
Noname manuscript No.
(will be inserted by the editor)

Stochastic approximation for speeding up LSTD (and LSPI)

Prashanth L.A.† · Nathaniel Korda] · Rémi
Munos†

Abstract We propose a stochastic approximation (SA) based method with randomisation of
samples for policy evaluation using the least squares temporal difference (LSTD) algorithm.
Our method results in an O(d) improvement in complexity in comparison to regular LSTD,
where d is the dimension of the data. We provide convergence rate results for our proposed
method, both in high probability and in expectation. Moreover, we also establish that using
our scheme in place of LSTD does not impact the rate of convergence of the approximate
value function to the true value function and hence a low-complexity LSPI variant that uses
our SA based scheme has the same order of the performance bounds as that of regular LSPI.
These rate results coupled with the low complexity of our method make it attractive for im-
plementation in big data settings, where d is large. Furthermore, we analyse a similar low-
complexity alternative for least squares regression and provide finite-time bounds there. We
demonstrate the practicality of our method for LSTD empirically by combining it with the
LSPI algorithm in a traffic signal control application. We also conduct another set of exper-
iments that combines the SA based low-complexity variant for least squares regression with
the LinUCB algorithm for contextual bandits, using the large scale news recommendation
dataset from Yahoo.

1 Introduction

Several machine learning problems involve solving a linear system of equations from a
given set of training data. In this paper we consider the problem of policy evaluation in
reinforcement learning (RL). The objective here is to estimate the value function V π of a
given policy π. Temporal difference (TD) methods are well-known in this context, and they
are known to converge to the fixed point V π = T π(V π), where T π is the Bellman operator
(see Section 3.1 for a precise definition).

The TD algorithm stores an entry representing the value function estimate for each state,
making it computationally difficult to implement for problems with large state spaces. A

†INRIA Lille - Nord Europe, Team SequeL, FRANCE.
E-mail: {prashanth.la, remi.munos}@inria.fr
]Oxford University, UNITED KINGDOM.
E-mail: nathaniel.korda@eng.ox.ac.uk

2 Prashanth L.A.† et al.

θn
Pick in uniformly

in {1, . . . , T}

Random Sampling

Update θn
using (sin , rin , s

′
in

)

SA Update

θn+1

Fig. 1: Overall flow of the fLSTD-SA algorithm.

popular approach to alleviate this curse of dimensionality is to parameterize the value func-
tion using a linear function approximation architecture. For every s in the state space S, we
approximate V π(s) ≈ θTφ(s), where φ(·) is a d-dimensional feature vector with d << |S|,
and θ is a tunable parameter. The function approximation variant of TD [39] is known to
converge to the fixed point of Φθ = ΠT π(Φθ), where Π is the orthogonal projection onto
the space within which we approximate the value function, and Φ is the feature matrix that
characterises this space. For a detailed treatment of this subject matter, the reader is referred
to the classic textbooks [5, 34].
Batch reinforcement learning is a popular paradigm for policy learning. Here, we are
provided with a (usually) large set of state transitions D := {(si, ri, s′i), i = 1, . . . , T)}
obtained by simulating the underlying Markov decision process (MDP). For every i =
1, . . . , T , the 3-tuple (si, ri, s

′
i) corresponds to a transition from state si to s′i and the re-

sulting reward is denoted by ri. The objective is to learn an approximately optimal policy
from this set. LSPI [20] is a well-known batch RL algorithm in this context, and it is based
on the idea of policy iteration. A fundamental component of LSPI is LSTD [8] for policy
evaluation, which is introduced next.
LSTD estimates the fixed point of ΠT π , for a given policy π, using empirical data D. The
LSTD estimate is given as the solution to

θ̂T = Ā−1
T b̄T , (1)

where ĀT =
1

T

T∑
i=1

φ(si)(φ(si)− βφ(s′i))
T and b̄T =

1

T

T∑
i=1

riφ(si).

We consider a special variant of LSTD called pathwise LSTD, proposed in [21]. The
idea behind pathwise LSTD is to (i) have the dataset D created using a sample path simu-
lated from the underlying MDP for the policy π and (ii) set s′T = 0 while computing ĀT
defined above. The latter setting ensures the existence of the LSTD solution θ̂T under the
condition that the family of features on the data setD are linearly independent. It is possible
to make other minor modifications of the dataset or regularize the problem in order to ensure
existence of θ̂T , but this is beyond the scope of this work.

Our primary focus in this work is to solve the LSTD system in a computationally effi-
cient manner. Computing the inverse of the matrix ĀT is computationally expensive, espe-
cially when d is large. Indeed, assuming that the features φ(si) evolve in a compact subset
of Rd, the complexity of the above approach isO(d2T), where Ā−1

T is computed iteratively
using the Sherman-Morrison lemma. On the other hand, if we employ the Strassen algorithm
or the Coppersmith-Winograd algorithm for computing Ā−1

T , the complexity is of the order
O(d2.807) and O(d2.375), respectively, in addition to O(d2T) complexity for computing
ĀT .
Fast LSTD: From the above discussion, it is evident that LSTD scales poorly with the
number of features, making it inapplicable for large datasets with many features. A common
trick, used in practice to alleviate this problem in high dimensions, is to replace the inversion

Stochastic approximation for speeding up LSTD (and LSPI) 3

of the ĀT matrix by the following iterative procedure that performs a fixed point iteration
(see Figure 1 for an illustration): Set θ0 arbitrarily and update

θn = θn−1 + γn
(
rin + βθT

n−1φ(s′in)− θT

n−1φ(sin)
)
φ(sin), (2)

where each in is chosen uniformly at random from the set {1, . . . , T} and γn are step-
sizes that satisfy standard stochastic approximation conditions (see (A1) in Section 4). The
random sampling is sufficient to ensure convergence to the LSTD solution. The advantage of
the above scheme is that it incurs a lower computational cost in comparison to the traditional
LSTD solvers.

From a theoretical standpoint, the scheme (2) comes under the purview of stochastic
approximation (SA). Stochastic approximation is a well-known technique that was origi-
nally proposed for finding zeroes of a nonlinear function in the seminal work of Robbins
and Monro [31]. Iterate averaging is a standard approach to accelerate the convergence of
SA schemes and was proposed independently in [32] and [28]. Non asymptotic bounds for
Robbins Monro schemes have been provided in [11] and extended to incorporate iterate
averaging in [10]. The reader is referred to [19] for a textbook introduction to SA.

Improving the complexity of TD-like algorithms is a popular line of research in RL. The
popular Computer Go setting, with dimension d = 106, [33] and several practical appli-
cation domains (e.g. transportation, networks) involve high-feature dimensions. Moreover,
considering that linear function approximation is effective with a large number of features,
our O(d) improvement in complexity of LSTD by employing SA is meaningful. For other
algorithms treating this complexity problem, see GTD [35], GTD2 [36], iLSTD [12] and the
references therein. In particular, iLSTD is suitable for settings where the features admit a
sparse representation.
Our contributions: In the context of improving the complexity of LSTD, our contributions
can be summarised as follows:

Finite time bounds
• We show that our algorithm (2) converges to the pathwise LSTD solution at the opti-

mal rate of O(n−1/2) in expectation (see Theorem 4.2 in Section 4).
• By projecting the iterate (2) onto a compact/convex subset of Rd, we are able to es-

tablish high probability bounds on the error
∥∥∥θn − θ̂T∥∥∥

2
. In particular, we show that,

with probability 1− δ, the fast LSTD iterate θn constructs an ε-approximation of the
corresponding pathwise LSTD solution with O(d ln(1/δ)/ε2) complexity, irrespec-
tive of the number of batch samples T .

The above rate results are for a step-size choice that is inversely proportional to the
number of iterations of (2) and also require the knowledge of the minimum eigenvalue of
ĀT . We overcome the latter dependence on the knowledge of the minimum eigenvalue
through iterate averaging.

Performance bound We establish that using the SA based scheme in place of LSTD does
not impact the rate of convergence of the approximate value function to the true value
function (see Theorem 4.4 in Section 4). Moreover, using this SA based scheme (2) in
place of LSTD in the LSPI algorithm does not impact its convergence rate either (see
Theorem 6.1).

Iterate averaging We also investigate the rates when larger stepsizes (Θ(n−α) where α ∈
(1/2, 1)) are used in conjunction with averaging of the iterate θn, i.e., the well known
Polyak-Ruppert averaging scheme. The rates obtained in high probability are of the
order O(n−α/2), with the added advantage that the rate is independent of the choice

4 Prashanth L.A.† et al.

of c in the step-sizes (see Theorem 5.1 in Section 5). Further, with iterate averaging the
complexity of the algorithm stays at O(d) per iteration as before.

Simulation experiments We illustrate these results in the context of a traffic control ap-
plication. We test a variant of LSPI which uses the SA based scheme (2) in place of
LSTD. In particular, for the experiments we employ step-sizes that were used to derive
the finite-time bounds (see Theorem 4.2). We demonstrate that running SA based LSTD
for a short number of iterations (∼ 500) on big-sized problems with feature dimension
∼ 4000, one gets a performance that is almost as good as regular LSTD at a significantly
lower computational cost (see Figure 3 in Section 8).

Least squares regression and SGD: Many practical machine learning algorithms require
computing the least squares solution at each iteration in order to make a decision. As in
the case of LSTD, classic least squares solution schemes such as Sherman-Morrison lemma
are of complexity of the order O(d2). A practical alternative is to use a SA based iterative
scheme that is of the order O(d). Such SA based schemes when applied to the least squares
parameter estimation context are well known in the literature as stochastic gradient descent
(SGD) algorithms.

We also analyse the low-complexity SGD alternative for the classic least squares pa-
rameter estimation problem. Using the same template as for the results of the SA variant of
LSTD, we derive finite-time bounds, both in high probability as well as in expectation for
the tracking error ‖θn − θ̂T ‖2. Here θn is the SGD iterate, while θ̂T is the least squares
solution (see Section 9 for a detailed description). We describe a fast variant of the LinUCB
[22] algorithm for contextual bandits, where the SGD iterate is used in place of the least
squares solution. We demonstrate the empirical usefulness of the SGD based LinUCB algo-
rithm using the large scale news recommendation dataset from Yahoo [40]. We observe that,
using the step-size suggested by our bounds (see Theorem 9.2), the SGD based LinUCB
algorithm exhibits low tracking error, while providing significant computational gains.

The rate results coupled with the low complexity of our schemes, in the context of LSTD
as well as least squares regression, make them more amenable to practical implementation
in the canonical big data settings, where the dimension d is large. This is amply demon-
strated in our applications in transportation and recommendation systems domains, where
we establish that SA based LSTD and SGD perform almost as well as regular LSTD and
regression solvers, albeit with much less computation (and with less memory). Note that the
empirical evaluations are for higher level machine learning algorithms - least squares pol-
icy iteration (LSPI) [20] and linear bandits [9, 22], which use LSTD and regression in their
inner loops.

The rest of the paper is organized as follows: In Section 2, we discuss related work.
In Section 3 we present the fast LSTD algorithm based on stochastic approximation and
in Section 4 we provide the non-asymptotic bounds for this algorithm. Next, in Section 7,
we provide outlines for the proof and derivation of rates. In Section 5, we analyse a variant
of our algorithm that incorporates iterate averaging. In Section 6, we describe a variant of
LSPI that uses the SA based scheme (2) in place of LSTD. We provide experiments on a
traffic signal control application in Section 8. In Section 9, we provide extensions to solve
the problem of least squares regression and also a set of experiments that tests a variant of
the LinUCB algorithm using a SA based subroutine for least squares regression. Finally, in
Section 11 we provide the concluding remarks.

Stochastic approximation for speeding up LSTD (and LSPI) 5

2 Literature review

2.1 Previous work related to LSTD

In Chapter 6 of [14], the authors establish that LSTD has the optimal asymptotic conver-
gence rate, while [1] and [21] provide a finite time analysis for LSTD and also LSPI. Recent
work in [37] derives sample complexity bounds for LSTD(λ). LSPE(λ) - an algorithm that
is closely related to LSTD(λ) - is analyzed in [41]. The authors there provide asymptotic
rate results for LSPE and show that it matches that of LSTD(λ). Also related is [27], where
the authors study linear systems in general and as a special case, provide error bounds for
LSTD that improve the dependence on the feature dimension. In this paper, we provide a
finite time analysis of the fast LSTD algorithm (2) proposed here, which in conjunction the
finite time bounds for LSTD from [21] establish that our approximation to LSTD does not
impact its overall convergence rate to the true value function.

A related contribution that is geared towards improving the computational complexity
of LSTD is iLSTD [12]. However, the analysis for iLSTD requires that the feature matrix be
sparse, while we provide finite-time bounds for our fast LSTD algorithm without imposing
sparsity on the features.

A related line of previous work are GTD [35] and GTD2 [36], which are temporal dif-
ference learning algorithms with an update iteration that can be viewed as gradient descent.
This class of algorithms operate in the online setting as regular TD with function approxima-
tion, but with the advantage that GTD/GTD2 are provably convergent to the TD fixed point
even when the policy used for collecting samples differs from the policy being evaluated
- the so-called off-policy setting. Recent work in [24] provides finite time analysis for the
GTD algorithm. Unlike GTD-like algorithms, we operate in an offline setting with a batch of
samples provided beforehand. LSTD is a popular algorithm here, but has a bad dependency
in terms of computational complexity on the feature dimension and we bring this down from
O(d2) to O(d) by running an algorithm that closely resembles TD on the batch of samples
and the latter algorithm is shown to retain the convergence rate of LSTD.

To the best of our knowledge, efficient SA algorithms that approximate LSTD without
impacting its rate of convergence to true value function, have not been proposed before in
the literature. The high probability bounds that we derive for the SA based scheme do not
directly follow from earlier work on LSTD algorithms. Concentration bounds for stochastic
approximation schemes have been derived in [11]. While we use their technique for proving
the high-probability bound on fast LSTD algorithm iterate (see Theorem 4.2), our analysis is
more elementary, and we make all the constants explicit for the problem at hand. Moreover,
in order to eliminate a possible exponential dependence of the constants in the resulting
bound on the reciprocal of the minimum eigenvalue of ĀT , we depart from the argument in
[11].

2.2 Previous work related to SGD

Finite time analysis of SGD methods have been provided in [2]. While the bounds in [2] are
given in expectation, many machine learning applications require high probability bounds,
which we provide for our case. Regret bounds for online SGD techniques have been given in
[42, 13]: the gradient descent algorithm in [42] is in the setting of optimising the average of
convex loss functions whose gradients are available, while that in [13] is for strongly convex
loss functions. In comparison to previous work w.r.t. least squares regression, we highlight

6 Prashanth L.A.† et al.

the following differences:
(i) Earlier works on strongly convex optimization (cf. [13]) require the knowledge of the
strong convexity constant in deciding the step-size. While one can regularize the problem to
get rid of the step-size dependence on µ, it is not straightforward to choose the regularization
constant. Notice that for SGD type schemes, one requires that the matrix ĀT has a minimum
positive eigenvalue µ. Equivalently, this implies that the original problem is regularized with
Tµ. This may turn out to be too high a regularization and hence, it is desirable to have SGD
get rid of this dependence without changing the problem itself. This is precisely what iterate-
averaged SGD achieves, i.e., optimal rates both in high probability and expectation even for
the un-regularized problem. To the best of our knowledge, there is no previous work that
provides finite time bounds, both in high probability and in expectation, for iterate-averaged
SGD.
(ii) Our analysis is for the classic SGD scheme that is anytime, whereas the epoch-GD
algorithm in [13] requires the knowledge of the time horizon.
(iii) While the algorithm in [3] is shown to exhibit the optimal rate of convergence without
assuming strong convexity, the bounds there are in expectation only. In contrast, for the
special case of strongly convex functions, we derive high-probability bounds in addition to
bounds in expectation. Furthermore, the bound in expectation from [2] is not optimal for
a strongly convex function in the sense that the initial error (which depends on where the
algorithm started) is not forgotten as fast as the rate that we derive.
(iv) On a minor note, our analysis is simpler since we work directly with least squares
problems and we make all the constants explicit for the problems considered.

3 Fast LSTD using Stochastic Approximation (fLSTD-SA)

We propose here a stochastic approximation variant of the least squares temporal difference
(LSTD) algorithm, whose iterates converge to the same fixed point as the regular LSTD
algorithm, while incurring much smaller overall computational cost.

The algorithm, which we call fast LSTD through Stochastic Approximation (fLSTD-
SA), is a simple stochastic approximation scheme with randomised samples. The results that
we present establish that fLSTD-SA computes an ε-approximation to the LSTD solution
θ̂T with probability 1 − δ, while incurring a complexity of the order O(d ln(1/δ)/ε2),
irrespective of the number of samples T . In turn, this enables us to give a performance
bound for the approximate value function computed by fLSTD-SA. A schema of fLSTD-
SA is given in Figure 1, while Algorithm 1 gives the pseudocode.

Using our analysis to set the step sequence for fLSTD-SA requires using the knowledge
of the minimum eigenvalue of ĀT - a matrix made from the features used in the linear
approximation (see assumption (A4) below). We present a variant of fLSTD-SA employing
iterate averaging for which knowledge of this eigenvalue is not needed to obtain the optimal
rate of convergence (see Section 5).

3.1 Background

Consider an MDP with (finite) state space S, (finite) action spaceA and transition probabil-
ities p(s, a, s′), s, s′ ∈ S, a ∈ A. Let π be a stationary randomized policy, i.e., π(s, ·) is a

Stochastic approximation for speeding up LSTD (and LSPI) 7

distribution over A, for any s ∈ S. The value function V π is defined by

V π(s) := E

[∞∑
t=0

βt
∑
a∈A

r(st, a)π(st, a) | s0 = s

]
, (3)

where st denotes the state of the MDP at time t, β ∈ (0, 1) is the discount factor, and r(s, a)
denotes the instantaneous rewards obtained in state s with action a. The value function V π

can be expressed as the fixed point of the Bellman operator T π defined by

T π(V)(s) :=
∑
a∈A

π(s, a)

(
r(s, a) + β

∑
s′

p(s, a, s′)V (s′)

)
, (4)

Function approximation: When the cardinality of S is huge, a popular approach is to
parameterize the value function using a linear function approximation architecture, i.e., for
every s ∈ S, we approximate V π(s) ≈ φ(s)Tθ, where φ(s) is a d-dimensional feature
vector for state s with d << |S|, and θ is a tunable parameter. Let Φ denote the feature
matrix with rows φ(s)T, ∀s ∈ S. In the following, we describe the TD fixed point that
involves the feature matrix Φ. Subsequently, we outline the pathwise LSTD approach where
the matrix Φ is composed of the features corresponding to the states in an empirical dataset.
By an abuse of notation, we shall use Φ to denote the feature matrix for TD as well as LSTD
and the composition of Φ should be clear from the context.
TD learning: The well-known TD learning algorithm [5] attempts to find the fixed point of
the operator ΠT π given by

Φθ∗ = ΠT π(Φθ∗), (5)

where Π is the orthogonal projection onto B = {Φθ | θ ∈ Rd}, the vector subspace of
R|S| within which we want to approximate the value function V π . It is easy to derive that
Π = Φ(ΦTΨΦ)−1ΦTΨ , where Ψ is the diagonal matrix whose diagonal elements form the
stationary distribution of the Markov chain associated with the policy π. The solution θ∗ of
(5) can be re-written as follows (cf. [4, Section 6.3]):

Aθ∗ = b, where A = ΦTΨ(I − βP)Φ and b = ΦTΨR, (6)

where P = [P (s, s′)]s,s′∈S is the transition probability matrix with components p(s, s′) =
p(s, π(s), s′), R is the vector with components

∑
a∈A π(s, a)r(s, a), for each s ∈ S, and

Ψ the stationary distribution (assuming it exists) of the Markov chain for the underlying
policy π.
LSTD and Pathwise LSTD: In the absence of knowledge of the transition dynamics P and
stationary distribution Ψ , LSTD is an approach which can approximate the solution θ∗ using
a batch of samples obtained from the underlying MDP. In particular it requires a dataset,
D = {(si, ri, s′i), i = 1, . . . , T)}, where each tuple in the dataset (si, ri, s

′
i) represents a

state-reward-next-state triple chosen by the policy. The LSTD solution approximates A, b,
and θ∗ with ĀT , b̄T using the samples in D as follows:

θ̂T = Ā−1
T b̄T (7)

where ĀT =
1

T

T∑
i=1

φ(si)(φ(si)− βφ(s′i))
T and b̄T =

1

T

T∑
i=1

riφ(si).

8 Prashanth L.A.† et al.

Denoting the current state feature T × d-matrix by Φ := (φ(s1)T, . . . , φ(sT)), next state
feature T × d-matrix by Φ′ := (φ(s′1)T, . . . , φ(s′T)), and reward T × 1-vector by R =
(r1, . . . , rT)T, we can rewrite ĀT and b̄T as follows:

ĀT =
1

T
(ΦTΦ− βΦTΦ′), and b̄T =

1

T
ΦTR.

It is not clear whether ĀT is invertible for arbitrary datasets, D. One way to alleviate this is
studied in [21].

The pathwise LSTD approach, proposed in [21], is an on-policy version of LSTD. It
obtains samples, D by simulating a sample path of the underlying MDP using policy π, so
that s′i = si+1 for i = 1, . . . , T − 1. The dataset thus obtained is perturbed slightly by
setting the feature of the next state of the last transition, φ(s′T), to zero. This perturbation,
as suggested in [21], is crucial to ensure that the system of the equations that we solve as an
approximation to (6) is well-posed. For the sake of completeness, we make this precise in
the following discussion, which is based on Sections 2 and 3 of [21].

Define the empirical Bellman operator T̂ : RT → RT as follows: For any y ∈ RT ,

(T̂ y)i =

{
ri + βyi+1, 1 ≤ i < T

rT , i = T.
(8)

Let R̂ be a T × 1 vector with entries ri, i = 1, . . . , T and (V̂y)i = yi+1 if i < n and 0
otherwise. Then, it is clear that T̂ y = R̂+ βV̂y.

Let GT := {(φ(s1)Tθ, . . . , φ(sT)Tθ)T | θ ∈ Rd} ⊂ RT . GT is the vector sub-space of
RT within which pathwise LSTD approximates the true values of the value functions of the
states s1, . . . , sT , and it is the empirical analogue of B. Define Φ to be a T × d matrix with
rows φ(si)

T, i = 1, . . . , T , where φ(si) is a d-dimensional feature vector corresponding to
state si, for all i = 1, . . . , T . It is easy to see that GT = {Φθ | θ ∈ Rd}.

Let Π̂ be the orthogonal projection onto GT using the empirical norm, which is defined
as follows: ‖f‖2T := T−1∑T

i=1 f(si)
2, for any function f . We now claim that Π̂T̂ is a

contraction mapping because∥∥∥Π̂T̂ y − Π̂T̂ z∥∥∥
T
≤
∥∥∥T̂ y − T̂ z∥∥∥

T

=β
∥∥∥V̂y − V̂z∥∥∥

T

≤β ‖y − z‖T .

So, by the Banach fixed point theorem, there exists some v∗ ∈ GT such that Π̂T̂ v∗ = v∗.
Let us assume that the feature matrix Φ is full rank - an assumption that is standard in

the analysis of TD-like algorithms and also beneficial in the sense that it ensures that the
system of equations we attempt to solve is well-posed1. Then, it is easy to see that there
exists a unique θ̂T such that v∗ = Φθ̂T . Moreover, replacing ĀT in (7) with

ĀT =
1

T
ΦT(I − βP̂)Φ, (9)

where P̂ is a T × T matrix with P̂ (i, i + 1) = 1 for i = 1, . . . , T − 1 and 0 otherwise, it
is clear that θ̂T is the unique solution to (7).

1 In [21], the authors do not make this assumption and hence, have to resort to a pseudo-inverse based
solution for pathwise LSTD.

Stochastic approximation for speeding up LSTD (and LSPI) 9

From the foregoing, it is evident that, using the definition (9), Φ being full rank implies
that the minimum eigenvalue of ĀT - denoted by µ := λmin(ĀT) - is positive. This can
be seen as follows: Since Φ is full rank, the matrix 1

T Φ
TΦ is positive definite. Moreover,

(I − βP̂) is invertible since β < 1 and P̂ is a right stochastic matrix. Thus, λmin(ĀT) > 0
if Φ is full rank. The converse also holds, though it is not necessary for our analysis.

Remark 1 (Regular vs. Pathwise LSTD) For a large data set, D, generated from a sample
path of the underlying MDP for policy π, the difference in the matrix used as ĀT in LSTD
and pathwise LSTD is negligible. In particular, the difference in `2-norm of ĀT composed
with and without zeroing out the next state in the last transition of D can be upper bounded

by a constant multiple of
1

T
. As mentioned earlier, zeroing out the next state in the last tran-

sition of D ensures that the matrix ĀT is positive definite, making the system of equations
in (7) well-posed.

As an aside, the SA based scheme that we propose (see (10) below) would work as a
good approximation to LSTD, as long as one ensures that ĀT is positive definite. Pathwise
LSTD presents one approach to achieve the latter requirement and it is an interesting future
research direction to derive other conditions that ensure ĀT is positive definite.

3.2 Update rule and pseudocode for fLSTD-SA

The idea is to perform an incremental update that is similar to TD, except that the samples
are drawn uniformly randomly from the dataset D. Recall that the data set corresponds to
those along a sample path simulated from the underlying MDP for a given policy π, i.e.,
s′i = si+1, i = 1, . . . , T − 1 and s′T = 0.

Starting with an arbitrary θ0, we update the parameter θn as follows:

θn = Υ
(
θn−1 + γn

(
rin + βθT

n−1φ(s′in)− θT

n−1φ(sin)
)
φ(sin)

)
, (10)

where each in is chosen uniformly randomly from the set {1, . . . , T}. In other words, we
pick a sample with uniform probability 1/T from the set D = {(si, ri, s′i), i = 1, . . . , T)}
and use it to perform a fixed point iteration in (10). The quantities γn above are step sizes
that are chosen in advance and satisfy standard stochastic approximation conditions (see
(A1) below). The operator Υ projects the iterate θn onto the nearest point in a convex and
compact set C ⊂ Rd such that, for any θ ∈ C, ‖θ‖2 ≤ H . The full pseudocode for fLSTD-
SA is given in Algorithm 1. We assume in the following sections that the set C is large
enough to include the LSTD solution θ̂T .

Projection-free update: We also consider a variant of fLSTD-SA that does not include the
projection operator and updates as follows:

θn = θn−1 + γn
(
rin + βθT

n−1φ(s′in)− θT

n−1φ(sin)
)
φ(sin), (11)

Technically, the projection operator Υ is not necessary to ensure asymptotic convergence
nor is it required to bound the error ‖θn − θ̂T ‖2 in expectation. However, we are unable to
derive bounds in high probability without having the iterates explicitly bounded using Υ and
it would be a interesting future research direction to get rid of this operator for the bounds
in high probability.

10 Prashanth L.A.† et al.

Algorithm 1 fLSTD-SA
Input: Sample path based dataset D := {(si, ri, s′i), i = 1, . . . , T)} such that s′i = si+1, i =
1, . . . , T − 1 and s′T = 0; a choice of step-size sizes, γk; a time horizon n.
Initialisation: Set θ0.
Run:
for k = 1 . . . n do

Get random sample index: ik ∼ U({1, . . . , T})
Perform update iteration: θk = Υ

(
θk−1 + γk

(
rik + βθTk−1φ(s′ik)− θTk−1φ(sik)

)
φ(sik)

)
end for
Output: θn

4 Main results for fLSTD-SA

Map of the results:

Asymptotic convergence: Theorem 4.1 proves almost sure convergence of fLSTD-SA it-
erate θn to LSTD solution θ̂T , with and without projection.

Error bounds: Theorem 4.2 provides finite time bounds both in high probability and in
expectation for the error ‖θn − θ̂T ‖2, where θn is given by (10). We require high prob-
ability bounds to qualify the rate of convergence of the approximate value function Φθn
to the true value function, i.e., a variant of Theorem 1 in [21] for the case of fLSTD-SA.

Error bound (projected fLSTD): Theorem 4.3 provides finite time bounds in expectation
for the error ‖θn − θ̂T ‖2, where θn is given by (11), i.e., without projection.

Performance bound: Theorem 4.4 presents a performance bound for the special case when
the dataset D comes from a sample path of the underlying MDP for the given policy π.

Note that the first three results above hold irrespective of whether the dataset D is based on
a sample path or not. However, the performance bound is for a sample path dataset only and
is used to illustrate that using fLSTD-SA in place of regular LSTD does not harm the overall
convergence rate of the approximate value function to the true value function.

We state all the results in Sections 4.2–4.4 and provide detailed proofs of all the claims
in Section 7. Also, all the results are by default for the projected version of fLSTD-SA, i.e.,
θn given by (10), and we explicitly qualify the results for the projection free fLSTD-SA
variant.

4.1 Assumptions

We make the following assumptions for the analysis of fLSTD-SA:

(A1) The step sizes γn satisfy
∑
n γn =∞, and

∑
n γ

2
n <∞.

(A2) Bounded features: ‖φ(si)‖2 ≤ Φmax <∞, for i = 1, . . . , T .
(A3) Bounded rewards: |ri| ≤ Rmax <∞ for i = 1, . . . , T .
(A4) The matrix ĀT is positive definite, so its smallest eigenvalue µ = λmin(ĀT) > 0.

By working with bounded rewards and features, and with step sizes that satisfy standard
stochastic approximation conditions, we ensure that the parameter θ remains stable, and
hence that (10) converges. Theorem 4.1 makes this claim precise.

In the following sections, we present results for the generalized setting, i.e., the dataset
D does not necessarily come from a sample path of the underlying MDP, but we assume
(see (A4)) that the matrix ĀT is positive definite. For pathwise LSTD, as discussed earlier,
(A4) can be replaced by the following assumption:

Stochastic approximation for speeding up LSTD (and LSPI) 11

(A4’) The matrix Φ is full rank and hence, the minimum eigenvalue, µ, of the matrix ĀT =
T−1ΦT(I − βP̂)TΦ is strictly greater than zero.

Note that the dataset is assumed to be fixed for all the results presented below and all the
probabilities and expectations are taken over the random choices of points from the dataset,
except when otherwise stated.

4.2 Asymptotic convergence

Theorem 4.1 Under (A1)-(A4), the iterate θn → θ̂T a.s. as n → ∞, where θn is given by
either (10) or (11) and θ̂T = Ā−1

T b̄T .

Proof See Section 7.2. �

4.3 Finite time bounds

The main result that bounds the computational error ‖θn − θ̂T ‖2 with explicit constants is
given below.

Theorem 4.2 (Error bound for iterates of fLSTD-SA)
Under (A2)-(A4), choosing γn = c0c

(c+n) such that c0 ∈ (0, µ((1 + β)2Φ4
max)−1] and

c0µc ∈ (1,∞), we have, for any δ > 0,

E
∥∥∥θn − θ̂T∥∥∥

2
≤ K1(n)√

n+ c
and P

(∥∥∥θn − θ̂T∥∥∥
2
≤ K2(n)√

n+ c

)
≥ 1− δ, (12)

where K1(n) and K2(n) are functions of order O(1), defined by:

K1(n) =

∥∥∥θ0 − θ̂T∥∥∥
2

(n+ c)(c0cµ−1)/2
+

2c0c(Rmax + (1 + β)HΦmax)

2c0cµ− 1
,

K2(n) = 2c0c

√
log δ−1(Rmax + (1 + β)Φmax)

c0cµ− 1
+K1(n).

Remark 2 (Eigenvalue dependence) We note that setting c such that c0cµ = η ∈ (1,∞)
we can rewrite the constants in Theorem 4.2 as:

K1(n) =

∥∥∥θ0 − θ̂T∥∥∥
2√

(n+ c)(η−1)
+

2η

(2η − 1)µ
(Rmax + (1 + β)HΦmax),

K2(n) = 2
η

µ

√
log δ−1(Rmax + (1 + β)HΦmax)

(η − 1)
+K1(n).

So both the bounds in expectation and high probability have a linear dependence on the
reciprocal of µ.

Remark 3 (Influence of boundedness assumptions) Note also that the constant (Rmax +
(1 + β)HΦmax) is nothing more than a bound on the size of the random innovations made
by the algorithm at each time step.

12 Prashanth L.A.† et al.

Remark 4 (Regularization) To obtain the best performance from fLSTD-SA we need to
know the value of µ. However, we can get rid of this dependency easily by explicitly regular-
ising the problem. In other words, instead of the LSTD solution (7), we solve the following
regularised problem:

θ̂regT = (ĀT + µI)−1b̄T (13)

where µ is now a constant set in advance. The update rule for this variant is

θregn =(1− γnµ)θn−1 + γn
(
rin + βθT

n−1φ(s′in)− θT

n−1φ(sin)
)
φ(sin). (14)

This algorithm retains all the properties of the non-regularized fLSTD-SA algorithm, except
that it converges to the solution of (13) rather than to that of (7). In particular the conclusions
of Theorem 4.2 hold without requiring assumption (A4), but measuring θn− θ̂regT , the error
to the regularized fixed point θ̂regT .

Using a slightly different proof technique, we are able to give a bound in expectation for
the error of the non-projected fLSTD-SA. However, as mentioned earlier, this analysis does
not seem to provide also a bound in high probability.

Theorem 4.3 (Expectation error bound for iterates of fLSTD-SA without projection)
Under (A2)-(A4), choosing γn = c0c

(c+n) such that c0 ∈ (0, µ((1 + β)2Φ2
max)−1] and

c0µc ∈ (1,∞), we have, for any δ > 0,

E
∥∥∥θn − θ̂T∥∥∥

2
≤ K1(n)√

n+ c
(15)

where K1(n) is a function of order O(1), defined by:

K1(n) =

∥∥∥θ0 − θ̂T∥∥∥
2

(n+ c)(c0cµ−1)/2
+
c0c
(
Rmax + (1 + β)

∥∥∥θ̂T∥∥∥
2

)
2c0µc− 1

.

Proof See Section 7.2.

4.4 Performance bound for dataset D from a sample path

We can combine our error bounds above with the performance bound results derived in
[21] for LSTD and LSPI. The results in [21] are data-dependendent, in that they do not
require any assumptions on the matrix ĀT , and instead give their bounds in terms of the
minimum positive eigevalue of the matrix T−1ΦTΦ. By contrast, our bounds are given under
the assumption that this matrix does not have any zero eigenvalues. For this reason we
introduce the following extra assumption:

(A4”) The stopping time N := min{t : rank(Āt) = d} is finite with probability 1.

The theorem below shows that, when datasets generated by the underlying MDP can
be created to satisfy the assumption (A4), using fLSTD-SA in place of regular LSTD does
not hurt the overall convergence rate of the LSTD based value function estimate to the true
value function.

Stochastic approximation for speeding up LSTD (and LSPI) 13

Theorem 4.4 (Performance bound for sample path based dataset D) Let ṽn := Φθn de-
note the approximate value function obtained after n steps of fLSTD-SA, and let v denote the
true value function, evaluated at the states s1, . . . , sT along the sample path. Then, under
the assumptions (A1)-(A3) and (A4”), and assuming the sample size T ≥ N , with proba-
bility 1− 2δ (taken w.r.t. the random path sampled from the MDP and the randomisation in
fLSTD-SA) we have

‖v − ṽn‖T ≤
‖v −Πv‖T√

1− β2︸ ︷︷ ︸
approximation error

+
βRmaxΦmax

(1− β)

√
d

µ

√8 ln 2d
δ

T
+

1

T

︸ ︷︷ ︸

estimation error

+
ΦmaxK2(n)√

n+ c︸ ︷︷ ︸
computational error

.

(16)

where ‖f‖2T := T−1∑T
i=1 f(si)

2, for any function f .

µ = λmin(ΦT(I − βP̂)Φ) ≥ (1− β)λmin(ΦTΦ)

µ = λmin(ΦT(I − βP̂)Φ) ≤ λmin(ΦTΦ)

Proof Note that (A4) satisfied whenever rank(ĀT) = d. The result therefore follows by
combining Theorem 4.2 above with Theorem 1 of [21] using a triangle inequality. �

Remark 5 (Collecting the sample set D) Suppose that the Markov chain induced by the
underlying MDP and the policy π is irreducible, and that the feature set {φ(s)}s∈S contains
a linearly independent subset of size d. Then assumption (A4”) is satisfied, and it is possible
to define a stopping time T ≥ N which terminates with probability 1, that can be used
to collect the sample set D. Furthermore, under extra conditions on the underlying MDP,
Lemma 4 from [21] can be used to remove the need for assumption (A4”). This lemma
proves conditions under which strict positive definiteness of ĀT can be guaranteed in high
probability.

Remark 6 (Description of error terms) The approximation and estimation errors (first and
second terms in the RHS of (16)) are artifacts of function approximation and least squares
methods, respectively. The third term is a consequence of using fLSTD-SA in place of the
LSTD. Setting n = T in the above theorem, we observe that using our scheme in place of
LSTD does not impact the rate of convergence of the approximate value function ṽn to the
true value function v.

Remark 7 (Generalization bounds) While Theorem 4.4 holds for only states along the sam-
ple path s1, . . . , sT , it is possible to generalize the result to hold for states outside the sample
path. This approach has been adopted in [21] for regular LSTD and the authors there provide
performance bounds over the entire state space assuming a stationary distribution exists for
the given policy π and the underlying Markov chain is mixing fast (Lemma 4 from [21]
mentioned in Remark 5 is used here also). In the light of the result in Theorem 4.4 above,
it is straightforward to provide generalization bounds similar to Theorems 5 and 6 of [21]
for fLSTD-SA as well and the resulting rates from these generalization bound variants for
fLSTD-SA are the same as that for regular LSTD. We omit these obvious generalizations
and refer the reader to Section 5 of [21] for further details.

14 Prashanth L.A.† et al.

5 Iterate Averaging

Iterate averaging is a popular approach for which it is not necessary to know the value of
the constant µ (see (A4) in Section 4) to obtain the (optimal) approximation error of order
O(n−1/2). Introduced independently by Ruppert [32] and Polyak [28], the idea here is to
use a larger step-size γn := c0 (c/(c+ n))α, and then use the averaged iterate θ̄n+1 :=
(θ1 + . . . + θn)/n to approximate the LSTD solution. Here the quantities θn are just the
iterates of the fLSTD-SA presented earlier.

Define θ̄n+1 := (θ1 + . . .+ θn)/n. The following result bounds the the distance of the
averaged iterate to the LSTD solution.

Theorem 5.1 (Error Bound for iterate averaged fLSTD-SA)
Under (A2)-(A3), choosing γn = c0

(
c

c+n

)α
, with α ∈ (1/2, 1) and c, c0 > 0, we have,

for any δ > 0, and any n > n0 := max{b(2c0(1 + β2)Φ2
max)1/α/µ− 1)cc, 0}

E
∥∥∥θ̄n − θ̂T∥∥∥

2
≤ KIA

1 (n)

(n+ c)α/2
and P

(∥∥∥θ̄n − θ̂T∥∥∥
2
≤ KIA

2 (n)

(n+ c)α/2

)
≥ 1− δ, (17)

where, writing C =
∑∞
n=1 exp

(
−c0µcα(n+ c)1−α

)
(<∞),

KIA
1 (n) :=

(
‖θn0 − θT ‖2 + e+

(
2α

1− α

) 1
1−α

exp

(
2α

1− α

))
C

(n+ c)1−
α
2

+2 (Rmax + (1 + β)HΦmax) cαc0 (c0µc
α)
−α 1+2α

2(1−α) ,

and KIA
2 (n) :=

4
√

log δ−1

µ2c20

1
µ

{
2α +

[
2α
cα + 2α

1−α

]}
(n+ c)(1−α)/2

+KIA
1 (n).

Proof See Section 7.4.

From the above, it is evident that the dependency on the knowledge of µ for the choice
of c can be removed through averaging of the iterates, at the cost of (1 − α)/2 in the rate.
However, choosing α close to 1 causes a sampling error blowup, and one still cannot specify
the constants in the rates without knowledge of µ.

As suggested by earlier works on stochastic approximation, it is preferred to average
after a few iterations since the initial error is not forgotten faster than the sampling error
with averaging.

6 Fast LSPI using Stochastic Approximation (fLSPI-SA)

LSPI [20] is a well-known algorithm for control based on the policy iteration procedure
for MDPs. We propose here a fast variant of LSPI, which we shall henceforth refer to as
fLSPI-SA. The latter algorithm works by substituting the regular LSTDQ with its stochastic
approximation variant fLSTDQ-SA. We first briefly describe the LSPI algorithm and later
provide a detailed description of fLSPI-SA.

Stochastic approximation for speeding up LSTD (and LSPI) 15

Policy
Evaluation

Policy
Improvement

Q-valueQπPolicy π

Fig. 2: Policy iteration principle central to LSPI.

6.1 Background for LSPI

We are given a set of samples D := {(si, ai, ri, s′i), i = 1, . . . , T)}, where each sample i
denotes a one-step transition of the MDP from state si to s′i under action ai, while resulting
in a reward ri. The objective is to find an approximately optimal policy using this set. This
is in contrast with the goal of LSTD, which aims to approximate the state-value function of
a particular policy (see Section 3.1).

For a given stationary policy π, the Q-value function Qπ(s, a) for any state s ∈ S and
action a ∈ A(S) is defined as follows:

Qπ(s, a) := E

[∞∑
t=0

βtr(st, π(st)) | s0 = s, a0 = a

]
. (18)

In the above, the initial state s and the action a in s are fixed, and thereafter the actions
taken are governed by the policy π. This function can be thought of as the value function
for a policy π in state s, given that the first action taken is the action a. As before, we
parameterize the Q-value function using a linear function approximation architecture,

Qπ(s, a) ≈ θTφ(s, a), (19)

where φ(s, a) is a d-dimensional feature vector corresponding to the tuple (s, a) and θ is a
tunable policy parameter.

LSPI is built in the spirit of policy iteration algorithms. These perform policy evaluation
and policy improvement in tandem, as illustrated in Fig. 2. For the purpose of policy evalua-
tion, LSPI uses a LSTD-like algorithm called LSTDQ, which learns an approximation to the
Q- (state-action value) function. It does this for any policy π, by solving the linear system

θ̂T = Ā−1
T b̄T , where (20)

ĀT =
1

T

T∑
i=1

φ(si, ai)(φ(si, ai)− βφ(s′i, π(s′i)))
T, and b̄T = T−1

T∑
i=1

riφ(si, ai).

As in the case of LSTD, the above can be seen as approximately solving a system of equa-
tions similar to (6), but in this case for the Q-value function. The pathwise LSTDQ variant
is obtained by forming the dataset D from a sample path of the underlying MDP for a given
policy π and also zeroing out the feature vector of the next state-action tuple in the last
sample of the dataset.

16 Prashanth L.A.† et al.

The policy improvement step uses the approximate Q-value function to derive a greedily
updated policy as follows:

π′(s) = arg max
a∈A

θTφ(s, a).

Since this policy is provably better than π, iterating this procedure (as illustrated in fig. 2)
allows LSPI to find an approximately optimal policy.

6.2 fLSPI-SA Algorithm

The fast LSPI variant, henceforth referred to as fLSPI-SA, works by substituting the regular
LSTDQ with its stochastic approximation variant fLSTDQ-SA. The overall structure of
fLSPI-SA is given in Algorithm 2.

For a given policy π, fLSTDQ-SA approximates LSTDQ solution (20) by an iterative
update scheme as follows (starting with an arbitrary θ0):

θk = θk−1 + γk
(
rik + βθT

k−1φ(s′ik , π(s′ik))− θT

k−1φ(sik , aik)
)
φ(sik , aik) (21)

From Section 3, it is evident that the claims in Proposition 7.1 and Theorem 4.2 hold for the
above scheme as well.

Algorithm 2 fLSPI-SA

Input: Sample set D := {si, ai, ri, s′i}Ti=1, obtained from an initial (arbitrary) policy
Initialisation: ε, τ , step-sizes {γk}τk=1, initial policy π0 (given as θ0)
π ← π0, θ ← θ0
repeat

Policy Evaluation
Approximate LSTDQ(D,π) using fLSTDQ-SA(D,π) as follows:
for k = 1 . . . τ do

Get random sample index: ik ∼ U({1, . . . , T})
Update fLSTDQ-SA iterate θk using (21)

end for
θ′ ← θτ , ∆ = ‖θ − θ′‖2
Policy Improvement

Obtain a greedy policy π′ as follows: π′(s) = arg maxa∈A θ
′Tφ(s, a)

θ ← θ′, π ← π′

until ∆ < ε

6.3 Error bounds for fLSPI-SA

Here we present prediction error bounds that establish that using a SA based procedure
in place of LSTD does not impact the overall convergence behaviour of the LSPI2. The
prediction error is the difference in σ-weighted norm between the optimal value function
V ∗ and the value function estimate obtained after running K iterations of fLSPI-SA. Here,
σ denotes the so-called target distribution, forms part of an assumption made in [21] stating
roughly that the mixing in the underlying Markov chain is sufficiently fast, and already

2 As noted in [21], one can derive bounds for LSTDQ and the optimal Q-value function as well. However,
for simplicity, here we use the value function and derive bounds on the prediction error of LSPI.

Stochastic approximation for speeding up LSTD (and LSPI) 17

briefly mentioned in Remarks 5 and 7. In particular, given the current state, the future state
of the underlying Markov chain is not allowed to deviate too far from σ at any time3.

The following bound is for an on-policy version of fLSPI-SA: each iteration k involves
generating a path of size T of the underlying MDP using the policy πk. Therefore, the
difference with the algorithm presented in Algorithm 2 is that the sample set changes in
each iteration4.

Theorem 6.1 (Error Bound for iterates of fLSPI-SA)
Let V ∗ denote the optimal value function, i.e., V ∗(s) := maxπ V

π(s) for any s ∈ S. Let
Ṽ πK be the value estimate corresponding to the policy πK that is obtained after running
K iterations of fLSPI-SA. Then, under assumptions 1− 4 of [21] and with τ = T steps for
fLSTD-SA in Algorithm 2, with probability 1− δ, we have∥∥∥V ∗ − Ṽ πK∥∥∥

σ
≤ 4β

(1− β)2

[
(1 + β)

√
CCσ,ν

(
4
√

2E0(F) + E2√
1− β2

(22)

+
2

1− β

(
β

√
d

µ

√
8 ln 8dK/δ

T
+

1

T
+

K2(T)√
T + c

)
+ E1

)
+ β

K−1
2

]
,

where C, Cσ,ν , µ, F , E0(F), E1 and E2 are as in [21]5. In particular,

– ν is a distribution that lower-bounds the stationary distribution ρπ of the Markov chain
induced under the policy π such that µ ≤ Cρπ for some C < ∞ (see Assumption 1 in
[21]).

– F := {fθ | θ ∈ Rd and fθ(·) = φ(·)Tθ} denotes the linear function space in which the
value-functions are approximated, and F̃ := {g(·) = min{fθ(·), Vmax} : fθ ∈ F} is
the truncated version of this space.

– E0(F) is the approximation error for the worst value function in the space of functions
considered and is defined by

E0(F) := sup
π∈G(F̃)

inf
f∈F
‖f − V π‖ρπ ,

where G(F̃) = {πf : ∀s, πf (s) = arg maxa∈A(s)

(
r(s, a) + βEs,aV (s′)

)
, f ∈ F̃},

and the expectation Es,a[V (s′)] is taken w.r.t. state transition dynamics.

– E1 andE2 are error terms, both of the orderO
(

1√
T

)
(see Theorems 4 and 5 of [21]).

– µ is the smallest eigenvalue of the covariance matrix
1

T
ΦTΦ and is assured to be positive

with high probability if the number of samples T in each iteration of fLSPI-SA is large
enough (see Lemma 4 in [21]).

– K2(·) and c are as defined in Theorem 4.2.

Proof In lieu of Theorem 4.4, the proof of (22) follows in a similar manner as Theorem 8
of [21]. �

3 See Remark 2 in Section 6.1 of [21] for a detailed discussion on the target distribution σ.
4 While off-policy LSPI is shown to work well in practice, no finite time analysis of this algorithm is

available to the best of our knowledge. Moreover, Theorem 4.4 ensures that the fLSTD-SA iterate is a good
approximation to LSTD, irrespective of the manner in which samples are collected.

5 For consistency within our notation, we have exchanged roles of ν and µ from [21]

18 Prashanth L.A.† et al.

Remark 8 We highlight that all the terms on the RHS of (22) are the same as that obtained
for the regular LSPI algorithm, except the term K2(T)/

√
T + c. The latter term is present

in the bound owing to the fact that we use an SA based scheme for policy evaluation instead
of regular LSTD. It is evident that the resulting bound in (22) matches the order of the bound
presented for LSPI in Theorem 8 of [21].

7 Convergence proofs

Throughout this section, we let fn(θ) :=
(
rin + βθTφ(s′in)− θTφ(sin)

)
φ(sin) and Fn

denotes the sigma algebra generated by i1, . . . , in.
Recall that the current state feature T × d-matrix by Φ := (φ(s1)T, . . . , φ(sT)), next

state feature T × d-matrix by Φ′ := (φ(s′1)T, . . . , φ(s′T)), and reward T × 1-vector by
R = (r1, . . . , rT)T. Recall also that the LSTD approximation to θ∗ can as

θ̂T = Ā−1
T b̄T , where ĀT =

1

T
(ΦTΦ− βΦTΦ′) and b̄T =

1

T
ΦTR.

Finally we note also the pathwise LSTD approximation to θ∗ has the same form, except that
Φ′ := P̂Φ = (φ(s′1)T, . . . , φ(s′T−1)T,0T), where 0 is the d× 1 zero-vector.

7.1 Proofs of almost sure convergence

Proof of Theorem 4.1 for fLSTD-SA without projection:

We first rewrite (10) as follows:

θn = θn−1 + γn
(
−ĀT θn−1 + b̄T +∆Mn

)
, (23)

where ∆Mn = fn(θn−1)− E(fn(θn−1) | Fn) is a martingale difference sequence.
The ODE associated with (23) is

θ̇(t) = q(θ(t)), (24)

where q(θ(t)) := −ĀT θ(t) + b̄T .
To show that θn converges a.s. to θ̂T , one requires that the iterate θn remains bounded

a.s. Both boundedness and convergence can be inferred from Theorems 2.1-2.2(i) of [7],
provided we verify assumptions (A1)-(A2) there. These assumptions are as follows:
(a1) The function q is Lipschitz. For any η, define qη(θ) = q(ηθ)/η. Then, there exists
a continuous function q∞ such that qη → q∞ as η → ∞ uniformly on compact sets.
Furthermore, the origin is an asymptotically stable equilibrium for the ODE

θ̇(t) = −q∞(θ(t)). (25)

(a2) The martingale difference {∆Mn, n ≥ 1} is square-integrable with

E[‖∆Mn+1‖2 | Fn] ≤ C0(1 + ‖θn‖2), n ≥ 0,

for some C0 <∞.
We now verify (a1) and (a2) in our context. Notice that qη(θ) := −ĀT θ + b̄T /η con-

verges to q∞(θ(t)) = −ĀT θ(t) as η → ∞. Since the matrix ĀT is positive definite by

Stochastic approximation for speeding up LSTD (and LSPI) 19

(A4), the aforementioned ODE has the origin as its globally asymptotically stable equilib-
rium. This verifies (a1).

For verifying (a2), notice that

E[‖∆Mn+1‖2 | Fn] ≤E[‖fn+1(θ)‖2 | Fn]

≤(Rmax + (1 + β)Φmax ‖θn‖2)2

The first inequality follows from the fact that for any random variable Y , E‖Y−E [Y | Fn] ‖2 ≤
EY 2, while the second inequality follows from (A2) and (A3). The claim follows. �

Proof of Theorem 4.1 for fLSTD-SA with projection:

We first rewrite (10) as follows:

θn = Υ
(
θn−1 + γn

(
−ĀT θn−1 + b̄T +∆Mn

))
, (26)

where ∆Mn, Fn and fn(θ) are as defined in (23).
From (A3) and the fact that the iterate θn is projected onto a compact and convex set

C, it is easy to see that the norm of the martingale difference ∆Mn is upper bounded by
Rmax + (1 + β)HΦmax. Thus, (26) can be seen as a discretization of the ODE

θ̇ = Υ̌ (−ĀT θ + b̄T), (27)

where Υ̌ (θ) = limτ→0 [(Υ (θ + τf(θ))− θ) /τ] , for any bounded continuous f . The op-
erator Υ̌ ensures that θ governed by (27) evolves within the set C. Since the matrix ĀT is
positive definite by (A4), it is evident that the ODE (25) in this case also has the origin as
its globally asymptotically stable equilibrium. The claim now follows from Theorem 2 in
Chapter 2 of [6] (or even Theorem 5.3.1 on pp. 191-196 of [18]). �

7.2 Proofs finite-time error bounds for fLSTD-SA

To obtain high probability bounds on the computational error ‖θn − θ̂T ‖2, we consider
separately the deviation of this error from its mean (see (28) below), and the size of its mean
itself (see (29) below). In this way the first quantity can be directly decomposed as a sum
of martingale differences, and then a standard martingale concentration argument applied,
while the second quantity can be analyzed by unrolling iteration (10)6.

Proposition 7.1 below gives these results for general step sequences. The proof involes
two martingale analyses which also form the templates for the proofs for the least squares
regression extension (see Section 9), and the regularized and iterate averaged variants of
fLSTD-SA (see Theorem 5.1).

After proving the results for general step sequences, we give the proof of Theorem 4.2,
which gives explicit rates of convergence of the computational error in high probability for
a specific choice of step sizes.

Proposition 7.1 Let zn = θn − θ̂T , where θn is given by (10). Under (A1)-(A4), we have
∀ε > 0,

6 In this proof we employ a technique similar to that used in [11]. However, our analysis is more elemen-
tary, and we make all the constants explicit for the problem at hand. Moreover, in order to eliminate a possible
exponential dependence of the constants in the resulting bound on the reciprocal of (1−β)µ, we depart from
the argument in [11].

20 Prashanth L.A.† et al.

(1) a bound in high probability for the centered error:

P
(
‖zn‖2 − E ‖zn‖2 ≥ ε

)
≤ exp

− ε2

4(Rmax + (1 + β)HΦmax)
n∑
k=1

L2
k

 , (28)

where Lk := γk
∏n
j=k+1(1− γj(2µ− γj(1 + β)2Φ4

max))1/2,
(2) and a bound in expectation for the non-centered error:

E
(
‖zn‖2

)2 ≤ [n∏
k=1

(
1− γk(2µ− γk(1 + β)2Φ2

max

)
‖z0‖2

]2
︸ ︷︷ ︸

initial error

(29)

+ 4
n∑
j=1

γ2k

n−1∏
k=j

(1− γk(2µ− γk(1 + β)2Φ2
max)

2

(Rmax + (1 + β)HΦmax)2

︸ ︷︷ ︸
sampling error

.

The initial error depends on the initial point θ0 of the algorithm. The sampling error arises
out of a martingale difference sequence that depends on the random deviation of the stochas-
tic update from the standard fixed point iteration. Note that the initial error is forgotten faster
than the sampling error in this case.

Proof of Proposition 7.1 part (1):

The proof gives a martingale analysis of the centered computational error. It proceeds in
three steps:

Step 1: (Decomposition of error into a sum of martingale differences)

Recall that zn := θn− θ̂T . We rewrite ‖zn‖2−E ‖zn‖2 as a telescoping sum of martingale
differences:

‖zn‖2 − E ‖zn‖2 =
n∑
k=1

gk − E[gk |Fk−1] =
n∑
k=1

Dk, (30)

where gk := E[‖zn‖2 |Fk], Dk := gk − E[gk |Fk−1], and Fk denotes the sigma algebra
generated by the random variables {i1, . . . , ik}. Dk is the change in the exepcted error at
time n after between iterations k − 1 and k.

Step 2: (Showing the martingale differences are Lipschitz functions of the random in-
novations)

The next step is to show that the functions gk are Lipschitz continuous in the random innova-
tion at time k, with Lipschitz constants Lk. It then follows immediately that the martingale
difference Dk is a Lipschitz function of the kth random innovation with the same Lips-
chitz constant, which is the property leveraged in Step 3 below. In order to obtain Lipschitz
constants with no exponential dependence on the inverse of (1 − β)µ we depart from the
general scheme of [11], and use our knowledge of the form of the random innovation fk to
eliminate the noise due to the rewards between time k and time n:

Stochastic approximation for speeding up LSTD (and LSPI) 21

Recall that fj(θ) := (θTφ(sij) − (rij + βθTφ(s′ij)))φ(sij) denotes the random inno-
vation at time j given that θj−1 = θ. Let Θkj (θ) denote the value of the random iterate at
instant j evolving according to (10) and beginning from the value θ at time k.

First we note that as the projection, Υ , is a contraction mapping,

E
(∥∥∥Θkj (θ)−Θkj (θ′)

∥∥∥
2
| Fj−1

)
≤ E

(∥∥∥Θkj−1(θ)−Θkj−1(θ′)− γj [fj(Θkj−1(θ))− fj(Θkj−1(θ′))]
∥∥∥
2
| Fj−1

)
.

Expanding the random innovation terms, we have

Θkj−1(θ)−Θkj−1(θ′)− γj [fj(Θkj−1(θ))− fj(Θkj−1(θ′))]

=Θkj−1(θ)−Θkj−1(θ′)

− γj [φ(sij)φ(sij)
T − βφ(sij)φ(s′ij)

T](Θkj−1(θ)−Θkj−1(θ′))

=[I − γjaj](Θkj−1(θ)−Θkj−1(θ′)), (31)

where aj := [φ(sij)φ(sij)
T − βφ(sij)φ(s′ij)

T]. Note that

aT

jaj =φ(sij)φ(sij)
Tφ(sij)φ(sij)

T

− β
(
φ(sij)φ(sij)

Tφ(sij)φ(s′ij)
T + φ(s′ij)φ(sij)

Tφ(sij)φ(sij)
T
)

+ β2φ(s′ij)φ(sij)
Tφ(sij)φ(s′ij)

T

=
∥∥φ(sij)

∥∥2
2

[
φ(sij)φ(sij)

T

−β(φ(sij)φ(s′ij)
T + φ(s′ij)φ(sij)

T) + β2φ(s′ij)φ(s′ij)
T
]
.

Recall that ΦT := (φ(1), . . . , φ(T)) and Φ′T := (φ(1)′, . . . , φ(T)′), and assumption (A4)
which implies that

λmin
(

2ΦTΦ− β
(
Φ′

T
Φ+ ΦTΦ′

))
= λmin

(
(ΦTΦ− βΦ′TΦ) + (ΦTΦ− βΦ′TΦ)T

)
> 2Tµ.

So, setting ∆ := diag(‖φ(s1)‖22 , . . . , ‖φ(sj−1)‖22), we find that for any vector θ:

E
(
θT
(
I − γjaij

)T (
I − γjaij

)
θ | Fj−1

)
= θTE(I − γj [aT

j + aj − γjaT

jaj])θ | Fj−1)

= ‖θ‖22 − γjθ
T 1

T

T∑
k=1

[
aT

k + ak − γjaT

kak
]
θ

= ‖θ‖22 − γjθ
T 1

T

[
2ΦTΦ− β

(
ΦTΦ′ + Φ′

T
Φ
)

−γj
(
ΦT∆Φ− β

(
Φ′

T
∆Φ+ ΦT∆Φ′

)
+ β2Φ′

T
∆Φ′

)]
θ

≤ (1− γj(2µ− γjΦ4
max(1 + β)2)) ‖θ‖22

For the third equality, we have used that
∑T
k=1 φ(sk)Tφ(sk) = ΦTΦ and similar identities.

For the inequality, we have used the boundedness assumption on the features, (A2), together

22 Prashanth L.A.† et al.

with the assumption (A4). Hence, from the tower property of conditional expectations, it
follows that:

E
[∥∥∥Θkn(θ)−Θkn(θ′)

∥∥∥2
2

]
= E

[
E
(∥∥∥Θkn(θ)−Θkn(θ′)

∥∥∥2
2
| Fn−1

)]
≤
(

1− γn
(

2µ− γnΦ4
max(1 + β)2

))
E
[∥∥∥Θkn−1(θ)−Θkn−1(θ′)

∥∥∥2
2

]

≤

 n∏
j=k+1

(
1− γj

(
2µ− γjΦ4

max(1 + β)2
))∥∥θ − θ′∥∥2

2
(32)

Finally, writing f and f ′ for two possible values of the random innovation at time k, and
writing θ = θk−1 + γif and θ′ = θk−1 + γkf

′, we have that∣∣∣E [∥∥∥θn − θ̂T∥∥∥
2
|θk = θ

]
−E

[∥∥∥θn − θ̂T∥∥∥
2

∣∣θk = θ′
]∣∣∣

≤ E
[∥∥∥Θkn (θ)−Θkn

(
θ′
)∥∥∥

2

]
≤ Lkγk

∥∥f − f ′∥∥
2

= Lk
∥∥f − f ′∥∥

2
.

where

Lk := γk

 n∏
j=k+1

(
1− γj

(
2µ− γjΦ4

max(1 + β)2
))1/2

which proves that the functions gk are Lk-Lipschitz in the random innovations at time k.

Step 3: (Applying a subgaussian concentration inequality)

Now we derive a standard martingale concentration bound in the lemma below. Note that,
for any λ > 0,

P(‖zn‖2 − E ‖zn‖2 ≥ ε) = P

(
n∑
k=1

Dk ≥ ε

)
≤ exp(−λε)E

(
exp

(
λ

n∑
k=1

Dk

))

= exp(−λε)E

(
exp

(
λ

n−1∑
k=1

Dk

)
E
(

exp(λDn) |Fn−1

))
.

The first equality above follows from (30), while the inequality follows from Markov’s in-
equality. Now for any bounded random variable f , and L-Lipschitz function D we have

E (exp(λg(f))) ≤ exp
(
λ2BL2/2

)
,

where |f | < B. Note that by (A3), and the projection step of the algorithm, we have that
|fk(θk−1)| < (Rmax + (1 + β)HΦmax) is a bounded random variable, and, conditioned
on Fk−1, Dk is Lipschitz in fk(θk−1) with constant Lk. So we obtain

E (exp(λDn) |Fn−1) ≤ exp

(
λ2(Rmax + (1 + β)HΦmax)L2

n

2

)
,

and so

P(‖zn‖2 − E ‖zn‖2 ≥ ε) ≤ exp(−λε) exp

(
λ2(Rmax + (1 + β)HΦmax)

2

n∑
k=1

L2
k

)
.

(33)

The proof of Proposition 7.1 part (1) follows by optimizing over λ in (33). �

Stochastic approximation for speeding up LSTD (and LSPI) 23

Proof of Proposition 7.1 part (2)

The proof of this result also follows a martingale analysis. In contrast to the high probability
bound, here we work directly with the error, rather than the centered error, and split it into
predictable and martingale parts. Bounding the predictable part then bounds the influence of
the initial error, and bounding the martingale part bounds the error due to sampling.

Step 1: (Extract a martingale difference from the update)

First, by using that ĀT = E((φ(sin) − βφ(s′in))φ(sin)T | Fn−1) and that E(fn(θ̂T) |
Fn−1) = 0, we can rearrange the update rule (10) to get

θn−1 − θ̂T − γnfn(θn−1) = θn−1 − θ̂T − γn(E(fn(θn−1)−∆Mn)

=
(
I − γnĀT

)
zn−1 − γn∆Mn

where ∆Mn := fn(θn−1)− E(fn(θn−1) | Fn−1) is a martingale difference.
Step 2: (Apply Jensen to the square of the norm)

From Jensen’s inequality, and the fact that the projection in the update rule (10) is a contrac-
tion, we obtain

E
(
‖zn‖2 | Fn−1

)2 ≤ E(〈zn, zn〉 | Fn−1)

≤ E(〈θn−1 − θ̂T − γnfn(θn−1), θn−1 − θ̂T − γnfn(θn−1)〉 | Fn−1)

= E(〈
(
I − γnĀT

)
zn−1 − γn∆Mn,

(
I − γnĀT

)
zn−1 − γn∆Mn〉 | Fn−1)

= zT

n−1

(
I − γnĀT

)T (
I − γnĀT

)
zn−1 + γ2nE (〈∆Mn,∆Mn〉 | Fn−1) (34)

≤ ‖zn−1‖22
∥∥(I − γnĀT)T (I − γnĀT)∥∥2 + γ2nE

(
‖∆Mn‖22 | Fn−1

)
Note that the cross-terms have vanished in (34) since ∆Mn is martingale difference, inde-
pendent of the other terms, given Fn−1.
Step 3: (Unroll the iteration)

Using assumptions (A2) and (A4)∥∥(I − γnĀT)T(I − γnĀT)
∥∥
2

=
∥∥(I − γn((ĀT

T + ĀT)− γnĀT

T ĀT)
∥∥
2

(35)

≤ 1− γn(2µ− γn(1 + β)2Φ2
max) (36)

Furthermore, by assumption (A3), and the projection step, the martingale differences ∆Mn

are bounded in norm by 2(Rmax + (1 + β)HΦmax). By applying the tower property of
conditional expectations repeatedly together with (36) we arrive at the bound:

E
(
‖zn‖2

)2 ≤ [n∏
k=1

(
1− γk(2µ− γk(1 + β)2Φ2

max

)
‖z0‖2

]2

+ 4
n∑
j=1

γ2k

n−1∏
k=j

(1− γk(2µ− γk(1 + β)2Φ2
max)

2

(Rmax + (1 + β)HΦmax)2

�

24 Prashanth L.A.† et al.

Derivation of rates or Proof of Theorem 4.2

Proof

High probability bound: Let γn = c0c
(c+n) , and choose c0 ∈ (0, µ((1 + β)2Φ4

max)−1].
Then,

n∑
i=1

L2
i =

n∑
i=1

c20c
2

(c+ i)2

n∏
j=i

(
1− c0c

(c+ j)

(
2µ− (1 + β)2Φ4

max
c0c

(c+ j)

))

≤
n∑
i=1

c20c
2

(c+ i)2
exp

−c0cµ n∑
j=i

1

(c+ j)

≤ c20c

2

(n+ c)c0cµ

n∑
i=1

(i+ c)−(2−c0cµ).

We now find three regimes for the rate of convergence, based on the choice of c:
(i)
∑n
i=1 L

2
i = O ((n+ c)c0cµ) when c0cµ ∈ (0, 1),

(ii)
∑n
i=1 L

2
i = O

(
n−1 lnn

)
when c0cµ = 1, and

(iii)
∑n
i=1 L

2
i ≤

c20c
2

(c0cµ−1) (n+ c)−1 when c0cµ ∈ (1,∞).
(We have used comparisons with integrals to bound the summations, such as

∑n
j=1 n

−1 ≥∫ n
1
x−1dx.) Thus, setting c ∈ (1/(c0µ), 2/(c0µ)), the high probability bound from Propo-

sition 7.1 gives

P
(∥∥∥θn − θ̂T∥∥∥

2
− E

∥∥∥θn − θ̂T∥∥∥
2
≥ ε
)
≤ exp

(
− ε2(n+ c)

4Kµ,c,c0,β

)
(37)

where Kµ,c,c0,β :=
c20c

2(Rmax + (1 + β)HΦmax)

(c0cµ− 1)
.

Expectation bound: Under the same choice for c0, and supposing that 2c0cµ ∈ (1,∞), we
have:

n∑
k=1

γ2k

 n−1∏
j=k+1

(1− γj(2µ− γj(1 + β)2Φ2
max)

2

≤
n−1∑
k=1

γ2k+1 exp

(
−2c0cµ

(
n∑
k+1

1

c+ j

))

≤ c20c
2

(n+ c)c0cµ

n∑
k=1

(c+ k)−(2−2c0cµ) ≤ c20c
2

(2c0cµ− 1)(n+ c)

where in the last inequality we have again compared the sum with an integral. Similarly,
supposing that c0cµ ∈ (1,∞), we have

n∏
k=1

(1− γk(2µ− γk(1 + β)2Φ2
max)

≤ exp

−c0cµ n∑
j=1

1

c+ j

 ≤ (1

n+ c

)c0cµ
≤
(

1

n+ c

)
.

Stochastic approximation for speeding up LSTD (and LSPI) 25

So we have, when c0cµ ∈ (1,∞),

E
∥∥∥θn − θ̂T∥∥∥

2
≤

(√
c ‖θ0 − θ∗‖2√
(n+ c)c0cµ−1

+
4c0c(Rmax + (1 + β)HΦmax

2c0cµ− 1

)
(c+ n)−

1
2 ,

(38)

and the result in Theorem 4.2 now follows. �

7.3 Proof of expectation bound for fLSTD-SA without projection

The proof of the theorem follows just as the proof of Theorem 4.2 but using the following
proposition in place of Proposition 7.1 part 2. The proof of the following proposition differs
from that of Proposition 7.1 part 2 in that the decomposition of the computational error
extracts a noise term dependent only on θ̂T rather than on θn, and so projection is not
needed:

Proposition 7.2 Let zn = θn − θ̂T , where θn is given by (11). Under (A1)-(A4), we have
∀ε > 0,

E
(
‖zn‖2

)2 ≤ [n∏
k=1

(
1− γk(2µ− γk(1 + β)2Φ4

max

)
‖z0‖2

]2
︸ ︷︷ ︸

initial error

(39)

+
n∑
j=1

γ2k

n−1∏
k=j

(1− γk(2µ− γk(1 + β)2Φ4
max)

2 (
Rmax + (1 + β)

∥∥∥θ̂T∥∥∥
2

)2
︸ ︷︷ ︸

sampling error

Proof

Step 1: (Unrolling the error recursion)

First, by rearranging the update rule (10) we obtain an iteration for the computational error
zn = θn − θ̂T , and subsequently unroll this iteration:

zn = θn − θ̂T = θn−1 − θ̂T − γnfn(θn−1)

=
(
I − γn(φ(sin)− βφ(s′in))φ(sin)T

)
zn−1 − γnfn(θ̂T)

= Πn
1 z0 +

n∑
k=1

γkΠ
n−1
k fk(θ̂T)

where Πn
k :=

∏n
j=k

(
I − γj(φ(sij)− βφ(s′ij))φ(sij)

T
)
, and we have used that the ran-

dom increment at time n has the form fn(θ) = (θTφ(sin) − (rin + βθTφ(s′in)))φ(sin).
Notice that by the definition of the LSTD solution, we have that E(fn(θ̂T) | Fn−1) = 0,
and so fn(θ̂T) is a zero mean random variable.
Step 2: (Taking the expectation of the norm)

26 Prashanth L.A.† et al.

From Jensen’s inequality, we obtain

E
(
‖zn‖2

)2 ≤ (E(〈zn, zn〉))2

= zT

0E
(
Πn

1
TΠn

1

)
z0 +

n∑
k=1

γ2kE
(
fk(θ̂T)TΠn−1

k

T

Πn−1
k fk(θ̂T)

)
(40)

Note that the cross-terms have vanished in (40) since fk(θ̂T) is not only zero mean, but also
independent of all the random variables ij for which j 6= k.

Now using assumptions (A2) and (A4)∥∥∥E(
(
I − γn(φ(sin)− βφ(s′in))φ(sin)T

)T (
I − γn(φ(sin)− βφ(s′in))φ(sin))T

)∥∥∥
2

=
∥∥E (I − γn((φ(sin)− βφ(s′in))φ(sin)T − γnφ(sin)(φ(sin)− βφ(s′in))T

+γ2n

(
‖φ(sin)‖22 − 2β〈φ(s′in), φ(sin)〉+ β2

∥∥φ(s′in)
∥∥2
2

)
φ(sin))φ(sin))T

)∥∥∥
2

≤ 1− γn(2µ− γn(1 + β)2Φ2
max) (41)

Furthermore, by assumption (A3), the random variables fn(θ̂T) are bounded in norm by
Rmax + (1 + β)‖θ̂T ‖. So, by applying the tower property of conditional expectations re-
peatedly together with (41) we arrive at the bound:

E
(
‖zn‖2

)
≤

([
n∏
k=1

(1− γk(2µ− γk(1− β)2Φ4
max) ‖z0‖2

]2

+
n∑
j=1

γ2k

n−1∏
k=j

(1− γk(2µ− γk(1 + β)2Φ4
max)

2 (
Rmax + (1 + β)

∥∥∥θ̂T∥∥∥
2

)2
1
2

�

7.4 Proofs of finite time bounds for iterate averaged fLSTD-SA

Map of the proof of Theorem 5.1:

• We first give a bound on the error in high probability for the averaged iterates in Proposi-
tion 7.3 below. This result is for general step-size sequences.
• Next, we derive the bounds for the Lipschitz constants Lm when the iterates are averaged

and the step-sizes are chosen to be γn = c0 (c/c+ n)−α for some α ∈ (1/2, 1). This is
a crucial step that helps in establishing the order O(n−α/2) rate for the high-probability
bound in Theorem 4.2, independent of the choice of c. Recall that in order to obtain this
rate for the algorithm without averaging one had to choose c0µc ∈ (1,∞).
• Finally, we bound the expected error by directly averaging the errors of the non-averaged

iterates:

E
∥∥∥θ̄n+1 − θ̂T

∥∥∥
2
≤ 1

n

n∑
k=1

E
∥∥∥θk − θ̂T∥∥∥

2
,

and directly applying the bounds in expectation given in Proposition 7.1. This involves
specializing the bounds for the bound in expectation in Proposition 7.1 for the new choice
of step-size sequence.

Stochastic approximation for speeding up LSTD (and LSPI) 27

Proposition 7.3 Under (A1)-(A3) we have, for all ε ≥ 0 and ∀n ≥ 1,

P(‖zn‖2 − E ‖zn‖2 ≥ ε) ≤ exp

− ε2

2(Rmax + (1 + β)H)2
n∑

m=1
L2
m

 ,

where Lm := γi
n

(∑n−1
l=m+1

∏l
j=m

(
1− γj+1

(
2µ− γj+1(1 + β)2Φ4

max

))1/2).

Proof

Recall that zn denotes the error of the algorithm at time n, which in this case is zn =∥∥θ̄n − θ∥∥2. The proof follows the scheme of the proof of Proposition 7.1, part (1), given in
Section 7.2:
Step 1: As before, we decompose the centered error into a sum of martingale differences:

‖zn‖2 − E ‖zn‖2 =
n∑
k=1

Dk, (42)

where Dk := gk − E[gk |Fk−1] and gk := E[‖zn‖2 |Fk].
Step 2: We need to prove that the functions gk are Lipschitz continuous in the random
innovation at time k with the new constants Lk. Recall from Step 2 of the proof of the high
probability bound in Theorem 7.1 in Section 7.2 that the random variables Θkn(θ) is defined
to be the value of the iterate at time n that evolves according to (10), and beginning from θ
at time k. Now we define

Θ̄kn(θ̄, θ) =
(k − 1)θ̄

n
+

1

n

n∑
k=1

Θkn(θ).

Then, letting f and f ′ deonte two possible values for the random innovation at time k, and
setting θ = θk−1 + γkf and θ′ = θk−1 + γkf

′, we have

E
∥∥∥Θ̄kn (θ̄k−1, θ

)
− Θ̄kn

(
θ̄k−1, θ

′)∥∥∥
2
≤ E

∥∥∥∥∥ 1

n

n∑
l=k

(
Θkl (θ)−Θkl

(
θ′
))∥∥∥∥∥

2

≤ 1

n

n∑
l=k

l∏
j=k+1

(
1− γj

(
2µ− γj(1 + β)2Φ4

max

))1/2 ∥∥f − f ′∥∥
2

(43)

where we have used (32) derived in Step 2 of the proof the high probability bound in Propo-
sition 7.1. Hence, similarly to Step 2 of the proof of Proposition 7.1, part (1), we find that
gk is Lk-Lipschitz in the random inovation at time k, and so Dk is also.
Step 3 follows in a similar manner to the proof of Proposition 7.1, part (1). �

Proof of the high probability bound in Theorem 5.1:

The following lemma derives the bounds for the Lipschitz constants Li when the step-sizes
are chosen to be γn = c0 (c/(c+ n))−α for some α ∈

(
1
2 , 1
)
, and the iterates are then

averaged. The main ingredients of this derivation can be found in the argument of pp. 15 in
[10]. However, here we manage to give all the constants explicitly:

28 Prashanth L.A.† et al.

Lemma 7.1 Under conditions of Theorem 5.1, we have

n∑
i=1

L2
i ≤

1

µ2

{
2α +

[
2α

cα
+

2α

1− α

]}2
1

n
. (44)

Proof See Appendix A. �

Proof of the bound in expectation in Theorem 5.1:

We bound the expected error by directly averaging the errors of the non-averaged iterates:

E
∥∥∥θ̄n+1 − θ̂T

∥∥∥
2
≤ 1

n

n∑
k=1

E
∥∥∥θk − θ̂T∥∥∥

2
, (45)

and directly applying the bounds in expectation given in Proposition 7.1. The following
lemma specializes the bounds for the bound in expectation in Proposition 7.1 for the new
choice of step-size sequence and then averages the resulting bound using (45) to obtain the
final rate in expectation in Theorem 5.1.

Lemma 7.2 Under conditions of Theorem 5.1, we have

E
∥∥∥θ̄n − θ̂T∥∥∥

2
≤

(∞∑
n=1

exp
(
−c0µcα(n+ c)1−α

))

.

(
‖θ0 − θT ‖2 + e+

(
2α

1− α

) 1
1−α

exp

(
2α

1− α

))
1

n

+ 2 (Rmax + (1 + β)HΦmax) cα (c0µc
α)
−α 1+2α

2(1−α) (n+ c)−
α
2 .

Proof See Appendix B. �

8 Traffic Control Application

8.1 Simulation Setup

The idea behind the experimental setup is to study both LSPI and the variant of LSPI, fLSPI-
SA, where we use fLSTDQ-SA as a subroutine to approximate the LSTDQ solution. Algo-
rithm 2 provides the pseudo-code for the latter algorithm.

We consider a traffic signal control application for conducting the experiments. The
problem here is to adaptively choose the sign configurations for the signalized intersections
in the road network considered, in order to maximize the traffic flow in the long run. Let L
be the total number of lanes in the road network considered. Further, let qi(t), i = 1, . . . , L
denote the queue lengths and ti(t), i = 1, . . . , L the elapsed time (since signal turned to
red) on the individual lanes of the road network. Following [29], the traffic signal control
MDP is formulated as follows:

State st =
(
q1(t), . . . , qL(t), t1(t), . . . , tL(t)

)
,

Action at belongs to the set of feasible sign configurations,
Single-stage cost h(st) = u1

[∑
i∈Ip u2 · qi(t) +

∑
i/∈Ip w2 · qi(t)

]
+ w1

[∑
i∈Ip u2 · ti(t) +∑

i/∈Ip w2 · ti(t)
]
, where ui, wi ≥ 0 such that ui + wi = 1 for i = 1, 2 and u2 > w2.

Here, the set Ip is the set of prioritized lanes.

Stochastic approximation for speeding up LSTD (and LSPI) 29

Table 1: Features for the traffic control application

State Action Feature φi(s, a)

qi < L1 and ti < T1
RED 0.01

GREEN 0.06

qi < L1 and ti ≥ T1
RED 0.02

GREEN 0.05

L1 ≤ qi < L2 and ti < T1
RED 0.03

GREEN 0.04

L1 ≤ qi < L2 and ti ≥ T1
RED 0.04

GREEN 0.03

qi ≥ L2 and ti < T1
RED 0.05

GREEN 0.02

qi ≥ L2 and ti ≥ T1
RED 0.06

GREEN 0.01

0 100 200 300 400 500

0

0.2

0.4

0.6

step k of fLSTD-SA

∥ ∥ ∥θ k
−
θ̂ T

∥ ∥ ∥ 2

(a) Tracking error on 7x9-grid network

0 100 200 300 400 500
0

0.2

0.4

0.6

step k of fLSTD-SA

∥ ∥ ∥θ k
−
θ̂ T

∥ ∥ ∥ 2

(b) Tracking error on 14x9-grid network

Fig. 3: Tracking error of fLSTDQ-SA in iteration 1 of fLSPI-SA on two grid networks.

Function approximation is a standard technique employed to handle high-dimensional state
spaces (as is the case with the traffic signal control MDP on large road networks). We employ
the feature selection scheme from [30], which is briefly described in the following: the
features φ(s, a) corresponding to any state-action tuple (s, a) is an L-dimensional vector,
with one bit for each line in the road network. The feature value φi(s, a), i = 1, . . . , L
corresponding to lane i is chosen as described in Table 1, with qi and ti denoting the queue
length and elapsed times for lane i. Thus, as the size of the network increases, the feature
dimension scales in a linear fashion.

Note that the feature selection scheme depends on certain thresholds L1 and L2 on the
queue length and T1 on the elapsed times. The motivation for using such graded thresholds
is owing to the fact that queue lengths are difficult to measure precisely in practice. We
set (L1,L2, T1) = (6, 14, 130) in all our experiments and this choice has been used, for
instance, in [30].

We implement both LSPI as well as fLSPI-SA for the above problem. The experiments
involve two stages - an initial training stage where LSPI/fLSPI-SA is run to find an approx-

30 Prashanth L.A.† et al.

0 1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

·104

time steps

TA
R

LSPI
fLSPI-SA
Fixed20
Fixed30

(a) Throughput (TAR) on 7x9-grid network

0 1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

·104

time steps

TA
R

LSPI
fLSPI-SA
Fixed20
Fixed30

(b) Throughput (TAR) on 14x9-grid network

Fig. 4: Performance comparison of LSPI and fLSPI-SA using throughput (TAR) on two grid
networks.

imately optimal policy and a test stage where ten independent simulations are run using the
policy that LSPI/fLSPI-SA converged to in the training stage. In the training stage, for both
LSPI and fLSPI-SA, we collect T = 10000 samples from an exploratory policy that picks
the actions in a uniformly random manner. For both LSPI and fLSPI-SA, we set β = 0.9 and
ε = 0.1. We set τ , the number of fLSTDQ-SA iterations in fLSPI-SA, to 500. This choice is
motivated by an experiment where we observed that at 500 steps, fLSTD-SA is already very
close to LSTDQ and taking more steps did not result in any significant improvements for
fLSPI-SA. We implement the regularized variant of LSTDQ, with regularization constant µ
set to 1. The step-size γk used in the update iteration of fLSTDQ-SA is set as recommended
by Theorem 4.2.

8.2 Results

We use total arrived road users (TAR) and runtimes as performance metrics for comparing
the algorithms implemented. TAR is a throughput metric that denotes the total number of
road users who have reached their destination, while runtimes are measured for the policy
evaluation step in LSPI/fLSPI-SA. For fLSTDQ-SA, which is the policy evaluation algo-
rithm in fLSPI-SA, we also report the tracking error, which measures the distance in `2

norm between the fLSTD-SA iterate θk, k = 1, . . . , τ and LSTDQ solution θ̂T .
We report the tracking error and total arrived road users (TAR) in Fig. 3 and Fig. 4,

respectively. The run-times obtained from our experimental runs for LSPI and fLSPI-SA is
presented in Fig. 5. Iteration 1 for fLSPI-SA is used for reporting the tracking error and we
observed similar behavior across iterations, i.e., we observed that fLSTD-SA iterate θτ is
close to the corresponding LSTDQ solution in each iteration of fLSPI-SA. The experiments
are performed for four different grid networks of increasing size and hence, increasing fea-
ture dimension.

From Fig. 3a–3b, we observe that fLSTD-SA algorithm converges rapidly to the cor-
responding LSTDQ solution. Further, from the runtime plots (see Fig. 5), we notice that
fLSPI-SA is several orders of magnitude faster than regular LSPI. From a traffic application

Stochastic approximation for speeding up LSTD (and LSPI) 31

7x9-Grid
(d = 504)

14x9-Grid
(d = 1008)

14x18-Grid
(d = 2016)

28x18-Grid
(d = 4032)

0

2

4

6

·105

4,917
30,144

1.91 · 105

6.05 · 105

66 159 287 2,164

ru
nt

im
e

(m
s)

LSPI fLSPI-SA

Fig. 5: Run-times of LSPI and fLSPI-SA on four road networks

standpoint, we observe in Figs. 4a–4b that fLSPI-SA results in a throughput (TAR) per-
formance that is on par with LSPI. Moreover, the throughput observed for LSPI/fLSPI-SA
is higher than that for a traffic light control (TLC) algorithm that cycles through the sign
configurations in a round-robin fashion, with a fixed green time period for each sign con-
figuration. We report the TAR results in Figs. 4a–4b for two such fixed timing TLCs with
periods 10 and 20, respectively denoted Fixed10 and Fixed20. The rationale behind this
comparison is that fixed timing TLCs are the de facto standard. Moreover, the results es-
tablish that LSPI outperforms fixed timing TLCs that we implemented and fLSPI-SA gives
performance comparable to that of LSPI, but at a lower computational cost.

9 Extension to Least Squares Regression

In this section, we describe the classic parameter estimation problem using the method of
least squares, the standard approach to solve this problem and the low-complexity SGD
alternative. Subsequently, we outline the fast LinUCB algorithm that uses a SGD iterate in
place of least squares solutions and present the numerical experiments for this algorithm on
a news recommendation application.

9.1 Least squares regression and SGD

In this setting, we are given a set of samples D := {(xi, yi), i = 1, . . . , T} with the
underlying observation model yi = xT

iθ
∗+ξi (ξi is a bounded, zero-mean random variable,

and θ∗ is an unknown parameter). The least squares estimate θ̂T minimizes
∑T
i=1(yi −

θTxi)
2. It can be shown that θ̂T = Ā−1

T bT , where ĀT = T−1∑T
i=1 xix

T
i and b̄T =

T−1∑T
i=1 xiyi.

32 Prashanth L.A.† et al.

Notice that, unlike the RL setting, θ̂T here is the minimizer of an empirical loss function.
However, as in the case of LSTD, the computational cost of a Sherman-Morrison lemma
based approach for solving the above would be of the order O(d2T). Similarly to the case
of the fLSTD-SA algorithm, we update the SGD iterate θn using a SA scheme as follows
(starting with an arbitrary θ0),

θn = θn−1 + γn(yin − θ
T

n−1xin)xin , (46)

where, as before, each in is chosen uniformly randomly from {1, . . . , T}, and γn are step-
sizes chosen in advance.

Unlike fLSTD-SA which is a fixed point iteration, the above is a stochastic gradient
descent procedure. Nevertheless, using the same proof template as for fLSTD-SA earlier,
we can derive bounds on the computational error, i.e., the distance between θn and the least
squares solution θ̂T , both in high probability as well as expectation.

9.2 Main results

9.2.1 Assumptions

As in the case of fLSTD-SA, we make some assumptions on the step sizes, features, noise
and the matrix ĀT :
(A1) The step sizes γn satisfy

∑
n γn =∞, and

∑
n γ

2
n <∞.

(A2) Boundedness of xi, i.e., ‖xi‖2 ≤ Φmax, for i = 1, . . . , T .
(A3) The noise {ξi} is i.i.d., zero mean and |ξi| ≤ σ, for i = 1, . . . , T .
(A4) The matrix ĀT is positive definite, and its smallest eigenvalue is at least µ > 0.
Assumptions (A2) and (A3) are standard in the context of least squares minimization. As
for fLSTD-SA, in cases when the fourth assumption is not satisfied we can employ either
explicit regularization or iterate averaging to produce similar results.

9.2.2 Asymptotic convergence

An analogue of Theorem 4.1 holds as follows:

Theorem 9.1 Under (A1)-(A4), the iterate θn → θ̂T a.s. as n → ∞, where θn is given by
(46) and θ̂T = Ā−1

T b̄T .

Proof Follows in exactly the same manner as the proof of Theorem 4.1. �

9.2.3 Finite time bounds

An analogue of Theorem 4.2 for this setting holds as follows:

Theorem 9.2 (Error Bound for iterates of SGD)
Assume (A1)-(A4). Choosing γn = c0c

(c+n) and c such that c0 ∈ (0, Φ−1
max) and µc0c ∈

(1,∞), for any δ > 0,

E
∥∥∥θn − θ̂T∥∥∥

2
≤ KLS

1√
n+ c

and P
(∥∥∥θn − θ̂T∥∥∥

2
≤ KLS

2√
n+ c

)
≥ 1− δ,

Stochastic approximation for speeding up LSTD (and LSPI) 33

where

KLS
1 (n) :=

√
c
∥∥∥θ0 − θ̂T∥∥∥

2

(n+ c)µc0c−
1
2

+
c0ch(n)

2c0cµ− 1
,

KLS
2 (n) := 2c0c

√
h(n) log δ−1

µc0c− 1
+K1(n).

where h(n) := (σ + ‖θ̂T ‖2 + ‖θ0‖2 + σΦmax ln(c+ n))Φ2
max

Proof See Section 9.4. �

Remark 9 (Rates.) With step-sizes specified in Theorem 9.2, we see that the initial error is
forgotten faster than the sampling error, which vanishes at the rate O

(
n−1/2

)
. Thus, the

rate derived in Theorem 9.2 matches the asymptotically optimal convergence rate for SGD
type schemes (c.f. [26]).

9.3 Iterate Averaging

The expectation and high-probability bounds in Theorem 9.2 as well as earlier works on
SGD (cf. [13]) require the knowledge of the strong convexity constant µ. Iterate averaged
SGD gets rid of this dependence while exhibiting the optimal convergence rates both in high
probability and expectation and this claim is made precise in the following theorem.

Theorem 9.3 (Error Bound for iterate averaged SGD)
Under (A2)-(A3), choosing γn = c0

(
c

(c+n)

)α
, with α ∈ (1/2, 1) and c0 ∈ (0, Φ−1

max), we
have, for any δ > 0,

E
∥∥∥θ̄n − θ̂T∥∥∥

2
≤ KIA

1 (n)

(n+ c)α/2
and P

(∥∥∥θ̄n − θ̂T∥∥∥
2
≤ KIA

2 (n)

(n+ c)α/2

)
≥ 1− δ, (47)

where, writing C =
∑∞
n=1 exp(−µc0cαn1−α)(<∞),

KIALS
1 (n) :=

(
‖θn0 − θT ‖2 + e+

(
2α

1− α

) 1
1−α

exp

(
2α

1− α

))
C

(n+ c)1−
α
2

+
(
σ + (σ +

∥∥θ∗∥∥
2

+ ‖θ0‖2 + σ log(n+ c))Φmax

)
cαc0 (c0µc

α)
−α 1+2α

2(1−α) ,

and KIALS
2 (n) :=

4
√

log δ−1

µ2c20

max
{

1
µ , 1

}{
c0 + 2α +

[
2α
cα + 2α

1−α

]}
(n+ c)(1−α)/2

+KIALS
1 (n).

Proof The proof is completely analogous to that of Theorem 5.1 and hence omitted. �

9.4 Proofs for least squares regression extension

The overall schema of the proof here is the same as that used to prove Theorem 4.2. In the
following, we present an analogue of Proposition 7.1 for the least squares setting. (Recall
that θ̂T = Ā−1

T bT is the least squares solution):

34 Prashanth L.A.† et al.

Proposition 9.1 Let zn = θn − θ̂T , where θn is given by (46). Under (A1)-(A4), and
assuming that γnΦmax ≤ 1 for all n, we have ∀ε > 0,

(1) a bound in high probability for the centered error:

P
(
‖zn‖2 − E ‖zn‖2 ≥ ε

)
≤ exp

(
− ε2

2h(n)
∑n
i=1 L

2
i

)
, (48)

where Li := γi
∏n−1
j=i (1 − γj+1µ(2 − Φmaxγj+1))1/2, and h(k) = (σ + ‖θ̂T ‖2 +

‖θ0‖2 + σΦmaxΓn)Φ2
max,

(2) and a bound in expectation for the non-centered error:

E
(
‖zn‖2

)2 ≤ exp

−µ n∑
j=1

γj

∥∥∥θ0 − θ̂T∥∥∥
2︸ ︷︷ ︸

initial error

+

n−1∑
k=1

2h(k)2γ2k+1 exp

−2µ
n∑

j=k+1

γj

 1
2

︸ ︷︷ ︸
sampling error

. (49)

The proof of the Proposition 9.1 has the same scheme as the proof of Proposition 7.1.
The major difference is that the update rule is no longer the update rule of a fixed point
iteration, but of a gradient descent scheme. In the following proofs, we give only the major
differences with the proof of Proposition 7.1:

High-probability bound. There are two alterations to the proof of the high probability
bound in Proposition 7.1: slightly different Lipschitz constants are derived according to
the different form of the random innovation (Step 2 of the proof of Proposition 7.1); the
constant by which the the size of the random innovations is bounded is different, and
projection is not necessary to achieve this bound (Step 3 of the proof of Proposition 7.1).

Bound in expectation. The overall scheme of this proof is similar to that used in prov-
ing the expectation bound in Proposition 7.1. However, we see differences in the proof
wherever the update rule is unrolled and bounds on the various quantities in the resulting
expansion need to be obtained.

Proof of Proposition 9.1 part (1):

First we derive the Lipschitz dependency of the ith iterate on the random innovation at time
j < i, as in Step 2 of Proposition 7.1.

Let Θij(θ) denote the mapping that returns the value of the iterate updated according to
(46) at instant j, given that θi = θ. Now we note that

Θin(θ)−Θin(θ′) =
(
I − γnxinx

T
in

) [
Θin−1(θ)−Θin−1(θ′)

]
and (

I − γnxinx
T
in

)T (
I − γnxinx

T
in

)
=
(
I − γn(2− ‖xin‖

2
2γn)xinx

T
in

)
.

Stochastic approximation for speeding up LSTD (and LSPI) 35

So using Jensen’s inequality, the Tower property of conditional expectations, and Cauchy-
Schwarz, we can deduce that

E
[
‖Θin(θ)−Θin(θ′)‖2 | Θin−1(θ), Θin−1(θ′)

]
≤
[
‖I − γn(2− Φmaxγn)Ān−1‖22‖Θin−1(θ)−Θin−1(θ′)‖22

]1/2
A repeated application of this inequality together with (A4) yields the following

E
[∥∥∥Θin(θ)−Θin(θ′)

∥∥∥2
2

]
≤
∥∥θ − θ′∥∥2

2

n−1∏
j=i

(1− µγj+1(2− Φmaxγj+1)).

Finally putting all this together, if f and f ′ denote two possible values for the random
innovation at time i, and letting θ = θi−1 + γif and θ′ = θi−1 + γif

′, then we have∥∥∥E [∥∥∥θn − θ̂T∥∥∥
2
|θi = θ

]
− E

[∥∥∥θn − θ̂T∥∥∥
2

∣∣θi = θ′
]∥∥∥

2

≤ E
[∥∥Θmn (θ)−Θmn

(
θ′
)∥∥

2

]
≤

n−1∏
j=i

(1− µγj+1(2− Φmaxγj+1))

 1
2

γi
∥∥f − f ′∥∥

2

= Li
∥∥f − f ′∥∥

2
.

Finally we need to bound the size of the random innovations. Recall that in Proposition
7.1, the bound on the size of the iterates followed from the projection step in the algorithm.
In this case, we can derive a bound directly for the iterates directly:

‖θn‖2 =

∥∥∥∥∥∥
[
n∏
k=1

(I − γkxikx
T

k)

]
θ0 +

t∑
k=1

γk

 n∏
j=k

(I − γjxijx
T

j)

 ξkxk
∥∥∥∥∥∥
2

≤‖θ0‖2 + σΦmax

n∑
j=1

γj (50)

where we have used that γjxijx
T
j is a positive definite matrix, with eigenvalues smaller than

1. Now we can bound the random innovation by∥∥(yin − θ
T

n−1xin)xin
∥∥
2
≤ h(n).

The proof now follows just as in Proposition 7.1. �

Proof of Proposition 9.1 part (2):

First we extract a martingale difference from the update rule (46): Let fn(θ) := (ξin − (θ−
θ̂T)Txin)ξin and let F (θ) := E(fn(θ) | Fn−1), where Fn−1 is the sigma field generated
by the random variables {i1, . . . , ın−1} as before. Then

zn = θn − θ̂T = θn−1 − θ̂T − γn (F (θn−1)−∆Mn) ,

the ∆Mn = F (θn−1)− fn(θn−1) is a martingale difference.

36 Prashanth L.A.† et al.

Now since θ̂T is the least squares solution, F (θ̂T) = 0. Moreover F (·) is linear, and so
we obtain a recursion:

zn = zn−1 − γn
(
zn−1Ān −∆Mn

)
= Πnz0 −

n∑
k=1

γkΠnΠ
−1
k ∆Mk,

where Πn :=
∏n
k=1

(
I − γkĀk

)
. By Jensen’s inequality

E(‖zn‖2) ≤ (E(〈zn, zn〉))
1
2 =

(
E ‖Πnz0‖22 +

n∑
k=1

γ2kE
∥∥∥ΠnΠ−1

k ∆Mk

∥∥∥2
2

) 1
2

(51)

Notice that Ān − µI is positive definite by (A4) and hence

∥∥∥ΠnΠ−1
k

∥∥∥
2

=

∥∥∥∥∥∥
n∏

j=k+1

(
I − γjĀj

)∥∥∥∥∥∥
2

≤
n∏

j=k+1

∥∥(1− γjµ)I − γj(Āj − µI)
∥∥
2

≤
n∏

j=k+1

‖(1− γjµ)I‖2 ≤
n∏

j=k+1

(1− γjµ) ≤ exp

−µ n∑
j=k

γj

 , (52)

Finally we need to bound the variance of the martingale difference. Using (A2) and
(A3), a calculation shows that

Eξ,it〈fit(θt−1), fit(θt−1)〉,Eξ〈F (θt−1, F (θt−1〉 ≤ h(n)

where we have used the bound (50). Hence E[‖∆Mn‖22] ≤ 2h(n).
The result now follows from (51) and (52). �

10 Fast LinUCB using SA and application to news-recommendation

10.1 Background for LinUCB

As illustrated in Fig. 6, at each iteration n, the objective is to choose an article from a pool
of K articles with respective features x1(n), . . . , xK(n). Let xn denote the chosen article
at time n. LinUCB computes a regularised least squares (RLS) solution θ̂n based on the
chosen arms xi and rewards yi seen so far, i = 1, . . . , n− 1 as follows:

θ̂n = arg min
θ

n∑
i=1

(yi − θTxi)
2 + λ ‖θ‖22 . (53)

Note that {xi, yi} do not come from a distribution. Instead, at every iteration n, the arm xn
chosen by LinUCB is based on the RLS solution θ̂n. The latter is used to estimate the UCB
values for each of the K articles as follows:

UCB(xk(n)) := xk(n)Tθ̂n + κ

√
xk(n)TA−1

n xk(n), k = 1, . . . ,K. (54)

The algorithm then chooses the article with the largest UCB value and the cycle is repeated.

Stochastic approximation for speeding up LSTD (and LSPI) 37

Choose xn Observe yn

Estimate UCB

xn := arg max
x∈D

UCB(x) Rewards yn
s.t. E[yn | xn] = xT

nθ
∗

Regression used to compute UCB(x) := xTθ̂n + α
√
xTA−1

n x

Fig. 6: Operational model of LinUCB

Algorithm 3 fLinUCB-SA
Initialisation: Set θ0, λ > 0 - the regularization parameter, γk - the step-size sequence.
for n = 1, 2, . . . do

Observe article features x1(n), . . . , xK(n)
Approximate Least Squares Regression using fLS-SA

for l = 1 . . . τ do
Get random sample index: il ∼ U({1, . . . , n− 1})
Update fLS-SA iterate θl(n) as follows:
θl(n) = θl−1(n) + γl(yil − θl−1(n)Txil)xil − γl

λ
n
θl−1(n)

end for
UCB computation using SGD

for k = 1 . . .K do
for l = 1 . . . τ ′ do

Get random sample index: il ∼ U({1, . . . , n− 1})
Update SGD iterate φk(n) as follows:
φk(l) = φk(l − 1) + γl(n

−1xk(n)− (φk(l − 1)Txil)xil),
end for

end for
Choose article achieving arg maxk=1,...,K θτ (n)Txk(n) + κ

√
φk(τ ′)Txk(n)

Observe the reward yn.
end for

10.2 Fast LinUCB using SA (fLinUCB-SA)

We implement a fast SGD variant of LinUCB, where SGD is used for two purposes (See
Algorithm 3 for the pseudocode):

Least squares approximation. Here we use fLS-SA as a subroutine to approximate θ̂n. In
particular, at any instant n of the LinUCB algorithm, we run the update (46) for τ steps
and use the resulting θτ to derive the UCB values for each arm.

UCB confidence term approximation. Here we use an SGD scheme, originally proposed
in [16], for approximating the confidence term of the UCB values (54). For a given arm
k = 1, . . . ,K, let φ̂k(n) = A−1

n xk(n) denote the confidence estimate in the UCB

38 Prashanth L.A.† et al.

value (54). Recall that An =
n∑
i=1

xix
T
i . It is easy to see that φ̂k(n) is the solution to the

following problem:

min
φ

n∑
i=1

(xT
iφ)2

2
− xk(n)Tφ

n
. (55)

Solving the above problem incurs a complexity of O(d2). An SGD alternative with a
per-iteration complexity of O(d) approximates the solution to (55) by using the follow-
ing iterative scheme:

φk(l) = φk(l − 1) + γl(n
−1xk(n)− (φk(l − 1)Txil)xil), (56)

where il is chosen uniformly at random in the set {1, . . . , n}.

For fLinUCB-SA in both the simulation setups presented subsequently, we set λ to 1, κ
to 1, τ, τ ′ to 100 and θ0 to the d = 136 0 vector. Further, the step-sizes γk are chosen as
c/(2(c+ k)), with c = 1.33n and this choice is motivated by Theorem 9.2.

Remark 10 The choice of the number of steps τ, τ ′ for SGD schemes in fLinUCB-SA is an
arbitrary one. Our aim is simply to show that using a stochastic approximation iterates in
place of an exact solution to the least squares and confidence estimates does not significantly
decrease performance of LinUCB, while it does drastically decrease the complexity.

10.3 Experiments on Yahoo! dataset

The motivation in this experimental setup is to establish the usefulness of fLS-SA in a higher
level machine learning algorithm such as LinUCB. In other words, the objective is to test
the performance of LinUCB with SGD approximating least squares and show that the result-
ing algorithm gains in runtime, while exhibiting comparable performance to that of regular
LinUCB.

For conducting the experiments, we use the framework provided by the ICML explo-
ration and exploitation challenge [25], based on the user click log dataset [40] for the Ya-
hoo! front page today module (see Fig. 7). We run each algorithm on several data files
corresponding to different days in October, 2011.

Each data file has an average of nearly two million records of user click information.
Each record in the data file contains various information obtained from a user visit. These
include the displayed article, whether the user clicked on it or not, user features and a list
of available articles that could be recommended. The precise format is described in [25].
The evaluation of the algorithms in this framework is done in an off-line manner using a
procedure described in [23].

Results. We report the tracking error and runtimes from our experimental runs in Figs. 8 and
9, respectively. As in the case of fLSTDQ-SA, the tracking error is the distance in `2 norm
between the fLS-SA iterate θn and the RLS solution θ̂n at each instant n of the LinUCB
algorithm. The runtimes in Fig. 9 are for five different data files corresponding to five days in
October, 2009 of the dataset [40] and compare the classic RLS solver time against fLS-SA
time for each day of the dataset considered.

From Fig. 8, we observe that, in iteration n = 165 of the LinUCB algorithm, fLS-
SA algorithm iterate θτ (n) converges rapidly to the corresponding RLS solution θ̂n. The

Stochastic approximation for speeding up LSTD (and LSPI) 39

Fig. 7: The Featured tab in Yahoo! Today module (src: [22])

0 20 40 60 80 100

0

0.5

1

1.5

iteration k of fLS-SA

∥ ∥ ∥θ k(
n

)
−
θ̂ n

∥ ∥ ∥2 2

∥∥∥θk(n)− θ̂n
∥∥∥2
2

Fig. 8: Distance between fLS-SA iterate θk(n) and θ̂n in iteration n = 165 of fLinUCB-SA,
with day 2’s data file as input.

choice 165 for the iteration is arbitrary, as we observed similar behaviour across iterations
of LinUCB.

The CTR score value is the ratio of the number of clicks that an algorithm gets to the
total number of iterations it completes, multiplied by 10000 for ease of visualization. We
observed that the CTR score for the regular LinUCB algorithm with day 2’s data file as input
was 470, while that of fLinUCB-SA was 390, resulting in about 20% loss in performance.
Considering that the dataset contains very sparse features and also the fact that the rewards
are binary, with a reward of 1 occurring rarely, we believe LinUCB has not seen enough data
to have converged UCB values and hence the observed loss in CTR may not be conclusive.

40 Prashanth L.A.† et al.

2 3 4 5 6

0

0.5

1

1.5

·106

1.32 · 106

1.49 · 106

1.11 · 106

6.03 · 105

8.59 · 105

32,444 35,325 26,335 14,264 20,473

days

ru
nt

im
e

(m
s)

LinUCB fLinUCB-SA

Fig. 9: Performance comparison of the algorithms using runtimes on various days of the
dataset.

11 Conclusions and Future Work

We analysed a stochastic approximation based algorithm with randomised samples for pol-
icy evaluation by the method of LSTD. We provided convergence rate results for this al-
gorithm, both in high probability and in expectation. Furthermore, we also established that
using this scheme in place of LSTD does not impact the rate of convergence of the approx-
imate value function to the true value function and hence a low-complexity LSPI variant
that uses our SA based scheme has the same order of the performance bounds as that of
regular LSPI. These results coupled with the fact that the SA based scheme possesses lower
computational complexity in comparison to traditional techniques makes it attractive for
implementation in big data settings, where the feature dimension is large, regardless of the
density of the feature vectors. On a traffic signal control application, we demonstrated the
practicality of a low-complexity alternative to LSPI that uses our SA based scheme in place
of LSTDQ for policy evaluation. We also extended our analysis for bounding the error of an
SGD scheme for least squares regression and conducted a set of experiments that combines
the SGD scheme with the LinUCB algorithm on a news-recommendation platform.

In [15], the authors derive concentration bounds for TD with function approximation,
which is a natural extension of the work in this paper. Unlike LSTD, TD is an online al-
gorithm and a finite-time analysis there would require notions of mixing time for Markov
chains in addition to the solution scheme that we employed in this work. This is because the
asymptotic limit for TD(0) is the fixed point of the Bellman operator, which assumes that
the underlying MDP is begun from the stationary distribution, say Ψ . However, the samples
provided to TD(0) come from simulations of the MDP that are not begun from Ψ , making
the finite time analysis challenging and also implying that significant deviations from the
proof technique used for fLSTD-SA are needed for analyzing TD. It would be interesting
to (i) develop extensions of fLSTD-SA to approximate LSTD(λ) and (ii) choose a cyclic
sampling scheme instead of the uniform random sampling. Cycling through the samples is

Stochastic approximation for speeding up LSTD (and LSPI) 41

advantageous because the samples need not be stored and one can then think of fLSTD-SA
with cyclic sampling as an incremental algorithm in the spirit of TD. Another orthogonal di-
rection of future research is to develop online algorithms that track the corresponding batch
solutions, efficiently and this has been partially accomplished in [17] and [38].

Appendix

A Proof of Lemma 7.1

Recall from the statement of Theorem 5.1 that we assume n > n0, where n0 satisfies,

c0cα

(c+ n0)α
(1 + β)2Φ2

max < µ.

Then, from the formula in Proposition 7.1, we have that:

n∑
i=1

L2
i =

n∑
i=1

γi
n

 n−1∑
l=i+1

l∏
j=i

(
1− γj+1(2µ− (1 + β)2Φ4

maxγj+1))
)1/22

≤
1

n2

n∑
i=1

γi
 n−1∑
l=i+1

exp

− l∑
j=i

γj+1(2µ− (1 + β)2Φ4
maxγj+1))

2

=
1

n2

n∑
i=1

c0 (c

c+ i

)α n−1∑
l=i+1

exp

−c0µ l∑
j=i

(
c

c+ j

)α
︸ ︷︷ ︸

:=(A)

2

(57)

To produce the final bound, we bound the summand (A) highlighted in line (57) by a constant, uniformly over
all values of i and n. Now, using the convexity of e−

c0µ
2
x, followed by an Abel transform

n−1∑
l=i+1

exp

−c0µ l∑
j=1

(
c

c+ i

)α
=

n−1∑
l=i+1

(c

c+ l

)α
exp

−c0µ l∑
j=1

(
c

c+ i

)α(c+ l

c

)α

≤
n−1∑
l=i+1

 1

c0µ

exp

− l−1∑
j=1

(
c

c+ i

)α− exp

− l∑
j=1

(
c

c+ i

)α(c+ l

c

)α

=
1

c0µ

{
−
(

c

c+ n

)−α
exp

− n∑
j=1

(
c

c+ i

)α
+

(
c

c+ i+ 1

)−α
exp

− i+1∑
j=1

(
c

c+ i

)α
+

n−1∑
l=i+1

exp

− l∑
j=1

(
c

c+ i

)α[(c

c+ l + 1

)−α
−
(

c

c+ l

)−α]}

42 Prashanth L.A.† et al.

So the summand term (A) highlighted in line (57) can be bounded by

(A) ≤
1

µ

((
c+ i+ 1

c+ i

)α
+

1

(c+ i)α

n−1∑
l=i

exp

(
−cα

((c+ l)1−α − (c+ i)1−α)

1− α

)
.((c+ l + 1)α − (c+ l)α)

)

Now, using convexity of xα followed by comparison with an integral, and then a change of variables, we
have

n−1∑
l=i+1

exp

(
−
cα((c+ l)1−α − (c+ i)1−α)

(1− α)

)
((c+ l + 1)α − (c+ l)α) (58)

≤
n−1∑
l=i+1

exp

(
−
cα((c+ l)1−α − (c+ i)1−α)

(1− α)

)
α (c+ l)−(1−α)

≤ α exp

(
cα(c+ i)1−α

(1− α)

)[∫ n−1

i
exp

(
−
cα(c+ l)1−α

(1− α)

)
(c+ l)−(1−α)dl

]

≤ α exp

(
cα(c+ i)1−α

(1− α)

)[∫ (c+n−1)1−α

(c+i)1−α
exp

(
−

cαl

(1− α)

)
l
2α−1
1−α dl

]
. (59)

For the second inequality we have used that the mapping x → e−d(c+x)
1−α

(c + x)−(1−α) is decreasing
in x for all x > 1.

By taking the derivative and setting it to zero, we find that l 7→ exp
(
− cαl

(1−α)

)
l

2α
1−α is decreasing on

[2α/cα,∞), and so we deduce that when c+ i ≥ 2α/cα,

exp

(
cα(c+ i)1−α

(1− α)

)∫ (c+n)1−α

(c+i+1)1−α
exp

(
−

cαl

(1− α)

)
l
2α−1
1−α dl

≤ (c+ i+ 1)2α
∫ (c+n)1−α

(c+i+1)1−α
l
−1
1−α dl <

1− α
α

(c+ i+ 1)α

When c+ i < 2α/cα we can bound the summand of (58) by 1. Hence we can conclude that:

n∑
i=1

L2
i ≤

1

µ2

{
2α +

[
2α

cα
+

2α

1− α

]}2 1

n
. (60)

The rest of the proof follows that of Theorem 4.2. �

B Proof of Lemma 7.2

Recall from the statement of Theorem 5.1 that we assume n > n0, where n0 satisfies,

c0cα

(c+ n0)α
(1 + β)2Φ2

max < µ.

Stochastic approximation for speeding up LSTD (and LSPI) 43

Recall that for this result we have chosen the larger step sizes, γn = c0 (c/(c+ n))−α. Using that
x 7→ x−2αex

1−α
is convex, we have

E
∥∥∥θn − θ̂T ∥∥∥

2
≤ exp

(
−c0µcα(n+ c)1−α

) ∥∥∥θ0 − θ̂T ∥∥∥
2

+

(
n−1∑
k=1

(Rmax + (1 + β)HΦmax)2

.c20

(
c

k + c+ 1

)2α

exp
(
−2c0µc

α((n+ c)1−α − (k + 1 + c)1−α
)) 1

2

≤ exp
(
−c0µcα(n+ c)1−α

) [∥∥∥θ0 − θ̂T ∥∥∥
2

+ (Rmax + (1 + β)HΦmax) cαc0

{
e+

∫ n+c

1
x−2α exp

(
2c0µc

αx1−α
)
dx

} 1
2
]

≤ exp
(
−c0µcα(n+ c)1−α

)[∥∥∥θ0 − θ̂T ∥∥∥
2

+ (Rmax + (1 + β)HΦmax) cα

.

{
e+

(
c0µcα

2

)−2α

.

∫ (n+c)(2c0µc
α)1/(1−α)

1
y−2α exp(y1−α)dy

} 1
2
]

Now, since y−2α ≤ 2
1−α ((1− α)y−2α − αy−(1+α)) when y >

(
2α
1−α

) 1
1−α , we have

∫ (n+c)(2c0µc
α)1/(1−α)

(
2α

1−α

) 1
1−α

y−2α exp(y1−α)dy

≤
2

1− α

∫ (n+c)(2c0µc
α)1/(1−α)

(
2α

1−α

) 1
1−α

((1− α)y−2α − αy−(1+α)) exp(y1−α)dy

≤ exp
(
2c0µc

αn1−α) (n+ c)−α

and so we have that

E
∥∥∥θn − θ̂T ∥∥∥

2

≤ exp
(
−c0µcα(n+ c)1−α

)
.

(
‖θ0 − θT ‖2 + e

(
2α

1− α

) 1
1−α

+

(
2α

1− α

) 1
1−α

exp

(
2α

1− α

))

+ (Rmax + (1 + β)HΦmax) cαc0 (c0µc
α)
−α 1+2α

2(1−α) (n+ c)−
α
2

So we have

E
∥∥∥θ̄n − θ̂T ∥∥∥

2
≤
(∞∑
n=1

exp
(
−c0µcα(n+ c)1−α

))

.

(
‖θ0 − θT ‖2 + e+

(
2α

1− α

) 1
1−α

exp

(
2α

1− α

))
1

n

+ 2 (Rmax + (1 + β)HΦmax) cα (c0µc
α)
−α 1+2α

2(1−α) (n+ c)−
α
2 .

�

44 Prashanth L.A.† et al.

References

1. Antos A, Szepesvári C, Munos R (2008) Learning near-optimal policies with bellman-residual mini-
mization based fitted policy iteration and a single sample path. Machine Learning 71(1):89–129

2. Bach F, Moulines E (2011) Non-asymptotic analysis of stochastic approximation algorithms for machine
learning. In: NIPS

3. Bach F, Moulines E (2013) Non-strongly-convex smooth stochastic approximation with convergence rate
o (1/n). In: Advances in Neural Information Processing Systems, pp 773–781

4. Bertsekas DP (2012) Dynamic Programming and Optimal Control, Vol. II, 4th Edition: Approximate
Dynamic Programming. Athena Scientific

5. Bertsekas DP, Tsitsiklis JN (1996) Neuro-Dynamic Programming (Optimization and Neural Computa-
tion Series, 3), vol 7. Athena Scientific

6. Borkar V (2008) Stochastic approximation: a dynamical systems viewpoint. Cambridge University Press
7. Borkar VS, Meyn SP (2000) The ode method for convergence of stochastic approximation and reinforce-

ment learning. SIAM Journal on Control and Optimization 38(2):447–469
8. Bradtke S, Barto A (1996) Linear least-squares algorithms for temporal difference learning. Machine

Learning 22:33–57
9. Dani V, Hayes TP, Kakade SM (2008) Stochastic linear optimization under bandit feedback. In: Proceed-

ings of the 21st Annual Conference on Learning Theory (COLT), pp 355–366
10. Fathi M, Frikha N (2013) Transport-entropy inequalities and deviation estimates for stochastic approxi-

mation schemes. arXiv preprint arXiv:13017740
11. Frikha N, Menozzi S (2012) Concentration Bounds for Stochastic Approximations. Electron Commun

Probab 17:no. 47, 1–15
12. Geramifard A, Bowling M, Zinkevich M, Sutton RS (2007) iLSTD: Eligibility traces and convergence

analysis. In: NIPS, vol 19, p 441
13. Hazan E, Kale S (2011) Beyond the regret minimization barrier: an optimal algorithm for stochastic

strongly-convex optimization. In: COLT, pp 421–436
14. Konda VR (2002) Actor-critic algorithms. PhD thesis, Department of Electrical Engineering and Com-

puter Science, MIT
15. Korda N, LA P (2015) On TD (0) with function approximation: Concentration bounds and a centered

variant with exponential convergence. In: ICML
16. Korda N, Prashanth L, Munos R (2014) Fast gradient descent for drifting least squares regression, with

application to bandits. arXiv preprint arXiv:13073176v3
17. Korda N, LA P, Munos R (2015) Fast Gradient Descent for Drifting Least Squares Regression, with

Application to Bandits. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
pp 2708–2714

18. Kushner H, Clark D (1978) Stochastic approximation methods for constrained and unconstrained sys-
tems. Springer-Verlag

19. Kushner HJ, Yin G (2003) Stochastic approximation and recursive algorithms and applications, vol 35.
Springer Verlag

20. Lagoudakis MG, Parr R (2003) Least-squares policy iteration. The Journal of Machine Learning Re-
search 4:1107–1149

21. Lazaric A, Ghavamzadeh M, Munos R (2012) Finite-sample analysis of least-squares policy iteration.
Journal of Machine Learning Research 13:3041–3074

22. Li L, Chu W, Langford J, Schapire RE (2010) A contextual-bandit approach to personalized news article
recommendation. In: Proceedings of the 19th international conference on World wide web, ACM, pp
661–670

23. Li L, Chu W, Langford J, Wang X (2011) Unbiased offline evaluation of contextual-bandit-based news
article recommendation algorithms. In: Proceedings of the fourth ACM international conference on Web
search and data mining, ACM, pp 297–306

24. Liu B, Liu J, Ghavamzadeh M, Mahadevan S, Petrik M (2015) Finite-Sample Analysis of Proximal
Gradient TD Algorithms. In: Proc. The 31st Conf. Uncertainty in Artificial Intelligence, Amsterdam,
Netherlands

25. Mary J, Garivier A, Li L, Munos R, Nicol O, Ortner R, Preux P (2012) Icml exploration and exploitation
3 - new challenges

26. Nemirovsky A, Yudin D (1983) Problem complexity and method efficiency in optimization
27. Pires BA, Szepesvári C (2012) Statistical linear estimation with penalized estimators: an application to

reinforcement learning. arXiv preprint arXiv:12066444
28. Polyak BT, Juditsky AB (1992) Acceleration of stochastic approximation by averaging. SIAM Journal

on Control and Optimization 30(4):838–855

Stochastic approximation for speeding up LSTD (and LSPI) 45

29. Prashanth L, Bhatnagar S (2011) Reinforcement Learning with Function Approximation for Traffic Sig-
nal Control. IEEE Transactions on Intelligent Transportation Systems 12(2):412–421

30. Prashanth L, Bhatnagar S (2012) Threshold Tuning using Stochastic Optimization for Graded Signal
Control. IEEE Transactions on Vehicular Technology 61(9):3865–3880

31. Robbins H, Monro S (1951) A stochastic approximation method. The annals of mathematical statistics
pp 400–407

32. Ruppert D (1991) Stochastic approximation. Handbook of Sequential Analysis pp 503–529
33. Silver D, Sutton RS, Müller M (2007) Reinforcement Learning of Local Shape in the Game of Go. In:

IJCAI, vol 7, pp 1053–1058
34. Sutton RS, Barto AG (1998) Reinforcement learning: An introduction. Cambridge Univ Press
35. Sutton RS, Szepesvári C, Maei HR (2009) A convergent O(n) algorithm for off-policy temporal-

difference learning with linear function approximation. In: NIPS, pp 1609–1616
36. Sutton RS, et al (2009) Fast gradient-descent methods for temporal-difference learning with linear func-

tion approximation. In: ICML, ACM, pp 993–1000
37. Tagorti M, Scherrer B (2015) On the Rate of Convergence and Error Bounds for LSTD(λ). In: ICML
38. Tarrès P, Yao Y (2011) Online learning as stochastic approximation of regularization paths. arXiv

preprint arXiv:11035538
39. Tsitsiklis JN, Van Roy B (1997) An analysis of temporal-difference learning with function approxima-

tion. IEEE Transactions on Automatic Control 42(5):674–690
40. Webscope Y (2011) Yahoo! Webscope dataset ydata-frontpage-todaymodule-clicks-v2 0. URL "http:

//research.yahoo.com/Academic_Relations"
41. Yu H, Bertsekas DP (2009) Convergence results for some temporal difference methods based on least

squares. IEEE Transactions on Automatic Control 54(7):1515–1531
42. Zinkevich M (2003) Online convex programming and generalized infinitesimal gradient ascent. In:

ICML, pp 928–925

"http://research.yahoo.com/Academic_Relations"
"http://research.yahoo.com/Academic_Relations"

	Introduction
	Literature review
	Fast LSTD using Stochastic Approximation (fLSTD-SA)
	Main results for fLSTD-SA
	Iterate Averaging
	Fast LSPI using Stochastic Approximation (fLSPI-SA)
	Convergence proofs
	Traffic Control Application
	Extension to Least Squares Regression
	Fast LinUCB using SA and application to news-recommendation
	Conclusions and Future Work
	Proof of Lemma 7.1
	Proof of Lemma 7.2

