Random Variables \& distributions
CLecture-6-contd)
We are interested not in the experimat, but in the consequence of the out come.
Q.g. loss/gain more important that the outcome that gives them.
Example:- Pair coin tossed twice

$$
\begin{aligned}
& \Omega=\{H H, H T, T H, T T\} \\
& X: \Omega \rightarrow \mathbb{R} \\
& x(\omega)=\# \text { of heads } \\
& X(H H)=2, \quad X(H T)=X(T H)=1, \quad X(T T)=0
\end{aligned}
$$

Gambler wages lurit on the recut. Torture doubles if head \& is ruined on a fail.

$$
W(H H)=4, W(H+)=W(T H)-W(T)=0
$$

After an outwore, x takes some value.

This value is more likely to be in certain subsets of \mathbb{R} than others, depending on $(\Omega, 7, P) \& X$.

For coin-tossis example,
" $f(x)=$ Probability that $K=x$ "
con be med to dexcrible the distribution of likelihoods of possible values of X.
In general, this is not enough.
(erg. real intervals. $\quad P(x=x)=0$).
So, we distribution function
$F: \mathbb{R} \rightarrow[0,1]$ defined as

$$
F(x)=P(x \leq x) .
$$

A more general definition of radon Variable (rv.)

Def: A r.v.X: $\Omega \rightarrow \mathbb{R}$ with the property that $\{\omega \in \Omega \mid x(\omega) \leq x\} \in 7 \quad \forall x \in \mathbb{R}$. we cal " X is 7-meaturable".

Def: Distribution of a r.v. X is
$F: \mathbb{R} \rightarrow[0,1]$ given by

$$
f(x)=P(x \leq x)
$$

Note: $\{X \leq x\}=\{w f \Omega \mid X(\omega) \leq x)$
Example:

Properties of distributions:

A distribution F satisfies
(a) $\lim _{x \rightarrow-\infty} F(x)=0, \quad \lim _{x \rightarrow \infty} F(x)=1$
(b) If $x<y$, then $F(x) \leqslant F(y)$
(c) F is right-continwous, i.e.,

$$
F(x+h) \rightarrow F(x) \text { as } h L_{1} 0
$$

Proof:
(a)

$$
\begin{aligned}
& B_{n}=\{\omega \in \Omega \mid x(\omega) \leq-n\} \\
&=\{x \leq-n\} \\
& B_{1} \supseteq B_{2} \supseteq B_{3} \supseteq \cdots \\
& B=\cap B_{i}=\phi \\
& P(B)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)=0 \quad \mid P\left(B_{n}\right)=F(-n)
\end{aligned}
$$

So, $\lim _{x \rightarrow-\infty} F(x)=0$

$$
\begin{aligned}
& A_{n}=\{x \leq n\} \\
& A_{1} \subseteq A_{2} \subseteq A_{3} \leq \ldots \\
& A=\bigcup_{i}=\Omega \\
& P(A)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)=\left.1\right|_{=\left(n\left(A_{n}\right)\right.} ^{P(n)}
\end{aligned}
$$

So, $\lim _{x \rightarrow \infty} F(x)=1$.
(b) $A=\{x \leq x\}, B=\{x \leq y\}$ $A \subseteq B$

$$
\Rightarrow F(x)=P(A) \leq P(B)=F(y)
$$

Lecture-7
(c)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} F\left(x+\frac{1}{n}\right) \\
= & \lim _{n \rightarrow \infty} P\left(X \leq x+\frac{1}{n}\right) \\
= & P\left(\bigcap_{n=1}^{\infty}\left\{X \leq x+\frac{1}{n}\right\}\right) \\
= & P(X \leq x) \\
= & F(x)
\end{aligned}
$$

Note: (1) CDF (Cumulative distribution fuction \equiv distribution) is nof necessarily continuous.
(2) Ang function satisfying propertics (a)-Cc) is the CDF of
some $r-v . X$.
Examples:
(1) Constant r.V.

$$
\begin{gathered}
X(\omega)=c \quad \forall \omega f \Omega \\
F(x)= \begin{cases}0 & \text { if } x<c \\
1 & \text { if } x \geqslant c\end{cases}
\end{gathered}
$$

(2) Bernoulle r.v. (coin with bias p)

$$
\begin{aligned}
& X: \Omega \rightarrow \mathbb{R} \text { s.t. } \\
& F(x)=\left\{\begin{array}{cc}
0 & x(H)=1, X(T)=0 \\
1-p & 0 \leq x<1 \\
1 & x \geqslant 1
\end{array}\right.
\end{aligned}
$$

(3) Indicator r.v.
A be angevent

$$
I_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A \\ 0 & \text { else }\end{cases}
$$

$I_{A}=$ Bernoulli r.v. taking values 1 and O with probabilities $P(A)$ \& $P\left(A^{c}\right)$, res pectively.

In general, $\left\{B_{i}, i \in I\right\}$ disjoint set of events A $A \subseteq \bigcup_{i \in I} B$ i

$$
I_{A}=\sum_{i \in I} I_{A \cap B_{i}}
$$

Lemma (do your own proof):
a) $P(x>x)=1-F(x)$
b) $P(x \subset x \leqslant y)=F(y)-F(l)$
C) $P(x=x)$

$$
=F(x)-\lim _{y^{i} x} F(y)
$$

Example:
(1) Let X be a r.r. with distribution

$$
F(x)=\left\{\begin{array}{cc}
0 & x<-1 \\
1-p & -1 \leq x<0 \\
1-p+\frac{1}{2} x p & 0 \leq x \leq 2 \\
1 & x>2
\end{array}\right.
$$

Find
(a) $p(x=-1)=1-p$
(b) $p(x=0)=(1-p)-(1-p)=0$
(c) $\quad P(x \geqslant 1)=1-P(x<1)$

$$
=1-\left(1-p+\frac{p}{2}\right)=\frac{p}{2}
$$

(2) Suppose X has distribution F. What is the distribution of

$$
Y=a X+b, \quad a, b \in \mathbb{R} ?
$$

So (n) Case $a>0$

$$
\begin{aligned}
P(Y \subseteq y) & =P(a X+b \subseteq y) \\
& =P\left(X \subseteq \frac{y-b}{a}\right)=F\left(\frac{y-b}{a}\right)
\end{aligned}
$$

Gre ac

$$
\begin{aligned}
& P(Y \leq y)=P(a X+b \leq y) \\
& =P\left(x \geqslant \frac{y-b}{a}\right) \\
& =1-P\left(x<\frac{y-b}{a}\right) \\
& =1-\lim _{x \uparrow \frac{y-b}{a}} F(x)
\end{aligned}
$$

Core $a=0$

$$
P(y \subseteq y)= \begin{cases}0 & \text { if } y<b \\ 1 & \text { if } y \geqslant b\end{cases}
$$

A few subtleties.
(1) $F(x)= \begin{cases}0 & x<0 \\ x & 0 \leq x<1 \\ 1 & x \geqslant 1\end{cases}$
F is a distribution (Verify!)
F has no jumps $\Rightarrow F$ is the CDF of a r.v. that is not dissect

Conceptual difficulties in uncountable spaces.
$\Omega=[0,1]$ uncountable space.
Draw a number at random in $[0,1]$

No interval is preferrable

$$
p((a, b))=b-a
$$

Ω is uncountable, So consider boric subsettel assign probabilities.
For complex subsets, we the axioms $\left(n^{n}, U^{n}\right.$, complement) \& apply the rules of probability.

Example: $\quad P((a, b))=b-a$

$$
\begin{aligned}
& P([a, b]) \\
& =P\left(\bigcup_{k=1}^{\infty}\left(a-\frac{1}{k}, b-\frac{1}{k}\right)\right) \\
& =\lim \left(b-a-\frac{2}{k}\right)
\end{aligned}
$$

$$
\begin{gathered}
k-\infty \\
=(b-a) \\
P(\{x\})=0
\end{gathered}
$$

But, if $P((a, b))=\sqrt{b-a}$

$$
\begin{gathered}
P((0,1))=1 \\
(0,1)=(0,0.5) \cup(0.5,1) \cup\{0.5\} \\
P((0,0.5))+P((0.5,1))+P(\{0.5\}) \\
=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+0=\sqrt{2}>1
\end{gathered}
$$

"Cannot assign arbitrary Probabilities to boric subsets".

Alternative: Use distribution.

Example:- Pick any distribution F.
Assign $P((a, b])=\begin{array}{r}F(b)-F(a), \\ a<b\end{array}$

Lecture-8 Law of averages
Repeated experimentation
N trials, A occurs $N(A)$ times $\frac{N(A)}{N} \rightarrow P(A)$ as $N \rightarrow \infty$
Is the theory built so for consistent with the above requirement?

Suppose A_{1}, A_{2}, \ldots sequence of independent events with $P\left(A_{1}\right)=P$, $\forall i, \quad 0<p<1$

$$
S_{n}=\sum_{i=1}^{n} I_{A_{i}}
$$

Theorem (Bernoulli, 1692)
$\frac{S_{n}}{n} \rightarrow P$ as $n \rightarrow \infty$ in the following sense:

$$
P\left(p-\epsilon \leq \frac{S_{n}}{n} \leq p+\epsilon\right) \rightarrow 1 \text { as }
$$

$$
n \rightarrow \infty, \quad \forall \epsilon>0
$$

Proof: Toss a coin repeatedly, heads occurs with probability P.
S_{n} has the same distribution as the number of heads H_{n} which occur during first n trials.

$$
\begin{aligned}
& P\left(S_{n}=k\right)=P\left(H_{n}=k\right) \quad \forall k \\
& P\left(\frac{s_{n}}{n}>p+\epsilon\right) \\
& \leq \sum_{k \geq n(p+\epsilon)} P\left(H_{n}=k\right) \\
& P\left(H_{n}=k\right)=\binom{n}{k} p^{k} \quad q^{n-k}(q=1-p) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& p\left(\frac{s_{n}}{n}>p+\epsilon\right) \leq \sum_{k=m}^{n}\binom{n}{k} p^{k} q^{n-k}, \\
& m=|n(p+\epsilon)| \\
& \lambda>0, \quad e^{\lambda k} \geqslant e^{\lambda n(p+\epsilon)}, i f k \geqslant m
\end{aligned}
$$

So,

Binomial

$$
=\lambda k-\lambda p_{n}
$$

$$
\begin{aligned}
p\left(\frac{S_{n}}{n}>p+t\right) & \leqslant e^{-\lambda_{n} t}\left(p e^{\lambda^{2} q^{2}}+q e^{\left.\lambda^{2} p^{2}\right)^{n}}\right. \\
& \leqslant e^{\lambda^{2} n-\lambda_{n} t}
\end{aligned}
$$

Optimizing over λ, we obtain $\lambda^{*}=\frac{t}{2}$ and
$p\left(S_{n}>p+t\right) \leq e^{-n \epsilon^{2} / 4}$

$$
P\left(\frac{S_{n}}{n}>p+t\right) \leqslant e^{-n \epsilon / 4}
$$

So, $p\left(\frac{s_{n}}{n}>p+t\right) \rightarrow 0$ as $n \rightarrow \infty$.
Similarly,

$$
P\left(\frac{S_{n}}{n}<p-\epsilon\right) \leqslant e^{-n \epsilon^{2} / 4}
$$

\& hence $\rightarrow 0$ as $n \rightarrow \infty$

$$
\begin{gathered}
p\left(p-\epsilon \leq \frac{S_{n}}{n} \leq p+\epsilon, \forall n \geqslant m\right) \\
\rightarrow 1 \text { as } m \rightarrow \infty
\end{gathered}
$$

Lechure-9 Law of averages (conte)
Proof of $\quad e^{x} \leq x+e^{x^{2}}$

$$
\begin{aligned}
f(x) & =x+e^{x^{2}}-e^{x} \\
f^{\prime}(x) & =1+2 x e^{x^{2}}-e^{x} \\
f^{\prime \prime}(x) & =2 e^{x^{2}}+4 x^{2} e^{x^{2}}-e^{x} \\
& =2\left(1+2 x^{2}\right) e^{x^{2}}-e^{x} \\
& \geqslant e^{x}\left(2 e^{x^{2}-x}-1\right) \\
& \geqslant e^{x}\left(2 e^{-1 / 4}-1\right) \\
& >0
\end{aligned}
$$

$f^{\prime \prime}>0 \Rightarrow f$ is convex

$$
\begin{aligned}
f^{\prime}(0)=0 & \Rightarrow f \text { is minimized at } 0 \\
& \Rightarrow f(x) \geqslant f(0) \\
& \Rightarrow x+e^{x^{2}} \geqslant e^{x}
\end{aligned}
$$

Earlier theorem says, for a given, $\frac{S_{n}}{n}$ lies between p-f \& $p+t$ with high probability.

$$
\begin{aligned}
& A_{n}=\left\{p-\epsilon \leq \frac{S_{n}}{n} \leq p+\epsilon\right\} \\
& p\left(\bigcap_{n=m}^{\infty} A_{n}\right)
\end{aligned}
$$

Consider $\bigcup_{n=m}^{\infty} A_{n}^{C}$

$$
\begin{aligned}
& P\left(\bigcup_{n=m}^{\infty} A_{n}^{c}\right) \leq \sum_{n=m}^{n=m} P\left(A_{n}^{c}\right) \\
& \leq \sum_{n=m}^{\infty} 2 e^{-n \epsilon^{2} / 4} \\
& \underset{a, n \rightarrow \infty}{\infty} 0
\end{aligned}
$$

$$
P\left(p \in \subseteq \frac{S_{n}}{n} \leqslant p+\epsilon, \quad \forall n \geqslant m\right) \rightarrow 1
$$

Types of random variable::
(1) A $r, v . X$ is discrete if it takes values in some countable subset $\left.f x_{1}, x_{2}, \ldots\right\}$ of \mathbb{R}.
Discrete r, v, X has probability mos function $f: \mathbb{R} \rightarrow[0,1]$ given by $f(x)=P(x=x)$
Nofc: Distribution of a discecte rev. has jump discontinuities at x_{1}, x_{2}, \ldots $\&$ is a constant in between.
(2) A r.v. X is continuous if its distribution function can be exprased as

$$
F(x)=\int_{-\infty}^{x} f(u) d u, \forall x \in \mathbb{R},
$$

for some integrable function $f: \mathbb{R} \rightarrow(0, \infty)$.
f is the probability density function of x
Hew. (1) Check (*) is a valid distribution
(2) $P(x=x)=0$ for a continuous riv. X.

Random vectors:

For a r.v. X, we had $F_{X}(x)=P(X \leq x)$ For a pair (X, y) of r.V.S, one defines their joint distributions

$$
F_{x, y}(x, y)=P(x \subseteq x, y \subseteq y)
$$

In general, the joint distribution of a random vector $\left(X_{1}, \ldots X_{n}\right)$ is $P\left(x_{1} \leqslant x_{1}, \ldots, x_{n} \leqslant x_{n}\right)$

Lemma: The joint distribution $F_{x, y}$ of (x, y) satisfies
(1) $\lim _{x, y \rightarrow-\infty} F_{x, y}(x, y)=0$

$$
\operatorname{Lim}_{x, y \rightarrow \infty} F_{x, y}(x, y)=1
$$

(2) If $\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)$, then $\quad F_{x, y}\left(x_{1}, y_{1}\right) \leq F_{x, y}\left(x_{2}, y_{2}\right)$
(3) $F_{x, y}$ is continuous from the above

$$
\begin{gathered}
F_{x, y}(x+u, y+v) \rightarrow F_{x, y}(x, y) \\
\text { as } u, v\rfloor, O
\end{gathered}
$$

It may be seen without great difficulty that

$$
\operatorname{Lim}_{y \rightarrow \infty} F_{x, y}(x, y)=F_{x}(x)(=p(x \leq x))
$$

and

$$
\lim _{x \rightarrow \infty} F_{x, y}(x, y)=F_{y}(y)(=p(y \leqslant y))
$$

Note:
Given the joint distribution $F_{x, y}$, it is possible to find the marginals F_{x}, F_{y}.
The converse is not true inguinal.
Example
Flip a fair coin twice \& record the outcome es

$$
\left(X_{D_{C}} Y_{D}\right)
$$

Flip the coin once \& record the sane outcome twice

$$
\left(x_{L}, y_{L}\right)
$$

$X_{D}, Y_{D}, X_{L}, Y_{L}$ have the Same distribution

$$
\begin{aligned}
& P\left(X_{D}=Y_{D}=\text { heads }\right)=\frac{1}{4} \\
& P\left(Y_{C}=Y_{C}=\text { heads }\right)=\frac{1}{2}
\end{aligned}
$$

