
Two-Timescale Algorithms for Learning Nash Equilibria in
General-Sum Stochastic Games

H.L. Prasad†, Prashanth L.A.] and Shalabh Bhatnagar]

†Streamoid Technologies, Inc, INDIA, prasad@streamoid.com
]Indian Institute of Science, INDIA, {prashanth,shalabh}@csa.iisc.ernet.in

ABSTRACT
We consider the problem of finding stationary Nash equilibria (NE)
in a finite discounted general-sum stochastic game. We first gen-
eralize a non-linear optimization problem from [9] to a general N -
player game setting. Next, we break down the optimization prob-
lem into simpler sub-problems that ensure there is no Bellman er-
ror for a given state and an agent. We then provide a characteri-
zation of solution points of these sub-problems that correspond to
Nash equilibria of the underlying game and for this purpose, we
derive a set of necessary and sufficient SG-SP (Stochastic Game -
Sub-Problem) conditions. Using these conditions, we develop two
provably convergent algorithms. The first algorithm - OFF-SGSP -
is centralized and model-based, i.e., it assumes complete informa-
tion of the game. The second algorithm - ON-SGSP - is an online
model-free algorithm. We establish that both algorithms converge,
in self-play, to the equilibria of a certain ordinary differential equa-
tion (ODE), whose stable limit points coincide with stationary NE
of the underlying general-sum stochastic game. On a single state
non-generic game [12] as well as on a synthetic two-player game
setup with 810, 000 states, we establish that ON-SGSP consistently
outperforms NashQ [16] and FFQ [21] algorithms.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial Intel-
ligence]: Distributed Artificial Intelligence—Multiagent systems;
G.1.6 [Optimization]: Gradient methods

General Terms
Algorithms, Theory

Keywords
Stochastic games, multi agent reinforcement learning, Nash equi-
librium, two timescale stochastic approximation

1. INTRODUCTION
We consider a finite stochastic game (also referred to as Markov

game (cf. [21])) setting that evolves over discrete time instants. As
illustrated in Fig. 1, at each stage and in any given state x ∈ X , all
agents act simultaneously with an action vector a ∈ A(x) resulting
in a transition to the next state y ∈ X according to the transition
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Figure 1: Multi-agent RL setting

probability p(y|x, a) as well as a reward vector r(x, a). No agent
gets to know what the other agents’ actions are before selecting its
own action and the reward ri(x, a) obtained by any agent i in each
stage is dependent of both system state x (common to all agents)
and the aggregate action a (which includes other agents’ actions).
Each individual agent’s sole objective is maximization of his/her
value function (expected discounted sum of rewards). However,
note that the transition dynamics as well as the rewards depend
on the actions of all agents and hence, the dynamics of the game
is coupled and not independent. We assume that r(x, a) and the
action vector a picked is made known to all agents after every agent
i has picked his/her action ai, that is, we operate in a model-free
setting1. However, we do not assume that each agent knows other
agents’ policies, i.e., the distribution from which the actions are
picked.

The central concept of stability in a stochastic game is that of
a Nash equilibrium. At a Nash equilibrium point (with a corre-
sponding Nash strategy), each agent plays a best-response strategy
assuming all the other agents play their equilibrium strategies (see
Definition 2 for a precise statement). This notion of equilibrium
makes perfect sense in a game setting where agents do not have
any incentive to unilaterally deviate from the Nash strategies.

In [7, 9], it is established that finding the stationary NE of a
two-player discounted stochastic game is equivalent to solving an
optimization problem with a non-linear objective function and lin-
ear constraints. We extend this formulation to general N -player
stochastic games and observe that this generalization causes the
constraints to be non-linear as well. Previous approaches to solv-
ing the optimization problem have not been able to guarantee con-
vergence to global minimum, even for the case of N = 2. In this
light, our contribution is significant as we develop an algorithm to
1While the ON-SGSP algorithm that we propose is for this setting,
we also propose another algorithm - OFF-SGSP - that is model
based.



find the global minimum for any N ≥ 2 via the following steps:
1. First, we break down the main optimization problem into several
sub-problems. Each sub-problem can be seen as ensuring no Bell-
man error, for a particular state x ∈ X and agent i ∈ {1, . . . , N},
where X is the state space and N is the number of agents of the
stochastic game considered.
2. Second, we provide a characterization of solution points that cor-
respond to Nash equilibria of the underlying game. As a result, we
also derive a set of necessary and sufficient conditions, henceforth
referred to as SG-SP (Stochastic Game - Sub-Problem) conditions.
3. Third, using SG-SP conditions, we derive a descent direction that
avoids local minima. This is not a steepest descent direction, but
a carefully chosen descent direction specific to this optimization
problem, which ensures convergence only to points of global min-
ima that correspond to SG-SP points (and hence Nash strategies).
4. Finally, we propose algorithms that incorporate the aforemen-
tioned descent direction to ensure convergence to stationary NE of
the underlying game.

The algorithms that we propose are as follows:

OFF-SGSP. This is an offline, centralized and model-based scheme,
i.e., it assumes that the transition structure of the underlying
game is known.

ON-SGSP. This is an online, model-free scheme that is decentral-
ized, i.e., learning is localized to each agent with one instance
of ON-SGSP running on each agent. ON-SGSP only requires
that other agents’ actions and rewards are observed and not
their policies, i.e., maps from states to actions.

We make the assumption that for all strategies, the resulting Markov
chain is irreducible and positive recurrent. This assumption is com-
mon to the analysis of previous multi-agent RL algorithms as well
(cf. [15, 21])2. To the best of our knowledge, ON-SGSP is the
first model-free online algorithm that converges in self-play to sta-
tionary NE for any finite discounted general-sum stochastic game
where the aforementioned assumption holds.

As suggested in [6], two desirable properties of any multi-agent
learning algorithm are as follows:
(a) Rationality3: Learn to play optimally when other agents are sta-
tionary; and
(b) Self-play convergence: Converge to a Nash equilibrium assum-
ing all agents are using the same learning algorithm.
Our ON-SGSP algorithm can be seen to meet both the properties
mentioned above. However, unlike the repeated game setting in [6]
(and also in [8]), ON-SGSP solves discounted general-sum stochas-
tic games and possesses theoretical convergence guarantees as well.

The basic idea in both OFF-SGSP and ON-SGSP is to simulta-
neously update the value and policy tuples for any agent along two
timescales (with varying step-sizes) as follows:

Fast timescale. This performs policy evaluation, i.e., estimates the
value function using a temporal difference (TD) learning [30]
type update rule.

Slow timescale. This performs gradient descent for the policy us-
ing a descent direction that ensures convergence to a global
minimum of the optimization problem we mentioned earlier.

2For the case of stochastic games where there are multiple commu-
nicating classes of states or even transient states, a possible work-
around is to re-start the game periodically in a random state.
3The term rationality is not to be confused with its common inter-
pretation in economics parlance.

The formal proof of convergence requires considerable sophisti-
cation, as we base our approach on the ordinary differential equa-
tions (ODE) method for stochastic approximation [3]. While a few
previous papers in the literature have adopted this approach (cf.
[2],[32]), their results do not usually start with an algorithm that is
shown to track an ODE and instead, an ODE is reached first via
analysis and an approximate method is used to solve this ODE. On
the other hand, we adopt the former approach and show that both
OFF-SGSP and ON-SGSP converge using the following steps:
1. Using two-timescale stochastic approximation, we show that the
value and policy updates on the fast and slow timescales, converge
respectively to the limit points of a system of ODEs.
2. Next, we provide a simplified representation for the limiting set
of the policy ODE and use this to establish that the asymptotically
stable limit points of the policy ODE correspond to SG-SP points.
While the first step above uses a well-known result (Hirsch lemma)
for analysing stochastic approximation recursions, the techniques
used in the second step above are quite different from those used
previously. The latter step is crucial in establishing overall conver-
gence, as the strategy π corresponding to each stable limit gives a
stationary NE of the underlying general-sum discounted stochastic
game.

We demonstrate the practicality of our algorithms on two syn-
thetic two-player setups. The first is a single state non-generic
game adopted from [12] that contains two NEs (one pure, the other
mixed), while the second is a stick-together game with 810, 000
states (to the best of our knowledge, this cardinality is larger than
those considered for general-sum games in previous works). On
the first setup, we show that ON-SGSP always converges to NE,
while NashQ [16] and FFQ [21] do not in a significant number of
experimental runs. On the second setup, we show that ON-SGSP
outperforms NashQ and FFQ, while exhibiting a relatively quick
convergence rate - requiring approximately 21 iterations per state.

2. RELATED WORK
Various approaches have been proposed in literature for comput-

ing Nash equilibrium of general-sum discounted stochastic games
and we discuss some of them below.

Multi-agent RL. Littman [20] proposed a minimax Q-learning
algorithm for two-player zero-sum stochastic games. Hu and Well-
man [15],[16] extended the Q-learning approach to general-sum
games, but their algorithms do not possess meaningful convergence
guarantees. Friend-or-foe Q-learning (FFQ) [21] is a further im-
provement based on Q-learning and with guaranteed convergence.
However, FFQ converges to Nash only in restricted settings (See
conditions A and B in [21]). Moreover, the approaches in [15, 16]
require computation of Nash equilibria of a bimatrix game and that
in [21] requires solving a linear program, in each round of their al-
gorithms and this is a computationally expensive operation. In con-
trast, ON-SGSP does not require any such explicit equilibria com-
putation. In [34], the authors show that the traditional Q-learning
based approaches are not sufficient to compute Nash equilibria in
general-sum games4.

Policy hill climbing. This is a category of previous works that is
closely related to ON-SGSP algorithm that we propose. Important
references here include [6], [5], [8] and [33]. All these algorithms
are gradient-based, model-free and are proven to converge to NE
for stationary opponents in self-play. However, these convergence
guarantees are for repeated games only, i.e., the setting is a sin-
gle state stochastic game, where the objective is to learn the Nash

4We avoid this impossibility result by searching for both values and
policies instead of just values, in our proposed algorithms.



strategy for a stage-game (see Definition 1 in [8]) that is repeat-
edly played. On the other hand, we consider general-sum stochas-
tic games where the objective is to learn the best-response strategy
against stationary opponents in order to maximize the value func-
tion (which is an infinite horizon discounted sum). Further, we
work with a more general state space that is not restricted to be a
singleton.

Homotopy. In [13] (and also later in [14] and [4]), the authors
propose an algorithm, where a homotopic path between equilib-
rium points of N independent MDPs and the N player stochastic
game in question, is traced numerically. This, in turn, gives a Nash
equilibrium point of the stochastic game of interest. Their algo-
rithm is closely related to OFF-SGSP in the sense that both are
(i) offline and model-based as they assume complete information
(esp. the transition dynamics) about the game; and
(ii) the computational complexity for each iteration of both algo-
rithms grows exponentially with the number of agents N .
(iii) Further, both algorithms are proven to converge to stationary
NE, though their approach adopted is vastly different. OFF-SGSP
is a gradient descent algorithm designed to converge to the global
minimum of a nonlinear program, while the algorithm in [13] in-
volves a tracing procedure to find an equilibrium point.

Linear programming. In [22], the authors solve stochastic games
by formulating intermediate optimization problems, called Multi-
Objective Linear Programs (MOLPs). However, the solution con-
cept there is correlated equilibria and Nash points are a strict subset
of this class (and hence are harder to find). Also, the complexity of
their algorithm scales exponentially with the problem size.

Both homotopy and linear programming methods proposed in
[22] and [13] are tractable only for small sized problems. The com-
putational complexity of these algorithms may render them infeasi-
ble on large state spaced games. In contrast, ON-SGSP is a model-
free algorithm with a per-iteration complexity that is linear in N ,
allowing for practical implementations on large state game settings
(see Section 9 for one such example with a state space cardinality
= 810, 000). However, per-iteration complexity alone is not suffi-
cient to quantify the performance of an algorithm - see Remark 5
given later.

Rational learning. A popular algorithm with guaranteed con-
vergence to Nash equilibria in general-sum stochastic games is ra-
tional learning, proposed by [17]. In their algorithm, each agent i
maintains a prior on what he believes to be other agents’ strategy
and updates it in a Bayesian manner. Combining this with certain
assumptions of absolute continuity and grain of truth, the algorithm
there is shown to converge to NE. ON-SGSP operates in a similar
setting as that in [17], except that we do not assume the knowledge
of reward functions. ON-SGSP is a model-free online algorithm
and unlike [17], any agent’s strategy in ON-SGSP does not depend
upon Bayesian estimates of other agents’ strategies and hence, their
absolute continuity/grain of truth assumptions do not apply.

Evolutionary algorithm. In [1], the authors employ numeri-
cal methods in order to solve a system of ODEs and only establish
empirical convergence to NE for a group of randomly generated
games. In contrast, ON-SGSP is a model-free algorithm that is
provably convergent to NE in self-play. We also note that the sys-
tem of ODEs given in [1] (also found in [32, pp. 189]) turns out to
be similar to a portion of the ODEs that are tracked by ON-SGSP.

REMARK 1. In [26] and [27], the authors question if Nash
equilibrium is a useful solution concept for general-sum games.
However, if we are willing to concede that prescriptive, equilib-
rium agenda is indeed useful for stochastic games, then we believe
our work is theoretically significant. Our ON-SGSP algorithm is a
prescriptive, co-operative learning algorithm that observes a sam-

ple path from the underlying game and converges to stationary NE.
To the best of our knowledge, this is the first algorithm to do so,
with proven convergence.

3. FORMAL DEFINITIONS
A stochastic game can be seen to be an extension of the single-

agent Markov decision process. A discounted reward stochastic
game is described by a tuple < N,X ,A, p, r, β >, where N
represents the number of agents, X denotes the state space and
A = ∪x∈XA(x) is the aggregate action space, where A(x) =
N∏
i=1

Ai(x) is the Cartesian product of action spaces (Ai(x)) of in-

dividual agents when the state of the game is x ∈ X . We assume
both state and action spaces to be finite. Let p(y|x, a) denote the
probability of going from the current state x ∈ X to y ∈ X when
the vector of actions a ∈ A(x) (of the N players) is chosen and
let r(x, a) =

〈
ri(x, a) : i = 1, 2, . . . , N

〉
denote the vector of re-

ward functions of all agents when the state is x ∈ X and the vector
of actions a ∈ A(x) is chosen. Also, 0 < β < 1 denotes the
discount factor that controls the influence of the rewards obtained
in the future on the agents’ strategy (see Definition 1 below).

Notation. 〈· · · 〉 represents a column vector and 1m is a vector
of ones withm elements. The various constituents of the stochastic
game considered are denoted as follows:
1. Action: a =

〈
a1, a2, . . . , aN

〉
∈ A(x) is the aggregate action,

a−i is the action of all agents except i and A−i(x) :=
∏
j 6=i
Aj(x)

is the set of feasible actions in state x ∈ X of all agents except i.
2. Policy:5 πi(x, ai) is the probability of picking action ai ∈
Ai(x) by agent i in state x ∈ X , πi(x) =

〈
πi(x, ai) : ai ∈ Ai(x)

〉
is the randomized policy vector in state x ∈ X for the agent i, πi =〈
πi(x) : x ∈ X

〉
, π =

〈
πi : i = 1, 2, . . . , N

〉
is the strategy-tuple

and π−i =
〈
πj : j = 1, 2, . . . , N, j 6= i

〉
is the strategy-tuple of

all agents except agent i. We focus only on stationary strategies in
this paper, as suggested by Theorem 3.
3. Transition Probability:

Let π(x, a) =
N∏
i=1

πi(x, ai) and π−i(x, a−i) =
N∏

j=1,j 6=i
πj(x, aj).

Then, the (Markovian) transition probability from state x ∈ X to
state y ∈ X when each agent i plays according to its randomized
strategy πi can be written as:

p(y|x, π) =
∑

a∈A(x)

p(y|x, a)π(x, a).

4. Reward: ri(x, a) is the single-stage reward obtained by agent i
in state x ∈ X , where a ∈ A(x) is the aggregate action taken.

DEFINITION 1. (Value function) The value function is the ex-
pected return for any agent i ∈ {1, 2, . . . , N} and is defined as

viπ(s0) = E

∑
t

βt
∑

a∈A(x)

(
ri(st, a)π(st, a)

) . (1)

Given the above notion of the value function, the goal of each agent
is to find a strategy that achieves a Nash equilibrium. The latter is
defined as follows:

DEFINITION 2. (Nash Equilibrium) A stationary Markov strat-
egy π∗ =

〈
π1∗, π2∗, . . . , πN∗

〉
is said to be Nash if

viπ∗(s) ≥ vi〈πi,π−i∗〉(s), ∀π
i, ∀i,∀s ∈ X .

5We use the terms policy and strategy interchangeably in the paper.



The corresponding equilibrium of the game is said to be Nash equi-
librium.

Since we consider a discounted stochastic game with a finite state
space, we have the following well-known result that ensures the
existence of stationary equilibrium:

THEOREM 3. Any finite discounted stochastic game has an equi-
librium in stationary strategies.

We shall refer to such stationary randomized strategies as Nash
strategies. The reader is referred to [10], [31], [28] for a proof
of Theorem 3.

4. A GENERALIZED OPTIMIZATION PROB-
LEM

Basic idea. Using dynamic programming the Nash equilibrium
condition in (2) can be written as: ∀x ∈ X , ∀i = 1, 2, . . . , N,

viπ∗(x) = max
πi(x)∈∆(Ai(x))

{
Eπi(x)Q

i
π−i∗(x, ai)

}
, (2)

where

Qiπ−i(x, a
i) = Eπ−i(x)

ri(x, a) + β
∑

y∈U(x)

p(y|x, a)vi(y)

 ,
represents the marginal value associated with picking action ai ∈
Ai(x), in state x ∈ X for agent i, while other agents act according
to π−i. Also, ∆(Ai(x)) denotes the set of all possible probability
distributions over Ai(x). The basic idea is to model the objective
such that the value function is correct w.r.t. agents’ strategies, while
add a constraint to ensure that a feasible solution to the problem
corresponds to Nash equilibrium.

Objective. A possible optimization objective would be

f i(vi, π) =
∑
x∈X

(
vi(x)− EπiQ

i
π−i(x, a

i)
)
,

which will have to be minimized over all possible policies πi ∈
∆(Ai(x)). But Qiπ−i(x, a

i), by definition, is dependent on strate-
gies of all other agents. So, an isolated minimization of f i(vi, πi)
would really not make sense and we consider the aggregate objec-

tive f(v, π) =
N∑
i=1

f i(vi, π). This objective which is minimized

over all possible policies πi ∈ ∆(Ai(x)) of all agents. Thus, we
have an optimization problem with objective as f(v, π) along with
the natural constraints ensuring that the policy vectors πi(x) re-
main as probabilities over all possible actions Ai(x) for all states
x ∈ X and for all agents i = 1, . . . , N .

Constraints. Notice that an optimization problem with the ob-
jective discussed above has only a set of simple constraints ensuring
that π remains a valid strategy. However, this is not sufficient to ac-
curately represent Nash equilibria of the underlying game. Here,
we look at a possible set of additional constraints which might
make the optimization problem more useful. Note that the term
being maximized in equation (2), i.e., EπiQiπ−i(x, a

i), represents
a convex combination of the values of Qiπ−i(x, a

i) over all possi-
ble actions ai ∈ Ai(x) in a given state x ∈ X for a given agent i.
Thus, it is implicitly implied that

Qiπ−i(x, a
i) ≤ viπ∗(x), ∀ai ∈ Ai(x), x ∈ X , i = 1, 2, . . . , N.

Formally, the optimization problem for any N ≥ 2 is given below:

min
v,π

f(v, π) =
N∑
i=1

∑
x∈X

(
vi(x)− EπiQiπ−i(x, a

i)
)

s.t.

(a)πi(x, ai) ≥ 0, ∀ai ∈ Ai(x), x ∈ X , i = 1, 2, . . . , N,

(b)
N∑
i=1

πi(x, ai) = 1,∀x ∈ X , i = 1, 2, . . . , N.

(c)Qiπ−i(x, a
i) ≤ vi(x),∀ai ∈ Ai(x), x ∈ X , i = 1, 2, . . . , N.


(3)

In the above, 3(a)–3(b) ensure that π is a valid policy, while 3(c) is
necessary for any valid policy to be a NE of the underlying game.
Any feasible solution to this problem which makes f(v, π) = 0
corresponds to a Nash equilibrium of the underlying game. A proof
of this fact for N = 2 is in [9, Theorem 3.8.2], while the case of a
general N ≥ 2 can be handled in a similar fashion.

REMARK 2. (Difficulty in solving (3)) In [9], a non-linear op-
timization problem has been formulated for zero-sum stochastic
games with two agents (N = 2). An associated result (Theorem
3.9.4, page 141, in [9]) states that every local minimum of that op-
timization problem is also a global minimum. Thus, simple steepest
descent algorithms are enough to solve for Nash equilibrium strate-
gies in zero-sum stochastic games with two agents. However, this
is not the case for general-sum stochastic games, that is, there can
be a local minimum which is not a global minimum. This implies
that a simple gradient search algorithm which uses the steepest de-
scent direction may not converge to Nash equilibrium. In addition
to the two-player setting, this remark holds true for general-sum
stochastic games with N ≥ 3 as well.

4.1 Sub-problems for each state and agent
We form sub-problems from the main optimization problem (3)

along the lines of [25], for each state x ∈ X and each agent
i ∈ {1, 2, . . . , N}. The sub-problems are formed with the objec-
tive of ensuring that there is no Bellman error (see gix,z(θ) below).
For any x ∈ X , z = 1, 2, . . . , |Ai(x)| and i ∈ {1, 2, . . . , N}, let
θ :=

〈
vi, π−i(x)

〉
denote the value-policy tuple and

gix,z(θ) := Qiπ−i(x, a
i
z)−vi(x) denote the Bellman error. Further,

let pz := πi(x, aiz) and p =
〈
pz : z = 1, 2, . . . , |Ai(x)|

〉
. Then,

the sub-problems are formulated as follows:

min
θ,p

hx(θ, p) =

|Ai(x)|∑
z=1

pz
[
−gix,z(θ)

]
(4)

s.t. gix,z(θ) ≤ 0,−pz ≤ 0, for z = 1, 2, . . . , |Ai(x)|,

and
∑
z

pz = 1.

5. STOCHASTIC GAME - SUB-PROBLEM
(SG-SP) CONDITIONS

DEFINITION 4 (SG-SP POINT). A point (v∗, π∗) of the opti-
mization problem (3) is said to be an SG-SP point if it is a feasible
point of (3) and for every sub-problem, i.e., for all x ∈ X and
i ∈ {1, 2, . . . , N}

p∗zg
i
x,z(θ

∗) = 0, ∀z = 1, 2, . . . , |Ai(x)|. (5)

The above conditions, which define a point to be an SG-SP point,
are called SG-SP conditions. The connection between SG-SP points
and Nash equilibria can be seen intuitively as follows:
(i) The objective f(v∗, π∗) in (3) can be expressed as a summation
of terms of the form p∗z[−gix,z(θ∗)] over z = 1, 2, . . . , |Ai(x)| and



over all sub-problems. Condition (5) suggests that each of these
terms is zero which implies f(v∗, π∗) = 0.
(ii) The objective of the sub-problem is to ensure that there is no
Bellman error, which in turn implies that the value estimates v∗ are
correct with respect to the policy π∗ of all agents.

THEOREM 5 (NASH⇔ SG-SP). A strategy π∗ is Nash if and
only if (v∗, π∗) for the corresponding optimization problem (3) is
an SG-SP point.

PROOF.
SG-SP⇒ Nash

The objective function value f(v∗, π∗) of the optimization prob-
lem (3) can be expressed as a summation of terms of the form
p∗z[−gix,z(θ∗)] over z = 1, 2, . . . ,m and over all sub-problems.
Condition (5) suggests that each of these terms is zero which im-
plies f(v∗, π∗) = 0. From [9, Theorem 3.8.2, page 132], since
(v∗, π∗) is a feasible point of (3) and f(v∗, π∗) = 0, (v∗, π∗) cor-
responds to Nash equilibrium of the underlying stochastic game.
Nash⇒ SG-SP

From [9, Theorem 3.8.2, page 132], if a strategy π∗ is Nash,
then a feasible point (v∗, π∗) exists for the corresponding optimiza-
tion problem (3), where f(v∗, π∗) = 0. From the constraints of
(3), it is clear that for a feasible point, p∗z[−gix,z(θ∗)] ≥ 0, for
z = 1, 2, . . . ,m, for every sub-problem. Since the sum of all
these terms, i.e., f(v∗, π∗), is zero, each of these terms is zero,
i.e., (v∗, π∗) satisfies (5). Thus, (v∗, π∗) is an SG-SP point.

REMARK 3. In [25], the authors consider a similar optimiza-
tion problem as (3) for the case of two agents, i.e., N = 2 and de-
rive a set of verifiable necessary and sufficient conditions that they
call KKT-SP conditions. Our SG-SP conditions are for N -player
stochastic games, for any N ≥ 2. We observe that the simpler and
more general (for any N ) SG-SP conditions can be used for Nash
equilibria as compared to KKT-SP conditions because
(i) every KKT-SP point is also a SG-SP point6 and
(ii) In order to be equivalent to Nash points, KKT-SP conditions re-
quire the following additional assumption: For each sub-problem{
∇θgix,z(θ∗) : z = 1, 2, . . . ,m

}
is a set of linearly independent

vectors. In contrast, SG-SP conditions do not impose any such lin-
ear independence requirement to be equivalent to Nash points.

6. OFF-SGSP: OFFLINE, MODEL-BASED
The basic idea. OFF-SGSP is a two timescale scheme that

(i) estimates the value function v using value iteration; and
(ii) updates the policy in the descent direction so as to ensure con-
vergence to an SG-SP point.
As mentioned before, OFF-SGSP is a model-based algorithm and
the transition dynamics and reward structure of the game are used
for both steps above.

Update rule. Along two timescales, OFF-SGSP updates the
value-policy tuple (v, π) as follows: For all x ∈ X and ai ∈
Ai(x),

πin+1(x, ai) = Γ
(
πin(x, ai) (6)

−b(n)
√
πin(x, ai)

∣∣∣gix,ai(vin, π−in )
∣∣∣ sgn

(
∂f(vn, πn)

∂πi

))
,

vin+1(x)=vin(x) + c(n)
∑

ai∈Ai(x)

πin(x, ai)gix,ai(v
i
n, π

−i
n ), (7)

6Owing to space limitations, we do not provide proof of equiva-
lence between KKT-SP and SG-SP here.

where gix,ai(v
i, π−i) := Qiπ−i(x, a

i)−vi(x) denotes the Bellman
error, f(v, π) is the objective function in (3) and Γ is a projection
operator that ensures that the updates to π stay within the simplex

D = {(d1, . . . , d|Ai(x)|) | di ≥ 0,∀i = 1, . . . , |Ai(x)|,
|Ai(x)|∑
j=2

dj ≤

1}. sgn(·) is a continuous version of the sign function and projects
any x, outside of a very small interval around 0, to ±1 according
to the sign of x (see Remark 6 for a precise definition). Continuity
is a technical requirement to ensure convergence. The following
assumption on the step-sizes ensures that the π-recursion (6) pro-
ceeds on a slower timescale in comparison to the v-recursion (7):

ASSUMPTION 1. The step-sizes {b(n)}, {c(n)} satisfy
∞∑
n=1

b(n)=

∞∑
n=1

c(n)=∞,
∞∑
n=1

(
b2(n) + c2(n)

)
<∞, b(n)

c(n)
→ 0.

Justification for descent direction. The following proposition
proves that the decrement for the policy in (6) is a valid descent
direction for the objective function f(·, ·) in (3).

PROPOSITION 6. For each i = 1, 2, . . . , N, x ∈ X , ai ∈ Ai(x),

we have that −
√
πi(x, ai)

∣∣∣gix,ai(vi, π−i)∣∣∣ sgn

(
∂f(v, π)

∂πi

)
is a

non-ascent, and in particular a descent direction if√
πi(x, ai)

∣∣∣gix,ai(vi, π−i)∣∣∣ 6= 0, in the objective f(v, π) of (3).

PROOF. (Sketch) The objective f(v, π) can be rewritten as

f(v, π) =

N∑
i=1

∑
x∈X

∑
ai∈Ai(x)

{
πi(x, ai)

[
−gix,ai(v

i, π−i)
]}

.

For an ai ∈ Ai(x) for some x ∈ X and i ∈ {1, 2, . . . , N}, let

π̂i(x, ai)=πi(x, ai)−δ
√
πi(x, ai)

∣∣∣gix,ai (vi, π−i)
∣∣∣ sgn

(
∂f(v, π)

∂πi

)
,

for a small δ > 0. Let π̂ be the same as π except that action ai

is picked as defined above. Then by a Taylor series expansion of
f(v, π̂) till the first order term, we obtain

f(v, π̂) = f(v, π) + δ
[
−
√
πi(x, ai)

∣∣∣gix,ai(vi, π−i)∣∣∣]
×sgn

(
∂f(v, π)

∂πi

)
∂f(v, π)

∂πi(x, ai)
+ o(δ).

The rest of the proof amounts to showing that the second term in
the expansion above is ≤ 0. This can be inferred as follows:

−
√
πi(x, ai)

∣∣∣gix,ai(vi, π−i)∣∣∣ sgn

(
∂f(v, π)

∂πi

)
∂f(v, π)

∂πi

=−
√
πi(x, ai)

∣∣∣gix,ai(vi, π−i)∣∣∣ ∣∣∣∣∂f(v, π)

∂πi

∣∣∣∣ ≤ 0,

and in particular < 0 if
√
πi(x, ai)

∣∣∣gix,ai(vi, π−i)∣∣∣ 6= 0.

Thus, for ai ∈ Ai(x), x ∈ X and i ∈ {1, 2, . . . , N} where
πi(x, ai) > 0 and gix,ai(v

i, π−i) 6= 0, f(v, π̂) < f(v, π) for
small enough δ, while for the remaining cases, f(v, π̂) ≈ f(v, π).
Note that if f(v, π) > 0 which implies that solution is not yet
achieved, there is at least one former case. The claim follows.

7. ON-SGSP: ONLINE AND MODEL-FREE
Though OFF-SGSP is suitable for only off-line learning of Nash

strategies, it is amenable for extension to the general (on-line) multi-
agent RL setting where neither the transition probability p nor the
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Figure 2: ON-SGSP’s decentralized online learning model

reward function r are explicitly known. ON-SGSP operates in the
latter model-free setting and uses the stochastic game as a genera-
tive model.

As illustrated in Fig. 2, every iteration in ON-SGSP represents
a discrete-time instant of transaction with the environment, where
each agent presents its action to the environment and observes the
next state and the reward vector of all agents. The learning is local-
ized to each agent i ∈ {1, 2, . . . , N}, making the setting decen-
tralized. This is in the spirit of earlier multi-agent RL approaches
(cf. [15], [16] and [21]).

Algorithm 1 presents the complete structure of ON-SGSP along
with update rules for the value and policy parameters. The algo-
rithm operates along two timescales as follows:

Faster timescale. Each agent estimates its own value function as
well as that of other agents, using a temporal-difference (TD)

[29] type update in (8). Moreover, the gradient
∂f(vn, πn)

∂πi(x, ai)
is also estimated in an online manner via the ξ-recursion in
(9). Note that the ξ-recursion is made necessary due to the
fact that ON-SGSP operates in a model-free setting.

Slower timescale. The policy update is similar to OFF-SGSP, ex-
cept that the estimates of value v and gradient ξ are used to
derive the decrement in (10).

Note that, since ON-SGSP operates in a model-free setting, both
the value and policy updates are different in comparison to OFF-
SGSP. The value v update (8) on the faster timescale can be seen
to be the stochastic approximation variant of value iteration and it
converges to the same limit as in OFF-SGSP, without knowing the
model. On the other hand, the policy update (10) on the slower
timescale involves a decrement that is motivated by the descent di-
rection suggested by Proposition 6.

A few remarks about ON-SGSP are in order.

REMARK 4. (Coupled dynamics) In Algorithm 1, an agent i
observes the rewards of other agents and uses this information to
compute the respective value estimates. These quantities are then
used to derive the decrement in the policy update (10). This is
meaningful in the light of the impossibility result of [11], where the
authors show that in order to converge to a Nash equilibrium each
agent’s strategy needs to factor in the rewards of the other agents.

REMARK 5. (Complexity) The per-iteration complexity of
OFF-SGSP grows exponentially with the number of agentsN . Note
that the exponential behaviour in N appears because of the com-
putation of expectation over possible next states and strategies of
agents. This computation is avoided in ON-SGSP, whose per-iteration
complexity is linear in N . In comparison, the stochastic tracing
procedure in [13] also has an exponential dependency on N in its
per-iteration complexity.

Algorithm 1 ON-SGSP

Input: Starting state x0, initial point θi0 = (vi0, π
i
0), step-sizes

{b(n), c(n)}n≥1, number of iterations to run M >> 0.
Initialization: n← 1, θi ← θi0, x← x0

for n = 1, . . . ,M do
Play action ain := πin(xn) along with other agents in current

state xn ∈ X
Obtain next state yn ∈ X
Observe reward vector rn =< r1

n, . . . , r
N
n >

Value Update: For j = 1, . . . , N

vjn+1(xn)=vjn(xn)+c(n)
(
rjn+βvjn(yn)−vjn(xn)

)
(8)

Gradient Estimation:
ξin+1(xn, a

i
n) = ξin(xn, a

i
n) (9)

+ c(n)

( N∑
j=1

(
rjn + βvjn(yn)− vjn(xn)

)
− ξin(xn, a

i
n)

)
Policy Update:
πin+1(xn, a

i
n) = Γ(πin(xn, a

i
n)− b(n)

√
πin(xn, ain)

×
∣∣∣rin + βvin(yn)− vin(xn)

∣∣∣ sgn(−ξin+1(xn, a
i
n))) (10)

end for

The per-iteration complexity alone is not sufficient and an analy-
sis of the number of iterations required is necessary to complete the
picture7. On the other hand, convergence rate results for general
multi-timescale stochastic approximation schemes are not avail-
able, see however, [18] for rate results of two timescale schemes
with linear recursions.

8. OUTLINE OF CONVERGENCE PROOF
Owing to space limitations, we provide all the theoretical con-

vergence claims for our algorithms in the following and sketch the
proofs for the important ones to explain the main proof ideas. The
detailed proof of convergence is available in [24].

Step 1: Analysis of v-recursion
We first show that the updates of v, that are on the faster time-scale,
converge to a limit point of the following system of ODEs:∀x ∈
X , i = 1, 2, . . . , N,

dvi(x)

dt
= ri(x, π) + β

∑
y∈U(x)

p(y|x, π)vi(y)− vi(x), (11)

where π (that is updated on the slower timescale) is time-invariant.
Let Riπ =

〈
ri(x, π), x ∈ X

〉
be a column vector of rewards to

agent i and Pπ = [p(y|x, π), x ∈ X , y ∈ X ] be the transition
probability matrix, both for a given π.

LEMMA 7. The system of ODEs (11) has a unique globally
asymptotically stable limit point given by

viπ = [I − βPπ]−1 Riπ, i = 1, 2, . . . , N. (12)

THEOREM 8. For a given π, i.e., with πin ≡ πi, updates of v in
OFF-SGSP/ON-SGSP satisfy vn → vπ almost surely, as n→∞,
where vπ is the globally asymptotically stable equilibrium point of
the system of ODEs (11).

7A well-known complexity result [23] establishes that finding the
Nash equilibrium of a two-player game is PPAD-complete.



While the above claim is identical for both OFF-SGSP/ON-SGSP,
the proofs are quite different. In the former case, it amounts to
proving value iteration converges (a standard result in dynamic pro-
gramming), while the latter case amounts to proving a stochastic
approximation variant of value iteration converges (also a standard
result in RL).

Step 2: Analysis of π-recursion
Using the converged values vπn corresponding to the policy πn on
the slower time-scale, we show that updates of π converge to the
limit set, say K, of the following system of ODEs:
For all ai ∈ Ai(x), x ∈ X , i = 1, 2, . . . , N,

dπi(x, ai)

dt
=Γ̄

(√
πi(x, ai)

∣∣∣gix,ai (viπ , π
−i)
∣∣∣ sgn

(∂f(vπ , π)

∂πi

))
,

(13)

where Γ̄ is a projection operator that restricts the evolution of the
above ODE to the simplex D.

THEOREM 9. Assume that the ODE (13) has a compact set K
as its set of asymptotically stable equilibrium points. Then, the up-
dates of π, in OFF-SGSP/ON-SGSP, converge to K, almost surely.

PROOF. (Sketch)
OFF-SGSP

The updates of π given by (6) on the slower time-scale {b(n)}
can be rewritten as: For all ai ∈ Ai(x), x ∈ X and i = 1, 2, . . . , N ,

πin+1(x, ai) =Γ
(
πin(x, ai)− b(n)

√
πin(x, ai)

∣∣∣gix,ai(viπn
, π−in )

∣∣∣
×sgn

(
∂f(vπn , πn)

∂πi

)
+ b(n)χn

)
, (14)

where χn is an o(1) error term that goes to zero as n → ∞. The
above recursion can be viewed as an Euler discretization of the sys-
tem of ODEs (13) with an extra error term χn which however (as
mentioned before) is o(1). Using a standard stochastic approxima-
tion argument, see [19, pp. 191-196], it is easy to see that updates
of π in OFF-SGSP converge to the set K.
ON-SGSP8

In lieu of the timescale separation between π and v recursions,
the fact that Theorem 8 holds for ON-SGSP as well and also the
claim regarding ξ-recursion above, one can re-write the update of
π in ON-SGSP in a manner similar to (14). However, in the case
of ON-SGSP, an additional error term will be introduced owing
to the gradient estimating ξ-recursion. This error term is χ̂n =√
πin(x, ai)

[∣∣∣ĝix,ai ∣∣∣− ∣∣∣gix,ai(viπn
, π−in )

∣∣∣]. We now claim∥∥∥∥ξin(x, ai)−
(
−∂f(vn, πn)

∂πi(x, ai)

)∥∥∥∥→ 0 as n→∞ a.s.

In lieu of the above, χ̂n = o(1). The rest of the proof follows in a
similar manner as OFF-SGSP.

REMARK 6. Using the normal sgn() function is problematic
for the analysis, as sgn() is discontinuous. We workaround this
by employing sgn(), which is a continuous extension of sgn(), i.e.,
it projects any x outside of a small interval around 0 (say [−ζ, ζ]
for some ζ > 0 small) to either +1 or −1 as sgn() would do and
within the interval [−ζ, ζ], one may choose sgn(x) = x or any
other continuous function with compatible end-point values. One
could choose ζ arbitrarily close to 0, making sgn practically very
close to sgn.
8We let {n} denote a subsequence of ON-SGSP iterations when
the state is x.

Since sgn can result in the value 0, one can no longer conclude
that
√
π∗g = 0 for the points in the equilibrium set K. Note that

the former condition (coupled with feasibility) implies it is an SG-
SP point. A naive fix would be to change OFF-SGSP/ON-SGSP to
repeat an action if sgn(·) returned 0. Henceforth, we shall assume
that there are no such sgn induced spurious limit points in the set
K.

LEMMA 10. For all ai ∈ Ai(x), x ∈ X and i = 1, 2, . . . , N ,

π ∈ K ⇒ π ∈ L and
√
πi(x, ai)gix,ai(v

i
π, π

−i) = 0, (15)

whereL =
{
π|π(x) is a probability vector over Ai(x),∀x ∈ X

}
.

Step 3: Overall convergence to an SG-SP point

Let G =
{
π ∈ L

∣∣∣∣gix,ai(viπ, π−i) ≤ 0,∀ai ∈ Ai(x), x ∈ X ,

i = 1, 2, . . . , N
}

denote the set of all feasible solutions of (3). The
limit set K of (13) can be partitioned using the feasible set G as
K = K1 ∪K2 where K1 = K ∩G and K2 = K \K1.

In the following lemma, we show that the set K2 is the set of
locally unstable equilibrium points of (13).

LEMMA 11. All π∗ ∈ K2 are unstable equilibrium points of
the system of ODEs (13).

PROOF. For any π∗ ∈ K2, there exists some ai ∈ Ai(x), x ∈
X , i ∈ {1, 2, . . . , N}, such that gix,ai(v

i
π, π

−i) > 0 and πi(x, ai) =
0 because K2 is not in the feasible set G. Let
Bδ(π

∗) = {π ∈ L| ‖π − π∗‖ < δ}. Choose δ > 0 such that
gix,ai(v

i
π, π

−i) > 0 for all π ∈ Bδ(π
∗) \ K and consequently

∂f(vπ, π)

∂πi
< 0. So,

Γ̄

(
−
√
πi(x, ai)

∣∣∣gix,ai(viπ, π−i)∣∣∣ sgn

(
∂f(vπ, π)

∂πi

))
> 0

for any π ∈ Bδ(π∗)\K which suggests that πi(x, ai) will increase
when moving away from π∗. Thus, π∗ is an unstable equilibrium
point of the system of ODEs (13).

THEOREM 12. All asymptotically stable limit points of the sys-
tem of ODEs (13) correspond to SG-SP (and hence Nash) points of
the underlying discounted stochastic game.

REMARK 7. Note that from the foregoing, the set K comprises
of both stable and unstable attractors and in principle from Lemma
11, the iterates πin governed by (13) can converge to an unstable
equilibrium. In our experiments, for every τ iterations, we com-

puted a δ-offset policy π̂i(x, ai) =
π(x, ai) + δ∑

ai∈Ai(x)

(π(x, ai) + δ)
, ai ∈

Ai(x). Using the above policy ensures numerically that as n →
∞, πn 9 π∗ ∈ K2, implying convergence of OFF-SGSP/ON-
SGSP policies to the stable set K1. In principle, one may avoid
unstable equilibria by including additional noise in the stochastic
iterates (see Chapter 4 of [3]). The δ-offset in the policy plays the
role of the aforementioned additional noise.

9. SIMULATION EXPERIMENTS
We test ON-SGSP, NashQ [16] and FFQ [21] algorithms on two

general-sum game setups. We implemented Friend Q-learning vari-
ant of FFQ, as each iteration of its Foe Q-learning variant involves
a computationally intensive operation to solve a linear program.



Player 2 →
a1 a2 a3Player 1

↓

a1 1, 0 0, 1 1, 0

a2 0, 1 1, 0 1, 0

a3 0, 1 0, 1 1, 1

(a) Payoff matrix.

NashQ FFQ (Friend Q) ON-SGSP
Oscillate or converge

95% 40% 0%to non-Nash strategy

Converge to (0.5, 0.5, 0) 2% 0% 99%

Converge to (0, 0, 1) 3% 60% 1%

(b) Results from 100 simulation runs.

Figure 3: Payoff matrix and simulation results for a single state non-generic two-player game

Single State (Non-Generic) Game. This is a simple two-player
game adopted from [12], where the payoffs to the individual agents
are given in Table 3a. In this game, a strategy that picks a3 (de-
noted by (0, 0, 1)) constitutes a pure-strategy NE, while a strat-
egy that picks either a1 or a2 with equal probability (denoted by
(0.5, 0.5, 0)) is a mixed-strategy NE.

We conduct a stochastic game experiment where each at each
stage, the payoffs to the agents are according to Table 3a and the
payoffs accumulate with a discount β = 0.8. We performed 100
experimental runs, with each run corresponding to length of 10000
stages. The aggregated results from this experiment are presented
in From Fig. 3b. It is evident that NashQ oscillates and does not
converge to NE in most of the runs, while Friend Q-learning con-
verges to a non-Nash strategy tuple in most of the runs. On the
other hand, ON-SGSP converges to NE in all the iterations.

Stick Together Game (STG). Here two participating agents lo-
cated on a rectangular terrain would like to come together and stay
close. The state specifies the location of both agents on a rectangu-
lar grid of size M ×M . The actions available to each agent are to
either move to one of the neighbouring cells or stay in the current
location. The reward for an agent i = 1, 2 for state (x1, x2) and
action (a1, a2) is defined as ri(xi, ai) = 1 − e‖x

1−x2‖1 . Thus,
the reward is zero if the distance between the two agents is zero
and a (negative) monotonically decreasing function otherwise. The
transition probability function is defined so that it has the highest
value towards the next state to which the action points to.

Fig. 4a shows the evolution of the objective function f as a func-
tion of the number of iterations for OFF-SGSP. Note that f should
go to zero for a Nash equilibrium point.

Fig. 4b shows the evolution of the distance dn (in `1 norm) be-
tween the agents for a STG game where M = 30, which corre-
sponds to |X | = 810, 000. Notice that the results are shown only
for the model-free algorithms: ON-SGSP, NashQ and FFQ. This is
because OFF-SGSP and even the homotopy methods [13] have ex-
ponential blow up with M in their computational complexity and
hence, are practically infeasible for STG with M = 30.

From Fig. 4b, it is evident that following the ON-SGSP strategy,
the agents converge to a 4 × 4-grid within the 30 × 30-grid. For
achieving this result, ON-SGSP takes about 2× 107 iterations, im-
plying an average 2 × 107/|X | ≈ 21 iterations per state. While
NashQ gets the agents to a 8 × 8-grid, it is after a large number
of iterations (≈ 5 × 107). Moreover, from Fig. 4b it is clear that
NashQ has not stabilized its strategy in the end. Friend Q-learning
gets the agents to 8 × 8-grid, by driving them to one the corners
of the 30 × 30-grid. While it takes a short number of iterations
(≈ 30000) to achieve this, FFQ does not explore the state space
well and hence, FFQ’s strategy corresponding to the rest of the grid
(excluding the corner to which it takes the agents) is not Nash.
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Figure 4: Performance of our algorithms for STG

Runtime performance. We observed that to complete 5 × 107

iterations, ON-SGSP took ≈ 42 minutes, while NashQ [16] took
nearly 50 hours, as it involves solving for Nash equilibria of a bi-
matrix game in each iteration. Friend Q-learning variant of FFQ
[21] took ≈ 33 minutes (Foe Q-learning variant of FFQ was not
implemented owing to its high per-iteration complexity).

10. CONCLUSIONS
In this paper, we derived necessary and sufficient SG-SP condi-

tions to solve a generalized optimization problem and established
their equivalence with Nash strategies. We derived a descent (not
necessarily steepest) direction that avoids local minima. Incor-
porating this, we proposed an online model-free algorithm ON-
SGSP with guaranteed convergence. Synthetic experiments on two
general-sum game setups show that ON-SGSP outperforms two
well-known multi-agent RL algorithms.
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