

Br=0 Hx perpendicular to the plane 2-0 and x is the eigenvector 2 Permutation matrix $B = \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right)$ Bx = x for $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ B_{x--x} for $x = \begin{bmatrix} 1 \\ - \end{bmatrix}$ Finding the eigenvalues: Ax=Ax i.e., $(A - \lambda I) \chi = 0$ i.e., (A-XI) is singulad

R

where

Remark'- If no cigenvalue is repeated for a real symmetric matrix, then we get n independent eigenvectors & hence, A= QAQT Unitary matrices: A matrix is unitary if it is square, and has orthonormal columns. Real case: QTQ = I (=) Q is orthogonal U*U=I (=) U in uniface Complex care! Example: U= (1/12 1/12) $\lfloor i/\sqrt{2} /\sqrt{2} \rfloor$

Find SVD of A. Is A diagonalizable. No. A has $\sqrt{2}$ eigenvalue repeated twice. So, [] is an eigenvector of A & there aren't any more independent ones. Finding the SVD (see next page)

