and ∇̂f(θn) is an estimate of the gradient of f at θn.

Suppose that the gradient estimate ∇̂f(θn) in (6.10) is formed using
SPSA, as described in Section 4.4, i.e.,

∇̂if(θn) = f̂(θn + δn∆(n))− f̂(θn)
δn∆i(n) ,
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where f̂(θ) denotes the estimate of f(θ), when the underlying parameter
is θ. Suppose that the estimation scheme returns f̂(θn) = f(θn) + φθn,
where φθn denotes the error in estimating the objective f using mn

function measurements. For the sake of this discussion, suppose that the
estimation error vanishes at the rate 1

m
1/2
n

. We first rewrite the update
rule in (6.10) as follows:

θin+1 = Γi
(
θin − γn

(f(θn + δn∆(n))− f(θn)
δn∆i(n) + κn

))
,

where κn = (φθn+δn∆(n)
n −φθn

n )
δn∆i(n) . Let ζn = ∑n

l=0 γlκl. Then, a critical re-
quirement that allows us to ignore the estimation error term ζn is the
following condition:

sup
l≥0

(ζn+l − ζn)→ 0 as n→∞. (6.11)

Notice that the estimation error in ζn is a function of number of samples
mn used for estimating the objective value, and it is obviously necessary
to increase the number of samples mn so that the bias vanishes asymp-
totically. In addition to the usual conditions on the step-size sequence
and perturbation constant δn, one possible choice for mn that ensures
that the bias in the gradient estimate vanishes and the overall algorithm
converges is the following: 1√

mnδn
→ 0.

Remark 6.1. A similar observation holds even for the case where the
function f is the squared value function J . In this case, the estimation
scheme is TD-learning, and order 1√

m
bound on the root mean-squared

error of TD-learning can be derived. In this case, the condition on
mn for ensuring convergence of the overall stochastic gradient scheme
would be 1

m
1/2
n δn

→ 0. Finally, similar considerations on the trajectory
lengths hold for the purpose of CVaR estimation, as well as estimation
of CPT-value. In both cases, the estimation procedure (see Algorithms
1 and 3) is asymptotically unbiased, but one does not have the luxury of
having a very long run of the policy evaluation procedure, considering
that the outer loop of incremental policy update needs to perform policy
evaluation often.

Remark 6.2. (Extension to incorporate function approximation) One
could parameterize both J and U using linear function approximation
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and then employ TD-type schemes for policy evaluation. Notice that
both J(·) and U(·) need to be evaluated for the perturbed policies. Let
J(x) ≈ vTϕv(x) and U(x) ≈ uTϕu(x) be the linear approximations to J
and U , respectively, with features ϕv(·) and ϕu(·) from low-dimensional
spaces. It can be shown that an appropriate operator can be defined for
U using the above equation and an operator that projects orthogonally
onto the linear space {Φuu | u ∈ Rd}. Such a projected Bellman operator
turns out to be a contraction mapping, and hence, a TD-type scheme
can be arrived at, along the lines of that for the regular cost J .

6.2 Case 2: Average-cost MDP + variance as risk

We consider the following constrained optimization problem for average
cost MDPs:

min
θ
J(θ) subject to G(θ) ≤ κ,

where J(θ) is the long-run average cost and G(θ) is the variance, as
defined in Sections 2.3 and 3.3.

Gradient of the Lagrangian

Letting L(θ, λ) ≜ J(θ) + λ
(
G(θ) − κ

)
, and noting that ∇G(θ) =

∇η(θ)− 2J(θ)∇J(θ), it is apparent that ∇J(θ) and ∇η(θ) are enough
to calculate the necessary gradients of the Lagrangian. Let U θ and W θ

denote the differential value and action-value functions associated with
the squared cost under policy µθ, respectively. These two quantities
satisfy the following Poisson equations:

η(θ) + U(θ, x) =
∑
a

µθ(a|x)
[
k(x, a)2 +

∑
y

P (y|x, a)U(θ, y)
]
,

η(θ) +W (θ, x, a) = k(x, a)2 +
∑
y

P (y|x, a)U(θ, y).

As mentioned earlier, we consider finite state-action space MDPs, which
together with an irreducibility assumption implies the existence of a
stationary distribution for the Markov chain underlying any policy θ.
Denote by dθ(x) and πθ(x, a) = dθ(x)µθ(a|x), the stationary distribution
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of state x and state-action pair (x, a) under policy µθ, respectively. We
now present the gradients of J(θ) and η(θ) below.

∇J(θ) =
∑
x,a

πθ(x, a)∇ logµθ(a|x)Q(θ, x, a), (6.12)

∇η(θ) =
∑
x,a

πθ(x, a)∇ logµθ(a|x)W (θ, x, a), (6.13)

where Q(θ, x, a) = ∑∞
n=0 E

[
k(xn, an) − J(θ) | x0 = x, a0 = a, µ

]
, with

actions an ∼ µθ (· | xn).
The above relationships follow from parameterizing the policies, and

hence, the gradient of the transition probabilities can be estimated
from the policy alone. This is the well-known policy gradient technique
that makes it amenable for estimating the gradient of a performance
measure in MDPs, since the values of the transition probabilities are
not required and one can work with policies and simulated transitions
from the MDP.

An important observation concerning ∇J(θ) is that any function
b : X → R can be added or subtracted to Q(θ, x, a) on the RHS of
(6.12), and the resulting summation stays as ∇J(θ). In a risk-neutral
setting, a popular choice is to replace Q(θ, x, a) with the advantage
function A(θ, x, a) = Q(θ, x, a)− V (θ, x).

Policy evaluation using TD

In a typical RL setting, ∇J(θ) has to be estimated, and from the
discussion before, this implies estimation of the advantage function
using samples – TD-learning is a straightforward choice for this task.
Using the expression on the RHS of (6.12), one can arrive at a decrement
factor for the policy update as follows: substitute a TD-based empirical
approximation to the advantage function, calculate the likelihood ratio
∇ logµ(·), and perform a gradient descent using the product of the
advantage estimate with the likelihood ratio, and arrive at an empirical
approximation to the RHS of (6.12) with the advantage function A

instead of Q there. The TD algorithm-based estimate for the value
function is given below.
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δn = k(xn, an)− Jn+1 + Vn(xn+1)− Vn(xn),
Vn+1 = Vn + ζ3(n)δn,

The idea described above, i.e., to use the advantage function in place
of Q, can be used for the case of ∇η(θ) as well, with the advantage
function variant B(θ, x, a) = W (θ, x, a)− U(x; θ) on the RHS of (6.13).
The TD algorithm-based estimate for the squared value function is
given below.

ϵn = k(xn, an)2 − ηn+1 + Un(xn+1)− Un(xn),
Un+1 = Un + ζ3(n)ϵn.

The pseudocode of the overall algorithm in the average reward
setting is given in Algorithm 2. As in the discounted case discussed in
the previous section, an extra sample trajectory is needed to form an
independent estimate Ĵn, so that the product Ĵnδnψn that we have in
the policy parameter update can be separated after taking expectations
to obtain J(θn)∇J(θn) in the convergence analysis.

In addition to the step-size requirements in (A4), we require that
ζ2(n) = o

(
ζ3(n)

)
and ζ4(n) is a constant multiple of ζ3(n). Such choices

ensure that the TD-critic and average cost updates are on the fastest
timescale, the policy update is on an intermediate timescale, and the
Lagrange multiplier update is on the slowest timescale.

Remark 6.3. The variance notion employed in this section involved
measuring the deviations of the single-stage cost from its average. As we
demonstrated in Algorithm 2, the per-period variance as a risk measure
lends itself to policy gradient techniques well, since the likelihood ratio
method can be employed to solve the risk-constrained problem. In
contrast, the variance notion in the discounted cost setting involved the
variance of the cumulative discounted cost, i.e., the (overall) variance
of the underlying r.v. and not the per-period one. Such a measure
is hard to optimize (see discussion below (6.2)), though SPSA could
be employed. The flip side to the latter approach is that we do not
exploit the structure of the underlying problem in forming the gradient
estimates, e.g., using the likelihood ratio method. More importantly,
SPSA requires simulation of two independent trajectories (corresponding
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Algorithm 2: Policy gradient algorithm under variance as a
risk measure in an average cost MDP setting

Input : initial parameter θ0 ∈ Θ, where Θ is a compact and
convex subset of Rd, step sizes {ζ1(n)}, {ζ2(n)},
{ζ3(n)}, {ζ4(n)}, projection operators Γ and Γλ,
# iterations M ≫ 1.

1 for n← 0 to M − 1 do
2 Draw action am ∼ µθn(·|xm), observe next state xm+1 and

cost k(xm, am);
3 /* Estimate for average cost */
4 Jn+1 =

(
1− ζ4(n)

)
Jn + ζ4(n)k(xn, an);

5 /* Another estimate for average cost */
6 Draw action âm ∼ µθn(·|x̂m), observe next state x̂m+1 and

cost k(x̂m, âm);
7 Ĵn+1 =

(
1− ζ4(n)

)
Ĵn + ζ4(n)k(x̂n, ân);

8 /* Estimate for average squared cost */
9 ηn+1 =

(
1− ζ4(n)

)
ηn + ζ4(n)k(xn, an)2 ;

10 /* TD estimate for the value function */
11 δn = k(xn, an)− Jn+1 + Vn(xn+1)− Vn(xn) ;
12 Vn+1 = Vn + ζ3(n)δn;
13 /* TD estimate for the squared value function */
14 ϵn = k(xn, an)2 − ηn+1 + Un(xn+1)− Un(xn);
15 Un+1 = Un + ζ3(n)ϵn;
16 Set ψn = ∇ logµθn(an|xn); // Likelihood ratio
17 /* Policy update */

18 θn+1 = Γ
(
θn − ζ2(n)

(
− δnψn + λn(ϵnψn − 2Ĵn+1δnψn)

))
;

19 /* Lagrange multiplier update */

20 λn+1 = Γλ
(
λn + ζ1(n)(ηn+1 − J2

n+1 − κ)
)

;
21 end

Output : Policy θM
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to unperturbed and perturbed policy parameters), and this may not be
feasible in many practical applications.

One could consider swapping the risk measures of discounted and
average cost settings, i.e., employ per-period variance in a discounted
cost MDP, and overall variance in the average cost MDP. Leaving the
question of which is the best risk measure for a given MDP aside, we
believe that such a swap of risk measures would make solving the average
cost problem difficult, and discounted cost problem easy in comparison.

Remark 6.4. As in the discounted setting, incorporating function ap-
proximation for the functions J and U is straightforward, and we omit
the details.

6.3 Case 3: Stochastic shortest path + CVaR as risk
We again consider the following constrained optimization problem: For
a given κ > 0 and initial state x0 of the SSP MDP,

min
θ
J(θ, x0) subject to G(θ, x0) ≤ κ,

where J(θ, x0) and G(θ, x0) are the expectation and CVaRβ, β ∈ (0, 1),
of the total cost r.v. D(θ, x0), respectively (see Sections 2.2 and 3.4).

Gradient of the Lagrangian
With the Lagrangian L(θ, λ) ≜ J(θ, x0) +λ

(
G(θ, x0)−κ

)
, the necessary

gradients for solving the constrained problem above are ∇J(θ, x0) and
∇CVaRβ(D(θ, x0)). Using the likelihood ratio method, the first gradient
is obtained as follows:

∇J(θ, x0)=E
[[

τ−1∑
n=0

k(xn, an)
]
τ−1∑
m=0
∇ logµθ(am |xm )

∣∣∣∣∣x0

]
.

To estimate the gradient of the CVaR of D(θ, x0) for a given policy
parameter θ, we use the following variation of the policy gradient
theorem for CVaR:
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∇CVaRβ(D(θ, x0)) = E [[D(θ, x0)−VaRβ(D(θ, x0))]

×
τ−1∑
m=0
∇ logµθ(am |xm )

∣∣∣∣∣D(θ, x0) ≥ VaRβ(D(θ, x0))
]
.

We shall provide a derivation of the expression above in the next section.
In particular, we shall specialize the gradient expression for an abstract
coherent risk measure to handle the case of CVaR, and the reader is
referred to Section 7.3 for the details.

VaR and CVaR estimation

What remains to be specified is the technique employed for estimating
VaR and CVaR for a given policy θ. Notice that CVaR estimation is
required for dual ascent, since ∇λL(θ, λ) = CVaRβ(D(θ, x0))− κ. VaR
is required for estimating CVaR and the CVaR gradient. A well-known
result is that both VaR and CVaR can be obtained from the solution of
a certain convex optimization problem. More precisely, for any r.v. X,
let

v(ξ,X) := ξ + 1
1− β (X − ξ)+ and V (ξ) = E [v(ξ,X)] .

Then, VaRβ(X) is the minimizer of V , i.e., a point ξ∗
β that satisfies

V ′(ξ∗
β) = 0 and CVaRβ(X) = V (ξ∗

β).
Since v(ξ, ·) is continuous w.r.t. ξ, V ′(ξ) = E

(
1− 1

1−β I {X ≥ ξ}
)
.

The minimizer ξ∗ would be a VaR, and V (ξ∗) would be the CVaR of the
r.v. X. Observing that V is convex, a stochastic approximation-based
procedure can be derived for estimating VaR and CVaR. In an SSP
context, the r.v. is D(θ, x0). Suppose that we can obtain i.i.d. samples
from the distribution of D(θ, x0), i.e., we can simulate the underlying
SSP using the policy θ. Let Dk, k = 1, . . . denote these samples. Then,
VaR and CVaR can be estimated as follows:

VaR: ξm = ξm−1 − ζ3(m)
(

1− 1
1− β I {Dm ≥ ξm}

)
, (6.14)

CVaR: Cm = Cm−1 −
1
m

(Cm−1 − v(ξm−1, Cm−1)) . (6.15)

In the above, (6.14) can be seen as a gradient descent rule, while (6.15)
can be seen as a plain averaging update. The step-size sequence {ζ3(m)}



6.4. Case 4: Stochastic shortest path + chance constraint as risk 647

is required to satisfy standard stochastic approximation conditions,
i.e., ∑

m
ζ3(m) =∞, and ∑

m
ζ3(m)2 <∞.

The complete algorithm, along with the update rules for various
parameters, is presented in Algorithm 3.

6.4 Case 4: Stochastic shortest path + chance constraint as risk

The last case studied in this section employs a chance constraint in the
optimization problem (1.1), i.e.,

min J(θ, x0) subject to G(θ, x0) ≤ κ,
where J(θ, x0) is the expectation the total cost r.v. D(θ, x0), while
G(θ, x0) = P (D(θ, x0) ≥ β) is the probability that feeds into the chance
constraint (see Sections 2.2 and 3.5).

From the discussion in the previous sections, it is apparent that the
main technical challenges in handling any risk measure are as follows: (i)
estimation of the risk measure from samples; and (ii) gradient estimation
for the policy update iteration. For the sake of brevity, we provide the
necessary details for handling (i) and (ii), and the rest of the pieces of
the resulting actor-critic scheme follows in a manner similar to that for
variance or CVaR.

To handle (i), suppose that we are given n i.i.d. samples, say
{X1, . . . , Xn}, from the distribution of X, and the goal is to estimate
the probability involved in the chance constraint, i.e., P (X ≥ β). The
sample average estimator for the latter probability is given by

Cn = 1
n

n∑
i=1

I {Xi ≥ β} .

For handling point (ii) concerning the policy gradient for the chance
probability, we use the following likelihood ratio gradient expression for
the chance probability:

∇G(D(θ, x0)) = E
[
τ−1∑
m=0
∇ logµθ(am |xm )I {D(θ, x0) ≥ β}

]
.

The complete algorithm with chance constraint as the risk measure and
the usual value function as the objective is presented in Algorithm 4.



648 MDPs with Risk as the Constraint

Algorithm 3: Policy gradient algorithm under CVaR as a risk
measure in an SSP setting

Input : initial parameter θ0 ∈ Θ, where Θ is a compact and
convex subset of Rd, β ∈ (0, 1), trajectory lengths
{mn}, step sizes {ζ1(n)}, {ζ2(n)}, {ζ3(n)}, projection
operators Γ and Γλ, # iterations M ≫ 1.

1 for n← 0 to M − 1 do
2 for m← 0 to mn − 1 do
3 Simulate the SSP for an episode to generate the state

sequence {xn,j} using actions {an,j ∼ µθn (· | xn,j)}. Let
τm denote the time instant when state 0 was visited in
this episode;

4 Observe total cost Dn,m =
τm−1∑
j=0

k(xn,j , an,j);

5 Calculate likelihood ratio:

ψn,m =
τm−1∑
j=0
∇ logµθn(an,j |xn,j);

6 end
7 /* Policy evaluation */
8 Use the scheme in (6.14)–(6.15) to obtain the VaR estimate

ξn and CVaRβ-estimate Cn;

9 Total cost estimate: D̄n = 1
mn

mn∑
j=1

Dn,j ;

10 Likelihood ratio: ψ̄n = 1
mn

mn∑
j=1

ψn,j ;

11 /* Gradient of the objective */
12 ∇̂J(θn) = D̄nψ̄n;
13 /* Gradient of the risk measure */
14 ∇̂CVaRβ (θn) = (Cn − ξn)ψ̄nI {Cn ≥ ξn};
15 /* Policy and Lagrange Multiplier Update */

16 θn+1 = Γ
(
θn − ζ2(n)

(
∇̂J(θn) + λn∇̂CVaRβ (θn)

))
;

17 λn+1 = Γλ
(
λn + ζ1(n)(Cn − κ)

)
;

18 end
Output : Policy θM
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Algorithm 4: Policy gradient algorithm under the chance
constraint in an SSP setting

Input : initial parameter θ0 ∈ Θ, where Θ is a compact and
convex subset of Rd, β ∈ (0, 1), trajectory lengths
{mn}, step sizes {ζ1(n)}, {ζ2(n)}, {ζ3(n)}, projection
operators Γ and Γλ, # iterations M ≫ 1.

1 for n← 0 to M − 1 do
2 for m← 0 to mn − 1 do
3 Simulate the SSP for an episode to generate the state

sequence {xn,j} using actions {an,j ∼ µθn (· | xn,j)}. Let
τm denote the time instant when state 0 was visited in
this episode;

4 Observe total cost Dn,m =
τm−1∑
j=0

k(xn,j , an,j);

5 Observe sample chance constraint Cn,m = I {Dn,m ≥ β};
6 Calculate likelihood ratio:

ψn,m =
τm−1∑
j=0
∇ logµθn(an,j |xn,j);

7 end
8 /* Policy evaluation */

9 Total cost estimate: D̄n = 1
mn

mn∑
j=1

Dn,j ;

10 Likelihood ratio: ψ̄n = 1
mn

mn∑
j=1

ψn,j ;

11 Chance constraint estimate: C̄n = 1
mn

mn∑
j=1

Cn,j ;

12 /* Gradient of the objective */
13 ∇̂J(θn) = D̄nψ̄n;
14 /* Gradient of the risk measure */
15 ∇̂G (θn) = C̄nψ̄n;
16 /* Policy and Lagrange Multiplier Update */

17 θn+1 = Γ
(
θn − ζ2(n)

(
∇̂J(θn) + λn∇̂G (θn)

))
;

18 λn+1 = Γλ
(
λn + ζ1(n)(Cn − κ)

)
;

19 end
Output : Policy θM
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6.5 Bibliographic remarks

The presentation of the risk-sensitive RL algorithm with variance as
the underlying risk measure in discounted and average cost MDPs is
based on Prashanth and Ghavamzadeh (2016), while the descriptions
for the cases of CVaR and chance constraints are based on Prashanth
(2014) and Chow et al. (2017), respectively. In the following, we provide
additional bibliographic remarks for each case studied.

6.1 For a justification of the requirement in (6.11), see Borkar (2008,
Lemma 1 in Chapter 2). In Prashanth and Ghavamzadeh (2016),
the authors parameterize both J and U using linear function
approximation, and show that the underlying projected Bellman
operators are contractive; see Prashanth and Ghavamzadeh (2016,
Lemma 2) for a proof. The fact that linear parameterization for
J leads to a contraction mapping is well known, and a similar
approach was shown to work for the squared cost U in Tamar
et al. (2013) for an SSP setting. In Prashanth and Ghavamzadeh
(2016), the authors extended this idea to include discounted prob-
lems. Notice that linear parameterization for J and U implies
the underlying variance is also parameterized; however, a direct
parameterization of variance is not feasible, as the underlying
operator is not monotone, see Sobel (1982). For the finer details of
the linear function approximation case in the discounted setting,
see Prashanth and Ghavamzadeh (2016).

6.2 The expression in (6.12) for the gradient of the average cost was de-
rived independently in Marbach and Tsitsiklis (2001) and Sutton
et al. (1999). This expression leads naturally to policy gradient al-
gorithms, cf. Bartlett and Baxter (2011). There is a corresponding
discounted variant of this expression in Sutton et al. (1999), and
the policy gradient technique in Bartlett and Baxter (2011). As
in the discounted setting, incorporating function approximation
for the functions J and U is straightforward, and we refer the
reader to Prashanth and Ghavamzadeh (2016) for the case where
a linear function approximation architecture is used.
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6.3 Rockafellar and Uryasev (2000) first showed that both VaR and
CVaR can be obtained from the solution of a certain convex
optimization problem, so that a stochastic approximation-based
procedure can be derived for estimating VaR and CVaR, as in Bar-
dou et al. (2009), in turn leading to a specialization for MDPs in
Prashanth (2014). For such a scheme, a non-asymptotic analysis is
not available. However, stochastic gradient schemes have received
a lot of attention from a non-asymptotic analysis viewpoint, see
(Bottou et al., 2018) for a survey. Since VaR estimation through
(6.14) falls under the realm of stochastic gradient schemes, one
could use the bounds in the aforementioned reference. As an alter-
native, one could consider a direct sample average approximation
(SAA) of CVaR, see (Serfling, 2009). Concentration bounds for
such an SAA-approximation of CVaR has received a lot of at-
tention in past decade or so, cf. (Brown, 2007; Wang and Gao,
2010; Kolla et al., 2019; Bhat and Prashanth, 2019; Thomas and
Learned-Miller, 2019; Prashanth et al., 2020). Such results would
be useful for the analysis of Algorithm 3, considering that one
needs to decide on the number of episodes mn in each policy
gradient iteration; see the discussion in Section 7.2.3.
The likelihood ratio-based gradient estimate for CVaR was derived
by Tamar et al. (2014b) for the case of continuous distributions.
An expression for the gradient of an abstract coherent risk measure,
for both discrete and continuous distributions and also specialized
to handle the case of CVaR, is derived in Tamar et al. (2015a).
We shall present this expression as well as the specialization in
Section 7.3.



7
MDPs with Risk as the Objective

In this section, we discuss policy gradient algorithms for solving risk-
sensitive MDPs where the risk measure is explicitly the objective, i.e.,
the following optimization problem:

min
θ∈Θ

G(θ),

where G is one of the risk measures presented in Section 3 that consider
the entire distribution. Specifically, we consider exponential cost, CPT,
and coherent risk measures in Sections 7.1, 7.2, and 7.3, respectively.
This complements the incorporation of risk measures such as variance
or CVaR that are based on the tail of the underlying distribution, which
were considered in the constrained optimization formulations in the
previous section.

Following the template in Section 5, the main ingredients in each
iteration n of a policy gradient algorithm for optimizing a risk objective
are as follows:

(i) Simulation of the underlying MDP to obtain one or more sample
trajectories.

(ii) Estimation of ∇G(θn) from the sample data.

652
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(iii) Incremental update of the policy parameter in the descent direc-
tion using the gradient estimate from the step above, i.e.,

θn+1 = Γ
[
θn − ζ(n)∇̂G(θn)

]
,

where ζ(n) is the step size and Γ is a projection operator that
keeps the iterate bounded.

7.1 Case 1: Average-cost MDP + Exponential cost as risk

In many cases studied earlier, the recipe for a risk-sensitive policy
gradient algorithm is to first derive an expression for the gradient of
the risk measure, and then use this expression to form an estimator
using sample trajectories of the underlying MDP.

Recall from Section 3.1, under A2.3, the exponential cost associated
with a policy µθ is given by

G(θ) = lim
T→∞

1
T

1
β

logE
[
exp

(
β
T−1∑
n=0

k(xn, an)
)]

, (7.1)

where β is the risk-sensitivity parameter.
For the analysis, we also require aperiodicity in addition to irre-

ducibility and positive recurrence, which we specify in the following
variant of A2.3.

A7.1. For each policy µθ, the underlying Markov chain is irreducible,
positive recurrent, and aperiodic.

Define the |X | × |X | matrix Aθ as

Aθ ≜
1
β

[∑
a

µθ(a|x) exp (βk(x, a))P (y|x, a)
]
x,y∈X

. (7.2)

Since the Markov chain underlying µθ is assumed to be irreducible,
and each entry of Aθ is non-negative, we can apply Perron-Frobenius
theorem to infer that there exists a unique eigenvalue-eigenvector pair
(λθ, V (θ)) satisfying

λθ > 0, V (θ, i) > 0,∀i and |λ′| ≤ λθ for any other eigenvalue λ′ of Aθ.
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Proposition 7.1. Assume A7.1 and that the state-action spaces of
the underlying MDP are both finite. Then, for any policy µθ,

G(θ) = log λθ,

where G(θ) is the exponential cost associated with the policy µθ
given by (7.1) and λθ is the Perron-Frobenius eigenvalue of the
matrix Aθ defined by (7.2).

Proof. Since (λθ, V (θ)) is an eigenvalue-eigenvector pair associated with
the matrix Aθ, we have AθV (θ) = λθV (θ), or equivalently,

λθV (θ, x) = 1
β

∑
y

∑
a

µθ(a|x) exp (βk(x, a))P (y|x, a)V (θ, y).

Let

P̃θ(y|x) =
∑
a µ

θ(a|x) exp (βk(x, a))P (y|x, a)V (θ, y)
βλθV (θ, x) , ∀x, y ∈ X .

(7.3)

Notice that P̃θ(y|x) ≥ 0 and ∑y P̃θ(y|x) = 1, implying P̃θ(y|x) is a valid
transition probability function.

Let {x̃n} be a Markov chain governed by the transition probability
function P̃θ. Then, under A7.1, this Markov chain is irreducible, posi-
tive recurrent and aperiodic, which in turn implies the existence of a
stationary distribution, say ψ̃. Thus, by ergodicity,

E [h(x̃n)]→
∑
x

ψ̃(x)h(x) a.s. as n→∞.

Notice that

1
T

1
β

logE
[
exp

(
β
T−1∑
n=0

k(xn, an)
)∣∣∣∣∣x0

]

= 1
T

1
β

log

 ∑
x1,...,xT ,
a0,...,aT −1

T−1∏
n=0

exp (βk(xn, an))µθ(xn, an)P (xn+1|xn, an)


= 1
βT
×
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log

 ∑
x1,...,xT ,
a0,...,aT −1

T−1∏
n=0

exp (βk(xn, an))µθ(an|xn)V (θ, xn+1)P (xn+1|xn, an)
λθV (θ, xn)

×λθV (θ, x0)
V (θ, xT )

]
= log λθ + 1

T

1
β

(log V (θ, x0)− logE [V (θ, x̃T )])→ log λθ as T →∞.

The claim follows.

Since the state and action spaces are assumed to be finite, we have
λ∗ = minµθ λθ, where the minimum is taken over all randomized policies.
Let V ∗ denote the corresponding eigenvector. Then it can be shown
that

λ∗V ∗(x) = min
µ

(
1
β

∑
a

µ(a|x) exp(βk(x, a))
∑
y

P (y|x, a)V ∗(y)
)
. (7.4)

As in the case of risk-neutral average-cost MDPs, we can define Q-
values that assist in solving the problem of control. For the exponential
cost case, the optimal Q-value is defined as

Q∗(x, a) = exp(βk(x, a))
βλ∗

∑
y

P (y|x, a)V ∗(y).

(Q∗, λ∗) is a solution, unique up to a scalar multiple, of the following
eigenvalue problem:

Q∗(x, a) λ∗ = exp(βk(x, a))
β

∑
y

P (y|x, a) min
b
Q∗(y, b). (7.5)

Notice that V (x) = minaQ∗(x, a) satisfies (7.4).
For the special case of a fixed policy µθ, we define the Q-value

analogue as

Q(θ, x, a) = exp(βk(x, a))
βλθ

∑
y

P (y|x, a)V (θ, y).

(Qθ, λθ) satisfies the following eigenvalue problem:

Q(θ, x, a) λθ = exp(βk(x, a))
β

∑
y

P (y|x, a)
∑
b

µ(b|y)Q(θ, y, b). (7.6)
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For the sake of consistent notation, we shall use Qµ(·, ·) and Vµ(·) to
denote the Q-value and the Perron-Frobenius eigenvector associated
with a policy µ that is not necessarily parameterized.

The results in (7.5) and (7.6) can be used to derive value and policy
iteration algorithms for finding a policy that optimizes the exponential
cost. We present the policy iteration algorithm, as it forms the basis
for the risk-sensitive policy gradient algorithm presented later in this
section.

Policy iteration for exponential cost
Initialization: Policy µ0, fixed state xf .
For all n = 1, 2, . . . , repeat

Policy evaluation: Solve the eigenvalue problem

Vn(x) =
∑
a

µn(a|x)exp(βk(x, a))
βλn

∑
y

P (y|x, a)Vn(y),

Vn(xf ) = 1. (7.7)

Policy improvement: Choose action according to

µn+1(·|x) ∈ arg min
µ

[∑
a

µn(a|x)exp(βk(x, a))
β

∑
y

P (y|x, a)Vn(y)
]
.

The policy evaluation step in the algorithm above can be performed in
an iterative fashion as follows: Initializing with V 0

n = Vn−1, update

Ṽ m+1
n (x) =

∑
a

µn(a|x)exp(βk(x, a))
β

∑
y

P (y|x, a)V m
n (y),

V m+1
n (x) = Ṽ m+1

n (x)
Ṽ m+1
n (xf )

.

The above variation of policy evaluation can be seen as value iteration
for a fixed policy. Such a scheme can be shown to converge, and the
limit coincides with the solution to the eigenvalue problem in (7.7).

Next, the policy iteration algorithm could be written using Q-values.
Such an algorithm is not really necessary in a context where the transi-
tion dynamics of the underlying MDP is known. However, the actor-critic
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algorithm presented subsequently could be seen as a learning variant of
the Q-value based policy iteration, which we present next.

Policy iteration using Q-values
Initialization: Policy µ0, fixed state xf and action af .
For all n = 1, 2, . . . , repeat

Policy evaluation: With Q0
n = Qn−1, update (until convergence)

Q̃m+1
n (x, a) =

∑
a

exp(βk(x, a))
β

∑
y

P (y|x, a)
∑
b

µn(b|y)Qmn (y, b),

Qm+1
n (x, a) = Q̃m+1

n (x, a)
Q̃m+1
n (xf , af )

.

Policy improvement: Choose action according to

µn+1(·|x) ∈ arg min
µ

[∑
a

µn(a|x)Qm+1
n (x, a)

]
.

The result below presents a variant of the policy gradient theorem
for the exponential cost risk measure.

Proposition 7.2. Assume A7.1. Then,

∇λθ =
∑
x,a

ψ̃θ(x)∇µθ(a|x)Q̃(θ, x, a)λθ, (7.8)

where Q̃(θ, x, a) = exp (βk(x, a))
βV (θ, x)λθ

∑
y

P (y|x, a)V (θ, y)

is the modified Q-value function, and ψ̃θ is the stationary dis-
tribution underlying a Markov chain governed by the transition
probability function P̃θ(·|·) defined in (7.3).
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Proof. Letting V (θ) denote the eigenvector corresponding to λθ, the
eigenvalue equation can be written as

λθV (θ, x) = 1
β

∑
y

∑
a

µθ(a|x) exp (βk(x, a))P (y|x, a)V (θ, y),

or equivalently,

V (θ, x) =
∑
a

µθ(a|x)exp (βk(x, a))
βλθ

∑
y

P (y|x, a)V (θ, y). (7.9)

Setting V (θ, x0) = 1 would ensure that the solution V (θ) to (7.9) is
unique.

Differentiating w.r.t. θ in (7.9), we obtain

∇V (θ, x) =
∑
a

µθ(a|x)exp (βk(x, a))
βλθ

∑
y

P (y|x, a)∇V (θ, y)

+
∑
a

∇µθ(a|x)exp (βk(x, a))
βλθ

∑
y

P (y|x, a)V (θ, y)

−
∑
a

µθ(a|x)exp (βk(x, a))
βλ2

θ

∑
y

P (y|x, a)V (θ, y)∇λθ.

Dividing by V (θ, x) and then summing over the stationary distribution
ψ̃θ on both sides of the equation above, we obtain

∑
x

ψ̃θ(x)∇V (θ, x)
V (θ, x)

=
∑

x

ψ̃θ(x)
∑

a

µθ(a|x)exp (βk(x, a))
βλθV (θ, x)

∑
y

P (y|x, a)∇V (θ, y)︸ ︷︷ ︸
(I)

+
∑

x

ψ̃θ(x)
∑

a

∇µθ(a|x)exp (βk(x, a))
βλθV (θ, x)

∑
y

P (y|x, a)V (θ, y)︸ ︷︷ ︸
(II)

−
∑

x

ψ̃θ(x)
∑

a

µθ(a|x)exp (βk(x, a))
βV (θ, x)λ2

θ

∑
y

P (y|x, a)V (θ, y)∇λθ︸ ︷︷ ︸
(III)

. (7.10)

Using the fact that P̃θ, defined in (7.3), is a transition probability
function, and also that ψ̃θ is a stationary distribution, we simplify each
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of the terms on the RHS of (7.10) as follows:

(I) =
∑
x

ψ̃θ(x)
∑
y

P̃ (y|x)∇V (θ, y)
V (θ, y) =

∑
x

ψ̃θ(x)∇V (θ, x)
V (θ, x) ,

(II) =
∑
x

ψ̃θ(x)
∑
a

∇µθ(a|x)Q̃(θ, x, a),

(III) =
∑
y

∇λθ
λθ

P̃ (y|x) = ∇λθ
λθ

.

From the above simplifications, it is apparent that term (I) is the same
as the LHS in (7.10). A reordering of the simplified terms (II) and (III)
leads to

∇λθ
λθ

=
∑
x,a

ψ̃θ(x)∇µθ(a|x)Q̃(θ, x, a).

The claim follows.

Policy gradient algorithm for exponential cost

In the case of the regular value function, the policy gradient theorem
(6.1) lends itself to an RL algorithm easily, since one can replace the
expectation on the RHS of (6.1) with a sample trajectory-based ap-
proximation. On the other hand, the formula in (7.8) is complicated
from a sampling viewpoint because the distribution on the RHS of (7.8)
is different from the transition dynamics underlying the given MDP.
To elaborate, the averaging in the policy gradient expression for expo-
nential cost involves the stationary distribution ψ̃θ that underlies the
Markov chain governed by transition probabilities P̃ (·|·), and it is not
practically feasible to obtain samples from this distribution. However,
one can develop a policy gradient-type algorithm without a compact
representation, i.e., by treating the policy as a vector of probabilities.

The main idea that leads to the policy update that we describe next
is the following: Letting Λθ = log λθ, we have the following variant of
(7.8):

∇Λθ =
∑
x,a

ψ̃θ(x)∇µθ(a|x)Q̃(θ, x, a), (7.11)



660 MDPs with Risk as the Objective

Since log is monotone, the minimizer of λθ coincides with that of Λθ.
Next, treating the policy as a probability vector over all states and
all but one action, i.e., µθ = [µθ(x, a)]x∈X ,a∈A\af

, where af is a fixed
action. Given µθ, we can infer the probability of choosing action af in
state x as follows:

µθ(af |x) = 1−
∑
a̸=af

µθ(a|x). (7.12)

The component of the RHS of (7.11) corresponding to state-action pair
(x, a) is

∂Λθ
∂µθ(a|x) = ψ̃θ(x)∇µθ(a|x)Q̃(θ, x, a) + ψ̃θ(x)∇µθ(af |x)Q̃(θ, x, af )

= ψ̃θ(x)
(
Q̃(θ, x, a)− Q̃(θ, x, af )

)
. (7.13)

The equalities above follow from (7.12). Thus, it is enough to use the
factor

(
Q̃(x, a)− Q̃(x, af )

)
to perform a gradient descent in the policy,

while ignoring the multiplicative factor ψ̃θ(x), which is not available in
practice for an RL algorithm.

We next describe an algorithm that performs such a gradient descent
update in the policy space. Notice that, for the policy update, one would
require Q̃(θ, ·, ·), and the algorithm estimates this modified Q-value
on the faster timescale, while performing the policy update on the
slower timescale. The two-timescale algorithm requires varying step-size
sequences {ζ1(n), ζ2(n)} to satisfy the following conditions:

∞∑
n=1

ζ1(n) =
∞∑
n=1

ζ2(n) =∞,
∞∑
n=1

(
ζ2

1 (n) + ζ2
2 (n)

)
<∞, ζ1(n)

ζ2(n) → 0.

Letting d(n) denote either of the step sizes ζ1(n) and ζ2(n), ∀ z ∈ (0, 1),

sup
n

d(⌈zn⌉)
d(n) <∞, and sup

n

A(⌈z′n⌉)
A(n) → 1 uniformly in z′ ∈ [z, 1],

where A(n) =
n∑

m=0
d(m).

The first set of conditions on the step-size sequences are standard
for two-timescale stochastic approximation, which in particular ensure



7.1. Case 1: Average-cost MDP + Exponential cost as risk 661

that ζ2(n) would be on the slower timescale, while ζ1(n) on the faster
timescale. The additional conditions ensure that the both step sizes
eventually decrease.

Since we treat the policy as a vector indexed by state-action pairs,
we drop the dependence on the parameter θ, and instead work with a
randomized policy iterate, say µn. Using step-size sequences satisfying
these conditions, the algorithm for optimizing exponential cost would
update along two timescales, with fixed xf ∈ X , af ∈ A, as follows:

Qn+1(x, a) = Qn(x, a) + ζ1(ν(x, a, n))I {xn = x, an = a}

×
(

exp(βk(x, a))Qn(xn+1, an+1)
βQn(xf , af ) −Qn(x, a)

)
, (7.14)

µn+1(x) = Γ (µn(x) + ζ2(ν(x, a, n))I {xn = x, an = a}
× (Qn(x, a)−Qn(x, af ))) , (7.15)

where ν(x, a, n) =
n∑

m=0
I {xm = x, am = a} denote the number of times

the state-action pair (x, a) has been visited up to time n, and Γ is
a projection operator that ensures that, for any x ∈ X , the updated
policy µn+1(x) stays within the simplex {(d1, . . . , d|A|−1) | di ≥ 0,∀i =

1, . . . , |A| − 1,
|A|−1∑
j=1

dj ≤ 1}. The policy vector is updated for all but

one action af , and the probability associated with this action can be
inferred using (7.12). Furthermore, the actions an are picked using an
ϵ-greedy randomized policy, i.e., w.p. (1− ϵ) choose an action according
to µn, and w.p. ϵ pick a random action. Here ϵ ∈ (0, 1) is an exploration
parameter, that is chosen to be small constant, or could be decayed as
the algorithm updates.

The faster timescale recursion in (7.14) can be seen as the stochastic
approximation variant of the policy evaluation step in the policy iteration
using Q-values. In other words, following the standard two timescale
viewpoint to assume the policy µ is quasi-static, the faster timescale
iterate Qn converges to Qµ. Next, viewing the faster timescale as almost
equilibrated, the slower timescale recursion can be seen to perform a
gradient step in the policy space with an exponential cost objective.
The policy increment in (7.15) is motivated by the discussion around
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(7.13), and the remark below uses an ODE argument to show that one
can ignore the positive multiplicative factor in the gradient expression,
and still converge to a local minimum of the exponential cost objective.
This argument is facilitated by the fact that we treat the policy as a
vector of probabilities over all states and all but one action.

Remark 7.1. The update iteration for µ(i, u) in (7.15) is separate for
each fixed i, with the following limiting ODE:

µ̇(i, ·) = − (Qµ(i, ·)−Qµ(i, af )) . (7.16)

The gradient descent would have been

µ̇(i, ·) = −ψ̃(i)(Q̃µ(i, ·))− Q̃µ(i, af ) = ψ̃(i)
Vµ(i)(Qµ(i, ·)−Qµ(i, af )).

Thus, (7.16) is of the form

ẋi(t) = −Ci∇f(x(t)), ∀i,

with Ci > 0, ∀i. This still converges to a stationary point for almost all
initial conditions, because

d

dt
f(x(t)) = −

∑
i

Ci ∥∇f(x(t))∥2 < 0,

except at critical points.

Notes on convergence

Unlike the other cases studied in this section, the analysis of Algorithm
5 does not conform to the template in Section 5.3, because the policy
update in (7.15) treats the policy as a vector over all states and actions.
If one uses a compact representation, say via a parameterized family
of policies µθ, then there are two challenges involved in arriving at a
policy gradient algorithm. The first relates to sampling. As mentioned
before, the policy gradient expression in (7.8) involves a distribution
that is different from the transition dynamics underlying the MDP
considered. The second relates to projection. With a parameterized
policy class, the projection Γ onto the probability simplex should be
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Algorithm 5: Policy gradient algorithm under exponential
cost as a risk measure in an average-cost MDP setting

Input : initial policy µ0, step sizes {ζ1(n)}, {ζ2(n)},
exploration parameter ϵ, projection operator Γ,
# iterations M ≫ 1.

1 for n← 0 to M − 1 do
2 Draw action an ∼ µn(·|xn) w.p. (1− ϵ) and pick a random

action w.p. ϵ;
3 Observe next state xn+1 and cost k(xn, an);
4 /* Q-value estimate */
5 Qn+1(x, a) = Qn(x, a) + ζ1(ν(x, a, n))I {xn = x, an = a}
6 ×

(
exp(βk(x,a))Qn(xn+1,an+1)

Qn(xf ,af ) −Qn(x, a)
)
;

7 /* Policy update */
8 µn+1(x) = Γ (µn(x) + ζ2(ν(x, a, n))I {xn = x, an = a}
9 × (Qn(x, a)−Qn(xf , a)));

10 end
Output : Policy µM

replaced by a projection onto the set {µθ(·|·), θ ∈ Θ}, where Θ is the set
of parameterized policies. However, the aforementioned set of probability
vectors used for projection need not be convex.

We now provide a sketch of the convergence analysis for Algorithm 5.
Recall that Algorithm 5 employs two-timescale stochastic approximation,
i.e., it comprises of iteration sequences that are updated using two
different step-size schedules defined via {ζ1(n)} and {ζ2(n)}, respectively.
The analysis follows a standard sequence of steps needed to show
convergence of two-timescale stochastic approximation algorithms, as
discussed in Section 5.4. In particular, the faster timescale analysis for
the modified Q-value estimate sees the policy update as quasi-static,
while the slower timescale analysis for the policy µ views the modified
Q-value updates to have converged.

For the analysis of the faster timescale Q̃-recursion, consider the
following ODE: ∀x ∈ S, i = 1, 2, . . . , N,



664 MDPs with Risk as the Objective

φ̇xa(t) = 1
|X ||A|+ 1

(
exp(βk(x, a))∑y P (y|x, a)∑b µ(b|y)φyb(t)

βφxfaf
(t)

−φxa(t)) . (7.17)

where µ is considered to be time-invariant, since it is updated on the
slower timescale. It can be shown that (7.17) has a globally asymp-
totically stable equilibrium Qµ, which is the unique solution to the
following system of equations:

Q(x, a) =
(

exp(βk(x, a))∑y P (y|x, a)∑b µ(b|y)Q(y, b)
βλµ

)
, ∀x, a,

Q(xf , af ) = λµ.

Using standard stochastic approximation arguments together with
a stability result in Theorem 4.4, for any given policy µ, the faster
timescale iterate Qn converges a.s. to Qµ.

We now turn our attention to the policy update (7.15). Consider
the following ODE:

χ̇x·(t) = Qχ(t)(x, ·)−Qχ(t)(x, af ),∀x ∈ X (7.18)

This ODE can be re-written as

χ̇x·(t) = Kx·(χ(t))−Kxaf
(χ(t)), (7.19)

where Kxa(µ) = Qµ(x, a)− Vµ(x) is the advantage function. From the
definitions of Qµ and Vµ, it is apparent that ∑a µ(a|x)Kxa(µ) = 0.
Notice that the unique stable point of the ODE (7.19) corresponds to
an optimal policy, since otherwise, the advantage function is not zero;
thus, one can establish that the trajectories of (7.19) would converge to
the set of optimal policies minimizing the exponential cost, with Λ(·)
serving as a strict Lyapunov function. Finally, the policy update in
(7.15) used ϵ-greedy exploration, which implies that the ODE tracked
by this algorithm would not exactly coincide with (7.18). Instead, the
algorithm tracks the ODE (7.18) with an small error for small ϵ, and
hence one can claim that the iterate µn converges to a neighbourhood
of the set of risk-optimal policies.
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7.2 Case 2: Discounted-cost/SSP + CPT as risk

This case considers the following optimization problem with CPT risk
measure as the objective:

min
θ∈Θ
C(Dθ),

where C(Dθ) is the CPT-value associated with the r.v. Dθ, with θ

denoting the policy parameter, and is defined as follows:

C(Dθ) ≜
∫ ∞

0
w+

(
P
(
u+(Dθ) > z

))
dz −

∫ ∞

0
w−

(
P
(
u−(Dθ) > z

))
dz,

(7.20)

where u± are the utility functions and w± are the weight functions
(see Section 3.7 for a detailed description of these quantities). In a
discounted-cost MDP, Dθ(x0) would be the total discounted cost, while
in an SSP, Dθ(x0) would be the total cost.

Risk measures such as variance, CVaR, and chance constraints
considered in the previous section serve as natural constraint functions
when optimizing the expected total/discounted cost. On the other
hand, CPT is a risk measure that is not purely concerned with the tail
behavior or variability of the cost distribution, as it considers the entire
distribution, handling gains/losses, as well as incorporating distortions
via a weight function. Hence, it is appealing to optimize the CPT value
directly in the objective, e.g., in a human-centered decision-making
problem. For a concrete example, one could consider a transportation
application where Dθ denotes the delay experienced by a road user, and
θ denotes a policy parameter that governs the traffic light switching
strategy.

From the discussion in the previous sections, it is apparent that the
main technical challenges in handling any risk measure are as follows: (i)
estimation of the risk measure from samples; and (ii) gradient estimation
for the policy update iteration. For the sake of brevity, we provide the
necessary details for handling (i) and (ii), and the rest of the pieces of
the resulting actor-critic scheme follows in a manner similar to that for
variance or CVaR.
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7.2.1 CPT-value estimation

To handle (i), suppose that we are given m i.i.d. samples from the
distribution of X, and the goal is to estimate the CPT-value C(X).
Estimating the CPT-value is challenging, because the environment
provides samples from the distribution of the r.v. X, while the integrals
in (7.20) involve a weight-distorted distribution. Thus, unlike the case of
expected value estimation, a sample mean is insufficient for estimating
CPT-value C(X), when the underlying weight functions are nonlinear.
CPT-value C(X) can be estimated if one has an estimate of the entire
distribution, and a natural candidate to estimate the distribution is the
empirical distribution function (EDF). Using the latter, we estimate
C(X) by

Cm =
∫ ∞

0
w+

(
1− F̂m

+ (x)
)
dx−

∫ ∞

0
w−

(
1− F̂m

− (x)
)
dx, (7.21)

where

F̂m
+(x) = 1

m

m∑
i=1

I
{

(u+(Xi) ≤ x)
}

and

F̂n
−(x) = 1

m

m∑
i=1

I
{
(u−(Xi) ≤ x)

}
.

F̂m
+(x) and F̂m

−(x) are the EDFs of the r.v.s u+(X) and u−(X),
respectively. The first and second integrals on the RHS of (7.21) denoted
by C+

m and C−
m, respectively, can be computed in a straightforward

fashion using the order statisticsX[1] ≤ X[2] ≤ . . . ≤ X[m] as follows:

C+
m :=

m∑
i=1

u+(X[i])
(
w+
(
m+ 1− i

m

)
−w+

(
m− i
m

))
,

C−
m :=

m∑
i=1

u−(X[i])
(
w−

(
i

m

)
− w−

(
i− 1
m

))
.

Notice that the estimates C±
m reduce to sample means for the case when

w(p) = p, and in this case, the CPT-value itself is the expectation
Eu+(X)− Eu−(X). Thus, CPT-value estimation can be seen as a gen-
eralization of the classic mean estimation procedure, and the deviations
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are introduced by a nonlinear weight function that distorts probabilities,
which in turn leads to weighing the samples non-uniformly.

7.2.2 Policy gradient for the CPT-value

As far as handling point (ii) concerning the policy gradient for CPT,
we use SPSA, since the CPT-value does not admit a Bellman equation,
ruling out a procedure based on the likelihood ratio method. The SPSA-
based estimate of ∇C(Xθn) with policy θn, is given as follows:

∇̂iC(Dθ) = C
θn+δn∆(n)
n − Cθn

n

δn∆i(n) , i = 1, . . . , d,

where δn and ∆(n) are as described in Section 4.4 and Cθn+δn∆(n)
n (resp.

Cθn

n ) denotes the CPT-value estimate that uses mn samples of the r.v.
Xθn+δn∆(n) (resp. Xθn).

The complete algorithm with CPT-value as the risk measure and
the usual value function as the objective is presented in Algorithm 6.

7.2.3 On the batch size mn per iteration of (7.22)

The challenge involved in choosing an appropriate batch size mn for
policy evaluation in Step 2 of Algorithm 6 is similar to that in Algorithm
1 for optimizing variance as a constraint in a discounted MDP. As in the
variance case, the CPT-value has to be estimated from sample trajecto-
ries so that the overall policy gradient algorithm (7.22) converges. For
the sake of simplicity, we drop the dependence on the parameter θ, and
instead, study the CPT-value estimation problem. Subsequently, when
we analyze the policy gradient scheme in Algorithm 6 for CPT-value
optimization, we shall make the dependence on the policy parameter
explicit.

For a given r.v. X, let m denote the number of sample trajectories
used to form the estimate Cm, using (7.21), of the CPT-value C(X).
Notice that E

(
Cm
)
̸= C(X), since the individual components C±

m involve
order statistics. However, one can derive a bound on the estimation
error

∣∣∣Cm − C(X)
∣∣∣, and such a bound would aid the proof of asymptotic
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Algorithm 6: Policy gradient algorithm under CPT as a risk
measure

Input : initial parameter θ0 ∈ Θ, perturbation constants
δn > 0, batch sizes {mn}, step sizes {ζ(n)},
projection operator Γ, number of iterations M ≫ 1.

1 for n← 0 to M − 1 do
2 for m← 0 to mn − 1 do
3 /* Unperturbed policy simulation */
4 Use the policy µθn to generate the state xm, draw action

am ∼ µθn (·|xm);
5 Observe next state xm+1 and cost k(xm, am);
6 /* Perturbed policy simulation */
7 Use the policy µθn+δn∆(n) to generate the state x+

m, draw
action a+

m ∼ µθn+δn∆(n) (·|x+
m

)
;

8 Observe next state x+
m+1 and cost k(x+

m, a
+
m);

9 end
10 /* Monte Carlo policy evaluation */

11 Use the scheme in (7.21) to obtain Cθn+δn∆(n)
n and Cθn)

n - the
estimates of the CPT-values C

(
Xθn+δn∆(n)

)
and C

(
Xθn

)
,

respectively;
12 /* Gradient estimates using SPSA */

13 Gradient of the objective: ∇̂iC(Xθn) = C
θn+δn∆(n)
n − Cθn

n

δn∆i(n) ;

14 /* Policy update: Gradient descent using SPSA */
15

θn+1 = Γ
[
θn − ζ(n)

(
∇̂C(Xθn)

)]
. (7.22)

16 end
Output : Policy θM
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convergence of the risk-sensitive policy gradient algorithm for CPT.
The following result presents a bound in expectation for the estimation
error.

Proposition 7.3. Assume that the weight functions w± are Hölder
continuous with common order α and constant H, i.e.,

sup
x̸=y

|w±(x)− w±(y)|
|x− y|α

≤ H,∀x, y ∈ [0, 1].

Suppose that the utility functions u+ and −u− are continuous
and non-decreasing on their support R+ and R−, respectively.
Furthermore, the utilities u+(X) and u−(X) are bounded by a
constant M . Then, ∀ϵ > 0, we have

P
(∣∣∣Cn − C(X)

∣∣∣ ≥ ϵ) ≤ 2e−2n( ϵ
HM )

2
α
,

and

E
∣∣∣Cn − C(X)

∣∣∣ ≤ (8HM) Γ (α/2)
nα/2 . (7.23)

Proof. The proof requires the well-known Dvoretzky–Kiefer–Wolfowitz
(DKW) inequality, which shows concentration of the empirical distribu-
tion function around the true distribution. We recall this result below.
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DKW inequality: Let F denote the cdf of r.v. U and F̂n(u) =
1
n

∑n
i=1 I[Ui≤u] denote the empirical distribution of U , with U1, . . . , Un

sampled from F . Then, for any ϵ > 0, we have

P
(

sup
x∈R
|F̂n(x)− F (x)| > ϵ

)
≤ 2e−2nϵ2 .

Notice that∣∣∣∣∫ ∞

0
w+

(
P
(
u+(X) > t

))
dt−

∫ ∞

0
w+

(
1− F̂+

n (t)
)
dt

∣∣∣∣
=
∣∣∣∣∣
∫ M

0
w+

(
P
(
u+(X) > t

))
dt−

∫ M

0
w+

(
1− F̂+

n (t)
)
dt

∣∣∣∣∣
≤ HM sup

x∈R

∣∣∣P (u+(X) < t
)
− F̂+

n (t)
∣∣∣α .

Now, plugging in the DKW inequality, we obtain

P

(∣∣∣∣∫ ∞

0
w+

(
P
(
u+(X) > t

))
dt−

∫ ∞

0
w+

(
1− F̂+

n (t)
)
dt

∣∣∣∣ > ϵ

)
≤ P

(
HM sup

t∈R

∣∣∣(P (u+(X) < t)− F̂n
+(t)

∣∣∣α > ϵ

)
≤ 2e−2n( ϵ

HM )
2
α
.

(7.24)

To derive the bound in expectation in (7.23), we integrate the high-
probability bound (7.24) to obtain

E
∣∣∣Cn − C(X)

∣∣∣ ≤ ∫ ∞

0
P
(∣∣∣Cn − C(X)

∣∣∣ ≥ ϵ) dϵ
≤ 4

∫ ∞

0
exp

(
−2n (ϵ/HM)2/α

)
dϵ ≤ 8HMΓ (α/2)

nα/2 .

Now, the discussion in Section 7.2.3 applies to the case of CPT-value,
with a minor changes. In particular, from Proposition 7.3, the estimation
bias for the case of CPT-value is of the order 1

mα/2 , where α is the Hölder
exponent of the weight functions underlying CPT-value definition.

Following arguments similar to those employed in Section 7.2.3,
using a SPSA-based gradient estimator for CPT-value would require
the batch size mn to diverge so that the estimation bias does not affect
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convergence of policy gradient algorithm (7.22). In addition to the
usual conditions on the step-size sequence and perturbation constant
δn, one possible choice for mn that ensures that the bias in the gradient
estimate vanishes and the overall algorithm converges is the following:

1
m

α/2
n δn

→ 0.

7.3 Case 3: Any MDP + a coherent risk measure

In this section, we consider optimizing a coherent risk measure. Let
(Ω,F ,Pθ) denote a probability space, where Pθ denotes a parameterized
probability measure, with θ as the parameter that belongs to a convex
and compact set Θ ⊂ Rd. Let D be a r.v. with a finite mean, and
let ρ(D) denote its coherent risk measure. We consider the following
problem:

min
θ∈Θ

ρ(D), (7.25)

As in the previous section, D could be the total/discounted cost of the
policy parameterized by θ.

The overall algorithm for optimizing the coherent risk measure is
given in Algorithm 7. The schema of this algorithm resembles the one
used in Algorithm 6 for optimizing CPT value, the difference being
in the way the coherent risk measure is estimated, and its gradient
computed. We elaborate on these two aspects below.

For coherent risk measure estimation, we require the dual represen-
tation. Let E (D) =

∫
ΩD(ω)dPθ(ω) denote the expectation of a given

r.v. D. Let P = {ξ |
∫
ξdPθ = 1} denote the set of probability densities.

Then there exists a convex and compact subset U of P such that

ρ(D) = sup
ξ∈U

{
E (ξD) =

∫
Ω
ξ(ω)D(ω)dPθ(ω)

}
. (7.26)



672 MDPs with Risk as the Objective

We shall refer to the set U as the risk envelope associated with a coherent
risk measure. For the case of CVaR, the risk envelope U can be shown
to be

U =
{
ξ

∣∣∣∣ ξ(ω) ∈
[
0, 1

1− β

]
,E[ξ] = 1

}
. (7.27)

Let Pn,θ denote the empirical distribution function formed from n

i.i.d. samples {ω1, . . . , ωn}. Then, the estimate ρ̂n of the coherent risk
measure ρ(D) is formed as follows:

ρ̂n = sup
ξ∈U

n∑
i=1

ξ(ωi)D(ωi)Pn,θ(ωi). (7.28)

Next, we turn to the estimate of the gradient of a coherent risk
measure. For the purpose of gradient estimation, we shall assume the
following form for the risk envelope:

U(Pθ) = {ξ | gk1(ξ,Pθ) = 0, k1 = 1, . . . ,K1,

fk2(ξ,Pθ) ≤ 0, k2 = 1, . . . ,K2, E[ξ] = 1, ξ(ω) ≥ 0} ,

where gk1 , k1 = 1, . . . ,K1 and fk2 , k2 = 1, . . . ,K2 are the equality and
inequality constraints. Using the above form for the risk envelope, the
Lagrangian of (7.26) turns out to be

Lθ(ξ, η, λ, λ̃) = E [ξD]− η (E [ξ]− 1)−
K1∑
k1=1

λ(k1)gk1(ξ,Pθ)

−
K2∑
k2=1

λ̃(k2)fk2(ξ,Pθ), (7.29)

where η is the Lagrange multiplier associated with the E[ξ] = 1 con-
straint. Furthermore, λ = (λ(1), . . . , λ(K1)) and λ̃ = (λ̃(1), . . . , λ̃(K2))
are the Lagrange multipliers associated with equality constraints defined
by (g1, . . . , gK1), and inequality constraints defined by (f1, . . . , fK2), re-
spectively.

We now present the expression for the gradient of the coherent
risk measure ρ(X). For deriving this expression, we make the following
assumptions:
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A7.2. The constraints gk1 is an affine function of the parameter ξ for
k1 = 1, . . . ,K1, and fk2 is a convex function of the parameter ξ for
k2 = 1, . . . ,K2.

A7.3. There exists a strictly feasible point for the problem in (7.25).

A7.4. The family of functions {Lθ(ξ, η, λ, λ̃)}ξ,η,λ,λ̃ is equi-differentiable
in θ1.

We now discuss these assumptions. The motivation for A7.2 comes
from the result that a risk measure ρ(D) is coherent if and only if the
underlying risk envelope U is convex and weakly compact. The conditions
on gk1 and fk2 can be inferred from the convexity requirement on U.
A7.3 ensures strong duality holds for (7.25), which in turn implies
maxξ minη,λ,λ̃ Lθ(·, ·, ·, ·) = minη,λ,λ̃ maxξ Lθ(·, ·, ·, ·). This interchange
facilitates the application of the envelope theorem. For the application
of the latter theorem, we also require the equi-differentiability condition
imposed in A7.4.

Proposition 7.4. Assume A7.2–A7.4. Let λ∗
θ = (λ∗

θ(1), . . . , λ∗
θ(K1)),

λ̃∗
θ = (λ̃∗

θ(1), . . . , λ̃∗
θ(K2)), and let (ξ∗

θ , η
∗
θ , λ

∗
θ, λ̃

∗
θ) denote a saddle

point of (7.29). Then,

∇ρ(D) = Eξ∗
θ

[∇ logPθ(ω)(D − η∗
θ)]−

K1∑
k1=1

λ∗
θ(k1)∇gk1(ξ∗

θ ,Pθ)

−
K2∑
k2=1

λ̃∗
θ(k2)∇fk2(ξ∗

θ ,Pθ).

Proof. A7.3 implies Slater’s condition holds for the problem (7.25).
Furthermore, by A7.2, we have that the Lagrangian Lθ(ξ, η, λ, λ̃) is
convex in ξ, and concave in the Lagrange multipliers η, λ, and λ̃. Thus,
strong duality holds, implying

max
ξ≥0

min
η,λ,λ̃≥0

Lθ(ξ, η, λ, λ̃) = min
η,λ,λ̃≥0

max
ξ≥0

Lθ(ξ, η, λ, λ̃).

1A family {f(x, ·)}x∈X is equi-differentiable at p ∈ [0, 1] if (f(x,t′)−f(x,t))
t′−t

con-
verges uniformly as t′ → t.
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Since the family {Lθ(ξ, η, λ, λ̃)}ξ,η,λ,λ̃ is equi-differentiable by assump-
tion A7.4, and Lθ(ξ, η, λ, λ̃) is a smooth function of θ, we obtain the
following by an application of the envelope theorem:

∇max
ξ≥0

min
η,λ1,...,λ,λ̃≥0

Lθ(ξ, η, λ, λ̃)

= ∇Lθ(ξ∗
θ , η

∗
θ , λ

∗
θ, λ̃

∗
θ)

= Eξ∗
θ

[∇ logPθ(ω)(D − η∗
θ)]−

K1∑
k1=1

λ∗
θ(k1)∇gk1(ξ∗

θ ,Pθ)

−
K2∑
k2=1

λ̃∗
θ(k2)∇fk2(ξ∗

θ ,Pθ),

where the final equality uses the following fact:

∇E [ξD]− η∇ (E [ξ]− 1) = Eξ [∇ logPθ(ω)(D − η)] .

The equality above can be inferred using the likelihood ratio method.
To elaborate for the discrete case, notice that

∇E [ξD] =
∑
ω

ξ(ω)D(ω)∇Pθ(ω)

=
∑
ω

ξ(ω)D(ω)∇ logPθ(ω)Pθ(ω)

= Eξ [∇ logPθ(ω)D] .

A similar argument works for the other term involving the η factor
above.

We now specialize the expression derived above for the policy gra-
dient of a coherent risk measure to the case of CVaR. Recall that the
risk envelope for CVaR is given by U =

{
ξ | ξ(ω) ∈

[
0, 1

1−β

]
,E[ξ] = 1

}
.

Thus, λ∗
θ and λ̃∗

θ are both zero vectors, leading to

∇CVaRα(D) = Eξ∗
θ

[∇ logPθ(ω)(D − η∗
θ)] .

It can be shown that ξ∗
θ = 1

1−β for X > VaRα(D), and ξ∗
θ = 0 otherwise.

Thus, we have

∇CVaRα(D) = E [∇ logPθ(ω)(D −VaRα(D)) | D > VaRα(D)] .
(7.30)
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To obtain an estimate of ∇ρ(Dθ), we require an estimate of ρ(Dθ),
which is obtained by solving the convex optimization problem in (7.28).
Let ξ∗

n,θ, η
∗
n,θ, λ

∗
n,θ, λ̃

∗
n,θ denote the optimal parameter and Lagrange

multipliers obtained by solving the estimation problem in (7.28). Using
these quantities, the gradient estimate ∇̂ρ(Dθ) is formed as follows:

∇̂nρ(D) =
n∑
i=1

[
ξ∗
n,θ(ωi)Pn,θ(ωi)∇ logPn,θ(ωi)(D(ωi)− η∗

n,θ)
]

−
K1∑
k1=1

λ∗
n,θ(k1)∇gk1(ξ∗

n,θ,Pn,θ)−
K2∑
k2=1

λ̃∗
n,θ(k2)∇fk2(ξ∗

n,θ,Pn,θ).

(7.31)

The complete algorithm using a coherent risk measure is presented
in Algorithm 7.

Algorithm 7: Policy gradient algorithm under a coherent risk
measure

Input : initial parameter θ0 ∈ Θ, perturbation constants
δn > 0, trajectory lengths {mn}, step sizes {ζ(n)},
projection operator Γ, number of iterations M ≫ 1.

1 for n← 0 to M − 1 do
2 for m← 0 to mn − 1 do
3 Use the policy µθn to generate the state xm, draw action

am ∼ µθn (·|xm);
4 Observe next state xm+1 and cost k(xm, am);
5 end
6 /* Monte Carlo policy evaluation */
7 Use the scheme in (7.28) to obtain the estimate ρ̂n of the

coherent risk measure;
8 /* Gradient estimate using likelihood ratio */
9 Form the gradient estimate ∇̂n,θ ρ(D) using (7.31) ;

10 /* Policy update: Gradient descent */

11 θn+1 = Γ
[
θn − ζ(n)

(
∇̂n,θ ρ(D)

)]
;

12 end
Output : Policy θM
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7.4 Bibliographic remarks

We provide below bibliographic remarks for each case studied in this
section.

7.1 The theory of risk-sensitive control using an exponential utility
formulation has a long history; see Whittle (1990) for a detailed
introduction. However, work on the learning side of things is a
more recent development; see, e.g. Borkar (2001), Borkar (2002),
Borkar and Meyn (2002), Bhatnagar et al. (2006), and Basu et al.
(2008), and the survey article by Borkar (2010). Our presentation
of the policy gradient theorem and the algorithm for optimizing
the exponential cost in an average-cost MDP is based on Borkar
(2001), where the author provides a sketch of the convergence
analysis. For the missing details, the reader is referred to the
analysis of a two-timescale policy gradient algorithm in a risk-
neutral setting in Konda and Borkar (1999), in particular, Lemmas
5.6–5.7, and Theorem 5.8 there. More recently, Moharrami et al.
(2022) propose a policy gradient algorithm for solving a truncated
version of the exponential cost MDP; see also Proposition 5 in
Moharrami et al. (2022) for a variational formula for exponential
cost, which establishes stability of the latter risk measure against
model uncertainties.

7.2 The presentation of the risk-sensitive RL algorithm with CPT as
the underlying risk measure is based on Prashanth et al. (2016)
and Jie et al. (2018). In Proposition 7.3, we presented a con-
centration bound for CPT-value estimation assuming that the
underlying distribution has bounded support. Recent work in Bhat
and Prashanth (2019) provides more general concentration bound
results assuming sub-Gaussian and sub-exponential distributions.

7.3 The case of coherent risk measure is based on Tamar et al. (2015a).
For an introduction to coherent risk measures and their dual
representation, the reader is referred to Shapiro et al. (2014,
Section 6.3). In particular, the risk envelope for CVaR presented
in (7.27) and the justification for the saddle point ξ∗

θ leading to
(7.30) are based on Example 6.16 of Shapiro et al. (2014).



8
Conclusions and Future Challenges

In this monograph, we considered MDP problems that incorporate a va-
riety of risk measures in discounted-cost, average-cost, and SSP settings.
The risk measures considered were variance (both total and per period),
CVaR, chance constraints, CPT, and coherent risk measures. Challenges
encountered in the various problem settings include the following: (i)
lack of structure, leading to failure of classic DP methods (e.g., policy
iteration for variance-constrained MDPs); (ii) lack of gradient informa-
tion for the risk measures; and (iii) challenges in estimation, in the case
of CVaR and CPT.

We briefly summarize some possible future research directions for
risk-sensitive MDPs:

i) For the discounted MDP setting, the current algorithm employs
SPSA only, because a direct gradient estimate cannot be easily
obtained for the risk measure. However, a likelihood ratio gradient
estimator is available for the cost function, so combining SPSA
with direct gradient-based search in a hybrid algorithm might
improve the computational efficiency of the algorithm for work
along this line (but in the general SA setting, not specific to
MDPs). Even more critical is that SPSA requires simulation of

677
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two system trajectories, which might be infeasible in real-time or
online settings, so developing a risk-sensitive algorithm that uses
only a single trajectory is of practical interest.

ii) For CVaR-constrained MDPs, variance reduction techniques such
as importance sampling and conditional Monte Carlo are essential
for keeping CVaR estimation variance at reasonable levels, and as
far as we are aware, there is no such provably convergent CVaR-
estimation algorithm in an RL context. Another important need
is incorporating function approximation to handle the curse of
dimensionality for large state spaces.

iii) A critical challenge is to obtain finite-time bounds for the risk-
sensitive RL algorithms, which usually operate on multiple time-
scales. To the best of our knowledge, there are no non-asymptotic
bounds available for multi-timescale stochastic approximation
schemes, and hence, for actor-critic algorithms, even in the risk-
neutral RL setting.

iv) Risk measures that have not been explored in an RL context
include spectral risk measures (SRMs) and utility-based shortfall
risk (UBSR); see the bibliographic remarks at the end of Section
3 for references. The algorithm presented in Section 7.3 handles
a general coherent risk measure, so could in principle be special-
ized to handle an SRM, but a direct algorithm might be more
efficient. On the other hand, a risk-sensitive RL algorithm with
either UBSR, or more generally, a convex risk measure as the
objective/constraint, has not been developed in the literature as
far as we are aware.

v) Finally, CPT-value of the return of an MDP does not have a
Bellman equation. Here, we proposed treating the CPT-value
MDP problem as a black-box stochastic optimization problem,
but certainly other approaches, especially ones that exploit special
structure such as the Markovian property of an MDP, might be
more computationally efficient in certain contexts.
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