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Abstract

A fundamental question in a sequential decision making setting under uncertainty is “how

to allocate resources amongst competing entities so as to maximize the rewards accumu-

lated in the long run?”. The resources allocated may be either abstract quantities such

as time or concrete quantities such as manpower. The sequential decision making setting

involves one or more agents interacting with an environment to procure rewards at every

time instant and the goal is to find an optimal policy for choosing actions. Most of these

problems involve multiple (infinite) stages and the objective function is usually a long-run

performance objective. The problem is further complicated by the uncertainties in the sys-

tem, for instance, the stochastic noise and partial observability in a single-agent setting

or private information of the agents in a multi-agent setting. The dimensionality of the

problem also plays an important role in the solution methodology adopted. Most of the

real-world problems involve high-dimensional state and action spaces and an important

design aspect of the solution is the choice of knowledge representation.

The aim of this thesis is to answer important resource allocation related questions in

different real-world application contexts and in the process contribute novel algorithms

to the theory as well. The resource allocation algorithms considered include those from

stochastic optimization, stochastic control and reinforcement learning. A number of new

algorithms are developed as well. The application contexts selected encompass both sin-

gle and multi-agent systems, abstract and concrete resources and contain high-dimensional

state and control spaces. The empirical results from the various studies performed indi-

cate that the algorithms presented here perform significantly better than those previously

proposed in the literature. Further, the algorithms presented here are also shown to theoret-

ically converge, hence guaranteeing optimal performance.

We now briefly describe the various studies conducted here to investigate problems of

resource allocation under uncertainties of different kinds:
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Vehicular Traffic Control The aim here is to optimize the ‘green time’ resource of the

individual lanes in road networks that maximizes a certain long-term performance

objective. We develop several reinforcement learning based algorithms for solving

this problem. In the infinite horizon discounted Markov decision process setting,

a Q-learning based traffic light control (TLC) algorithm that incorporates feature

based representations and function approximation to handle large road networks is

proposed, see Prashanth and Bhatnagar [2011b]. This TLC algorithm works with

coarse information, obtained via graded thresholds, about the congestion level on

the lanes of the road network. However, the graded threshold values used in the

above Q-learning based TLC algorithm as well as several other graded threshold-

based TLC algorithms that we propose, may not be optimal for all traffic conditions.

We therefore also develop a new algorithm based on SPSA to tune the associated

thresholds to the ‘optimal’ values (Prashanth and Bhatnagar [2012]). Our thresh-

old tuning algorithm is online, incremental with proven convergence to the optimal

values of thresholds. Further, we also study average cost traffic signal control and

develop two novel reinforcement learning based TLC algorithms with function ap-

proximation (Prashanth and Bhatnagar [2011c]). Lastly, we also develop a feature

adaptation method for ‘optimal’ feature selection (Bhatnagar et al. [2012a]). This

algorithm adapts the features in a way as to converge to an optimal set of features,

which can then be used in the algorithm.

Service Systems The aim here is to optimize the ‘workforce’, the critical resource of any

service system. However, adapting the staffing levels to the workloads in such sys-

tems is nontrivial as the queue stability and aggregate service level agreement (SLA)

constraints have to be complied with. We formulate this problem as a constrained

hidden Markov process with a (discrete) worker parameter and propose simultane-

ous perturbation based simulation optimization algorithms for this purpose. The al-

gorithms include both first order as well as second order methods and incorporate

SPSA based gradient estimates in the primal, with dual ascent for the Lagrange mul-

tipliers. All the algorithms that we propose are online, incremental and are easy to

implement. Further, they involve a certain generalized smooth projection operator,

which is essential to project the continuous-valued worker parameter updates ob-

tained from the SASOC algorithms onto the discrete set. We validate our algorithms

on five real-life service systems and compare their performance with a state-of-the-

art optimization tool-kit OptQuest. Being 25 times faster than OptQuest, our scheme
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is particularly suitable for adaptive labor staffing. Also, we observe that it guarantees

convergence and finds better solutions than OptQuest in many cases.

Wireless Sensor Networks The aim here is to allocate the ‘sleep time’ (resource) of the

individual sensors in an intrusion detection application such that the energy consump-

tion from the sensors is reduced, while keeping the tracking error to a minimum. We

model this sleep–wake scheduling problem as a partially-observed Markov decision

process (POMDP) and propose novel RL-based algorithms - with both long-run dis-

counted and average cost objectives - for solving this problem. All our algorithms

incorporate function approximation and feature-based representations to handle the

curse of dimensionality. Further, the feature selection scheme used in each of the

proposed algorithms intelligently manages the energy cost and tracking cost factors,

which in turn, assists the search for the optimal sleeping policy. The results from

the simulation experiments suggest that our proposed algorithms perform better than

a recently proposed algorithm from Fuemmeler and Veeravalli [2008], Fuemmeler

et al. [2011].

Mechanism Design The setting here is of multiple self-interested agents with limited ca-

pacities, attempting to maximize their individual utilities, which often comes at the

expense of the group’s utility. The aim of the resource allocator here then is to effi-

ciently allocate the resource (which is being contended for, by the agents) and also

maximize the social welfare via the ‘right’ transfer of payments. In other words,

the problem is to find an incentive compatible transfer scheme following a socially

efficient allocation. We present two novel mechanisms with progressively realistic

assumptions about agent types aimed at economic scenarios where agents have lim-

ited capacities. For the simplest case where agent types consist of a unit cost of

production and a capacity that does not change with time, we provide an enhance-

ment to the static mechanism of Dash et al. [2007] that effectively deters misreport

of the capacity type element by an agent to receive an allocation beyond its capacity,

which thereby damages other agents. Our model incorporates an agent’s preference

to harm other agents through a additive factor in the utility function of an agent and

the mechanism we propose achieves strategyproofness by means of a novel penalty

scheme. Next, we consider a dynamic setting where agent types evolve and the in-

dividual agents here again have a preference to harm others via capacity misreports.

We show via a counterexample that the dynamic pivot mechanism of Bergemann

and Välimäki [2010] cannot be directly applied in our setting with capacity-limited

xvii



agents. We propose an enhancement to the mechanism of Bergemann and Välimäki

[2010] that ensures truthtelling w.r.t. capacity type element through a variable penalty

scheme (in the spirit of the static mechanism). We show that each of our mechanisms

is ex-post incentive compatible, ex-post individually rational, and socially efficient.
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Chapter 1

Introduction

1.1 Motivation and Overview

A fundamental question in a sequential decision making setting under uncertainty is “how

to allocate resources amongst competing entities so as to maximize the rewards accumu-

lated in the long run?”. The resources allocated may be either abstract quantities such as

time or concrete quantities such as manpower. The sequential decision making setting in-

volves one or more agents interacting with an environment to procure rewards at every time

instant and the goal is to find an optimal policy for choosing actions by each agent. Most of

these problems involve multiple (often infinite) stages and the objective function is usually

a long-run performance metric. The problem is further complicated by the uncertainties

in the system, for instance, the stochastic noise and partial observability in a single-agent

setting or private information of the agents in a multi-agent setting. The dimensionality

of the problem also plays an important role in the solution methodology adopted. Most of

the real-world problems involve high-dimensional state and action spaces and an important

design aspect of the solution is the choice of knowledge representation.

The field of reinforcement learning, with its most significant algorithms (such as TD-

learning and Q-learning) using full state representations, effectively addresses problems of

the above kind, in settings where the state-space is manageable. However, several prob-

lems in practice possess high-dimensional state spaces and the above RL algorithms do

not naturally extend here and one requires feature-based representations and function ap-

proximation to handle the curse of dimensionality. But, the function approximation based

approaches fall short in two very important respects – first, the choice of features is based

on the designer’s understanding of the problem and second, establishing convergence is

1
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non-trivial.

The aim of this thesis is to answer important resource allocation related questions in

different real-world application contexts and in the process contribute novel algorithms

to the theory as well. The resource allocation algorithms considered include those from

stochastic optimization, stochastic control and reinforcement learning. A number of new

algorithms are also developed. The application contexts selected encompass both single

and multi-agent systems, abstract and concrete resources and contain high-dimensional

state-action spaces. The empirical results from the various studies performed indicate that

the algorithms presented here perform significantly better than those previously proposed

in the literature. Further, the algorithms presented here are also shown to theoretically

converge, hence guaranteeing optimal performance.

From a sequential decision-making viewpoint, the contributions of this thesis lie in

the realm of stochastic optimization, learning in Markov decision processes (MDP) and

equilibrium achievement in dynamic mechanism design problems. For instance, the first

three studies involve problems that are modeled as MDPs, with either fully-observable

or partially observable state, and the aim is to learn the optimal policy in a model-free

setting. Further, there are several sub-problems in the first three studies where the goal is

to optimize the long-run average of a noisy objective function, with the function values

being only observable via simulation. The last study involves multiple agents with limited

capacity in a mechanism design setting and the aim here is to design a suitable transfer

scheme that ensures Nash equilibrium is attained.

We now provide an overview of the various resource allocation problems considered

and describe our contributions area-wise below.

1.2 Study 1: Vehicular Traffic Control

We study the problem of maximizing traffic flow through the adaptive control of traffic

lights at traffic intersections. From a resource allocation standpoint, green time is the re-

source and a traffic light control algorithm attempts to balance the green times allocated

to the individual lanes of the road networks so as to optimize a long run performance ob-

jective. The traffic light control (TLC) algorithms use as input - coarse estimates of the

congestion levels on the individual lanes of the road network as well as the times elapsed

(for each lane) since the last signal light switch over. The congestion level input is consid-

ered to minimize the average junction waiting times of the road users, while the elapsed
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time input ensures fairness i.e., no lane is allowed to stay green for a long time at the cost

of other lanes.

We develop several reinforcement learning based algorithms for solving the problem of

adaptive traffic light control (TLC) in the infinite horizon Markov decision process setting.

RL has the advantage of being model-free (it does not assume any model of the system) and

provides online, incremental, easy to implement algorithms. However, since (quite clearly)

this problem involves high dimensional states and actions (this will be even more so when

we consider larger network scenarios), we develop feature based methods to tackle the

accompanying problem of curse of dimensionality (i.e., the computational complexity with

solving the associated Markov decision process increases exponentially with the dimension

and cardinality of the state and action spaces). Feature-based methods serve to alleviate this

problem by making computational complexity manageable but at the cost of accuracy. An

advantage with an RL based implementation is that unlike previous works, we are able to

prove that the given algorithm converges to an optimal policy (i.e., provides an optimal

action in a given state). This is the case when feature-based approximations are not used.

However, when they are used, we shall show that the policy to which the given algorithm

converges is good enough.

The contributions in this context are summarized as follows:

� In the infinite horizon discounted Markov decision process setting, we develop a

Q-learning based TLC algorithm that incorporates feature based representation and

function approximation to handle larger road networks (Prashanth and Bhatnagar

[2011b]). This TLC algorithm works with only coarse information, obtained via

graded thresholds, about the congestion level on the lanes of the road network.

� Considering the fact that the graded threshold values used in the above Q-learning

based TLC algorithm as well as several other graded threshold-based TLC algorithms

that we propose, are in general not optimal for all traffic conditions, we develop a

new algorithm based on SPSA to tune the associated thresholds to their ‘optimal’

values (Prashanth and Bhatnagar [2012]). Our threshold tuning algorithm is online,

incremental with proven convergence to the optimal values of the thresholds.

� We also study average cost traffic signal control and develop two novel reinforce-

ment learning based TLC algorithms with function approximation (Prashanth and

Bhatnagar [2011c]) for solving this problem.

� Finally, we have also developed a feature adaptation method for ‘optimal’ feature
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selection (Bhatnagar et al. [2012a]). This algorithm adapts the features in a way as

to converge to an optimal set of features, which can then be used in the algorithm. A

significant advantage of our algorithm is that we keep the number of columns in the

feature matrix fixed.

1.3 Study 2: Service Systems

Service systems (SS) are labor intensive systems and have time varying workload. Adapt-

ing the staffing levels to the workloads in such systems is crucial for business objectives

such as obtaining minimal labor inventory. However, it is a nontrivial task because of a large

number of parameters and operational variations. In this context, the resource allocation

problem that we address is of optimizing the staffing levels while maintaining the system

in steady-state and compliant to aggregate service level agreement (SLA) constraints.

The staffing levels constitute the worker parameter that we optimize and specify the

number of workers in each shift and of each skill level. The SLA constraints specify the

target resolution time and the aggregate percentage for an service request (SR) originating

from a particular customer and with a specified priority level. For instance, a sample SLA

constraint could specify that 95% of all SRs from customer 1 with ‘urgent’ priority must

be resolved within 4 hours. While the need for SLA constraints to be met is obvious, the

requirement for having queues holding unresolved SRs bounded is also necessary because

SLA attainments are calculated only for the work completed.

We formulate this problem as a constrained hidden Markov cost process that depends

on the worker parameter. To have a sense of the size of the search space, an SS consist-

ing of 30 service workers (SWs) who work in 6 shifts and 3 distinct skill levels corre-

sponds to more than 2 trillion configurations. Apart from the high cardinality of the dis-

crete parameter set, the constrained Markov cost process involves a hidden or un-observed

state component. We design a novel single stage cost function for the constrained Markov

cost process that balances the conflicting objectives of worker under-utilization and SLA

under/over-achievement. An SLA under-achievement implies violation of the SLA con-

straint. Whereas worker under-utilization clearly points to suboptimal staffing, SLA over-

achievement points to over-delivery and hence is also suboptimal. The performance ob-

jective is a long-run average of this single stage cost function and the goal is to find the

optimum steady state worker parameter (i.e., the one that minimizes this objective) from

a discrete high-dimensional parameter set. However, our problem setting also involves
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constraints relating to queue stability and SLA compliance. Thus, the optimum worker

parameter is in fact a constrained minimum. Another difficulty with finding the optimum

(constrained) worker parameter is that the single stage cost and constraint functions can be

estimated only via simulation. Hence, the need is for a simulation-optimization algorithm

that incrementally updates the worker parameter along a descent direction, while adhering

to a set of queue stability and SLA constraints.

We develop three novel stochastic optimization algorithms for solving the staffing op-

timization problem in a service system. The core of each of the algorithms is a multi-

timescale stochastic approximation scheme that incorporates a random perturbation based

algorithm for ‘primal descent’ and couples it with a ‘dual ascent’ scheme for the Lagrange

multipliers. The first order algorithm (Prashanth et al. [2011b]) proposes the simultaneous

perturbation stochastic approximation (SPSA) based technique for gradient estimation in

the primal. We also develop two second order (Newton) methods (Prashanth et al. [2012b]).

The first algorithm here estimates the Hessian of the objective function using SPSA and in-

volves finding an explicit inverse, while the second is a novel algorithm that leverages

Woodbury’s identity to directly estimate the inverse of the Hessian and thereby achieves

compututational efficiency. These algorithms are found to perform significantly better than

the state-of-the-art OptQuest optimization toolkit, which is being used in IBM’s pool sim-

ulation project.

1.4 Study 3: Sensor Networks

We study the problem of tracking a single object moving randomly through a dense network

of wireless sensors such that the entire sensing region has no discontinuities. However, we

wish to conserve energy by optimizing the sleep times of the sensors in a way that does

not compromise on the tracking quality. We remove the waking channel assumption, i.e., a

sleeping sensor can be communicated with. In this context, the resource considered is the

‘sleep time’ of the individual sensors and the objective is to manage the sleep times of the

sensors efficiently, while keeping the tracking error to a minimum.

We model the sleep–wake scheduling problem as a partially-observed Markov decision

process (POMDP). We propose novel RL-based algorithms - with both long-run discounted

and average cost objectives - for solving this problem. All our algorithms incorporate func-

tion approximation and feature-based representations to handle the curse of dimensionality.

Further, the feature selection scheme used in each of the proposed algorithms intelligently
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manages the energy cost and tracking cost factors, which in turn, assists the search for the

optimal sleeping policy. The results from the simulation experiments suggest that our pro-

posed algorithms perform better than a recently proposed algorithm from Fuemmeler and

Veeravalli [2008], Atia et al. [2010].

1.5 Study 4: Mechanism Design

Mechanism design has been a key technique for resource allocation in various economic

scenarios. The setting involves self-interested agents, with private information, competing

for resources and a central controller is entrusted with the responsibility of efficiently al-

locating resources based on the reported types of the agents and also, more importantly,

achieve truth-telling on the agents’ part via a suitably incentivized transfer scheme. Now,

if we repeat this process, i.e., agents’ reports followed by allocation and transfer, over the

infinite horizon, then design of incentive-compatible transfer strategies comes under the

purview of dynamic mechanism design. Note that, in the dynamic case, the agents’ types

change with time. This is quite realistic as in many of the economic scenarios of inter-

est, the agents’ types evolve, e.g., the cost of production of a good. Also, in most real

economic scenarios, agents have limited capacities that change with time, for instance, the

supply capacity of a power plant.

Unlike the earlier studies where the uncertainty involved was either due to the stochas-

ticity or partial observability of the system, here the uncertainty is due to the private in-

formation of the agents. The central controller has to efficiently allocate resources while

being unaware of agents’ true types. Or equivalently, the decision making problem here

is of achieving a desirable equilibrium point. To solve this problem, we develop novel

mechanisms for the domains that lie at the intersection of these two scenarios, i.e., agents

having limited capacities and unit costs of production that change with time. Unfortunately,

capacity constraints are nontrivial to accommodate in the design of truthful and socially ef-

ficient dynamic mechanisms. The main challenge is that in a given time step, the payoff

to an agent cannot be determined until later when the actual number of units produced by

an agent is known. The question then is what should the payoff to an agent be once he

completes the allocated task such that the resulting mechanism is truthful in terms of unit

costs as well as capacities and is socially efficient? We establish via a counterexample that

providing the marginal contribution alone is not sufficient to ensure incentive compatibility

of the mechanism. For this purpose, a penalty component is necessary in the transfer to the
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agents. Our contributions can be summarized as follows:

� We first present a novel static mechanism that, unlike Dash et al. [2007], incorporates

a variable penalty component. Our model incorporates an agent’s preference to harm

other agents through a additive factor in the utility function of an agent and the mech-

anism we propose achieves strategyproofness by means of a novel penalty scheme.

Here, the penalty imposed on agents misreporting their capacities is the same as the

loss of allocation to other agents due to misreported capacities.

� Next, we consider a dynamic setting where agent types evolve and the individual

agents here again have a preference to harm others via capacity misreports. We show

via a counterexample that the dynamic pivot mechanism of Bergemann and Välimäki

[2010] cannot be directly applied in our setting with capacity-limited agents. We

propose an enhancement to the mechanism of Bergemann and Välimäki [2010] that

ensures truthtelling w.r.t. capacity type element through a variable penalty scheme

(in the spirit of the static mechanism).

� We establish within period ex-post incentive compatibility, allocative efficiency, and

individual rationality of all the above mechanisms.

Our proposed mechanisms, esp. the dynamic variant is applicable to several real-world

settings involving capacity constraints. To name a few, work dispatch in service systems,

purchase of electricity from power plants, resource allocation for computational grids and

sensor networks are some application scenarios where our proposed dynamic mechanism

can be effective, unlike the dynamic pivot mechanism Bergemann and Välimäki [2010]

which does not guarantee truthful capacity reports in the limited capacity setting.

1.6 Outline of chapters

Chapter 2

Chapter 2 provides the background material on stochastic optimization and reinforcement

learning. An introduction to the MDP framework and the well-known dynamic program-

ming (DP) algorithms are presented first. Thereafter, the classic reinforcement learning al-

gorithms, which include temporal-difference (TD) learning and Q-learning, are described.

The last topic covered in this context includes the important idea of function approximation

to handle the curse of dimensionality associated with high-dimensional state spaces.
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In the area of stochastic optimization, we briefly cover the well-known SPSA algorithm.

The topics covered in this chapter essentially provide the foundation for the entire thesis, as

we develop several resource allocation algorithms in a variety of application contexts using

stochastic optimization and reinforcement learning algorithms.

Chapter 3

Chapter 3 motivates the need for adaptive control of traffic lights at intersections to max-

imize traffic flow in the long-term. This chapter also surveys relevant literature on traffic

signal control strategies as well as the important developments in stochastic optimization

and reinforcement learning areas. The subsequent chapters then develop novel reinforce-

ment learning based algorithms for adaptive traffic signal control.

Chapter 4

Chapter 4 provides an introduction to the problem of maximizing the traffic flow in the long

term through adaptive control of traffic lights at intersections and models it as a Markov

decision process (MDP). Then, we present a Q-learning based traffic light control (TLC)

algorithm that uses full-state representations and study its performance on a single junc-

tion and a two-junction corridor, respectively. Empirically, we observe that the Q-learning

based TLC algorithm outperforms several existing TLC algorithms, demonstrating the use-

fulness of RL in this context. However, the full-state Q-learning algorithm does not scale

well to larger network scenarios. A particularly useful technique to handle the curse of

dimensionality is function approximation, a topic handled in the next chapter.

Chapter 5

Chapter 5 presents a Q-learning based TLC algorithm that incorporates feature-based rep-

resentations and function approximation to handle the curse of dimensionality associated

with larger road networks. An advantage of this algorithm is that unlike prior work based

on RL, it does not require precise information on queue lengths and elapsed times at each

lane, but instead works with the coarse information about the congestion levels in the road

network. From the simulation experiments, we observe that our algorithm outperforms

other TLC algorithms previously proposed in the literature on all the road network settings

considered.
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Chapter 6

Chapter 6 addresses the case when an infinite horizon average cost setting is considered, un-

like the discounted cost setting of Chapter 5. We develop two novel reinforcement learning

algorithms with function approximation for average cost adaptive control of traffic lights.

One of these algorithms is a version of Q-learning with function approximation while the

other is a policy gradient actor-critic algorithm that incorporates multi-timescale stochastic

approximation. We show performance comparisons on various network settings of these

algorithms with a range of fixed timing algorithms, as well as a Q-learning algorithm with

full state representation that we also implement. We observe that whereas (as expected) on

a two-junction corridor, the full state representation algorithm shows the best results, this

algorithm is not implementable on larger road networks. The policy gradient actor-critic

TLC algorithm that we propose is seen to show the best overall performance.

Chapter 7

Chapter 7 presents an algorithm based on stochastic optimization to tune the thresholds

associated with a TLC algorithm for optimal performance. The thresholds associated with

a TLC algorithm are on the queue lengths on the lanes of the road network considered,

as precise information is hard to obtain in practice. Many TLC algorithms proposed pre-

viously in the literature incorporate fixed values for the thresholds, which in general are

not optimal for all traffic conditions. Our tuning algorithm is an incremental update, on-

line scheme with proven convergence to the optimal values of thresholds and the additional

computational effort required because of the integration of the tuning scheme in any of the

graded threshold based TLC algorithms is minimal. We also present three novel TLC al-

gorithms - a full state Q-learning algorithm with state aggregation, a Q-learning algorithm

with function approximation involving an enhanced feature selection scheme and a priority

based TLC scheme, respectively. All these algorithms are threshold-based. Next, we com-

bine the threshold tuning algorithm with the three aforementioned algorithms and discuss

the interesting consequences that arise from this combination. We demonstrate empirically

the usefulness of our tuning algorithm by comparing the performance of the various TLC

algorithms with their counterparts without tuning, i.e., with fixed thresholds.
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Chapter 8

Chapter 8 presents a novel feature adaptation scheme based on temporal difference learning

for the problem of prediction. The scheme suitably combines aspects of exploitation and

exploration by (a) finding the worst basis vector in the feature matrix at each stage and re-

placing it with the current best estimate of the normalized value function, and (b) replacing

the second worst basis vector with another vector chosen randomly that would result in a

new subspace of basis vectors getting picked. We demonstrate the empirical usefulness of

our algorithm by applying it to a problem of prediction in traffic signal control.

Chapter 9

Chapter 9 provides the background on service systems and also formalizes the adaptive

labor staffing problem. We define the service system framework and introduce the impor-

tant problem of optimizing the staffing levels while maintaining the system in steady-state

and compliant to aggregate SLA constraints. The problem is nontrivial because of a large

number of parameters and operational variations leading to a huge search space. Further,

because these parameters change on a weekly basis, the optimization should not take longer

than a few hours. We formulate this problem as a constrained hidden Markov cost process

parameterized by the (discrete) staffing levels.

Chapter 10

Chapter 10 presents three novel discrete optimization methods SASOC-G, SASOC-H, and

SASOC-W for solving the staffing optimization problem described in Chapter 9. The core

of each of the algorithms is a multi-timescale scheme that incorporates a SPSA based al-

gorithm for primal descent and couples it with a dual ascent scheme for the Lagrange mul-

tipliers. Further, all SASOC algorithms incorporate a generalized projection operator that

helps imitate a continuous parameter system, thus facilitating the use of the simultaneous

perturbation technique. The SASOC algorithms differ in the gradient estimation and op-

timization methods used. Whereas SASOC-G is a first-order gradient estimation method,

SASOC-H and SASOC-W are second-order Newton methods. Convergence proofs of all

the SASOC algorithms are also presented in this chapter.
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Chapter 11

Chapter 11 presents the results from empirical evaluation of the SASOC algorithms de-

scribed in Chapter 10 on data from five real-life service systems. These results also include

comparisons with a state-of-the-art optimization tool-kit OptQuest. We observe that our

algorithms are more than an order of magnitude faster than OptQuest and thus are partic-

ularly suitable for adaptive labor staffing. Also, we observe that our schemes guarantee

convergence and find better solutions than OptQuest in many cases. Amongst our algo-

rithms, SASOC-H and SASOC-W find better solutions than SASOC-G in many cases,

with SASOC-W being marginally better.

Chapter 12

Chapter 12 provides the background on the intrusion detection application using wireless

sensor networks. The sensors are deployed to cover a given area and the objective is to track

an intruder moving through this network. The movement of the intruder is assumed random

with a given distribution. In this setting, we consider the problem of optimizing the energy

of each sensor through sleep-wake cycling while detecting the intruder to a reasonable

accuracy. The problem is formulated as an MDP in this chapter and the associated state,

actions and single-stage cost functions are presented.

Chapter 13

Chapter 13 presents novel RL-based algorithms - with both long-run discounted and aver-

age cost objectives - for solving the sleep-wake scheduling problem described in Chapter

12. All our algorithms incorporate function approximation and feature-based representa-

tions to handle the curse of dimensionality. Further, the feature selection scheme used in

each of the proposed algorithms intelligently manages the energy cost and tracking cost

factors, which in turn, assists the search for the optimal sleeping policy.

Chapter 14

Chapter 14 presents the results from the empirical evaluation of the sleep-wake scheduling

algorithms presented in Chapter 13. From the simulation experiments, we observe that our

algorithms perform significantly better than a recently proposed algorithm (Fuemmeler and

Veeravalli [2008]). Amongst our algorithms, we observe that the two-timescale Q-learning
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variant performs marginally better than Q-learning with function approximation, with the

former algorithm being provably convergent unlike the latter.

Chapter 15

Chapter 15 introduces a static mechanism setting where the individual agents have limited

capacity. A few mechanisms have been proposed to account for limited capacities in static

settings. We present a novel static mechanism that involves a variable penalty scheme.

Here, the penalty imposed on agents misreporting their capacities is the same as the loss

of allocation to other agents due to misreported capacities. We formally establish that the

proposed mechanism is strategyproof and individually rational.

Chapter 16

Chapter 16 considers a dynamic setting for a procurement scenario, where the agent types

include the unit price as well as capacity elements and the agent types evolve with time.

This setting allows us more realistic assumptions about agent types aimed at economic sce-

narios where agents have limited capacities that change with time. With an example, we

show how a well-known VCG like dynamic pivot mechanism (Bergemann and Välimäki

[2010]) would not ensure incentive compatibility in this setting. We propose an enhance-

ment to the dynamic pivot mechanism Bergemann and Välimäki [2010] by incorporating

a delayed penalty based transfer scheme and establish that this results in truthful reporting

of capacities. The proposed mechanism, DMC, compensates for the delay in transfer by

adjusting the payoffs upwards based on a discount factor and penalizes an agent only to the

extent of the damage caused by his capacity misreport (in the spirit of the static mechanism

MC described in Chapter 15).

Chapter 17

Chapter 17 concludes the thesis with a brief summary of results from the studies on resource

allocation algorithms in various application contexts and also discusses some important

future research directions.



Chapter 2

Background

This chapter provides background on stochastic optimization and reinforcement learning.

An introduction to the MDP framework and the well-known dynamic programming (DP)

algorithms are presented first. Thereafter, the classic reinforcement learning algorithms,

which include temporal-difference (TD) learning and Q-learning, are described. The last

topic covered here includes the important idea of function approximation to handle the

curse of dimensionality associated with high-dimensional state spaces. For an excellent

introduction to reinforcement learning methods, the reader is referred to Bertsekas and

Tsitsiklis [1996b], Sutton and Barto [1998b]. In the area of stochastic optimization, we

briefly discuss the well-known SPSA algorithm.

The topics covered in this chapter essentially provide the foundation for the entire the-

sis, as we develop several resource allocation algorithms in a variety of application contexts

using stochastic optimization and reinforcement learning techniques.

2.1 Markov decision processes

2.1.1 The framework

A stochastic process fXng taking values in a set S is called a Markov decision process

(MDP) if its evolution is governed by a control-valued sequence fZng and satisfies the

controlled Markov property:

13
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Pr(X(n+ 1) = j j X(n) = i; Z(n) = a;X(n� 1) = in�1; Z(n� 1) = an�1; : : : ;

X0 = i0; Z0 = a0)
4
= p(i; j; a):

(2.1)

for any i0; : : : ; in�1, i, j, a0; : : : ; an�1, a, in appropriate sets. We assume here that ifXn = i

for any n, the set of feasible actions or controls is A(i). Thus, in (2.1), a 2 A(i), an�1 2
A(in�1) etc. Let A = [i2SA(i) denote the control space (i.e., the set of all controls).

We assume that both S and A are finite sets. Depending on the current system state, the

decision maker or controller picks a control in a way as to minimize a long-term cost. We

consider the infinite horizon discounted cost criterion for this purpose. Let k(i; a) denote

the single-stage cost incurred when the system is in state i and action a 2 A(i) is chosen.

Further, when the state is i and action a is chosen, the next state is j with a probability of

p(i; j; a). Let 
 2 (0; 1) denote the discount factor.

A sequence of functions � = f�1, �2; : : :g with each �n : S ! A, n � 1, is said to

be an admissible policy if �n(i) 2 A(i), 8i 2 S. This corresponds to the control choice

Zn = �n(Xn) 8n. Let � denote the set of all admissible policies. An admissible policy

� = f�1, �2; : : :g with each �n = �, n � 1, is said to be a stationary deterministic policy

(SDP). By a common abuse of notation, we simply refer to � itself as the SDP.

For a given admissible policy � 2 �, the value function V � : S ! R is defined by

V �(i) = E

"
1X

m=0


mk(Xm; �m(Xm)) j X0 = i

#
; (2.2)

for all i 2 S. The aim then is to find an optimal value function V � : S ! R, i.e.,

V �(i) = min
�2�

V �(i): (2.3)

It is also well known, see Puterman [1994], that an SDP achieves the optimal policy, i.e.,

the one that corresponds to the optimal value V �(i) 8i 2 S. Further, the optimal value

function V �(�) satisfies the Bellman equation of optimality:

V �(i) = min
a2A(i)

 
k(i; a) + 


X
j2S

p(i; j; a)V �(j)

!
; (2.4)
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for all i 2 S.

2.1.2 DP algorithms

Dynamic programming (DP) is used to obtain the optimal policy given an MDP. While in

practice, a model of the system such as MDP is not available, a theoretical understanding

of DP algorithms is still necessary. RL methods attempt to obtain the optimal policy at a

significantly lower computation cost as compared to DP and also do not assume a perfect

model of the system.

Policy Iteration The policy iteration algorithm works by performing alternately a

sequence of policy evaluation and policy improvement steps, until an optimal policy is

achieved. In other words, the idea here is to start with a policy �0 and estimate V �0 .

Following this step, we generate a new policy �1 which is an improved policy as compared

to �0. This is procedure is repeated until the optimal policy is obtained, which happens in

a finite number of steps since a finite MDP has only a finite number of policies.

The policy evaluation step computes V �n , where �n is the policy that is evaluated ac-

cording to V �n
T = (I � �P �n)�1k, where k = (k(1; �n(1)); : : : ; k(jSj; �n(jSj)))T is the

column vector of single-stage costs under policy �n and P �n is the transition probability

matrix of the Markov chain under policy �n. In the case when the above inversion of the

matrix is computationally difficult, we follow a value iteration type procedure (explained

below for the general case) to estimate the value of �n as follows:

V �n
k+1(i) =

 
k(i; �n(i)) + �

X
j2S

p(i; j; �(i))V �n
k (j)

!
; for k = 0; 1; 2; : : : : (2.5)

In the above, V �n
0 can be initialized arbitrarily. As k !1, it can be shown that V �n

k (i)!
V �n(i).

The policy improvement step improves the policy by selecting at each state the action

that appears best, i.e.

�n+1(i) 2 argmin

 
r(i; �) + �

X
j2S

p(i; j; �)V �n(j)

!
: (2.6)
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Value Iteration The value iteration algorithm is similar to policy iteration except that

the policy evaluation is stopped after one iteration i.e.

Vn+1(i) = min
a2A(i)

 
r(i; a) + �

X
j2S

p(i; j; a)Vn(j)

!
: (2.7)

Essentially, the Bellman optimality condition (2.4) is turned into an update rule in value

iteration. In the above, one can start with an arbitrary initial estimate V0(�) of the value

function.

2.2 Reinforcement Learning

Reinforcement learning can be applied as a tool on any problem modeled as a MDP, i.e.,

a setting where the system evolves probabilistically over states, incurring state/action-

dependent costs at each instant and the goal is to find a policy for choosing actions that

minimize a long-run cost objective. While this constitutes the setting for DP algorithms

as well, the main difference with RL algorithms is that the latter are model-free,i.e., the

transition probabilities of the underlying MDP are unknown. RL combines numerical pro-

cedures to solve the DP equations together with stochastic approximation and works only

with simulated observations, or alternately real data.

However, such an approach would again suffer from the curse of dimensionality of

DP methods, i.e., the exponential blow up of the computation with the increase in the

state space. RL tackles this problem by combining ideas from dynamic programming

and supervised learning. DP provides the algorithms for optimization and control, but

at a high computational expense, whereas supervised learning provides ways of training a

parametrized function approximator. RL algorithms are stochastic-approximation variants

of well-known DP methods such as value and policy iteration. Further, they employ fea-

ture based representations and function approximation to effectively handle the curse of

dimensionality.

2.2.1 Temporal-difference learning

A key algorithm in RL is TD learning. The problem here is to estimate the value function

V� for a given policy �. Traditional Monte-Carlo methods for estimating the value of a state

i do so by averaging sample returns. In other words, the idea in Monte-Carlo methods is to
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perform a number of simulation runs and obtain the empirical average of the cost samples

from the generated trajectories.

V �
n+1(i) = V �(i) + �(m) (c(i;m)� V �

n (i)) ; (2.8)

where c(i;m) is the discounted cumulative cost obtained from a trajectory and �(m) =
1

m
is the step-size parameter. On the other hand, unlike Monte-Carlo methods, TD methods

do not wait until the end of the trajectory to update their estimate V �(i). For example,

in TD(0) at time instant n + 1 an update happens using the observed cost g(i; a) and the

estimate of the next state V �(j) i.e.

V �(i) = V �(i) + �(m) (g(i; a) + 
V �(j)� V �(i)) : (2.9)

In essence,TD methods learn their estimates on the basis of other estimates i.e. they boot-

strap. The advantage here is that they do not need a model of the environment (as DP does)

and they are on-line incremental algorithms as compared to Monte Carlo methods where

one needs to wait till the end of a trajectory to know the return. TD methods are shown to

converge to V � in the mean for a constant sufficiently small step-size and with probability

1 if the step-size decreases according to the standard stochastic approximation conditions.

2.2.2 Q-learning with full state representations

In practice the quantities p(i; j; a) are usually not known. Reinforcement learning (RL)

techniques are useful in such scenarios. The idea there is that in order to solve (2.4), one

runs a stochastic iterative algorithm using observations obtained from online samples. It

is then shown that the algorithm asymptotically converges to an optimal value function –

policy tuple. An important RL algorithm goes by the name Q-learning (Watkins and Dayan

[1992a]). Here one defines Q-values Q(i; a), i 2 S, a 2 A(i) as follows:

Q(i; a) =

 
k(i; a) + 


X
j2S

p(i; j; a)V �(j)

!
: (2.10)

From (2.4), it is easy to see that

V �(i) = min
a2A(i)

Q(i; a): (2.11)
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From (2.11) and (2.10), one obtains the following form of the Bellman equation of opti-

mality that is also many times called the Q-Bellman equation:

Q(i; a) =

 
k(i; a) + 


X
j2S

p(i; j; a) min
b2A(j)

Q(j; b)

!
: (2.12)

Whereas in (2.4), the minimization is immediately to the right of the equality, in (2.12),

the same gets pushed inside the summation on the right. The reason for this is that we are

no longer looking at just state-values but at values of state-action tuples. The stochastic

approximation version of (2.12) is the following online incremental algorithm that is called

the Q-learning algorithm:

Qn+1(i; a) = Qn(i; a) + a(n)

�
k(i; a) + 
 min

b2A(�n(i;a))
Qn(�n(i; a); b):�Qn(i; a)

�
:

(2.13)

One can start this algorithm by initializing values of all Q0(i; a) arbitrarily, a simple choice

is to simply set them all to zero. In the above, �n(i; a), n � 0 are independent and

identically distributed (i.i.d.) random variables that have the distribution p(i; �; a), i.e.,

�n(i; a) = j with probability p(i; j; a). Also, a(n), n � 0 are (positive) step-sizes that

satisfy the conditions X
n

a(n) =1;
X
n

a(n)2 <1: (2.14)

The first condition above ensures that the algorithm does not converge prematurely while

the second ensures that the noise in the algorithm vanishes asymptotically. Most often, the

step-sizes are simply chosen to be a(n) =
c0

c1 + n
for some positive constants c0 and c1. The

convergence of this algorithm has been analyzed in Watkins and Dayan [1992a], Tsitsiklis

[1994a] and Borkar and Meyn [2000]. Upon convergence, one obtains the optimal Q-value

function and hence also the optimal policy.

2.2.3 Q-learning with function approximation

Note that the Bellman equation for optimality (2.4) requires solving a system of equations

in jSj variables. Similarly, a solution to the Q-Bellman equation (2.12) requires solving a

system of equations in jS�A(S)j unknowns. Here S�A(S) denotes the set of all feasible

state-action tuples.
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In the setting of Q-learning with function based approximation, the idea is to approxi-

mate the Q-value function Q(s; a) as

Q(s; a) � �T�s;a; (2.15)

where �s;a is a d-dimensional feature (column) vector corresponding to the state-action tu-

ple (s; a), with s 2 S and a 2 A(s). The dimension d is significantly less in comparison to

the cardinality of the set of feasible state-action tuples (s; a). Here � is a tunable parameter

whose dimension is the same as that of �s;a.

Let � denote a matrix with rows �Ts;a; s 2 S; a 2 A(s). The number of rows of this

matrix is thus jS � A(S)j, while the number of columns is d. Let

�s;a = (�s;a(1); : : : ; �s;a(d))
T :

Then � = (�(i); i = 1; : : : ; d) where �(i) is the column vector

�(i) = (�s;a(i); s 2 S; a 2 A(s))T ; i = 1; : : : ; d:

Let � = (�1; : : : ; �d)
T . Then,

Q �
dX
i=1

�(i)�i; or alternatively, Q � ��;

where Q = [Q(s; a); s 2 S; a 2 A(s)]T is the vector of the Q-values Q(s; a) over all

feasible (s; a) tuples. In other words, Q is approximated using ��. Note that the gradient

of the approximate Q-value function w.r.t. � is

r�Q(s; a) � �s;a:

The update rule of the Q-learning algorithm with function approximation is given

by

�n+1 = �n + �(n)�sn;an(k(sn; an) + 
 min
v2A(sn+1)

�Tn�sn+1;v � �Tn�sn;an); (2.16)

where �0 is set arbitrarily. In (2.16), the action an is chosen in state sn according to

an = argminv2A(sn) �
T
n�sn;v. A routine requirement used to prove convergence of function
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approximation based algorithms is that the columns �(i); i = 1; : : : ; d of the feature matrix

� be linearly independent. It is in general difficult to prove the convergence of Q-learning

with function approximation because of the nonlinearity in its update rule resulting from

the explicit minimization, as a result of which, Q-learning with function approximation

suffers from the off-policy problem, see however Melo and Ribeiro [2007].

2.3 Simultaneous perturbation stochastic approximation

(SPSA)

SPSA, is very effective in addressing high-dimensional stochastic optimization problems.

Standard SPSA requires only two system simulations for estimating the gradient of the

objective function by perturbing all parameter components along random directions. Com-

monly used perturbation random variables are independent, symmetric, �1-valued and

Bernoulli distributed.

The standard stochastic approximation algorithm is of the following type:

�̂k+1 = �̂k + akYk; (2.17)

where �̂k � (�̂k;1; : : : ; �̂k;N)
T ; k � 0 are tunable parameter vectors, ak correspond to step-

sizes and Yk � (Yk;1; : : : ; Yk;N)
T are certain ‘criterion functions’. The finite-difference

Kiefer-Wolfowitz algorithm, on the other hand, tries to minimize the objective function

F (�) by finding zeroes of rF (�) using a gradient descent algorithm where the gradient

estimate has the form:

Yk;i = �
 
f(�̂k + �kei; �

+
k;i)� f(�̂k � �kei; ��k;i)

2�k

!
; i = 1; : : : ; N; (2.18)

where �k ! 0 as k ! 1 ‘slowly enough’, �+k;i, �
�
k;i are i.i.d., and ei is the unit vector with

1 in the ith place and 0’s elsewhere. The disadvantage with this approach is that at any

update epoch k, one requires 2N samples of the objective function f(�; �).
On the other hand, SPSA requires only two samples of the objective function at each

update epoch, as follows:
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Yk;i = �
 
f(�̂k + �k4(k); �+k )� f(�̂k � �k4(k); ��k )

2�k4i(k)

!
; (2.19)

where �+k , ��k are i.i.d. random vectors in a suitable finite-dimensional Euclidean space,

4(k) � (41(k); : : : ;4N(k))
T , where 4i(k), i = 1; : : : ; N , k � 0, are i.i.d., zero-mean

random variables with P (4i(k) = 0) = 0. The convergence analysis of this algorithm can

be seen, for instance, in Spall [1992],[Bhatnagar et al., 2012b, Theorem 5.1].

Remark 1 In Bhatnagar et al. [2003], variants of the SPSA algorithm, where the aver-

aging out of undesirable gradient directions is achieved in a less “noisy” fashion using

certain deterministic perturbation sequences are described and analyzed. Here the per-

turbation sequences are obtained using certain deterministic constructions instead of ran-

domized.

Remark 2 While the above SPSA algorithm is for an expected cost objective J(�(n)) =

E�[h(�(n); �)], one could also obtain variants of the algorithm for a long-run average cost

objective J(�) given by

J(�) = lim
l!1

1

l

l�1X
j=0

h(Xj): (2.20)

The reader is referred to [Bhatnagar et al., 2012b, Section 5.6] for a detailed introduction

to this subject matter.



Part I

Vehicular Traffic Control

This part discusses stochastic optimization and reinforcement

learning methods developed to solve the problem of traffic sig-

nal control. In the infinite horizon discounted Markov decision

process setting, a Q-learning based TLC algorithm that incor-

porates feature based representations and function approxima-

tion to handle larger road networks was proposed (Prashanth

and Bhatnagar [2011b]). This TLC algorithm works with only

coarse information, obtained via certain graded thresholds on

the congestion levels on the various lanes of the road network.

However, the graded threshold values used in the above Q-

learning based TLC algorithm as well as several other graded

threshold-based TLC algorithms that we propose, are in general

not optimal for all traffic conditions. We develop a new algo-

rithm based on SPSA to tune the associated thresholds to their

‘optimal’ values (Prashanth and Bhatnagar [2012]). Our thresh-

old tuning algorithm is online, incremental with proven con-

vergence to the optimal values of thresholds. Further, we also

studied average cost traffic signal control and developed two

novel reinforcement learning based TLC algorithms with func-

tion approximation (Prashanth and Bhatnagar [2011c]). Lastly,

we have also developed a feature adaptation method for ‘opti-

mal’ feature selection (Bhatnagar et al. [2012a]). This algorithm

adapts the features in a way as to converge to an optimal set of

features, which can then be used in the algorithm.

22



Chapter 3

Introduction

With increasing traffic in urban areas and limitations of the road infrastructure, any attempt

to improve the traffic flow of the system would involve an intelligent design of the traffic

signal timings for the junctions. The traffic junctions play a very important role in deter-

mining congestion state of the road network. Many traffic junctions worldwide currently

use fixed signal timings, i.e., they periodically cycle through the sign configurations in a

round-robin manner. Even though such a strategy is easy to implement, it does not take

into consideration the actual traffic conditions and may result in more congestion. In this

chapter, we study the use of a reinforcement learning (RL) based traffic control system.

The objective is to maximize traffic flow by performing adaptive control of traffic lights at

intersections. Sensors, placed along the lanes leading to a junction, periodically convey the

traffic information to a controller or agent, which then decides on the signal timings.

3.1 Literature Survey

We now review literature in two different areas of related work: (1) techniques pertaining

to traffic signal control and (2) developments in stochastic optimization approaches.

3.1.1 Traffic Signal Control

We briefly review some traffic light control strategies that have been proposed previously

in the literature. The reader is referred to Papageorgiou et al. [2003, 2007] for a detailed

discussion of relevant traffic signal control literature. In Robertson [1969], a commer-

cial software package (TRANSYT) that uses a static optimization technique is designed to

generate the signal timings off-line, based on the traffic conditions measured at different

23
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periods of the day. This technique is however not adaptive. In Robertson and Bretherton

[1991], the authors propose the SCOOT method, where inductive sensors are used to col-

lect “Cyclic Flow Profiles” (CFPs) and relay the same to the central SCOOT optimizer.

The CFPs are then used to estimate the queues especially to calculate the effect of alter-

ations in the predicted signal timings. The SCOOT optimizer then makes many split and

offset alterations to co-ordinate the traffic flows. SCATS (Sims and Dobinson [1980]) is

another well-deployed scheme that picks one of the pre-calculated controls based on the

traffic state.

Several on-line TLC algorithms that adapt in real-time have also been proposed. For in-

stance, genetic algorithms (Girianna and Benekohal [2004], Sanchez-Medina et al. [2010]),

neural network based algorithms (Spall and Chin [1997], Srinivasan et al. [2006]), algo-

rithms based on cellular automata (Wei et al. [2005]), stochastic control (Yu and Recker

[2006]) and dynamic optimization (Gartner [1983], Henry et al. [1984], Boillot et al. [1992],

Sen and Head [1997]) as well as reinforcement learning (Abdulhai et al. [2003], Prashanth

and Bhatnagar [2011a]) are all online schemes.

In Gartner [1983], Henry et al. [1984], Boillot et al. [1992], Sen and Head [1997], a

model of the system is assumed and the optimal signal timings are obtained by solving a

dynamic optimization problem in real-time. Lin and Wang [2004] discuss a 0-1 mixed-

integer linear programming formulation of the traffic signal control problem. The adaptive

control based TLC algorithm proposed in Yu and Recker [2006] incorporates a Markov

decision process (MDP) formulation. However, this requires a precise model of the sys-

tem, which in general is hard to obtain in realistic settings. In Li et al. [2008], an adaptive

dynamic programming technique for traffic signal control is presented. A controller at each

intersection adjusts its signal timing based on traffic information as well as the performance

in the neighboring intersections. In de Oliveira et al. [2006], an RL algorithm for the case

of non-stationary traffic conditions in a decentralized framework is presented. In Abdulhai

et al. [2003], a Q-learning algorithm with full state representation has been applied to traf-

fic light control on a single junction. The case of a road network with multiple junctions

has not been considered there. Further, the algorithm in Abdulhai et al. [2003] has been

developed for the case when all the lanes are given equal priority for the purpose of switch-

ing lights. Full state representations cannot be directly used in the case of road networks

with multiple traffic junctions because of the exponential blow up in the computational re-

quirements as the number of junctions and thereby the cardinalities of the state and action

spaces increase. In Cools et al. [2008], a traffic light control method, SOTL (self organizing
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traffic lights), is presented that switches a lane to green if the elapsed time since the signal

turned red on that lane crosses a certain threshold, provided the number of vehicles on the

lane is above another threshold. Thus, while queue lengths on the signalled lanes of the

network are not directly considered there in deciding the sign configuration, an estimate

of the congestion level is used. A distributed multi-agent based approach for traffic signal

control is presented in Gokulan and Srinivasan [2010]. Further, traffic signal scheduling in

the context of a multi-agent system using a reinforcement learning framework has been ex-

plored, for instance, in De Oliveira and Camponogara [2010], Arel et al. [2010], Salkham

et al. [2008] and Bakker et al. [2005].

In some body of work on adaptive traffic control, the usage of neural network based

controllers is recommended. For instance, in Spall and Chin [1997], SPSA based gradient

estimates are used in a neural network (NN) feedback controller to optimize system per-

formance. The idea is to develop a function that takes in current traffic information and

outputs the signal timings. This function is approximated via a NN. In Smith and Chin

[1995], Chin et al. [1999], the above mentioned NN-SPSA algorithm was studied via simu-

lations on the mid-Manhattan-New York network and it was found to give a 10% reduction

in the vehicle waiting times as compared to the previously used strategy employed there.

In Srinivasan et al. [2006], a NN-based traffic signal control approach in a multi-agent

system is presented and compared against an existing traffic control algorithm as well as

an SPSA-NN multi-agent traffic control method developed there. In Kosmatopoulos et al.

[2007], a SPSA-like algorithm that incorporates linear function approximation, in addition,

has been proposed for adaptive optimization of control systems and applied to tune the

split module parameters in a traffic-responsive control strategy. Random perturbations are

used in the algorithm proposed in Kosmatopoulos et al. [2007], where the authors note that

the basic SPSA algorithm with random perturbations did not perform well. However, in

our work, we use one-simulation SPSA with deterministic perturbations based on certain

Hadamard matrices and this choice ensures convergence and good empirical performance

of the scheme. In Kosmatopoulos and Kouvelas [2009], the algorithm from Kosmatopoulos

et al. [2007] has been combined with neural networks. The resulting algorithm has been

studied in the context of optimizing the split and cycle times of traffic control strategy via

simulation in Kouvelas et al. [2011].



Chapter 3. Introduction 26

3.1.2 Stochastic optimization

A popular approach for simulation based parameter optimization is SPSA proposed in Spall

[1992]. SPSA is an efficient gradient search technique that aims at finding a local minimum

of a performance objective. The regular SPSA algorithm perturbs the parameter vector ran-

domly using i.i.d., symmetric, zero-mean random variables and has the critical advantage

that it needs only two samples of the objective function for any N -dimensional parameter.

A variant of the SPSA algorithm that uses one simulation was proposed in Spall [1997].

Unlike its two-simulation counterpart, the algorithm in Spall [1997] does not work well

in practice. In Bhatnagar et al. [2003], several variants of the SPSA algorithm that work

with deterministic perturbations (in place of randomized) were developed that show per-

formance improvements over their randomized perturbation counterparts. The perturbation

variables there are based on either lexicographic or Hadamard matrix based sequences. In

particular, the one-simulation variant of the SPSA algorithm that is based on Hadamard

matrices has been found to perform significantly better than the one-simulation random-

perturbation algorithm presented in Spall [1997]. A Newton based SPSA algorithm that

requires four system simulations with Bernoulli random perturbations was proposed in

Spall [2000]. In Bhatnagar [2005], three SPSA based estimates of the Hessian that re-

quire three, two and one system simulation(s), respectively, were proposed. In Bhatnagar

[2007], certain smoothed functional Newton algorithms that incorporate Gaussian-based

perturbations were proposed. It is however the case that Newton based algorithms, even

though more accurate than gradient based schemes, require significantly higher computa-

tional effort resulting from (a) projecting the Hessian update at each iteration to the set of

positive definite and symmetric matrices and (b) inverting the projected Hessian after each

update. Hence, we present in this chapter, the application of one-simulation deterministic

perturbation SPSA for tuning the threshold parameters.

3.1.3 Markov decision processes and reinforcement learning

Markov decision process (MDP) (Bertsekas [2005, 2007], Puterman [1994]) is a general

framework for solving stochastic control problems. Classical solution approaches for MDP

such as policy and value iteration solve the associated control problem precisely by iden-

tifying an optimal action to pick in each state. These approaches typically suffer from

two major problems: (a) they require precise knowledge of the transition probabilities, i.e.,

the system model, and (b) the amount of computation required to obtain a solution using
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these approaches grows exponentially with the size of the state and/or action space. Re-

inforcement learning (RL) (Bertsekas and Tsitsiklis [1996a], Bertsekas [2011], Sutton and

Barto [1998a]) provides efficient solutions for both problems above. Many RL algorithms

are incremental update stochastic approximation algorithms that work directly with real or

simulated data. These algorithms make use of the averaging property of stochastic approx-

imation as a result of which they work efficiently even when the system transition model

is not known. For problems where the cardinality of the state/action space is so large that

precise solutions cannot be obtained easily, one resorts to certain approximation methods.

Often the value function is approximated as a function of certain parameter(s). The func-

tional form of the approximator is also called an architecture. Architectures based on linear

function approximators have been well studied in the literature because algorithms such as

temporal difference (TD) learning (Sutton [1988]) have been shown convergent when lin-

ear architectures are used (Tsitsiklis and Van Roy [1997], Tsitsikis and Van Roy [1999]).

Here the value of a given state is approximated using the scalar product of the parameter

vector with the feature associated with the state. The feature usually quantifies important

state attributes. On the other hand, TD with nonlinear function approximators has been

seen to diverge in some cases. An important problem that we address in this chapter is

to design an efficient scheme to adaptively select the ‘best features’ when linear function

approximation is used.

The problem of feature adaptation has been studied recently for problems of prediction

as well as control. In Menache and Shimkin [2005], features are assumed parameterized

and the problem considered is one of finding the optimum feature parameter when TD

learning is used. Two algorithms, one based on a gradient approach and the other based

on a cross entropy method are then presented for tuning the feature parameter. Certain

generalizations of the parameterized basis adaptation approach of Menache and Shimkin

[2005] have been presented in Yu and Bertsekas [2009]. The basis adaptation scheme

there involves low order calculations. In Keller and Precup [2006], a procedure based

on state aggregation and neighborhood component analysis is used for constructing ba-

sis functions assuming a linear approximation architecture. In Bertsekas and Yu [2009],

Krylov subspace basis functions, involving powers of the transition probability matrix of

the associated Markov chain are used. Noisy samples of the basis functions are obtained as

they cannot be computed exactly. In Mahadevan and Liu [2010], a Laurent series expan-

sion of the value function is used for basis construction. Another interesting work is Sun
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et al. [2011] where through a recursive procedure, an ‘ideal’ basis function that is a repre-

sentative of the value function is obtained. Whereas the above references deal with basis

adaptation for the problem of prediction, in Di Castro and Mannor [2010], the problem of

control with adaptive bases is considered. Multiscale actor-critic algorithms are developed

where on the ‘slowest’ timescale, the feature parameters are updated. Algorithms based

on TD error, mean square Bellman error and mean square projected Bellman error are pre-

sented there. All of the above works consider features to be parameterized and the goal in

these references is to find optimal parameters and thus the optimal features within the spe-

cific parameterized feature classes. In Parr et al. [2007], feature adaptation for a problem

of prediction is considered. Unlike in the above references, the basis functions there are

not assumed parameterized. The Bellman error is included as an additional basis in each

iteration, thereby increasing the dimension of the subspace at each iteration. In Huang et al.

[2011], an a priori approximation of the value function based on a simplified model as one

of the features has been considered. In Baras and Borkar [2000], an approach that makes

use of both state aggregation and linear function approximation is presented. While the fea-

ture matrix is kept fixed there, state aggregation is done adaptively on a slower timescale

using estimates of the approximate value function. In this case, one obtains locally optimal

state clusters asymptotically.
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Q-learning for traffic signal control

We consider in this chapter the problem of efficient traffic flow control at signal junctions.

With increasing traffic in urban areas and limitations of the road infrastructure, any at-

tempt to improve the traffic flow of the system would involve an intelligent design of the

traffic signal timings for the junctions. The traffic junctions play a very important role in

determining congestion state of the road network. Most of the traffic junctions currently

use fixed signal timings, i.e., they periodically cycle through the sign configurations in a

round-robin manner. Even though such a strategy is easy to implement, it does not take

into consideration the actual traffic conditions and may result in more congestion. In this

chapter, we study the use of a sensor network based traffic control system. The objective

is to maximize traffic flow by performing adaptive control of traffic lights at intersections.

Sensors, placed along the lanes leading to a junction, periodically convey the traffic infor-

mation to a controller or agent at the junction, which then decides on the signal timings.

In this work, we use a reinforcement learning (Sutton and Barto [1998b], Bertsekas and

Tsitsiklis [1996b]) based algorithm to solve the traffic signal control problem. The reason

for using this approach is that reinforcement learning (RL) allows for learning the optimal

strategy for signal timing without assuming any model of the system. The benefits of using

RL are two-fold. First, it is model-free, i.e., it learns and adapts the policy through interac-

tion with the environment. RL algorithms are online, incremental and easy to implement.

Second, on high dimensional state spaces, function approximation techniques in RL can

be used to achieve computational efficiency. Q-learning (Watkins and Dayan [1992a]) is

an important and well-studied RL algorithm that is efficient and known to converge to the

optimal policy. In this chapter, we consider two scenarios for traffic control: (i) a single

junction scenario, i.e., involving just a single traffic junction and (ii) a scenario involving

29
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a corridor type of road network with multiple junctions. Through performance simula-

tions, we show that our Q-learning based algorithm outperforms some of the existing TLC

algorithms.

Our Contributions

� To the best of our knowledge, we are the first to explore the application of Q-learning

based TLC, in the context of a corridor type of road network.

� An open source java based software, Green Light District (GLD) (Wiering et al.

[2004]), is used for traffic control simulations. We implement the Q-learning TLC

algorithm and perform a comparative analysis of it against various fixed timing TLC

algorithms as well as a TLC algorithm that serves the lane with the longest traffic

queue.

� We perform our experiments for two different settings - one where all lanes are given

equal priority and another for which the main road is given a higher priority than the

side roads. For Q-learning, we implement this prioritization by means of the cost

structure. We observe empirically that Q-learning TLC outperforms the fixed timing

TLC for various timing intervals as well as the longest queue TLC, in both settings.

In Abdulhai et al. [2003], a case study involving a Q-learning algorithm has been shown

for a single junction controller. The cost function there does not incorporate elapsed times.

This can lead to lack of fairness between different lanes, i.e., a lane can continue to be green

for a long time at the cost of other lanes. Also, performance in terms of the average delay

metric alone is shown via a plot. On the other hand, we not only consider a corridor-type of

road network in addition to a single junction scenario, but also propose TLC algorithms -

QTLC and QTLC-pri - that consider fairness in our cost function by incorporating elapsed

times. Further, we implement various fixed timing algorithms and show performance com-

parisons with these over a range of performance metrics (not just delays). In addition,

our QTLC-pri algorithm has been developed for the case when main road traffic is given a

higher priority in comparison to traffic on side roads, a scenario not considered in Abdulhai

et al. [2003].

The rest of this chapter is organized as follows: In Section 4.1, we describe in detail the

problem formulation using Markov Decision Processes (MDP) and discuss the Q-learning
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method to solve the traffic light control problem. In Section 4.3, we discuss the imple-

mentation of the TLC algorithms and present the performance simulation results. Finally,

Section 4.4 provides the concluding remarks.

4.1 Traffic Signal Control Problem as an MDP

We consider the problem of finding an optimal schedule for the sign configurations of traffic

junctions, with the aim of maximizing the flow of traffic. We consider two scenarios - (i)

involving a single junction and (ii) involving a corridor-type of road network with multiple

junctions. For a corridor-type of road network, centralized control has been proposed for

instance in Ravikumar [2009]. However, reinforcement learning algorithms such as Q-

learning have not been proposed or implemented in the past, for such a scenario. We

assume for a corridor network a centralized controller that periodically receives information

through an array of sensors that are embedded in the roads. This information includes queue

lengths on the individual lanes and the time elapsed since the last signal light switch over.

We formulate this problem in the setting of Markov Decision Processes (MDP) and apply

the Q-learning algorithm for its solution.

We consider a road network with m junctions, m > 1. Each junction has multiple

cross-roads with each road having j lanes. Our algorithms require a description of states,

actions and costs. The state is the vector of queue lengths and the elapsed times since

the signal turned red on those lanes that have a traffic signal at the various junctions in

the network. Control decisions are made by a centralized controller that receives the state

information from the various lanes and makes decision on which traffic lights to switch

green during a cycle. This decision is then relayed back to the individual junctions. We

assume no propagation and feedback delays for simplicity. The elapsed time counter for a

lane with green signal stays at zero till the time the signal turns red. For a network with a

total of N signalled lanes, the state at time n is

sn = (q1(n); : : : ; qN(n); t1(n); : : : ; tN(n))
T ;

where qi(n) is the queue length on lane i at time n and ti(n) is the elapsed time for the red

signal on lane i at time n.

The actions an comprise of the sign configuration (i.e.,which feasible combination of

traffic lights to switch) in the m junctions of the road network and have the form: an =

(a1(n); : : : ; am(n))
T , where ai(n) is the sign configuration at junction i in the time slot n.
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We consider only sign configurations that are feasible in the action set and not all possible

red-green combinations of traffic lights (which would grow exponentially with the number

of traffic lights). Thus, the action set A(sn) = ffeasible sign configurations in state sng.
The cost function here has two components. The first component is the sum of the

queue lengths of the individual lanes and the second component is the sum of the elapsed

times since the signal turned red on the lanes on which the signal is red. The elapsed time

on lanes for which the signal is green is zero. The idea here is to regulate the flow of traffic

so as to minimize the queue lengths, while at the same time ensure fairness so that no lane

suffers from being red for a long duration. Lanes on the main road are given higher priority

over others. We achieve prioritization of main road traffic as follows: Let Ip denote the set

of indices of lanes whose traffic should be given higher priority. Then the single-stage cost

k(sn; an) has the form

k(sn; an) = r1 � (
P

i2Ip
r2 � qi(n) +

P
i=2Ip

s2 � qi(n))
+ s1 � (

P
i2Ip

r2 � ti(n) +
P

i=2Ip
s2 � ti(n));

(4.1)

where ri; si � 0 and ri+ si = 1; i = 1; 2. Further, r2 > s2. Thus, lanes in Ip are assigned a

higher cost and hence a cost optimizing strategy must assign a higher priority to these lanes

in order to minimize the overall cost.

As stated before, we consider the infinite horizon discounted cost framework. The

discount factor 
 plays a crucial role as a lower 
 serves to discount the future costs more,

thereby putting less emphasis on these as opposed to a higher value of 
. We let 
 = 0:9 in

our experiments.

4.2 Q-Learning based TLC with Full State Representa-

tions

This algorithm requires a full state representation as it updates over all feasible state-action

tuples. It addresses the case when the system model is not known, however, the state and

action spaces are manageable. The underlying MDP for the traffic signal control problem,

with its state, action spaces and the cost function have been described in Section 4.1. Q-

learning finds the optimal policy even without knowledge of the transition probabilities of

the underlying MDP. It does so by iteratively updating the Q(s; a) using (2.13) in order to

obtain the optimal sign configuration policy.
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The algorithm estimates the ‘Q-values’ Q(i; a) of all feasible state-action tuples (i; a)

i.e., i 2 S and a 2 A(i). Let sn+1(i; a) denote the state of the system at instant (n + 1)

when the state at instant n is i and action chosen is a. Let Qn(i; a) denote the Q-value

estimate at instant n associated with the tuple (i; a). Then the algorithm updates according

to

Qn+1(i; a) = Qn(i; a)+�(n)

�
c(i; a) + 
 min

b2A(sn+1(i;a))
Qn(sn+1(i; a); b)�Qn(i; a)

�
;

(4.2)

for all feasible (i; a) tuples. Upon convergence, one obtains the optimal Q-values Q�(i; a)

that are seen to satisfy the Q-Bellman equation (2.12). The optimal action in state i then

corresponds to argminb2A(i)Q
�(i; b). A convergence proof of this algorithm can be found

in Watkins and Dayan [1992a] and Tsitsiklis [1994a].

We refer to the Q-learning algorithm with full state representation or the lookup table

case when applied to our setting as the QTLC algorithm.

4.3 Simulation Experiments

We use the Green Light District (GLD) Simulator (Wiering et al. [2004]) for implemen-

tation and evaluation of our TLC algorithms. GLD allows users to build road networks

(involving lanes, junctions and road users), simulate traffic from various road users and ob-

tain performance statistics. The crucial part is that it allows implementation and evaluation

of traffic light algorithms. It consists of an interface for constructing the road layouts and

also a traffic simulator for conducting the experiments with existing and new traffic light

algorithms.

We refer to QTLC (QTLC-pri) as the algorithm that assigns equal priority to all lanes

(higher priority to main road traffic). In addition, we implement the fixed timing TLC

algorithm for various signal timings as well as the Longest Queue TLC (LTLC) algorithm.

In this (last) algorithm, the number of road users waiting for a traffic light to turn green is

counted, and used to decide the combination of traffic lights to be turned green in the next

time slot. In essence, LTLC attempts to switch the lane with the highest number of waiting

road users, to green.

The Fixed timing TLC, on the other hand, periodically cycles through the list of feasible

sign configurations, while not considering the traffic load on the lanes of the road network.

The cycling period in this algorithm is a tunable parameter and we show the results of its
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Figure 4.1: A Screen Shot of the Single Junction Road Traffic Network Obtained from
GLD - Controller is Junction 4

performance for various cycling periods. In the case when traffic on all lanes has the same

priority, we let the on-period (time for which the green light is on) to be the same for all

lanes. However, in the case when the traffic on the main road is given a higher priority over

that on side roads, we give a lower on-period for traffic on the side lanes as compared to

the main road traffic.

We perform simulation experiments for two road networks - one where there is single

junction (Fig. 4.1) and another where there is a corridor with two junctions (Fig. 4.3).

4.3.1 Single junction

The simulations are conducted for 5000 cycles for all algorithms. Each road user’s desti-

nation is fixed randomly, using a discrete uniform distribution to choose one of the edge

nodes. For the QTLC and QTLC-pri algorithms, n = 4 in the state description, thereby

indicating four signalled lanes. For the QTLC algorithm, we set the weights in the sin-

gle stage cost function as r = 4=5 and s = 1=5 respectively. For QTLC-pri, we let

ri = 4=5; i = 1; 2 and si = 1=5; i = 1; 2. This assignment gives a higher priority to

the lanes on the main road that connect node 0 with node 1 in Fig. 4.1. The simulation
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Table 4.1: Performance comparison of QTLC with Fixed timing algorithms in Scenario I
Average Waiting Average Waiting Total Arrived Total Waiting Average Trip Elapsed time

Time (Main Road Time (Side Roads) Road Users Queue Length Waiting Time
Fixed-10 14.26 � 0.63 13.78 � 0.75 6008.45 � 78.94 6.77 � 0.61 14.02 � 0.67 30.69 � 0.00
Fixed-20 22.06 � 1.10 21.47 � 0.62 5986.82 � 56.32 13.23 � 0.96 21.76 � 0.79 57.27 � 0.00
Fixed-30 29.86 � 0.76 29.66 � 0.38 5957.66 � 37.60 20.55 � 1.33 29.76 � 0.49 84.38 � 0.00
Fixed-40 38.89 � 1.04 38.29 � 0.99 5966.83 � 41.25 28.73 � 1.18 38.59 � 0.96 110.50 � 0.00
Fixed-50 47.41 � 0.59 46.63 � 0.93 5947.80 � 51.02 38.08 � 1.73 47.02 � 0.48 137.12 � 0.00

LTLC 3.83 � 0.23 4.85 � 0.35 6673.49 � 46.19 1.59 � 0.33 4.34 � 0.27 11.26 � 0.47
QTLC 8.94 � 2.12 8.33 � 1.64 6387.51 � 32.45 4.53 � 1.36 8.55 � 1.97 10.64 � 0.90

Table 4.2: Performance comparison of QTLC-pri with Fixed timing algorithms in Scenario
II

Average Waiting Average Waiting Total Arrived Total Waiting Average Trip Elapsed time
Time (Main Road) Time (Side Roads) Road Users Queue Length Waiting Time

Fixed-12-3 1264.53 � 22.79 1093.42 � 9.82 6212.63 � 29.89 1491.66 � 10.13 1178.98 � 15.32 39.56 � 0.00
Fixed-16-4 1251.82 � 15.43 1068.79 � 13.66 6141.67 � 15.64 1491.35 � 14.11 1160.30 � 11.52 49.53 � 0.00
Fixed-20-5 1198.50 � 14.48 1038.18 � 12.46 6089.66 � 13.01 1491.22 � 8.35 1118.35 � 8.02 59.30 � 0.00

LTLC 347.75 � 91.80 276.45 � 68.26 6561.59 � 44.86 806.55 � 46.04 298.90 � 23.57 58.79 � 12.44
QTLC-pri 548.66 � 31.49 702.81 � 14.04 6318.56 � 17.69 1098.79 � 10.63 617.98 � 17.00 27.93 � 1.14

experiments are conducted for two different scenarios: In Scenario I (equal priority to all

lanes), the spawn frequencies (rate at which new vehicles are added to a lane) are set to

0.25/cycle for all edge nodes. In Scenario II (main road given a higher priority than the

side roads), the spawn frequencies for the edge nodes on the main road (nodes 0 and 1 in

Fig. 4.1) is 0.75/cycle, while for the edge nodes on the side roads (nodes 2 and 3), it is

0.25/cycle.

We compare the performance of the TLC algorithms using various performance metrics

involving the average waiting times, queue lengths, total number of road users arrived,

elapsed time, etc. The performance comparisons are shown in Fig. 4.2, and Tables 4.1–

4.2. The tables show the mean and standard error results from ten independent simulation

runs for various performance metrics for the different TLC algorithms. Fig. 4.2 shows

the results for the average junction waiting time in the two scenarios. We observe from

the performance plots in Fig. 4.2 as well as the numerical comparisons of the various

performance metrics in Tables 4.1–4.2 that both QTLC and QTLC-pri perform better than

the fixed timing TLC algorithms. In Fig. 4.2(b) and Table 4.2, Fixed-12-3 corresponds to

the fixed timing TLC that assigns 12 cycles to the main road, while each side road is given

3 cycles. Fixed-16-4 and Fixed-20-5 have a similar interpretation. It may however be noted

that LTLC performs the best in this scenario with QTLC and QTLC-pri being close in their

performance. In the case of a network corridor (considered next), however, this trend is

reversed as QTLC and QTLC-pri show the best results.
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Figure 4.2: Performance Comparison of TLC algorithms - Single Junction
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Figure 4.3: A Screen Shot of the Corridor-type Road Traffic Network Obtained from GLD
- Controllers are in Junctions 7 and 6

4.3.2 Corridor network

The simulations are conducted for 5000 cycles for all algorithms. Each road user’s desti-

nation is fixed randomly, using a discrete uniform distribution to choose one of the edge

nodes. For the QTLC and QTLC-pri algorithms, n = 8, thereby indicating eight signalled

lanes. For the QTLC algorithm, we set the weights in the single stage cost function in

(4.1) as r = 4=5 and s = 1=5 respectively. For QTLC-pri, we use ri = 4=5; i = 1; 2 and

si = 1=5; i = 1; 2. This assignment gives a higher priority to the lanes of the main road

that connect node 0 with node 5 in Fig. 4.3.

The simulation experiments are conducted for two different scenarios:

� Scenario I: All lanes are given equal priority. The spawn frequencies (rate at which

new vehicles are added to a lane) are set to 0.25/cycle for all edge nodes here.

� Scenario II: The main road is given a higher priority than the side roads. The spawn

frequencies for the edge nodes on the main road (nodes 0 and 5 in Fig. 4.3) in this

case is 0.75/cycle, while for the edge nodes on the side roads (nodes 1,2,3 and 4) it

is 0.25/cycle.

We compare the performance of the TLC algorithms using various performance metrics

involving the average waiting times, queue lengths, total number of road users arrived and
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Table 4.3: Performance comparison of QTLC with Fixed timing and LTLC algorithms in
Scenario I

Total Arrived Average Waiting Average Waiting Total Waiting Average Trip Elapsed time
Road Users Time - Junction 7 Time - Junction 6 Queue Length Waiting Time

Fixed-5 3929.70 � 29.28 18.06 � 0.28 40.46 � 0.71 1651.50 � 28.69 832.85 � 19.64 144.00 � 0.00
Fixed-10 3681.40 � 18.38 19.79 � 0.43 46.25 � 1.00 1682.80 � 36.82 886.23 � 28.03 294.00 � 0.00
Fixed-20 3508.00 � 18.69 20.65 � 0.50 52.69 � 0.80 1717.50 � 53.80 909.89 � 44.68 474.00 � 0.00
Fixed-30 3403.40 � 17.48 22.84 � 0.67 51.96 � 0.92 1779.80 � 33.39 962.57 � 19.87 564.00 � 0.00
Fixed-40 3352.60 � 14.03 22.06 � 1.31 53.75 � 1.07 1810.20 � 20.41 980.10 � 21.40 654.00 � 0.00
Fixed-50 3342.10 � 23.04 21.68 � 0.82 55.31 � 1.40 1809.00 � 54.43 994.68 � 38.05 1104.00 � 0.00

LTLC 70.33 � 42.58 4.81 � 1.74 7.39 � 3.33 2244.00 � 0 8.65 � 4.02 17595.22 � 198.93
QTLC 5926.00 � 64.32 10.05 � 0.42 15.92 � 1.38 1253.75 � 60.42 557.69 � 44.00 32.25 � 4.32

Table 4.4: Performance comparison of QTLC-pri with Fixed timing and LTLC algorithms
in Scenario II

Total Arrived Average Waiting Average Waiting Total Waiting Average Trip Elapsed time
Road Users Time (Main Road) Time (Side Roads) Queue Length Waiting Time

Fixed-12-3 5352.31 � 40.20 801.14 � 13.18 822.65 � 12.53 1867.72 � 0.28 914.63 � 12.41 79.14 � 0.00
Fixed-16-4 5147.20 � 34.75 785.89 � 20.64 816.26 � 17.56 1867.70 � 0.20 895.06 � 17.38 98.94 � 0.00
Fixed-20-5 4996.99 � 55.17 746.76 � 14.18 779.97 � 13.30 1867.90 � 0.15 842.70 � 13.41 118.68 � 0.00

LTLC 71.77 � 43.30 18.91 � 19.19 14.51 � 12.54 2244.00 � 0.00 29.90 � 41.60 35502.53 � 282.44
QTLC-pri 6843.96 � 88.58 590.69 � 50.54 865.89 � 40.36 1238.65 � 44.16 773.31 � 37.26 30.24 � 0.15

elapsed times. The performance comparisons are shown in Figs 4.4–4.5 and Tables 4.3–4.4

respectively.

Tables 4.3 and 4.4 provide the mean and standard error results from ten independent

simulation runs for various performance metrics for the different TLC algorithms that we

studied.

Fig. 4.4 and 4.5 show the results for the average junction waiting time on junction 7,

the total arrived road users and the total waiting queue length. We observe that QTLC and

QTLC-pri perform better than the fixed timing TLC for all cycling periods considered.

An important observation here is that both QTLC and QTLC-pri outperform LTLC.

In fact, LTLC performed very poorly when compared to Q-learning in this scenario of

a corridor network as traffic came to a standstill using this algorithm. This situation of

deadlock or impasse was due to the fact that LTLC, invariably in all cases studied, arrived at

a sign configuration on junctions 6 and 7 which did not allow traffic to pass across junctions.

The longest queue status of the lanes remained the same because of the gridlock, leaving the

sign configuration unchanged. On hitting a standstill traffic situation, the junction waiting

times in GLD of all the road users froze, which resulted in a misrepresentation as even

though from Figs 4.4(a) and 4.5(a), it would appear that LTLC shows the lowest average

junction waiting time, this only happened because the waiting time counters in GLD froze

upon reaching a gridlock. This can also be seen from the plots in Figs 4.4(b) and 4.5(b),

where the total arrived road users (i.e., those that have completed their journey) is the
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lowest when LTLC is used. it can be seen that LTLC shows the worst performance in terms

of total waiting queue length. Further, from Tables 4.3 and 4.4, the elapsed times are seen

to be more than an order of magnitude higher when LTLC is used. On the other hand, as

mentioned previously, QTLC and QTLC-pri show the best results overall. Note from Table

4.4 that QTLC-pri shows the best results for main road traffic as expected. For traffic on

side roads, Fixed-20-5 shows lower average junction waiting time on the side roads than

QTLC-pri. This is because QTLC-pri gives a higher priority to main road traffic.

4.4 Summary

Designing a road traffic management system based on wireless sensor networks that achieves

high traffic flow rates with minimum congestion is a challenging task. Reinforcement learn-

ing presents an interesting paradigm for solving such problems. We designed and evaluated

a full-state Q-learning based traffic light control algorithm for a corridor type of road net-

work under the scenarios when traffic on all roads gets the same priority and when the

main road traffic gets a higher priority as compared to traffic on the side roads. This algo-

rithm has the advantages of model-free learning algorithms that adapt in real-time to the

traffic conditions. From the performance simulations, it is observed that Q-learning TLC

algorithms outperform the fixed timing and longest queue strategies in both scenarios.

Considering the usefulness of RL for solving the traffic signal control problem, in the

next chapter we develop enhancements to the Q-learning based TLC algorithm described

here by incorporating feature-based representations and function approximation. Feature-

based approaches will be needed when bigger road networks are considered as in such a

case, the traffic control problem will become high-dimensional. Further, we also develop

RL algorithms for average cost traffic signal control in Chapter 6.



Chapter 5

Qlearning with function approximation
for traffic signal control

In this chapter, we use an RL (Sutton and Barto [1998b], Bertsekas and Tsitsiklis [1996b])

based algorithm with function approximation to solve the traffic signal control problem.

As shown in Chapter 4, RL allows for learning the optimal strategy for signal timing with-

out assuming any model of the system. However, the full state Q-learning algorithm de-

scribed in Chapter 4 cannot be implemented on larger networks owing to the curse of

dimensionality. In other words, the high-dimensional state-action spaces associated with

larger networks render the full state Q-learning practically infeasible on them. To allevi-

ate this problem, function approximation techniques in RL, which achieve computational

efficiency, can be used.

In this chapter, we develop a Q-learning based traffic light control (TLC) algorithm that

incorporates function approximation. Such an algorithm has been applied for the first time

in the area of traffic signal control. Amongst its many advantages, it is seen to be easily

implementable on a range of high-dimensional network settings and gives much superior

performance as compared to other related algorithms in the literature. We compare the

performance of our algorithm with a range of algorithms that assign a certain (fixed) traffic

light duration to the various sign configurations. In addition, we compare the performance

of our algorithm with an algorithm that switches traffic lights to green for those lanes that

have the longest queue. We also show performance comparisons of our algorithm with the

algorithms of Cools et al. [2008] and Abdulhai et al. [2003]. Further, we also compare the

performance of our algorithm with the full state Q-learning TLC algorithm described in

Chapter 4.

42
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We now describe comparisons of our work with prior work in the literature. The al-

gorithm of Abdulhai et al. [2003], while being a Q-learning algorithm, requires full-state

representations and cannot be implemented even on road networks of moderate size. In-

deed, the implementation of this algorithm has been shown in Abdulhai et al. [2003] only

for the case of a single junction road network. On the other hand, we use function ap-

proximation and hence our algorithm is found to be easily implementable on larger road

networks such as a 3x3-grid and an eight-junction corridor. We observe that on a 3x3-grid,

the cardinality of the state-action space is nearly 10101 while the number of features that

our algorithm requires is only about 200. Thus, while algorithms such as in Abdulhai et al.

[2003] are not implementable on such road networks, our algorithm is found to be easily

implementable and gives fast convergence. While the algorithm in Cools et al. [2008] also

requires information on the level of congestion and elapsed times on the various lanes, it

is not based on RL, unlike our algorithm. Hence, the algorithm of Cools et al. [2008] does

not have the advantage of an RL-based algorithm as it does not update its policy adaptively

using information from interactions with the environment. The state-action features that

we incorporate require information on whether the level of congestion on any given lane is

low, medium or high, and also whether the elapsed time is below or above a threshold.

Note that the full state Q-learning algorithm from Chapter 4, unlike Abdulhai et al.

[2003], incorporates prioritization in its cost objective. We implemented this algorithm

mentioned above and the one proposed in Abdulhai et al. [2003] only on a two-junction

corridor setting as these could not be implemented on larger road networks because of

the exponential increase in the computational complexity mentioned above. However, we

found that even on a two-junction corridor, our algorithm with function approximation

outperformed both of these algorithms.

Next, unlike Abu-Lebdeh and Benekohal [2003], Yun and Park [2006] and Girianna

and Benekohal [2004], Q-learning in the case of full state representation can be shown to

converge to an optimal policy. Convergence under function approximation is not straight-

forward, except under certain conditions, see Melo and Ribeiro [2007]. Whereas we also

assume the underlying process to be an MDP, unlike Yu and Recker [2006], we do not

require information on the transition probabilities of the system, which are hard to obtain

in any (real) system. On the other hand, our algorithm works directly with observed data

in terms of the level of congestion and elapsed times on the signalled lanes of the road

network. Further, unlike Abdulhai et al. [2003] that considers only a single junction sce-

nario, we develop and apply our algorithm on road networks with multiple junctions. As
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stated before, we propose and apply Q-learning with function approximation in the case of

larger road networks where full state representations cannot be used because of the curse

of dimensionality.

Our Contributions

� We consider the problem of adaptive signal control of traffic lights at junctions and

develop a Q-learning algorithm with feature based state-action representations and

function approximation. To the best of our knowledge, reinforcement learning with

function approximation for traffic signal control has been proposed by us for the first

time in the literature.

� We study the performance of our function approximation based RL algorithm on var-

ious road network settings - a two-junction corridor, a 2x2-grid network, a 3x3-grid

network and an eight-junction corridor, respectively. We compare the performance

of our algorithm with various existing TLC algorithms - Fixed timing, Longest queue

and SOTL from Cools et al. [2008] as well as the Q-learning based TLC algorithms

that use full state representations - the algorithm that we develop for prioritized traf-

fic and the algorithm from Abdulhai et al. [2003]. Our algorithm is seen to be easily

implementable over all network settings, converges fast and consistently outperforms

all the other TLC algorithms considered.

We implement our algorithms on an open source Java based software, Green Light District

(GLD) (Wiering et al. [2004]). The other TLC algorithms with which we compare the

performance of our algorithm were also implemented in GLD.

The rest of the chapter is organized as follows: In Section 5.1, we briefly recall the traf-

fic signal control problem formulation, which was described in detail in Section 4.1. Note

that a full-state Q-learning based TLC algorithm for this problem was presented in Chapter

4. In Section 5.2, we present our Q-learning algorithm with function approximation. In

Section 5.3, we discuss the implementation of the various TLC algorithms and present the

performance simulation results. Finally, in Section 5.4 we provide the concluding remarks.

5.1 The traffic control problem

We consider the problem of finding an optimal schedule for the sign configurations at traffic

junctions with the aim of maximizing traffic flow. The signals associated with a phase i.e.,
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those that can be switched to green simultaneously form a sign configuration.

We formulated this traffic signal control problem as an MDP in Section 4.1 and pre-

sented a Q-learning algorithm based on full state representations for solving this problem.

We refer to the Q-learning algorithm with full state representation i.e., the look-up table

case when applied to our setting as the QTLC-FS algorithm. We now develop a Q-learning

based TLC algorithm that incorporates function approximation. This algorithm is seen

to be easily implementable on high-dimensional settings and also outperforms other well

known TLC algorithms.

5.2 Q-Learning with Function Approximation

The QTLC-FS algorithm obtains the optimal sign configuration policy running the incre-

mental stochastic algorithm (4.2). However, this requires a look-up table to store the Q-

values for every possible (s; a)-tuple. While this is useful in small state and action spaces, it

becomes computationally expensive for larger road networks involving multiple junctions.

For instance, in the case of a small road network (e.g. a two-junction corridor) say with

10 signalled lanes, with each lane accommodating 20 vehicles, the number of state-action

tuples (and hence the size of the Q(s; a) lookup table) is of the order of 1014. This leads

to an extraordinary computation time and space as lookup table representation requires a

lot of memory and secondly, the lookup and update operation of Q(s; a) for any (s; a) tu-

ple is expensive because of the number of (s; a)-tuples. For instance, in the case of the

ten-lane example above, (4.2) would correspond to a system of 1014 equations needed to

update Q(s; a) for each feasible (s; a)-tuple once. The situation is aggravated when we

consider larger road networks such as a grid or a corridor with several junctions, as the

sizes of the state and action spaces blow up exponentially. It is precisely for this reason that

the Q-learning algorithm proposed in Abdulhai et al. [2003] is not even implementable on

medium and large-sized road networks. To alleviate this problem of curse of dimension-

ality, we incorporate feature based methods. These methods handle the above problem by

making computational complexity manageable. An introduction to feature based methods

is given in Chapter 2.

We now describe QTLC-FA, a Q-Learning based TLC algorithm that uses function

approximation. While the QTLC-FS algorithm as such requires complete state infor-

mation and so is computationally less efficient, its function approximation based variant

parametrizes the value function and requires significantly less computation in terms of
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space and time requirements, while giving good performance. The algorithm QTLC-FA

which is a variant of the algorithm QTLC-FS updates the parameter �, a d-dimensional

quantity. Thus, instead of solving a system in jS�A(S)j variables, we solve here a system

in only d variables. For instance, in the case of the 3x3-grid road network that we consider

in our experiments, it can be seen that while jS �A(S)j � 10101, d is only about 200. This

results in significant speed up in the computation time when feature-based representations

are used.

Recall that in a function approximation setting, we associate with each state-action

tuple (i; a), a state-action feature denoted by �i;a. The Q-function is then approximated as

Q�(i; a) � �T�i;a: (5.1)

Let sn; sn+1 denote the state at instants n; n+ 1, respectively. Let �n be the nth update

of the parameter �. The algorithm QTLC-FA uses the following update rule:

�n+1 = �n + �(n)�sn;an(k(sn; an) + 
 min
v2A(sn+1)

�Tn�sn+1;v � �Tn�sn;an); (5.2)

where �0 is set arbitrarily. In (5.2), the action an is chosen in state sn according to an =

argminv2A(sn) �
T
n�sn;v.

While the algorithm (5.2) updates the parameter � 2 Rd, this results in updating the

projected Q-value functions i.e., those that are obtained according to Q � ��. Note that

the set f��j� 2 Rdg forms a subspace of the set of all functions on jS � A(S)j (i.e., the

original Q-value functions).

The features are chosen based on the queue lengths and elapsed times of each signalled

lane of the road network. In particular, we select features �sn;an to have the following

form:

�sn;an =(�q1(n); : : : ; �qN (n); �t1(n); : : : ; �tN (n); �a1(n); : : : ; �am(n))
T ; (5.3)
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where

�qi(n) =

8>>><>>>:
0 if qi(n) < L1

0:5 if L1 � qi(n) � L2

1 if qi(n) > L2

(5.4)

�ti(n) =

8<:0 if ti(n) � T1

1 if ti(n) > T1

Further �a1(n); : : : ; �am(n) corresponds to the actions or sign configurations chosen at each

of the m junctions. As before, N is the total number of lanes (inclusive of all junctions)

in the network. L1 and L2 are thresholds on the queue lengths and T1 is a threshold on

the elapsed time. Note that the parameter �n has dimension the same as that of �sn;an .

Again the advantage here is that instead of updating the Q-values for each feasible (s; a)-

tuple as before, one estimates these according to the parametrization (5.1). In the case

of a fixed policy, the algorithm (5.2) is analogous to the well studied temporal difference

learning algorithm. A proof of convergence of the algorithm (5.2) under some conditions

is provided in Melo and Ribeiro [2007].

An advantage in using the above features is that one does not require full information

on the queue lengths or the elapsed times. Thresholds L1 and L2 can be marked on the

lanes and used to estimate low (less than L1), medium (between L1 and L2) or high (above

L2) traffic. Likewise the elapsed time can be categorized as being below the threshold

(T1) or above it. More gradations of the queue lengths and elapsed times can also be

considered. Thus another advantage of our algorithm QTLC-FA over the algorithm in

Abdulhai et al. [2003] or the QTLC-FS algorithm is that it does not require precise queue

length information. Such information is often hard to obtain whereas a characterization of

traffic at any time as low, medium or high is easier.

Practical implementation of QTLC-FA would require placement of sensors along the

lanes of the road network. Since we require only information on whether or not the traffic

congestion is below threshold L1, in between thresholds L1 and L2 or above threshold

L2, one can use two loops of sensors - one placed along L1 and the other along L2. If

sensors at L1 do not detect congestion, it can be inferred that congestion level on that lane

is ‘low’ i.e., below L1. If, on the other hand, sensors at L1 detect congestion but those at

L2 do not, then congestion can be inferred to be in the ‘medium’ range (i.e., above L1 but
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below L2) and similarly if sensors at L2 also detect congestion, then the congestion level

can be inferred to be in the ‘high’ range (i.e., at the level of L2 or more). Elapsed times

are usually measured by time counters placed at signal intersections. Again, we only need

information on whether or not the elapsed time on a lane is above or below a threshold

T1. Information on congestion levels as well as elapsed times being below or above a

threshold will then have to be communicated to the central controller which would then

run the QTLC-FA algorithm to obtain the sign configuration policy. As we observe from

our experiments, QTLC-FA has a very short transient phase and is computationally very

efficient (both in time and space complexities) and hence can be easily implemented to

obtain the sign configurations online in a real system. Note that while we do not require

precise information on vehicle count, the problem of getting precise estimates of vehicle

count is an interesting problem in itself and has been independently addressed for instance

in Kwong et al. [2010].

There is another advantage in placing sensors along fixed distances (say L1 and L2)

from the traffic junction and using distance of “detected” congestion (from the junction)

as a proxy for queue length thresholds. For instance, in the case of the traffic situation

prevalent in India i.e., highly congested traffic with a high diversity of vehicles, getting

precise queue length information is extremely difficult. Using passenger car units (PCUs)

as a measure of queue length, see Ravikumar [2009] (for instance, three motor bikes could

correspond to one PCU), one can estimate the number of PCUs (could be a fraction) that

can be accommodated in a unit distance (say one metre) of the lane. That number multiplied

by L1 or L2 would roughly correspond to the number of PCUs that can be packed in L1

or L2 metres of the lane. Thus L1 and L2 could themselves be used as proxies for queue

thresholds except for a multiplication factor.

5.3 Simulation Experiments

We use the Green Light District (GLD) Simulator (Wiering et al. [2004]) for implemen-

tation and evaluation of our TLC algorithms. GLD allows users to build road networks

(involving lanes, junctions and road users), simulate traffic from various road users and ob-

tain performance statistics. The crucial part is that it allows implementation and evaluation

of traffic light algorithms. It consists of an interface for constructing the road layouts and a

traffic simulator for conducting the experiments with existing and new TLC algorithms.
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5.3.1 Implementation

We implement our Q-learning based TLC algorithm with function approximation - QTLC-

FA. For the sake of comparison, we also implement the following algorithms:

� Fixed Timing TLC: This algorithm periodically cycles through the list of feasible

sign configurations, while not considering the traffic load on the lanes of the road

network. The cycling period in this algorithm is a tunable parameter and we show

the results of its performance for various cycling periods.

� Self Organizing TLC (SOTL) Cools et al. [2008]: This algorithm uses the elapsed

times to decide the sign configuration i.e., traffic light switch to green happens when

the elapsed time crosses a threshold, provided the number of vehicles crosses another

thresholdL. We setL = 5 in our experiments, as has been done in Cools et al. [2008].

� Longest Queue TLC (LTLC): Here the number of road users waiting for a traffic

light to turn green is counted, and used to decide the combination of traffic lights to

be turned green in the next time slot. In essence, LTLC attempts to switch the lane

with the highest number of waiting road users to green.

� Q-learning with Full State Representation (QTLC-FS): This algorithm has been

described in Section 4.2.

� Q-learning with No Priority (QTLC-NP) Abdulhai et al. [2003]: This algorithm

has a similar update rule as QTLC-FS, however, the cost function here is

k(sn; an) =
NX
i=1

qi(n) +
NX
i=1

ti(n): (5.5)

Thus, in particular, unlike QTLC-FS, this algorithm does not assign a higher priority

to main road traffic.

We consider four different network scenarios: a two-junction corridor, a 2x2-grid net-

work, a 3x3-grid network and a eight-junction corridor. The road networks are shown in

Fig. 5.1 – these are snapshots obtained from the GLD software. While we consider all roads

to be of two lanes in the two-junction corridor, we consider all roads to be of four lanes in

all the other settings. This was because we could implement the QTLC-FS and QTLC-NP

algorithms only on the two-junction corridor setting when all roads had two lanes. When
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(a) Two-Junction Corridor

(b) 2x2-Grid Network

(c) 3x3-Grid Network

(d) Eight-Junction Corridor

Figure 5.1: Road Networks used for our Experiments
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the number of lanes is increased, both of these algorithms could not be implemented be-

cause of the curse of dimensionality effect discussed previously. On the other hand, our

algorithm with function approximation, QTLC-FA, was found to be easily implementable

on all the settings that we considered. The simulations were conducted for 5000 cycles for

all algorithms. Each road user’s destination was fixed randomly using a discrete uniform

distribution to choose one of the edge nodes.

In all the road networks, we set the spawn frequencies (the average rate at which traffic

is generated randomly in GLD) so that the proportion of cars flowing on the main road

to those on the side roads is in the ratio 100 : 5. This setting is close to real life traffic

scenarios on many busy corridor and grid networks and has also been used for instance in

Cools et al. [2008].

For both QTLC-FS and QTLC-FA, we set the weights in the single-stage cost function

k(s; a) in (4.1) as r1 = s1 = 0:5. We thus give equal weightage to both the queue length

and elapsed time components. Further, we set r2 = 0:6 and s2 = 0:4. This assignment

gives a higher priority to the lanes on the main road than those on the side roads. The

thresholds L1 and L2 were set to 6 and 14 respectively, taking into consideration the fact

that the length of the roads in all the road networks that we study is 20. The threshold T1
was set to 90.

5.3.2 Results

We compare the performance of the TLC algorithms using the average junction waiting

times (AJWT) and total arrived road users (TAR) i.e., the number of road users who have

reached their destination. The performance plots of AJWT and TAR vs. the number of

cycles in all four road networks studied are shown in Figs 5.2, 5.3, 5.4 and 5.5.

From these plots, we observe that QTLC-FA consistently shows the best results in all

the four road networks studied. We now discuss the performance results in more detail.

From the AJWT and TAR plots, we observe that QTLC-FA performs better than the

fixed timing TLC algorithm for all cycling periods considered in the latter. Using a broad

estimate of queue lengths and elapsed times of the signalled lanes enables the QTLC-FA

algorithm to adapt the sign configuration policy to the traffic situation, while fixed timing

algorithms being unmindful of the current traffic situation lead to longer waiting times.

We do not show the plots of the LTLC algorithm as it performed very poorly in com-

parison to our algorithms. In fact, when LTLC was used, the traffic invariably entered a

deadlock situation as the algorithm always arrived at a sign configuration that did not allow
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Figure 5.2: Performance Comparison of TLC Algorithms - Two-Junction Corridor Case
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traffic to pass across junctions. The longest queue status of the lanes then remained the

same because of the gridlock leaving the sign configuration unchanged.

QTLC-FA also outperformed the SOTL algorithm (Cools et al. [2008]) in all the four

road networks. Using a broad estimate of congestion on the signalled lanes apart from the

elapsed times, the QTLC-FA algorithm was able to find an approximately optimal sign con-

figuration policy that minimized the long-term discounted cost, which, in essence, ensured

smooth traffic flow. While both SOTL and QTLC-FA used a rough measure of the level

of congestion based on certain thresholds, QTLC-FA outperformed SOTL as it tunes the

feedback policy adaptively unlike SOTL.

As explained before, we implemented the QTLC-FS and QTLC-NP (Abdulhai et al.

[2003]) algorithms only on the two-junction corridor with each road having two lanes and

not on the other networks because of the exponential increase in computational complexity

in the case of networks with more lanes and junctions. On the other hand, QTLC-FA is eas-

ily implementable on larger network scenarios, and requires much less computation. From

the performance plots in Fig. 5.2, we observe that QTLC-FA did better than both QTLC-

FS and QTLC-NP, apart from the other TLC algorithms that it was compared against. A

judicious choice of features that take into account both the congestion levels on the lanes

of the road network as well as the elapsed times to ensure that no lane waits for a long

duration for its signal to turn green, resulted in an improved performance for QTLC-FA as

compared to both QTLC-FS and QTLC-NP.

From the AJWT plots, we observe that the transient phase, i.e., the initial period when

QTLC-FA is tuning its parameters before stabilizing on a policy, is only a few cycles and

hence, QTLC-FA converges rapidly to a near optimal sign configuration policy. Also,

QTLC-FA has the advantages of any RL algorithm i.e., it adapts well to traffic conditions on

different types of road networks. This is evident in the superior performance of QTLC-FA

on all road networks considered above, with no specific tuning of the QTLC-FA algorithm

being done for a particular road network.

5.4 Summary

Designing a road traffic management system based on wireless sensor networks that achieves

high traffic flow rates with minimum congestion is a challenging task. Reinforcement learn-

ing presents an interesting paradigm for solving such problems. We designed and evalu-

ated two Q-learning based algorithms for road traffic control on a network of junctions.
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Q-learning TLCs have the advantages of model-free learning algorithms that adapt in real-

time to the traffic conditions. Our Q-learning algorithm with function approximation is

proposed for the first time in the literature for traffic signal control. From the performance

simulations, it is observed that our QTLC-FA algorithm consistently outperforms all the

other algorithms with which we showed performance comparisons over all the network

settings considered.



Chapter 6

RL algorithms for average cost traffic
signal control

Traffic signal control forms a crucial component of any intelligent transportation system.

As we saw in the earlier chapters, designing an adaptive traffic signal control algorithm that

maximizes the long-term traffic flow is an extremely challenging problem, considering the

fact that a model of the system is not available in most of the real traffic environments. A

second handicap to the traffic light control (TLC) algorithm is that the critical inputs - queue

lengths and/or elapsed times (since signal turned red) on the lanes of the road network - are

hard to obtain precisely in realistic settings and the TLC algorithm has to work with coarse

estimates of these inputs. It is thus necessary to develop a TLC algorithm that minimizes a

long-term cost objective using the coarse inputs of queue lengths and/or elapsed times and

without assuming a system model. The TLC algorithm should be online, computationally

efficient and possess the necessary convergence properties.

The problem that we consider in this chapter is one of designing TLC algorithms that

minimize a long term average cost objective, while possessing the properties outlined

above. Reinforcement learning (RL) is an efficient technique for developing model-free

algorithms that minimize a long-term cost objective based on sample observations from

simulations. RL based TLC algorithms that minimize a long run discounted cost have been

proposed in literature, for instance, in Abdulhai et al. [2003] and Prashanth and Bhatnagar

[2011a]. However, to the best of our knowledge, we are the first to design RL-based TLC

algorithms that minimize a long-run “average cost” criterion. The motivation behind using

an infinite horizon average cost framework is to understand the steady state behaviour of

the traffic control system. We develop two new TLC algorithms, one based on Q-learning

58
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and the other a policy gradient actor critic algorithm for solving the traffic signal control

problem in an average cost setting. While the Q-learning based TLC algorithms (Abdulhai

et al. [2003], Prashanth and Bhatnagar [2011a]) proposed for the discounted cost problem

are stochastic approximation analogues of the value iteration algorithm, they do not ex-

tend easily to the average cost setting. The Q-learning based TLC for average cost that

we develop here is based on relative Q-value iteration scheme and has been adapted from

Abounadi et al. [2002]. The second TLC algorithm that we develop is a two-timescale

actor critic algorithm that incorporates policy gradient for the actor recursion and temporal

difference learning for the critic.

We develop in this chapter, the first RL based TLC algorithms with function approxima-

tion that minimize a long term average cost objective. Whereas a discounted cost objective

is more suitable for optimizing short term performance, the long run-average cost objec-

tive assigns equal weightage to all stages and is concerned with the steady-state system

behaviour.

Our Contributions

� We develop, for the first time, two reinforcement learning algorithms with function

approximation for the problem of average cost traffic signal control.

� Our first algorithm is a Q-learning based TLC algorithm and is the function approxi-

mation analogue of the Q-learning with average cost algorithm proposed in Abounadi

et al. [2002].

� The second algorithm is a policy gradient actor critic based TLC algorithm. This

algorithm is also shown to converge to the optimal sign configuration policy that

minimizes the long run average cost.

� Both our algorithms require only coarse information on the level of congestion (for

instance, low, medium or high) and do not require precise queue length information.

This is unlike the algorithm of Abdulhai et al. [2003] that requires precise queue

length estimates.

� We study the performance of our TLC algorithms in the context of a two-junction

corridor, a five-junction corridor and a 2x2-grid network. From the performance

comparisons of our algorithms between themselves and with a range of fixed timing

TLC algorithms, we observe that the policy gradient actor critic based TLC algorithm
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performs the best, while also converging rapidly to the optimal sign configuration

policy.

The rest of the chapter is organized as follows: In Section 6.1, we present our learning

algorithms with average cost for traffic light control. In Section 6.2, we discuss the imple-

mentation of the various TLC algorithms and present the performance simulation results.

Finally, in Section 6.3 we provide the concluding remarks.

The traffic signal control MDP used for average cost analysis here is the same as the

ones used in the previous chapters. In other words, we use the same states, actions and the

cost function of the traffic signal control problem described in Section 4.1 here. However,

the objective here is to develop algorithms that minimize a certain long run average cost

objective, unlike earlier where a discounted cost objective was used. Specifically, we now

present two traffic light control algorithms - both using function approximation in an aver-

age cost framework. The first is a Q-learning with average cost based TLC scheme, while

the second is a policy gradient actor-critic TLC algorithm.

6.1 Our TLC Algorithms

The MDP for the problem of traffic signal control corresponds to the sequence fsng, with

sn as defined in Section 4.1, with which is associated the control sequence fang. Let

p(i; j; a) denote the transition probability of the MDP for transiting from state i to j under

action a. We consider here an infinite horizon average cost framework, where our aim is to

find a sequence fang of actions that minimize the “average cost”

�̂ = lim
N!1

1

N

N�1X
n=0

c(sn; an)
4
= lim

N!1

1

N

N�1X
n=0

cn+1; (6.1)

starting from any given state i (i.e., s0 = i).

Let h(i); i 2 S be the differential cost function corresponding to state i. Then h(:)

satisfies

�+ h(i) = min
a

X
j

p(i; j; a)(c(i; a) + h(j));8i 2 S; (6.2)

where � is the optimal cost.
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Define the Q-factors Q(i; a); i 2 S; a 2 A(i) as

Q(i; a) =
X
j

p(i; j; a)(c(i; a) + h(j)): (6.3)

The Q-factors then satisfy the Bellman equation of optimality

�+Q(i; a) =
X
j

p(i; j; a)(c(i; a) + min
b2A(j)

Q(j; b)); (6.4)

for all i 2 S; a 2 A(i).
The Q-learning algorithm with full state representation (that we present next) addresses

the case when the system model is not known, however, state and action spaces are man-

ageable. Further, the next two algorithms viz., Q-learning with function approximation and

policy gradient actor-critic in addition to considering the case of ‘lack of system model’,

also effectively handle large state and action spaces.

6.1.1 Q-learning with full state representations (QTLC-FS-AC)

Our QTLC-FS-AC algorithm estimates the ‘Q-factors’ Q(i; a) of all feasible state-action

tuples (i; a) i.e., those with i 2 S and a 2 A(i) using the relative value iteration of Q-

factors and has been adapted from Abounadi et al. [2002]. Let sn+1(i; a) denote the state

of the system at instant (n + 1) when the state at instant n is i and action chosen is a.

Let Qn(i; a) denote the Q-value estimate at instant n associated with the tuple (i; a). The

relative Q-value iteration (RQVI) scheme is

Qn+1(i; a) =
X
j

p(i; a; j)(cn+1 + min
b2A(j)

Qn(j; b))� min
r2A(s)

Qn(s; r): (6.5)

The QTLC-FS-AC algorithm is a stochastic approximation analogue of the RQVI and

updates according to

Qn+1(i; a) = Qn(i; a) + �(n)(cn+1 + min
b2A(j)

Qn(j; b)� min
r2A(s)

Qn(s; r)); (6.6)

for all feasible (i; a) tuples. Here �(n); n � 0 are the step-sizes that satisfy
P

n �(n) =1
and

P
n �

2(n) <1. Upon convergence, one obtains the optimal Q-valuesQ�(i; a) that are



Chapter 6. RL algorithms for average cost traffic signal control 62

seen to satisfy the Bellman equation (6.4) and mina2A(i)Qn(i; a) gives the optimal differ-

ential cost h�(i). The optimal action in state i then corresponds to argminb2A(i)Q
�(i; b).

A convergence proof of this algorithm can be found in Abounadi et al. [2002].

6.1.2 Q-learning with function approximation (QTLC-FA-AC)

While the QTLC-FS-AC algorithm is useful in small state and action spaces, it becomes

computationally expensive for larger road networks involving multiple junctions. This is

because of the exponential increase in the sizes of the state and action spaces with the

number of junctions. To alleviate this problem of curse of dimensionality, we incorporate

feature based methods. These methods handle this problem by making computational com-

plexity manageable. While the QTLC-FS-AC algorithm as such requires complete state

information and so is less efficient, its function approximation based variant parameterizes

the value function.

We now present QTLC-FA-AC, a Q-Learning based TLC that uses function approxi-

mation. Here we associate with each state-action tuple (i; a), a state-action feature denoted

by �i;a. The Q-function is then approximated as

Q�(i; a) � �T�i;a: (6.7)

Let sn; sn+1 denote the state at instants n; n + 1, respectively, measured online. Let �n be

the estimate of the parameter � at instant n. Let s be any fixed state in S .

The algorithm QTLC-FA-AC uses the following update rule:

�n+1 = �n + �(n)�sn;an(cn+1 + min
v2A(sn+1)

�Tn�sn+1;v � min
r2A(s)

�Tn�s;r); (6.8)

where �0 is set arbitrarily. In (6.8), the action an is chosen in state sn according to an =

argminv2A(sn) �
T
n�sn;v. For our experiments, we chose the following features (as in Prashanth

and Bhatnagar [2011a]):

�sn;an = (�q1(n); : : : ; �qN (n); �t1(n); : : : ; �tN (n); �a1(n); : : : ; �am(n))
T ; (6.9)
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where for some given thresholds L1; L2 (on queue lengths) and T1 (on elapsed times),

�qi(n) =

8>><>>:
0 if qi(n) < L1

0:5 if L1 � qi(n) � L2

1 if qi(n) > L2

�ti(n) =

(
0 if ti(n) � T1

1 if ti(n) > T1

Note that the parameter �n has dimension the same as that of �sn;an . Again the advan-

tage here is that instead of updating the Q-values for each feasible (s; a)-tuple as before,

one estimates these according to the parameterization (6.7).

6.1.3 Policy Gradient Actor-Critic TLC (PG-AC-TLC)

Actor critic algorithms are reinforcement learning algorithms that are based on the policy

iteration (PI) method for MDP. The classical PI algorithm proceeds via two loops - the inner

loop performs policy evaluation for a given policy while the outer loop performs policy

improvement. Actor-critic algorithms use two-timescale stochastic approximation in order

to perform both updates (evaluation and improvement) simultaneously at each instant. The

difference in step-size schedules results in an appropriate algorithmic behaviour.

Our PG-AC-TLC algorithm incorporates policy gradients for the actor and temporal dif-

ference learning in the critic and has been adapted from Bhatnagar et al. [2009b]. The idea

here is that the policy is considered to be parametrized, in addition to the value function.

We consider a class of parametrized randomized policies and linear function approxima-

tion for the value function. Specifically, we assume that policies ��(i; a), parameterized by

� 2 <d have the form

��(i; a) =
e�

>�i;aP
a02A(i) e

�>�i;a0
; 8s 2 S ; 8a 2 A; (6.10)

where each �i;a is a d-dimensional feature vector as before.

Further, we let V �(i) � v>fi; i 2 S; to be the approximation to the differential cost

function, where fi; i 2 S are d̂-dimensional state features and v the corresponding param-

eter vector. Let  ia = r log ��(i; a) denote the compatible state-action features. When

��(i; a) are selected as in (6.10), it can be seen that  ia = �i;a �
P

a02A(i) ��(i; a
0)�i;a0 .

The PG-AC-TLC algorithm is as follows:
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Ĵn+1 =(1� �n)Ĵn + �ncn+1; (6.11)

�n =cn+1 � Ĵn+1 + v>n fsn+1 � v>n fsn (6.12)

vn+1 =vn + �n�nfsn ; (6.13)

�n+1 =�(�n + �n�n snan): (6.14)

Here, fsng is the sequence of states visited by the MDP, i.e., we consider a single

trajectory of states for the MDP. Further fang is the sequence of actions obtained upon

following the randomized policy �. Here �n and �n; n � 0 are two step-size sequences

that satisfy X
n

�n =
X
n

�n =1;
X
n

(�2
n + �2n) <1; lim

n!1

�n
�n

= 0:

It has been shown in Bhatnagar et al. [2009b] that if one replaces �n by

��n
4
= cn+1 � Ĵn+1 + v�

>

n fsn+1 � v�
>

n fsn ; where limn!1 vn = v� (assuming fixed �), then

E[��n snanj�] = rJ(�) + "(�);

where "(�) is an error term that arises from the use of linear function approximation. Fur-

ther, it has been shown in Bhatnagar et al. [2009b] that if jj"(�)jj is “small”, then �n; n � 0

given by the recursions (6.11) - (6.14) converge asymptotically to a “small” neighbourhood

of the local minima of J(:).

6.2 Simulation Experiments

6.2.1 Implementation

We use the Green Light District (GLD) simulator (Wiering et al. [2004]) for implemen-

tation and evaluation of our TLC algorithms - QTLC-FS-AC, QTLC-FA-AC and PG-AC-

TLC, respectively. Recall that whereas QTLC-FS-AC incorporates full state representa-

tions, the other two algorithms viz., QTLC-FA-AC and PG-AC-TLC incorporate function

approximation. For the sake of comparison, we also implement a range of fixed timing

TLC algorithms that periodically cycle through the list of feasible sign configurations ir-

respective of the traffic conditions. The cycling period here is a tunable parameter and we

show the results of the performance of these algorithms for various cycling periods.
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(a) Two-Junction Corridor

(b) Five-Junction Corridor

(c) 2x2-Grid Network

Figure 6.1: Road Networks used for our Experiments
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We consider three different network scenarios: a two-junction corridor, a five-junction

corridor and a 2x2-grid network. We show snapshots of these networks obtained from the

GLD software in Fig. 6.1. The simulations are conducted for 5000 cycles in all algorithms.

Each road user’s destination is fixed randomly, using a discrete uniform distribution, to

choose one of the edge nodes. The spawn frequency i.e., the rate at which traffic is gener-

ated randomly in GLD, was set in a way that ensures that the proportion of cars flowing on

the main road to those on the side roads is in the ratio 100:5.

The performance of QTLC-FS-AC is tested only on the two-junction corridor while that

of QTLC-FA-AC and PG-AC-TLC is tested on all the settings in Fig. 6.1. QTLC-FS-AC

could not be implemented on larger road networks because of the exponential blow up in

computational complexity (described previously) with the numbers of lanes and junctions

(when full state representations are used). On the other hand, QTLC-FA-AC and PG-

AC-TLC are easily implementable even on larger road networks, and require much less

computation.

For all the three TLC algorithms, we set the weights in the single stage cost function

c(s; a) in (4.1) as r1 = s1 = 0:5 and r2 = 0:6; s2 = 0:4. This assignment gives a higher

priority to the lanes on the main road than those on the side roads, while according equal

weightage to both queue length and elapsed time components of the cost function.

6.2.2 Results

Figs. 6.2, 6.3 and 6.4 show the plots of average junction waiting time and total arrived road

users using the various algorithms on the three road network settings. From the above plots,

we observe that the policy gradient actor critic based TLC algorithm (PG-AC-TLC) shows

the best overall performance as compared to the other TLC algorithms considered. In the

case of the two-junction corridor, QTLC-FS-AC shows the best results. This is however

expected because QTLC-FS-AC uses the knowledge of the full state whereas the PG-AC-

TLC and QTLC-FA-AC use only coarse information on whether the level of congestion is

in the low, medium or high range, and also whether the elapsed time is below or above a

threshold.

We also observe that the parameter � converges in the case of PG-AC-TLC algorithm,

while the same is not true of QTLC-FA-AC algorithm. This is evident in Fig. 6.5 where

the convergence of � for PG-AC-TLC and oscillation of � for QTLC-FA-AC are illus-

trated using one of the co-ordinates of � for the case of a 2x2-grid network. This is be-

cause QTLC-FA-AC suffers from the off-policy problem (Bertsekas and Tsitsiklis [1996b])
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Figure 6.2: Performance Comparison of TLC Algorithms - Two-Junction Corridor Case
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Figure 6.3: Performance Comparison of TLC Algorithms - 2x2-Grid Network Case
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unlike PG-AC-TLC that does not suffer from this problem because of the use of multi-

timescale stochastic approximation.

6.3 Summary

Our goal in this chapter was to design an algorithm for average cost traffic signal control

in order to optimize steady state system performance. We developed two reinforcement

learning algorithms with average cost - one an analogue of Q-learning in a function approx-

imation setting and another a policy gradient actor critic algorithm. From the performance

comparisons, we observe that the policy gradient actor critic algorithm showed the best

overall performance. On a two-junction corridor, the full state representation algorithm

was better, however, it suffers from the limitation of not being implementable on larger

road networks unlike algorithms that use function approximation.

In conclusion, we mention two important future research directions below:

� Apart from the policy gradient based actor-critic algorithms, there are other algo-

rithms based on natural gradients proposed in Bhatnagar et al. [2009b]. It would be

interesting to develop TLC algorithms that combine natural gradients and function

approximation for the problem of average cost traffic control, as algorithms based on

natural gradients have been found to yield better performance.

� We used arbitrarily set, fixed values for the thresholds L1; L2; T1 in our TLC al-

gorithms. An interesting problem is to develop a threshold tuning algorithm that

combines with policy optimization in order to find an optimal policy via an optimal

choice of thresholds. This is precisely the contribution of the next chapter, where an

SPSA based threshold tuning algorithm that works in conjunction with any graded

threshold-based TLC to find the optimal threshold values, is presented.



Chapter 7

Threshold tuning using stochastic
optimization for graded signal control

Adaptive control of traffic lights forms an integral part of the design of any intelligent

transportation system. Information about the queue lengths on the lanes of the road network

is a necessary input for many adaptive traffic light control (TLC) algorithms. However, in

practice, this information is hard to obtain with precision, but instead certain thresholds

on the queue lengths can be used to classify the traffic condition. Thresholds may also

be used on the elapsed time, i.e., the amount of time since the signal turned red on any

lane. In essence, the TLC algorithm could consider switching a lane to green if either the

queue length or the elapsed time exceed certain prescribed thresholds. Designing a TLC

algorithm that maximizes the traffic flow in the long term across various junctions in a road

network, is a challenging problem. This is because of the variability in traffic patterns and

the lack of precise state information. Many times, one only has a coarse knowledge of the

level of congestion on a lane, such as low, medium or high. Such information can be better

obtained using graded feedback policies. For instance, for some suitably chosen threshold

levels L1 and L2 for each lane with L1 < L2, one could mark congestion as being in the low

range if the queue length on that lane is below L1. On the other hand, if the queue length is

between L1 and L2, congestion could be said to be in the medium range, while if it is above

L2, it could be inferred to be high. In such (graded threshold based) policies, however, the

choice of the thresholds (such as L1 and L2) plays a critical role and a problem is to select

such thresholds optimally. Graded threshold policies have been considered for instance in

Prashanth and Bhatnagar [2011a]. These policies however consider fixed values for the

thresholds. A problem of interest is to find optimal thresholds for such classes of feedback

72
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policies.

We consider the problem of designing new TLC algorithms with graded thresholds

that are however set optimally. For obtaining optimal thresholds, we develop an algorithm

that works in conjunction with the given TLC algorithm and tunes the thresholds in order

to optimize a given cost objective. The problem can be seen to be equivalent to one of

finding an optimal feedback policy within a given class of parameterized feedback policies

with the underlying parameter in general being a vector of the various thresholds on which

the policies depend. In a stochastic dynamic setting as we consider, it is necessary to

design an online algorithm to tune the thresholds on queue lengths and/or elapsed times

and thereby tune the parameter of the associated feedback policy. The threshold tuning

algorithm should be easily implementable, have the necessary convergence properties and

most importantly, work for any graded threshold based TLC algorithm and in general for

any parameterized class of policies.

In this chapter, (a) we design an efficient Simultaneous Perturbation Stochastic Ap-

proximation (SPSA) based online threshold tuning algorithm that works with any graded

threshold based TLC algorithm, and (b) we propose three new TLC algorithms - a variant of

Q-learning with full state representation that incorporates a novel state aggregation scheme,

a function approximation based Q-learning TLC algorithm that enhances the scheme pro-

posed in Prashanth and Bhatnagar [2011a] by incorporating a new feature selection pro-

cedure, and a novel priority based algorithm. We study our threshold tuning algorithm in

conjunction with these TLC algorithms.

The SPSA based online threshold tuning algorithm that we design here falls in the gen-

eral category of simulation-based optimization - a collection of methods that do not require

a priori knowledge or assumption on the traffic system dynamics. Further, our algorithm

has the added advantage that it is easily implementable, possesses the necessary conver-

gence properties and works with any graded threshold based TLC algorithm regardless of

the network and traffic conditions. Specifically, we incorporate the one-simulation variant

of the SPSA algorithm that uses Hadamard matrix based deterministic perturbations from

Bhatnagar et al. [2003] to tune the graded thresholds used in the sign configuration pol-

icy. To the best of our knowledge, we are the first to explore threshold tuning for different

classes of graded TLC algorithms. We study the empirical performance of our threshold

tuning algorithm when combined with the three new threshold-based TLC algorithms men-

tioned above. From the simulation experiments, we observe that our tuning algorithm is

easily implementable over all road network settings and converges rapidly to the optimal
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thresholds in any graded threshold based TLC algorithm. Further, the additional computa-

tional effort required in finding the optimal thresholds over algorithms with fixed thresholds

is observed to be small.

Amongst the three TLC algorithms that we propose, the Q-learning based TLC algo-

rithm (in the full state case) incorporates a novel state aggregation technique to handle large

state spaces than regular Q-learning (with full state representations). The combination of

Q-learning based TLC with state aggregation is seen to result in a significant reduction in

the cardinality of the state space, which results in a computational advantage over regular

Q-learning (i.e., without state aggregation). Further, we also develop a Q-learning based

TLC algorithm with function approximation along the lines of Prashanth and Bhatnagar

[2011a], however, with an important difference in the feature selection procedure. The

feature selection procedure that we propose intelligently combines the queue lengths and

elapsed times with the feasible sign configurations to arrive at the state-action features. This

is unlike the features used in Prashanth and Bhatnagar [2011a] in which the state and the

action components of the features are almost independent. By obtaining features in a novel

manner whereby the state and action components cannot be separated, we observed that the

resulting Q-learning algorithm with function approximation significantly outperforms the

algorithm proposed in Prashanth and Bhatnagar [2011a]. The priority based TLC that we

propose assigns priorities to the various sign configurations based on graded thresholds.

The combination of our threshold tuning algorithm with the other TLC algorithms men-

tioned above results in several interesting consequences. For instance, in the case of the

Q-learning with full state representation, our threshold tuning algorithm results in finding

an optimal way of clustering states so as to reduce the cardinality of the state space and

in the case of the Q-learning algorithm with function approximation, our threshold tuning

algorithm results in tuning online the associated state representation features, and thereby

obtains the optimal features within a parameterized class of features (that are parameterized

by the threshold parameters). In the context of reinforcement learning (RL), developing al-

gorithms for feature adaptation is currently a hot area of research in itself.

The rest of the chapter is organized as follows: In Section 7.1, we describe in detail

the problem framework. In Section 7.2, we present our threshold tuning algorithm. In

Section 7.3, we present our algorithms for traffic signal control and combine them with the

threshold tuning algorithm. In Section 7.5, we discuss the implementation of the various

TLC schemes where our algorithm was used, in order to find the optimal thresholds in each

scheme and present the performance simulation results. Finally, in Section 7.6, we provide
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the concluding remarks.

7.1 Problem Formulation

We study in this chapter the problem of maximizing traffic flow through the adaptive con-

trol of traffic lights at intersections. Our solution methodology consists of two important

components - a threshold-based sign configuration policy obtained from a TLC algorithm

for a fixed set of thresholds and another algorithm that operates on top of the TLC algorithm

itself for tuning the thresholds. A sign configuration here refers to all the signals associated

with a phase, i.e., those that can be switched to green simultaneously. The TLC algorithms,

that we consider, indicate when to switch a sign configuration and are all based on graded

thresholds. The threshold tuning algorithm, that is common to all the schemes, tunes the

graded feedback policy to find the optimal parameters (thresholds) and does not indicate

how to switch the sign configurations - a task that is performed by the particular TLC algo-

rithm used. Apart from designing efficient TLC algorithms, an important problem that we

address is one of finding the “optimal” set of parameters to use for a given TLC algorithm

and which give the optimal feedback policies within the given parameterized class of poli-

cies. To the best of our knowledge, this problem has not been addressed in the literature

previously.

Each TLC algorithm that we consider uses as input - the queue lengths along the in-

dividual lanes leading to the intersection and the time elapsed since the last signal light

switch over on each lane. The queue length input is used to minimize (depending on the

objective) the average junction waiting times of the road users, while the elapsed time input

is used to ensure fairness, i.e., no lane is allowed to stay green for a long time at the cost of

other lanes.

We consider a centralized control setting, where control decisions are made by a cen-

tralized controller that receives the state information from the various lanes and makes

decision on which traffic lights to switch green during a cycle. This decision is then re-

layed back to the individual junctions. We assume no propagation and feedback delays for

simplicity. The elapsed time counter for a lane with green signal stays at zero until the time

the signal turns red. For a road network with m junctions and a total of K signalled lanes

across junctions, the state at time n is the vector

sn = (q1(n); : : : ; qK(n); t1(n); : : : ; tK(n)); (7.1)
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where qi(n) and ti(n) are respectively the queue length and elapsed time on lane i at time

n. The above state formulation is valid for all the TLC algorithms except the Q-learning

based TLC that incorporates state aggregation. The details of the state aggregation and the

formulation of the state parameterized by thresholds for this algorithm is given in Section

7.3.1.

The action an chosen by the central controller at time n is the sign configuration at each

of the m junctions of the road network and has the form: an = (a1(n); : : : ; am(n)), where

ai(n) is the sign configuration at junction i in time slot n. We assume here that there are a

total of m junctions in the road network.

The cost function is designed to maximize traffic flow and at the same time, ensure

fairness so that no lane suffers from being red for a long duration. This is achieved by

letting the cost function be the weighted sum of queue lengths and elapsed times on the

lanes of the road network with the weights chosen suitably to incorporate prioritization of

traffic. As before, let Ip denote the set of indices of prioritized lanes, i.e., whose traffic is

given a higher priority. We let the cost k(sn; an) have the form

k(sn; an) = �1 � (
P

i2Ip
�2 � qi(n) +

P
i=2Ip

�2 � qi(n))
+ �1 � (

P
i2Ip

�2 � ti(n) +
P

i=2Ip
�2 � ti(n));

(7.2)

where �i; �i � 0 and �i+�i = 1; i = 1; 2. Further, �2 > �2. Thus, lanes in Ip are assigned

a higher cost and hence a cost optimizing strategy must assign a higher priority to these

lanes in order to minimize the overall cost. Note from the way it is defined (cf. (7.2)),

k(sn; an) depends explicitly on sn and not an. However, it depends on an indirectly as a

change in the sign configuration has an impact on the queue lengths and elapsed times on

the various lanes.

The sign configuration policy governing the state evolution is based on given queue-

length thresholds L1 and L2 and elapsed time threshold T1. We want to find an optimal

value for the parameter vector � that minimizes the long-run average cost (cf. (7.3)), where

� corresponds to the vector (L1; L2; T1)
T for all the TLC algorithms that we propose in

Section 7.3.

We let the parameter vector � take values in a compact set

C
4
= [Lmin; Lmax]� [Lmin; Lmax]� [Tmin; Tmax] � R3

by making use of the projection operator � defined later, where Lmin; Lmax; Tmin; Tmax are

certain prescribed thresholds. The objective is to find a � that minimizes
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J(�) = lim
l!1

1

l

l�1X
j=0

k(sj; aj): (7.3)

The actions aj are assumed to be governed by one of the policies that we present below,

that in turn will be parameterized by the threshold parameter �. While it is desirable to

find a �� 2 C that minimizes J(�), it is in general difficult to achieve a global minimum.

We use therefore a local optimization method for which one needs to evaluate rJ(�) �
(r1J(�);r2J(�);r3J(�))

T , for all the algorithms.

We make the following assumption on the function J(�):
Assumption (A1)

The long run average cost J(�) is continuously differentiable with bounded second

derivative.

Note that (A1) is a technical requirement used to push through a Taylor’s argument

in the convergence analysis (see Section 7.4). In the case of finite state parameterized

Markov chains (as here), one can show using a similar argument as Schweitzer [1968] that

the parameterized stationary distribution is continuously differentiable if the parameterized

transition probabilities are.

The threshold tuning algorithm that we present in the next section finds the optimum

parameter � using only one simulation trajectory, while the TLC schemes that we present

estimate the optimal policy for a given set of thresholds. Hence, in combination with

the threshold tuning algorithm, the TLC algorithms that we propose are seen to exhibit

significant performance improvements.

7.2 The threshold tuning algorithm

A stochastic iterative algorithm to find the optimal thresholds in the case of a long-run

average cost objective would require two nested loops as follows:

1. The inner loop estimates the long-run average cost and also picks actions from the

underlying TLC algorithm.

2. The outer loop updates � along a negative descent direction using an estimate ob-

tained using the outcome of the inner loop procedure.



Chapter 7. Threshold tuning using stochastic optimization for graded signal control78

Propose �

Perturbation

Simulate

Update �

Figure 7.1: Illustration of the operation of the threshold tuning algorithm

The above procedure involving two loops has to be performed iteratively until the parameter

� converges to a local minimum. However, such a procedure would typically be compu-

tationally expensive considering the fact that one step of the outer loop, i.e., updating �

in the direction of �r�J(�), happens only after the convergence of the corresponding in-

ner loop procedure. Using a multi-timescale stochastic approximation procedure [Borkar,

2008, Chapter 6], we circumvent this problem as both the inner and outer loops can run in

tandem. The resulting scheme is shown to converge to the optimal solution for the long-run

average cost objective (7.3).

The threshold tuning algorithm estimates the gradient of the objective functionr�J(�)

using a one-sided SPSA based estimate, i.e.,

r�J(�) �
�
J(� + �4)

�

�
4�1; (7.4)

that incorporates a Hadamard matrix based deterministic construction for the perturbations

4 (see Section 7.2.1). While one-simulation SPSA gradient estimates based on randomized

perturbations were proposed in Spall [1997], these are seen to suffer from a large bias and

hence do not give good performance. In Bhatnagar et al. [2003], a one-simulation SPSA

algorithm that incorporates certain Hadamard matrix based deterministic perturbations was

proposed. This algorithm from Bhatnagar et al. [2003] was seen to yield good performance

and has a significantly lower bias in comparison to the algorithm in Spall [1997].

Fig 7.1 illustrates the operation of the threshold tuning algorithm. In essence, it is

a closed-loop procedure where the system is simulated for a perturbed parameter value

(�+ �4) and the average cost estimates obtained via simulation are used to update � in the

negative gradient descent direction using the estimate (7.4).
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In what follows, we use ŝl; l � 0 to denote the state-valued process governed by the

perturbed parameter sequence �̂l; l � 0. This process and the corresponding sequence of

actions âl; l � 0 help in performing the parameter updates (7.5). The threshold tuning

algorithm is as follows:

L1(n+ 1) =�1

 
L1(n)� a(n)

 
~Z(nL)

�41(n)

!!
;

L2(n+ 1) =�1

 
L2(n)� a(n)

 
~Z(nL)

�42(n)

!!
; (7.5)

T1(n+ 1) =�2

 
T1(n)� a(n)

 
~Z(nL)

�43(n)

!!
:

In the above,

� L1(n); L2(n); T1(n) denote the n-th updates of the thresholds L1; L2 and T1, respec-

tively.

� ~Z(nL) represents the cost function averaging term obtained by accumulating the

single stage cost over L cycles and is specific to the TLC algorithm being used to

obtain the sign configuration policy on the faster timescale. These updates will be

explained in the TLC algorithms in the next section.

� L � 1 is a fixed parameter which controls the rate of update of � in relation to

that of ~Z. This parameter allows for accumulation of updates to ~Z for L iterations

in between two successive � updates. It is usually observed that allowing L to be

greater than 1 improves the algorithm’s performance, even though convergence can

be proven for any value of L including 1.

� � > 0 is a given small constant and 4(n) = (41(n);42(n);43(n))
T is a vector of

�1-valued random variables 4i(n); i = 1; 2; 3. The 4i(n) themselves correspond

to perturbation directions for the three parameter components. For any n, 4(n) is

obtained from a Hadamard matrix construction described in Section 7.2.1.

� � : R3 ! C is the projection operator defined by

�(�)
4
= (�1(�1); �1(�2); �2(�3))

T ; � 2 R3. Here for any x 2 R,

�1(x)
4
= min(max(Lmin; x); Lmax) and �2(x)

4
= min(max(Tmin; x); Tmax), respec-

tively.
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Remark 3 Our threshold tuning algorithm is different from the algorithms of Kosmatopou-

los et al. [2007] and Kosmatopoulos and Kouvelas [2009] in many ways. An expected cost

objective is considered in the latter and the objective function is parameterized, in the

spirit of reinforcement learning (RL), using a linear function approximation architecture,

with the parameter being tuned in SPSA-like fashion. Whereas in our case, we consider

the long-run average cost objective (7.3). Further, we are able to directly consider the

objective function without resorting to parameterized approximations of the cost and using

SPSA with deterministic perturbations, we are able to ensure convergence to a locally op-

timal point of the objective. Note that our tuning algorithm requires only one simulation

for estimating the objective function, unlike the algorithms proposed in Kosmatopoulos

et al. [2007] as well as Kosmatopoulos and Kouvelas [2009]. In addition, we provide three

new TLC algorithms, all based on graded thresholds and combine our threshold tuning

algorithm with these.

The complete algorithm is described as under.

Algorithm 1 The threshold tuning algorithm
Input:

� R, a large positive integer; �0, initial parameter vector; � > 0;4;

� UpdateTheta(), the stochastic update rule discussed in (7.5)

� Simulate(�) ! X: the function that performs one time-step of the road traffic

simulation and output the single-stage cost value k(ŝn; �) (cf. (7.2))

� UpdateAverageCost(): the function that updates the average cost estimate ~Z(�)
used in (7.5) and is specific to the TLC-algorithm.

� UpdateTheta(): the function that updates the threshold parameter � according to

(7.5).

Output: ��
4
= �R.

�  �0, n 1

begin loop
X̂  Simulate(� + ��)

UpdateAverageCost()

if n % L = 0 then
UpdateTheta()
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end if
n n+ 1

if n = R then
Terminate with �.

end if
end loop

We make the following assumption on the step-sizes a(n) and b(n):

Assumption (A2)

P
n a(n) =

P
n b(n) =1;

P
n(a

2(n) + b2(n)) <1; and lim
n!1

a(n)
b(n)

= 0:

The first two requirements in (A2) are standard in stochastic approximation algorithms.

In particular, the first requirement ensures that the recursions do not converge prematurely

while the second requirement aids in canceling the effect of stochastic noise. As described

previously, the third requirement in (A2) essentially gives rise to the desired separation of

timescales between the recursion (7.5) that is common to all algorithms and the recursions

(7.8), (7.11) and (7.12) of the various TLC algorithms that we describe below. As we

do in our experiments for all algorithms, one can select the following step-sizes a(n) and

b(n); n � 0 that satisfy the requirements in (A2):

a(0) = â; b(0) = b̂; a(n) = â=n; b(n) = b̂=n�; n � 1; with 1=2 < � < 1; 0 < â; b̂ <1:

7.2.1 The Hadamard matrix based construction for f4(n)g

Anm�m (m � 2) matrixH is called a Hadamard matrix of orderm if its entries belong

to f1;�1g and HTH = mIm, where Im denotes the m � m identity matrix. Further, a

Hadamard matrix is said to be normalized if all the elements of its first row and column are

1. A simple and systematic way of constructing normalized Hadamard matrices of order

m = 2k is as follows:

For k = 1,

H2 =

"
1 1

1 �1

#
;
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and for general k > 1,

H2k =

"
H2k�1 H2k�1

H2k�1 �H2k�1

#
:

Let P = 2dlog2(N+1)e, where, as mentioned before, N is the parameter dimension. This

implies P � N+1. Now construct a normalized Hadamard matrixHP of order P using the

above procedure. Let h(1); : : : ; h(N) be any N columns other than the first column of HP .

The first column is not considered because all elements in the first column are 1, while all

the other columns have an equal number of +1 and �1 elements. The latter property aids

in canceling the bias terms. Form a new matrix eHP of order P � N with h(1); : : : ; h(N)

as its columns. Let e4(k); k = 1; : : : ; P denote the rows of eHP . The perturbation sequence

f4(m)g is now generated by cycling through the rows of eHP , i.e.,

4(n) = e4(n mod P + 1);8n � 0:

Having described the problem framework and the threshold tuning algorithm, we now

present three TLC algorithms - each corresponding to a given class of graded threshold

based sign configuration policies with given thresholds. The thresholds L1; L2 and T1 are

held fixed and used in various ways (as we explain below) in the three algorithms. When

combined with the threshold tuning algorithm (7.5), these algorithms represent the most

effective traffic light control strategies in their respective classes. The first two algorithms

that we present below are based on Q-learning and incorporate state aggregation and func-

tion approximation, respectively, while the last algorithm is a priority based scheme.

7.3 Traffic Light Control algorithms

7.3.1 Q-learning TLC with State Aggregation (QTLC-SA)

Q-learning is an important RL algorithm that has the following incremental update rule, as

discussed earlier:

Qn+1(i; a) = Qn(i; a) + a(n)
�
k(i; a) + 
minb2A(j)Qn(j; b)�Qn(i; a)

�
; (7.6)

for all feasible tuples (i; a) of states and actions. Here j is the next state after state i that is

observed via simulation and follows the distribution p(i; :; a). Also, a (resp. b) is a feasible
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action in state i (resp. j) and 0 < 
 < 1 is a given discount factor. While traditional

methods to solve the MDP (see Bertsekas and Tsitsiklis [1996b]) formulated in the previous

section would require the specification of p(i; :; a), the Q-learning solution (7.6) works with

only simulation based sample estimates of the single stage cost function (7.2) to obtain the

optimal sign configuration policy, and explicit knowledge of the transition probabilities

p(i; �; a) is not required. Quantities Qn(i; a) are estimates of the Q-value when the feasible

state-action tuple is (i; a), i.e., a 2 A(i); i 2 S. Q0(i; a) can be initialized arbitrarily, a

simple choice is to set them all to zero. Note that recursion (7.6) is run for all feasible

state-action tuples (i; a).

An MDP framework (Bertsekas and Tsitsiklis [1996b]) requires the identification of

states, actions and costs. While the actions and single-stage cost function were identified

in Section 7.1, the state formulation in our algorithm below is different and uses state

aggregation to tackle the curse of dimensionality. Consider the process fs0n(�); n � 0g,
parameterized by � = (L1; L2; T1)

T , defined as follows:
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s0n(�) = (q01(n); : : : ; q
0
K(n); t

0
1(n); : : : ; t

0
K(n)); where (7.7)

q0i(n) =

8>>><>>>:
0 if qi(n) < L1

0:5 if L1 � qi(n) � L2

1 if qi(n) > L2

and t0i(n) =

8<:0 if ti(n) � T1

1 if ti(n) > T1:

Note that, as before, qi(n) and ti(n) denote the waiting queue lengths and elapsed times

corresponding to the lane i at time n. Thus, q0i(n) and t0i(n) serve as proxies for qi(n) and

ti(n); i = 1; : : : ; K respectively. By only allowing q0i(n) to take three possible values and

t0i(n) to take two values depending on qi(n); ti(n) and �, we cluster together states sn into

s0n(�); n � 0 in order to make computation more manageable. The problem of the curse

of dimensionality associated with large state spaces is the primary reason why regular Q-

learning with full state representations (cf. recursion (7.6)) is not implementable in the

case of large networks, see Prashanth and Bhatnagar [2011a]. The Q-learning algorithm

(7.6) when applied to our setting with state aggregation will be referred to as the QTLC-SA

algorithm.

QTLC-SA with threshold tuning (QTLC-SA-TT)

The QTLC-SA-TT algorithm is a two timescale stochastic approximation algorithm that

updates � on the slower timescale and learns the optimal sign configuration policy (pa-

rameterized by �) on the faster timescale. The update of the threshold parameters is done

using the threshold tuning algorithm (7.5), whereas the cost function averaging (required

for the threshold tuning algorithm) and update of the Q-learning algorithm are performed

as follows: For m = nL; : : : ; (n+ 1)L� 1,

~Z(m+ 1) = ~Z(m) + b(n)(k(ŝm(�); ~am)� ~Z(m)); (7.8a)

Qm+1(ŝ(�); â) = Qm(ŝ(�); â) + b(n)(k(ŝ; â) + 
 min
b2A(j(�))

Qm(j(�); b)�Qm(ŝ(�); â))

(7.8b)
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� Here, fŝl(�)g denotes the aggregated state-valued process that is governed by f�̂lg,
where �̂l = �n + �4(n) for n =

�
l

L

�
, with a given L � 1.

� Whereas the Q-function update (cf. (7.8b)) is performed for all feasible state action

tuples (where states are now aggregated states), the action ~am in the argument of the

single-stage cost k(ŝm(�); �) in (7.8a) is chosen as per the policy suggested by the

Q-value update.

� The perturbations 4(n) are generated using Hadamard matrices as outlined in Sec-

tion 7.2.1.

We make the following assumption on the underlying process, when the actions are

obtained from the QTLC-SA algorithm:

Assumption (A3)

(A3a) The basic underlying process fŝn(�); n � 1g is an MDP that is parameterized by �

(A3b) The Markov chain fŝn(�); n � 1g under a given parameter � 2 C and any fixed

stationary sign configuration policy is ergodic.

Assumption (A3) ensures in particular that the long-run average cost in (7.3) is well-

defined for any given � 2 C under any stationary sign configuration policy.

7.3.2 Q-learning with Function Approximation with a Novel Feature
Selection scheme (QTLC-FA-NFS)

It turns out that with QTLC-SA, the curse of dimensionality using state aggregation can-

not be fully controlled for large networks with high-dimensional states, as the cardinality

of the aggregated state space increases significantly with the dimension of the states. To

alleviate the curse of dimensionality problem, the use of function approximation has been

advocated in Prashanth and Bhatnagar [2011a] and the QTLC-FA algorithm developed

therein is a computationally efficient TLC algorithm that is based on Q-learning. How-

ever, the state-action features used in Prashanth and Bhatnagar [2011a] do not incorporate

a clear dependence between states and actions. We further improve the performance of

the QTLC-FA algorithm proposed in Prashanth and Bhatnagar [2011a] by incorporating

a novel feature selection scheme that incorporates dependence between states and actions

and assigns priorities to various state-action combinations in the features.
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In a function approximation setting, corresponding to every feasible state-action tuple,

a feature vector has to be specified. The inputs for the feature selection scheme would be

the broad estimates of congestion levels and elapsed times on the lanes of the road net-

work. In Prashanth and Bhatnagar [2011a], the feature vector contained a bit each for the

congestion estimate, elapsed time estimate and the sign configuration portion, respectively,

for each lane of the road network. While each of these attributes are important, the approx-

imation architecture used in Prashanth and Bhatnagar [2011a] did not take into account

the dependence between features. In our novel feature selection scheme that we propose

below, we incorporate dependence between the state and the action features while using

graded thresholds. Another advantage of our methodology is that the dimension of the fea-

ture vector is now reduced by more than half as compared to the scheme in Prashanth and

Bhatnagar [2011a]. Numerical experiments show that this new choice of features signifi-

cantly outperforms the one used in Prashanth and Bhatnagar [2011a]. The various aspects

of the Q-learning TLC algorithm that incorporates function approximation with the new

feature selection scheme, are now described.

In the algorithm below, a state-action feature denoted by �i;a is associated with each

feasible state-action tuple (i; a). The Q-function is then approximated as

Q(i; a) � !T�i;a: (7.9)

Let sn and sn+1 denote the states at instants n and n+1, respectively, and !n be the estimate

of the parameter ! at instant n. The Q-learning algorithm with function approximation has

the following update rule:

!n+1 = !n + b(n)�sn;an
�
k(sn; an) + 
minv2A(sn+1) !

T
n�sn+1;v � !Tn�sn;an

�
;

(7.10)

where !0 is set arbitrarily. In (7.10), the action an is chosen in state sn according to

an = argminv2A(sn) !
T
n�sn;v.

The features are chosen as follows: �sn;an = (�1(n); : : : ; �K(n))
T ;

where the scheme for selection of the feature value �i(n) corresponding to lane i when

action a is chosen, is explained in Table. 7.1.

The feature selection scheme is graded and assigns a value for each lane based on

whether the queue length on the lane is below L1, is between L1 and L2, or is above L2, on

whether the elapsed time is below T1 or above it and also on whether the sign configuration

indicates a RED or a GREEN light for the lane. For instance, if both queue length and
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Table 7.1: Feature selection (�i(n)) scheme for lane i
State Action Feature

qi(n) < L1 and ti(n) < T1
RED 0

GREEN 1

qi(n) < L1 and ti(n) � T1
RED 0.2

GREEN 0.8

L1 � qi(n) < L2 and ti(n) < T1
RED 0.4

GREEN 0.6

L1 � qi(n) < L2 and ti(n) � T1
RED 0.6

GREEN 0.4

qi(n) � L2 and ti(n) < T1
RED 0.8

GREEN 0.2

qi(n) � L2 and ti(n) � T1
RED 1

GREEN 0

elapsed time are above the “highest” threshold level for the lane, then an action of GREEN

would result in a feature value of 0 and an action of RED would result in the value 1. In

essence, this choice indicates that the TLC algorithm should attempt to switch this lane to

green because regardless of the value of the weight vector, the Q-value in such a case would

be 0. By a similar argument, if both the queue length and the elapsed time are below the

“lowest” threshold level for the lane, then the feature value chosen is just the opposite, i.e.,

0 for RED and 1 for GREEN, implying that it is better to keep this lane red. The feature

values corresponding to other decision choices are again suitably graded. It is clear that

the assignment of feature values here takes into account the dependence between states and

actions, which is unlike Prashanth and Bhatnagar [2011a] where such dependence was not

incorporated.

While the cardinality of the state-action space may be high so that storing/updating Q-

values for each (s; a)-tuple may be impossible, the above feature-based algorithm estimates

Q-values using the parameterization (7.9), making its implementation feasible even on large

road networks as the parameter !n has the same dimension as that of �sn;an . The Q-learning

with function approximation algorithm with the update rule (7.9) and our novel feature

selection scheme described above, will be referred to as the QTLC-FA-NFS algorithm.

QTLC-FA-NFS with threshold tuning (QTLC-FA-NFS-TT)

As with QTLC-SA-TT, the combination of QTLC-FA-NFS with the threshold tuning algo-

rithm (7.5) gives the QTLC-FA-NFS-TT algorithm. The recursions on the faster timescale
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in the case of QTLC-FA-NFS-TT algorithm are as follows: Let f~sn; n � 0g denote a state-

valued process that depends on both the tunable policy as well as the tunable parameter
~�l; l � 0, where ~�l = �n+�4(n) for n =

�
l
L

�
, and updates of �n � (L1(n); L2(n); T1(n))

T

are governed according to (7.5). For m = nL; : : : ; (n+ 1)L� 1,

~Z(m+ 1) = ~Z(m) + b(n)
�
k(~sm; âm)� ~Z(m)

�
; (7.11a)

!m+1 = !m + b(n)�~sm;âm

�
k(~sm; âm) + 
 min

v2A(~sm+1)
!Tm�~sm+1;v � !Tm�~sm;âm

�
:

(7.11b)

The action âm in (7.11a)-(7.11b) is chosen to be the one that minimizes !Tm�~sm;v over

all v 2 A(~sm).
We make the following assumption here:

Assumption (A4)

(A4a) For any given � 2 C, the basic underlying process fsn; n � 1g is an MDP.

(A4b) For any given policy and parameter � 2 C, the process fsn; n � 1g is ergodic

Markov.

7.3.3 Priority based TLC (PTLC)

The sign configuration policy here is a graded threshold-based policy that assigns different

priorities to different policy levels. The thresholds here are on the queue lengths (L1 and

L2) and elapsed times since the last switch over of lights to red (T1) on individual lanes.

The cost assigned to each lane is decided based on whether the queue length on that lane

is below L1, is between L1 and L2, or is above L2 at any instant and also on whether the

elapsed time is below T1 or above it. For instance, if both queue length and elapsed time

are above the “highest” threshold levels (L2 and T1 respectively) on a given lane, then the

policy assigns the highest priority value (of 6) to that lane. The priority assignment for

any lane i of the road network based on the queue length qi and elapsed time ti is shown

in Table. 7.2. The policy then selects the sign configuration with the maximum (over all

feasible sign configurations) sum of lane priority values. In essence, the TLC algorithm

flushes the traffic on lanes with long waiting queues, while also giving higher priority
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Table 7.2: Priority assignment for each lane in the TLC policy
Condition Priority value
qi < L1 and ti < T1 1
qi < L1 and ti � T1 2
L1 � qi(n) < L2 and ti(n) < T1 3
L1 � qi(n) < L2 and ti � T1 4
qi � L2 and ti < T1 5
qi � L2 and ti � T1 6

to lanes that have been waiting on a red signal for a long time. This helps to combine

efficiency with fairness.

PTLC with threshold tuning (PTLC-TT)

As with the previous TLC algorithms, we combine the threshold tuning algorithm (7.5)

with PTLC to obtain the PTLC-TT algorithm. The state-valued process fŝn; n � 0g in

this case under the priority based policy described above depends on the tunable parameter

sequence �̂l = �n + �4(n); n � 0, where �n � (L1(n); L2(n); T1(n))
T ; n � 0 are updated

according to (7.5). The faster timescale recursions here are given as follows: For m =

nL; : : : ; (n+ 1)L� 1,

~Z(m+ 1) = ~Z(m) + b(n)(k(ŝm; âm)� ~Z(m)): (7.12)

The action âm above is selected in state ŝm based on the priority assignment policy

(described above), i.e., select the sign configuration that has the maximum sum of priority

values (where the maximum is over all feasible sign configurations) and switch the lanes in

the chosen sign configuration to green. We now make the following assumption:

Assumption (A5)

(A5a) The basic underlying process fŝn; n � 0g is a parameterized MDP.

(A5b) For any given � 2 C and the specified priority-based policy, fŝn; n � 0g is ergodic

Markov.

7.4 Convergence Analysis

We show here the convergence of the threshold tuning algorithm, viz., recursions (7.5),

when the updates of ~Z are governed according to (7.12) in the PTLC-TT scheme. A similar
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analysis works in the case when these are governed as per the other schemes – (7.8) and

(7.11), respectively. In particular, the actions in the single-stage cost expressions (7.8a) and

(7.11a) are obtained using the policies suggested by the corresponding schemes in (7.8b)

and (7.11b), respectively. The analysis that follows can be used in the same way to give

optimal L1 and L2 values for the corresponding class of policies for each algorithm. The

analysis of the Q-learning algorithm with state aggregation as per (7.7) can be conducted in

the same manner as regular Q-learning with full state representations (Watkins and Dayan

[1992a], Tsitsiklis [1994a], Borkar and Meyn [2000]). On the other hand, the analysis of

the Q-learning update with function approximation (7.11b) cannot be shown because of the

off-policy problem associated with Q-learning with function approximation. Nevertheless,

QTLC-FA-NFS-TT is seen to empirically show the best results and suggests that the tuning

update algorithm that is used to have the L1 and L2 thresholds improves the performance

of Q-learning with function approximation as well. Note that because the action selection

in the case of the PTLC algorithm is via the policy as prescribed in Table 7.2, one can

write ân = f(ŝn), n � 0, where the function f is a deterministic function that specifies the

aforementioned policy. For simplicity, we shall consider here the case of L = 1, i.e., of no

additional averaging on top of the two-timescale averaging. The case of general (finite) L

can also be handled, see for instance, Bhatnagar et al. [2003].

Let ��(x) = (��1(x1); ��1(x2); ��2(x3))
T for any x = (x1; x2; x3)

T 2 R3. Define now the

operators ��1 and ��2 as follows:

��1(v(x)) = lim
�!0

�
�1(x+ �v(x))� x

�

�
; ��2(w(x)) = lim

�!0

�
�2(x+ �w(x))� x

�

�
;

(7.13)

for any continuous functions v : [Lmin; Lmax]! R andw : [Tmin; Tmax]! R, respectively.

The limits in (7.13) exist and are unique since [Lmin; Lmax] and [Tmin; Tmax] are convex

sets. From definition, ��1(v(x)) = v(x) (resp. ��2(w(y)) = w(y)) if x 2 (Lmin; Lmax)

(resp. y 2 (Tmin; Tmax).

Consider the following ODE:

_�(t) = ��(�rJ(�(t))): (7.14)

LetR � I = f� 2 C j rJ(�) = 0g denote the set of stable fixed points of (7.14). Note that

I denotes the set of all fixed points of (7.14) that would include not just stable equilibria

but also unstable ones such as local maxima, saddle points etc. The set of stable equilibria

(i.e., the local minima) is in general a subset of I . For � > 0, let R� 4
= f� 2 Cj k ���0 k<
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� for some �0 2 Rg; denote the set of points that are within an �-neighborhood of R. Our

main results if the following and its proof will be shown later.

Theorem 7.1 Given � > 0, there exists �0 > 0 such that for all � 2 (0; �0), the

recursions �(n) converge almost surely to R�.

We will assume for simplicity that the elapsed times on any lane remain bounded even

though the bound can be large. Moreover, the queue lengths on any lane are bounded as

well because each lane (between two junctions) can at most accommodate a bounded num-

ber of vehicles. The single-stage cost function can be seen to be a linear function of the

state and remains bounded in this case. If the elapsed times are allowed to become un-

bounded, then one will require additional assumptions such as the existence of a stochastic

Lyapunov function in order to ensure that the second moment of the system state remains

uniformly bounded almost surely.

The PTLC-TT algorithm (in the case of L = 1) can be rewritten as follows:

Li(n+ 1) = �1

 
Li(n)� a(n)

 
~Z(n)

�4i(n)

!!
; i = 1; 2 (7.15)

T1(n+ 1) = �3

 
T1(n)� a(n)

 
~Z(n)

�43(n)

!!
; (7.16)

~Z(n+ 1) = ~Z(n) + b(n)(k(ŝn; f(ŝn))� ~Z(n)): (7.17)

Lemma 7.2 Each of the recursions (7.15)-(7.17) is uniformly bounded with probability

one.

Proof: Recursions (7.15)-(7.16) stay uniformly bounded as a consequence of the projection

operators �1 and �2 respectively. As described previously, the single-stage cost function

k(�; �) remains uniformly bounded almost surely. Now note that since b(n)! 0 as n!1,

there exists an integer N0 > 0 such that for all n � N0, b(n) < 1. Thus, for n � N0,
~Z(n+1) is a convex combination of ~Z(n) and k(ŝn; f(ŝn)) (a uniformly bounded quantity).

Suppose supn jk(ŝn; f(ŝn))j � K̂, almost surely for some K̂ > 0. Thus,

sup
n
j ~Z(n)j <1;

almost surely. The claim follows. �
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We analyze first the convergence of the faster timescale recursion (7.17). Define two

sequences of time points fs(n)g and ft(n)g according to s(0) = t(0) = 0 and for n � 1,

s(n) =
nX

m=0

a(m), t(n) =
nX

m=0

b(m). Let �(t); t � 0 be defined by �(t) = �(n); t 2
[s(n); s(n+ 1)]; n � 0.

Let Fn = �(ŝm; �(m);m � n); n � 0 be a sequence of associated sigma fields. Con-

sider the sequence Nn; n � 0, defined according to N0 = 0 and for n � 1,

Nn =
n�1X
m=0

b(m) (k(ŝm; f(ŝm))� E [k(ŝm; f(ŝm)) j Fm�1]) 4
=

n�1X
m=0

b(m)Mm:

Lemma 7.3 (Nn;Fn); n � 0 forms an almost surely convergent martingale sequence.

Proof: It is easy to see that (Nn;Fn); n � 0 forms a martingale sequence. Now consider

the quadratic variation process associated with this martingale. Note that

1X
n=0

E[(Nn+1 �Nn)
2 j Fn] =

1X
n=0

b(n)2M2
m <1;

almost surely, since M2
m remains uniformly bounded because the single-stage cost function

k(�; �) is uniformly bounded and moreover,
X
n

b(n)2 <1. The claim follows from the

martingale convergence theorem (cf. Theorem 3.3.4 of Borkar [1995]). �

Consider now the following set of ODEs associated with (7.15)-(7.17).

_L1(t) = 0; _L2(t) = 0; _T1(t) = 0; (7.18)
_~Z(t) = J(�(t) + ��(t))� ~Z(t); (7.19)

respectively, where �(t); t � 0 is defined according to �(t(n)) = �(n); n � 0 with continu-

ous linear interpolation on [t(n); t(n+1)]. Also, �(t) = �(n) for t 2 [t(n); t(n+1)]; n �
0.

Before we proceed further, we recall a key result from Hirsch [1989]. Consider an ODE

_x(t) = f(x(t)); (7.20)

where f : RN ! RN (for some N � 1) is a Lipschitz continuous function. Given T ,


 > 0, we call a bounded, measurable y(�) : R+ [ f0g ! R
N , a (T; 
)-perturbation of
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(7.20) if there exist 0 = T0 < T1 < T2 < � � � < Tr " 1 with Tr+1 � Tr � T 8r and

solutions �r(t), t 2 [Tr; Tr+1] of (7.20) for r � 0, such that

sup
t2[Tr;Tr+1]

k �r(t)� y(t) k< �:

We recall the following result given as Theorem 1, pp.339 of Hirsch [1989].

Let H denote the set of globally asymptotically stable attractors of the ODE (7.20) and

given � > 0, let H� denote the set of points that are within an �-neighborhood from the set

H . In particular, H � H�.

Lemma 7.4 (Hirsch Lemma) Given �, T > 0, 9�
 > 0 such that for all 
 2 (0; �
), every

(T; 
)-perturbation of (7.20) converges to H�.

We now return to the analysis of the faster timescale recursion. Given T̂ > 0, let

T̂n; n � 0 be defined according to T̂0 = 0 and T̂n = minft(n) j t(n) � T̂n�1 + T̂g; n � 1:

Then T̂n+1� T̂n � T̂ , 8n � 0 and there exists a subsequence fl(n)g of fng such that T̂n =

t(l(n))8n. Define �L1(t); �L2(t); �T1(t); �Z(t); t 2 [t(n); t(n + 1)]; n � 0 in the following

manner: �L1(t(n)) = L1(n), �L2(t(n)) = L2(n), �T1(t(n)) = T1(n), �Z(t(n)) = ~Z(n);

respectively, with suitable continuous linear interpolations in between intervals [t(n); t(n+

1)]. Given T; � > 0, we say that �x(�) is a (T; �)-perturbation of the ODE _x(t) = f(x(t)), if

there exist Tn; n � 0 such that Tn+1�Tn � T 8n and supt2[Tn;Tn+1] k �x(t)�x(t) k< �;8n.

Proposition 7.5 The functions �L1(t); �L2(t); �T1(t); �Z(t); t � 0 form (T̂ ; 
)-perturbations

of the ODEs (7.18)-(7.19).

Proof: Note that along the timescale t(n); n � 0, i.e., using the sequence of step sizes

b(n); n � 0, one can rewrite (7.15)-(7.16) as follows:

Li(n+ 1) = �1 (Li(n)� b(n)�i(n)) ; i = 1; 2; (7.21)

T1(n+ 1) = �3 (T1(n)� b(n)�3(n)) ; (7.22)

where �i(n) =
a(n)

b(n)

 
~Z(n)

�4i(n)

!
; i = 1; 2; 3; respectively. Now, from Assumption (A2),

we have that
a(n)

b(n)
! 0 as n!1. Hence, �j(n) = o(1); j = 1; 2; 3. Finally, consider the

recursion (7.17). Note that by Lemma 7.3, we have that
l(n+1)�1X
j=l(n)

b(j)Mj ! 0 as n ! 1.
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One can now rewrite (7.17) as

~Z(n+ 1) = ~Z(n) + b(n)(J(�(n) + ��(n)) + �4(n)) + (Nn+1 �Nn);

where �4(n) = E [k(ŝm; f(ŝm)) j Fm�1] � J(�(n) + ��(n)): Note that �4(n); n � 0

constitutes the ‘Markov’ noise in the update. From Assumption (A5), �4(n) ! 0 on the

‘natural timescale’ that is clearly faster than the timescale of the algorithm, see Chapter 6.2

of Borkar [2008] for a detailed treatment of natural timescale recursions involving Markov

noise. The claim follows. �

Lemma 7.6 With probability one, j ~Z(n)� J(�(n) + ��(n)j ! 0 as n!1.

Proof: Follows by applying Lemma 7.4 (Hirsch [1989]) for every � > 0. �

We now consider the slower timescale recursions (7.15)-(7.16). Recall that the pa-

rameter dimension in our case is N = 3. Thus, P = 2dlog2(N+1)e = 4. Let �(n) =

(�1(n);�2(n);�3(n))
T , n � 0 be the perturbations obtained using the Hadamard matrix

based procedure.

Lemma 7.7 The vectors �(n), n � 0 satisfy the following properties:

1. For any s � 0 and all k 2 f1; : : : ; 3g,
s+PX
n=s+1

1

�k(n)
= 0.

2. For any s � 0 and all i; j 2 f1; : : : ; 3g, i 6= j,
s+PX
n=s+1

�i(n)

�j(n)
= 0.

Proof: The claim is obvious from the construction. �

Let �(n) = (L1(n); L2(n); T1(n))
T . For any x = (x1; x2; x3)

T 2 R3, let �(x) 4
=

(�1(x1); �1(x2); �2(x3))
T . In view of Lemma 7.6, one can consider the following in place

of (7.15)-(7.16):

�(n+ 1) = �
�
�(n)� a(n)J(�(n) + ��(n))(�(n))�1

�
: (7.23)

Lemma 7.8 Given any fixed integer K > 0, for all r 2 f1; : : : ; Kg

(i) limm!1 k �(m+ r)� �(m) k= 0; w.p. 1, and

(ii) limm!1 k rJ(�(m+ r))�rJ(�(m)) k= 0; w.p. 1.
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Proof: (i) The proof follows in a similar manner as Lemma 2.2 of Bhatnagar et al. [2003].

(ii) Follows from (i) and Assumption (A1). �

The proof of the following result has not been shown in Bhatnagar et al. [2003] for

Hadamard matrix perturbations. Hence, we provide it below.

Lemma 7.9 The following hold for any k; l 2 f1; : : : ; 3g, k 6= l:

k
m+P�1X
n=m

a(n)

a(m)

4k(n)

4l(n)
rkJ(�(n)) k; k

m+P�1X
n=m

a(n)

a(m)

1

4l(n)
J(�(n) + ��(n)) k! 0 as m!1:

(7.24)

Proof: We first show that (7.24) holds. By letting K = P in Lemma 7.8, it follows that

a(j)=a(m) ! 1 as m ! 1 for any j 2 fm; : : : ;m + P � 1g. Note also that P is

an even integer. As a consequence of Lemma 7.7, one can split any set Am
4
= fm;m +

1; : : : ;m+P �1g into two disjoint subsets A+
m;k;l and A�m;k;l each having the same number

of elements, with A+
m;k;l [ A�m;k;l = Am and such that

4k(n)

4l(n)
takes value +1 8n 2 A+

m;k;l

and �1 8n 2 A�m;k;l, respectively. Thus,

k
m+P�1X
n=m

a(n)

a(m)

4k(n)

4l(n)
rkJ(�(n)) k=k

X
n2A+

m;k;l

a(n)

a(m)
rkJ(�(n))�

X
n2A�

m;k;l

a(n)

a(m)
rkJ(�(n)) k :

The first claim in (7.24) now easily follows and the second claim follows from Lemma 7.8

and (A1). �

Proof of Theorem 7.1. The recursion (7.23) can be rewritten as follows: For i = 1; 2; 3,

�i(n+ 1) = 
i

�
�i(n)� a(n)J(�(n) + ��(n))

�i(n)

�
; (7.25)

where 
1 = 
2 = �1 and 
3 = �2, respectively. The recursion (7.25) can be rewritten as

follows:

�i(n+ 1) = �i(n)� a(n)J(�(n) + ��(n))

�i(n)
� a(n)Zi(n); (7.26)

where Zi(n) is an error term that results from the projection. By a Taylor series expansion

of J(�(m) + �4(m)) around the point �(m), one obtains: For i = 1; 2; 3,

�i(m+2P ) = �i(m)�
m+2P�1X
l=m

a(l)riJ(�(l))�a(m)
m+2P�1X
l=m

3X
j=1;j 6=i

a(l)

a(m)

4j(l)

4i(l)
rjJ(�(l))
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� a(m)
m+2P�1X
l=m

a(l)

a(m)

1

4i(l)
J(�(l)) + a(m)O(�)�

m+2P�1X
j=m

a(j)Zi(j): (7.27)

The third and the fourth terms on the RHS of (7.27) vanish asymptotically as a conse-

quence of Lemma 7.9. The rest now follows from a result on the convergence of projected

stochastic approximation, see Theorem 5.3.1 on pp.191-196 of Kushner and Clark [1978b].

�

7.5 Simulation Experiments

We now provide numerical results to illustrate the performance of the various threshold

tuning TLC algorithms. For the purpose of traffic simulation and performance comparison

of the various graded threshold based TLC algorithms, we used the Green Light District

(GLD) traffic simulation software Wiering et al. [2004]. The TLC algorithms were com-

pared using the performance metrics of average junction waiting time and the total number

of road users who reached their destination, as functions of the number of cycles. We also

implemented the QTLC-FA algorithm proposed in Prashanth and Bhatnagar [2011a] (see

Chapter 5) and its tuning variant QTLC-FA-TT for the sake of comparisons. The QTLC-

FA-TT algorithm combines the QTLC-FA algorithm with threshold tuning in a similar

manner as the QTLC-FA-NFS-TT algorithm. The update rule (7.5) is again followed to

tune the thresholds. However, the sign configuration policy used in this algorithm is from

the QTLC-FA algorithm described in Section 5.2.

7.5.1 Implementation

We implemented the threshold tuning algorithm for all four algorithms that incorporate

graded thresholds - PTLC, QTLC-SA, QTLC-FA and QTLC-FA-NFS, respectively. We

compared the performance of the tuned variants of the TLC algorithms against their coun-

terparts that involved fixed thresholds (no tuning). The algorithms studied are outlined

below:

� PTLC: This is a graded threshold based TLC algorithm described in Section 7.3.3

and uses a priority assignment scheme based on waiting queue lengths and elapsed

times in order to arrive at a sign configuration. Note that this algorithm uses fixed

thresholds, and the performance of this algorithm is studied against its tuning variant

PTLC-TT (below).
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� PTLC-TT: This algorithm combines threshold tuning with the priority based TLC

mentioned above. In other words, the sign configuration policy here is the same as

PTLC, except that the thresholds used (� = (L1; L2; T1)
T are tuned using the online

incremental algorithm described in Section 7.3.3.

� QTLC-SA: This is the Q-learning based TLC algorithm that incorporates state ag-

gregation and is described in Section 7.3.1. Note that this algorithm uses fixed thresh-

olds and the performance of this algorithm is compared against its tuning variant

(QTLC-SA-TT) below.

� QTLC-SA-TT: This algorithm combines threshold tuning with the QTLC-SA TLC

mentioned above. As in PTLC-TT, the parameter of thresholds � = (L1; L2; T1)
T

used in the QTLC-SA TLC algorithm are tuned using the online incremental algo-

rithm described in Section 7.3.1.

� QTLC-FA: This is the TLC algorithm presented in Prashanth and Bhatnagar [2011a]

(see Chapter 5) and uses Q-learning with function approximation.

� QTLC-FA-TT: This is the tuning variant of the QTLC-FA algorithm mentioned

above and incorporates the update (7.5) to tune the threshold parameter �.

� QTLC-FA-NFS: This is the Q-learning based TLC algorithm with function approx-

imation that incorporates the novel feature selection strategy described in Table 7.1.

This algorithm is described in detail in Section 7.3.2. Note that this algorithm uses

fixed thresholds and the performance of this algorithm is compared against its tuning

variant (QTLC-FA-NFS-TT) below.

� QTLC-FA-NFS-TT: This algorithm is the tuning counterpart of QTLC-FA-NFS and

tunes the threshold parameter � using the recursions (7.5).

We performed experiments with the aforementioned TLC algorithms on the road net-

works shown in Fig. 7.2. In essence, we consider four different settings - a single junc-

tion road network, a four-junction corridor, a 4x4-grid network as well as a network of 9

signalized-junctions with 24 roads around the Indian Institute of Science campus in Banga-

lore (hereafter referred to as the IISc network), respectively for testing the TLC algorithms.

Thus, we test the performance of our algorithms on both small road networks (such as the

single-junction network and the four-junction corridor) as well as large size road network

(such as the 4x4-grid and the IISc network). The 4x4-grid network consists of 16 edge
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nodes (where traffic is generated), 16 junctions with traffic lights, 40 roads, with each be-

ing 4 lanes wide and when full can house upto 1500 vehicles. Further, the cardinality of

the state-action space is of the order of 10130 for the 4x4-grid network. We tested the per-

formance of all the proposed TLC algorithms - PTLC, QTLC-SA and QTLC-FA-NFS (and

their tuning counterparts) as well as the QTLC-FA algorithm from Prashanth and Bhat-

nagar [2011a] on a single junction and four-junction corridor. However, on a 4x4-grid

network as well as the IISc network, we could not implement the QTLC-SA algorithm. As

explained before, QTLC-SA uses full state representations and hence is not implementable

on high-dimensional state-action spaces (as with the 4x4-grid network and the IISc net-

work). However, QTLC-SA is an enhancement to the Q-learning based TLC algorithm

proposed for instance in Abdulhai et al. [2003]. In fact, the Q-learning based TLC with full

state representations in Abdulhai et al. [2003] was proposed only for a single-junction road

network. Use of state aggregation allowed the resulting QTLC-SA algorithm to scale up to

a four-junction corridor. The results in this scenario are presented here.

The simulations are conducted for 25000 cycles for all algorithms and in each simu-

lation, the destination of the road user is fixed randomly (using a discrete uniform distri-

bution). At each time-step, vehicles are inserted into the road network as per the spawn

frequencies of the edge nodes, where spawn frequency specifies the rate at which traffic is

generated randomly in GLD. The spawn frequencies of the edge nodes are set in a way that

ensures that the proportion of cars flowing on the main road to those on the side roads is in

the ratio 100 : 5. This ratio is close to what is practically observed and has also been used

for instance in Cools et al. [2008]. The results presented below are the averages over ten

independent simulations with different initial seeds. For all the algorithms, the weights in

the single-stage cost function (7.2) are set as �1 = �1 = 0:5, �2 = 0:6 and �2 = 0:4, re-

spectively. This assignment essentially gives equal weightage to queue length and elapsed

time components of (7.2), while according a higher weightage to main road traffic over side

road traffic. The threshold parameter � was set to (6; 14; 90)T for all the TLC algorithms.

The performance of the TLC algorithms with the above tuning parameter was then com-

pared with the counterparts of these algorithms that incorporate tuning. This value of � has

been used in the results reported in Prashanth and Bhatnagar [2011a]. The parameters �

and L used in the threshold tuning algorithm (7.5) were set to 0:5 and 10 respectively. The

discount factor 
 used in (7.6) and (7.9) was set to 0:9.
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Table 7.3: Total Arrived Road Users (TAR) – results from two experiments
(a) TAR for a range of weights �1 on
Single-Junction

�1 PTLC QTLC-FA-NFS
0.2 16514.38�674.09 26675.27�660.33
0.3 17563.46�683.51 25632.40�669.58
0.4 17585.98�663.99 27627.77�669.28
0.5 18365.80�662.31 27779.77�672.60
0.6 17486.90�669.88 27571.61�670.46
0.7 17683.87�659.67 26454.72�669.99
0.8 14722.40�646.74 25385.50�653.01

(b) TAR for various TLC algorithms on two road networks
4x4-Grid Network IISc Network

QTLC-FA-NFS 17408.56 � 84.20 21751.17 � 525.41
QTLC-FA-NFS-TT 22917.40 � 80.83 24773.38 � 626.48
PTLC 3807.14 � 70.26 16235.74 � 472.31
PTLC-TT 7662.64 � 82.38 18878.87 � 461.66
QTLC-FA 14418.95�80.15 18699.59 � 415.35
QTLC-FA-TT 19369.61 � 77.96 20531.24 � 520.26

7.5.2 Results

Fig. 7.3 shows the average trip waiting time (ATWT) plots on a single-junction and a

four-junction corridor, respectively and compares the four TLC algorithms PTLC, QTLC-

SA, QTLC-FA and QTLC-FA-NFS when combined with the threshold tuning algorithm

(7.5). Figs. 7.4(a) – 7.5(b) show ATWT plots comparing PTLC, QTLC-FA and QTLC-FA-

NFS algorithms with their tuning counterparts on a 4x4-grid network and the IISc network

respectively. Table. 7.3(b) presents the total arrived road users (TAR) for the various

TLC algorithms on a 4x4-grid network and the IISc network respectively. As mentioned

before, since QTLC-SA is not implementable on high-dimensional state spaces (and hence,

larger networks), performance comparisons of this algorithm are presented only on a single

junction and a four-junction corridor. The choice of weights �1 = �1 = 0:5 is justified by

the results obtained for different choices of �1 in Table. 7.3(a).

While the default setting in GLD for the traffic arrival pattern is uniform, we also con-

ducted an experiment where the traffic arrived according to a Poisson process. The results

from this experiment on two road networks for the PTLC and QTLC-FA-NFS algorithms

are presented in Fig. 7.6. We observe that, even in this case, our tuning scheme results in

a performance improvement for both the algorithms. This is significant because our tuning

scheme is seen to perform well even for cases where the arrival distribution is not uniform.

Note that in the basic problem formulation, we did not make any assumption about the

nature of the arrival distribution, except assuming a Markovian evolution for the system.

We also observe that the parameter � converges to the optimal threshold value for each

TLC algorithm - PTLC, QTLC-SA and QTLC-FA - considered in each of the road networks

(See Fig. 7.2). This is illustrated by the convergence plots in Figures. 7.7–7.8. These

plots as well as the ATWT plots also show that the transient phase of the threshold tuning

algorithm (7.5), i.e., the initial period when the threshold parameter � has not converged, is

short.
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We observe that incorporating our threshold tuning algorithm results in performance

enhancements for all the TLC algorithms. Further, among the TLC algorithms studied, it

is evident that QTLC-FA-NFS algorithm shows the best overall performance on all net-

work settings considered. In particular, it outperformed the algorithm from Prashanth and

Bhatnagar [2011a] (Chapter 5), which establishes the superiority of the feature selection

procedure of QTLC-FA-NFS over QTLC-FA. While PTLC-TT algorithm worked second-

best to QTLC-FA-NFS-TT on the single-junction road network, on larger road networks it

is found to perform poorly in comparison to the QTLC-FA-NFS algorithm and its tuning

variant.

7.6 Summary

Our goal in this chapter was to design an algorithm for tuning the thresholds to their optimal

values in any graded threshold based TLC algorithm. Towards this end, we introduced and

analyzed three new traffic light control algorithms with threshold tuning. We developed

and applied, for the first time, an SPSA-based threshold tuning algorithm that incorporates

Hadamard matrix based deterministic perturbation sequences and with proven convergence

to the optimal thresholds for the various algorithms. We developed three new TLC algo-

rithms - a priority-based TLC algorithm, an enhanced version of the Q-learning with full-

state representation TLC algorithm that incorporates state aggregation and a Q-learning

algorithm with function approximation that incorporates a novel feature selection scheme.

We combined our threshold tuning algorithm with the above mentioned TLC algorithms.

In the case of the Q-learning with full state representations, our threshold tuning algorithm

finds an “optimal” way of clustering states based on the aforementioned thresholds and in

the case of the Q-learning with function approximation based TLC, our algorithm amounts

to feature adaptation for an RL algorithm using function approximation (a topic that is of

independent research interest in the RL community). Empirical observations indicate a

significant gain in performance when our threshold tuning algorithm is used in conjunction

with each of the TLC algorithms considered. The tuning variants of the TLC algorithms

(above) clearly outperform their counterparts that use (arbitrarily set) fixed thresholds.

It may be noted that SPSA is a local search based optimization technique. While one

could possibly consider methods such as simulated annealing to find the global minimum,

the flip side of such approaches is the computational complexity requirement that is usually

very high unlike SPSA. Further, in this particular application scenario, we have observed
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that the deterministic perturbation SPSA based threshold tuning algorithm works well and

this is demonstrated by the results of the simulation experiments.
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Figure 7.2: Road Networks used for our Experiments
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Figure 7.3: Performance Comparison of TLC Algorithms using Average Trip Waiting Time
as the metric on two small road networks
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Figure 7.4: Performance Comparison of TLC Algorithms with their tuning counterparts on
the 4x4-Grid Network
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Figure 7.5: Performance Comparison of TLC Algorithms with their tuning counterparts on
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Figure 7.6: Performance Comparison of TLC Algorithms with Poisson vehicle arrival pat-
tern on two road networks
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Figure 7.7: Convergence of � parameter - illustration for QTLC-FA-NFS-TT algorithm in
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Chapter 8

Online Adaptation of Features in
Reinforcement Learning

In this chapter, we propose a new algorithm for feature adaptation and study its applica-

tion to the problem of traffic signal control. We consider the problem of prediction (i.e.,

estimating the value function corresponding to a given policy) under the infinite horizon

discounted cost criterion and employ the TD learning scheme with linear function approx-

imation for this purpose. We let all feature components take values only between 0 and 1.

Upon convergence of the TD scheme for a fixed set of features, we consider the converged

weights in the weight vector (i.e., the parameter whose scalar product with the state-feature

approximates the value of that state). We then replace two of the columns of the feature

matrix that correspond to the two smallest components of the weight vector as follows.

The column of the feature matrix corresponding to the smallest component of the weight

vector is replaced by the most recent estimate of the value function (suitably normalized so

that all its entries are between 0 and 1) obtained after running the TD scheme for a given

large number of iterations using the feature matrix of the previous step, while the column

corresponding to the second smallest component of the weight vector is replaced by inde-

pendent and uniformly generated random numbers between 0 and 1. Thus while the worst

performer (amongst the columns of the feature matrix) is replaced by the normalized value

function estimate, the second-worst performer is replaced with a random search direction

to aid in exploration of better features and thereby a better subspace than the previous. The

remaining columns of the feature matrix are left unchanged. The TD algorithm is then run

again with the new feature matrix and the process repeated.

As an application setting, we consider the problem of estimating the value of a policy

109
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in a problem of traffic signal control (Prashanth and Bhatnagar [2011a]). The general

control problem in this domain is to obtain a policy for signal switching across various sign

configurations so that traffic flow is maximized and levels of congestion and hence delays

at the traffic junctions are minimized. In Prashanth and Bhatnagar [2011a], Q-learning with

function approximation for a given feature matrix is applied for this problem. By keeping

the optimal policy (obtained from the Q-learning algorithm in Prashanth and Bhatnagar

[2011a]) corresponding to the original feature matrix fixed, we apply our algorithm for

feature adaptation and observe consistent improvement in performance over “episodes”

during each of which the feature matrix is held fixed and TD is applied. We study the

performance of our scheme on two different network settings and observe performance

improvements in both.

The rest of the chapter is organized as follows: In Section 8.1, we give the framework.

The feature adaptation scheme is presented in Section 8.2. In Section 8.3, we present a

partial analysis of the convergence behaviour of our scheme. In Section 8.4, the results of

numerical experiments in the traffic signal control setting are shown. Finally, Section 8.5

presents the concluding remarks.

8.1 The Framework

Our basic setting is an MDP fXng taking values in a set S (called the state space) that is

governed by a control sequence fZng. Let A(i) be the set of feasible controls or actions in

state i and A 4
= [i2SA(i) be the set of all actions or the action space. We assume that both

S and A are finite sets.

We consider here that the MDP fXng is governed by a given (fixed) SDP �. In such a

case fXng is in fact a Markov chain taking values in S. Let c(i; a) denote the single-stage

cost when the Markov chain is in state i and action a is picked. Given 
 2 (0; 1), let

V �(i) = E

"
1X

m=0


mc(Xm; �(Xm)) j X0 = i

#
(8.1)

denote the value function under SDP � when the initial state of fXng is i. The value

function can be obtained by solving the system of equations

V �(i) = c(i; �(i)) + 

X
j2S

p(i; j; �(i))V �(j); i 2 S; (8.2)
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or in vector notation,

V � = c� + 
P �V �; (8.3)

where P � = [[p(i; j; �(i))]]i;j2S is the transition probability matrix of fXng,
c� = (c(i; �(i)); i 2 S)T is the vector of single-stage costs, and V � = (V �(i); i 2 S)T

is the vector of ‘values’ over individual states respectively, under policy �. The system of

equations (8.3) yield the solution

V � = (I � 
P �)�1c�; (8.4)

where I denotes the (jSj � jSj)–identity matrix. When the size of the state space (jSj) is

large, obtaining the inverse of the matrix (I�
P �) is computationally hard. An alternative

is to solve (8.3) using a value iteration procedure. However, since (8.3) corresponds to a

linear system of jSj equations, one expects such a procedure to be slow as well for large

jSj.
Another problem in using a purely numerical approach is that in most real life situa-

tions, the transition probabilities p(i; j; �(i)), i; j 2 S are in fact not known. A way out

is to use a combination of value function approximation (via a so-called approximation

architecture) and stochastic approximation. The former helps to make the computational

complexity manageable while the latter helps to learn the (approximated) value function

with only real or simulated measurements and without any knowledge of the transition

probabilities.

We approximate V �(j) � �(j)T �, where �(j) = (�1(j); : : : ; �d(j))
T is a d-dimensional

feature associated with state j. Also, � = (�(1); : : : ; �(d))T is an associated parame-

ter. Let � denote the jSj � d feature matrix with �(j)T , j 2 S, as its rows. Thus

� = [[�k(s)]]k=1;:::;d;s2S . Let �k
4
= (�k(s); s 2 S)T denote the kth column of �, k 2

f1; : : : ; dg.
We make the following assumptions.

Assumption 8.1 The Markov chain fXng under SDP � is irreducible.

Assumption 8.2 The d columns of the matrix �, i.e., �1; : : : ; �d are linearly indepen-

dent. Further, d � jSj.

From Assumption 8.1, fXng is also positive recurrent (since jSj < 1). Let d�(i),
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i 2 S be the stationary distribution of fXng under policy �. Further, let D� be a diagonal

matrix with entries d�(i), i 2 S along the diagonal. The regular TD(0) algorithm is as

follows:

The TD(0) Learning Algorithm

�n+1 = �n + a(n)�n�(Xn); (8.5)

where �n is the temporal difference term that is defined according to

�n = (c(Xn; �(Xn)) + 
�(Xn+1)
T �n � �(Xn)

T �n); n � 0:

Further, a(n); n � 0 is a sequence of step-sizes that satisfy

X
n

a(n) =1;
X
n

a2(n) <1: (8.6)

The parameter �n is d-dimensional and has components (say) �n(1); : : : ; �n(d). Thus, �n =

(�n(1); : : : ; �n(d))
T . The algorithm (8.5) is called the temporal difference learning (TD(0))

algorithm for the discounted cost case and has been analyzed for its convergence in a more

general setting (TD(�) with � 2 [0; 1]) in Tsitsiklis and Van Roy [1997]. The average cost

version of this algorithm has also been analyzed in Tsitsikis and Van Roy [1999] as well as

Bhatnagar et al. [2009a].

It can be shown (see Tsitsiklis and Van Roy [1997]) that the TD(0) algorithm (8.5)

converges according to �n ! �� with probability one, as n!1, where

��
4
= (��1; : : : ; �

�
d)
T = (�>D�(
P � � I)�)�1�>D�c�:

In the next section, we describe our feature adaptation scheme.
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8.2 The Feature Adaptation Scheme

We let all entries of the feature matrix � to take values between 0 and 1. Recall that we

approximate V �(i) � �(i)T �. Thus, V � = (V �(1); : : : ; V �(jSj))T can be approximated as

V � � �� =

266666666664

Pd
j=1 �j(1)�jPd
j=1 �j(2)�j

�
�
�Pd

j=1 �j(jSj)�j

377777777775
:

Alternatively, note that

V � �
dX

j=1

�j�j:

We run the algorithm using a nested loop sequence with the outer loop run for a total

of R iterations. The feature matrix is updated in the outer loop procedure. In between two

successive updates of the outer loop, i.e., for a fixed feature matrix update, the inner loop

comprising of TD recursions is run for a given (large) number M of iterates in order to

obtain a final parameter corresponding to the aforementioned feature matrix (update). We

call each such M -iterate run of TD for a given feature matrix an episode. Thus our scheme

is run for a total of R episodes. The feature adaptation scheme is described in detail below:

The Feature Adaptation Scheme:

� Step 0 (Initialize): Select a jSj � d feature matrix �0 with columns �0j =

(�0j(s); s 2 S)T , j = 1; : : : ; d. Let �0 have all its entries between 0 and 1

and let it satisfy Assumption 8.2. Set r := 0 and n := 0, respectively. Set

V �;0
0 = 0 to be the initial estimate of the value function. Let �V �;0

0 = 0 be the

initial estimate of the normalized value function. Also set M and R to be given

large integers. Set �00 as the initial parameter value.

� Step 1: Let �r denote the feature matrix during the rth step of the algorithm.

The (n+ 1)st update of TD in the rth step of the algorithm is given as follows:

�rn+1 = �rn + a(n)�rn�
r(Xn); (8.7)
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where a(n), n � 0 satisfy (8.6) and �rn, n � 0 are defined according to

�rn = (c(Xn; �(Xn)) + 
�r(Xn+1)
T �rn � �r(Xn)

T �rn):

Set n := n + 1. If n = M � 1, set V �;r
M = �r�rM , and go to Step 2; else repeat

Step 1.

� Step 2: Let �rM
4
= (�rM;1; : : : ; �

r
M;d)

T . Find �rM;k, �rM;l, k; l 2 f1; : : : ; dg, k 6= l

such that

�rM;k � �rM;l � �rM;j 8j 2 f1; : : : ; d; j 6= k; j 6= lg:

(Any tie is resolved according to some prescribed rule). Obtain a new fea-

ture matrix �r+1 as follows: First normalize V �;r
M (by first letting any nega-

tive component to be zero and then dividing every component by one with the

largest value) to obtain �V �;r
M . Thus, all entries of �V �;r

M lie between 0 and 1. Set

�r+1k := �V �;r
M . Next obtain �r+1l by picking all its entries independently accord-

ing to the uniform distribution on [0; 1]. Retain the remaining columns in the

�r+1 matrix from the matrix �r itself, i.e., set �r+1i := �ri for all i 2 f1; : : : ; dg
with i 6= k; l. Set �r+1 to be the matrix with columns �r+1j , j = 1; : : : ; d. Set

r := r + 1. If r < R, go to Step 1; else go to Step 3.

� Step 3 (Termination): Output �RM as the final parameter value and V �;R
M = �R�RM

as the corresponding value function estimate.

We summarize the notation used with regards to the value function below (as this will

also be used in the convergence analysis):

� V �: exact value function under policy �,

� V �;r
n = �r�rn: estimate of the value function at the rth iterate of algorithm after the

nth run of Step 1 (M � n � 0),

� V �;r
M = �r�rM : estimate of the value function after completion of Step 1 during the

rth iterate of algorithm (i.e., with n =M ),

� V �;r
� = �r�r�: estimate of the value function from Step 1 of algorithm at the rth

iterate if Step 1 was run until convergence of TD, i.e., where �r� = lim
M!1

�rM with

probability one,
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� �V �;r
M : normalized estimate of value function after completion of Step 1 during the rth

iterate of algorithm,

� �V �
r : projection of V � to Sr.

Note above that we obtain the normalized value function �V �;r
M at each iterate r of the al-

gorithm only after termination of Step 1 on that iterate. Convergence of the TD scheme

for a given feature matrix �r, as M ! 1, has been shown in the literature (Tsitsiklis

and Van Roy [1997], Bertsekas and Tsitsiklis [1996a]) under the weighted Euclidean norm

k � kD� defined according to

k x kD�=
p
x>D�x;

for any x 2 RjSj. Let Sr, r = 1; 2; : : : denote the subspace

Sr = f�r� j � 2 Rdg:

Let �V �
r represent the best approximation to the value function V � within the subspace Sr.

This is obtained by simply projecting V � to Sr. Note that TD (or for that matter any other

algorithm that operates only within the subspace Sr) does not in general converge to �V �
r .

In fact the parameters �rn, n � 0 obtained from TD, see Step 1 of the feature adaptation

scheme (above), converge to �r� almost surely where

�r� = (�r>D�(
P � � I)�r)�1�r>D�c�:

This would correspond to a value function estimate of V �;r
� = �r�r� which is not the same

as �V �
r even though both V �;r

� and �V �
r are vectors in the subspace Sr. Since we run TD for

a fixed number M of instants during each visit of the algorithm to Step 1, the estimate of

the value function as given by TD after the rth cycle (of M iterates) is V �;r
M = �r�rM . By

choosing M sufficiently large, one can bring down the difference between V �;r
M and V �;r

� .

The key idea behind our adaptation scheme is the following: Since one replaces the

‘worst basis vector’ by the current best estimate of the value function and the ‘next-to-worst

basis vector’ by uniformly generated random numbers, one ensures that (a) the best linear

combination of the basis functions in the current subspace is retained while (b) in addition,

the scheme does a random exploration in order to find a potentially better subspace than the

current. As our experiments demonstrate, it is indeed seen to be the case that our adaptive

scheme results in significant performance improvement.
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Remark 4 One possible variation is to pick new basis vectors from a prespecified over-

complete basis. These vectors could be sparsely represented. Nevertheless, the running

estimate of the value function need not have a sparse representation. Thus the algorithm

stores all but one sparse vectors, thus saving on storage.

Remark 5 Another possible tweak is to perform a Gram-Schmidt step on each new inde-

pendent basis vector picked relative to the rest and replace it by the unit normal vector thus

obtained. While this is aesthetically more pleasing and will avoid certain ‘low probability’

pathologies, it has a computational overhead. We did not use this tweak in our experiments

as we obtained good results regardless.

Remark 6 A good error estimate for fixed point of a projected linear contraction relative

to fixed point of the contraction itself, that holds with ‘high probability’ under certain

dimensionality requirements on the range of the projection, is given in Barman [2008].

In the next section, we give a partial analysis of the convergence behaviour of our

feature adaptation scheme.

8.3 Convergence Analysis

We first introduce some notation. Let U denote the unit sphere inRjSj. Since we normalize

the basis vectors, they can be identified with points in U . Let V ? denote the subspace of

RjSj orthogonal to V � (recall that V � is the true value function). Let B � U denote the

�-neighborhood of V ?\U in U for a small � > 0. Let D denote the �-neighborhood of V �.

Let �r denote the projection to Range(�r). Then �V �
r = �r(V

�). Let 	 : RjSj �RjSj !
RjSj denote the map

	(x; y) :=
x� hx; y=kykiy=kyk
kx� hx; y=kykiy=kykk ;

i.e., the component of x orthogonal to y, normalized to have unit norm. Let

�r =
k V � � V �;r

� k
k V � � �V �

r k
:

We have the following lemma.

Lemma 8.1 (a) �r 2
�
1;

1

1� 

�
8r � 0.

(b) For �r close to one (for any r � 0), V �;r
� � �V �

r .
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Proof: (a) It is easy to see that the vectors V � � V �;r
� , V � � �V �

r and �V �
r � V �;r

� form

a right angle triangle with V � � V �;r
� as the hypotenuse. Further, V � � �V �

r and �V �
r � V �;r

�

form a right angle with �V �
r � V �;r

� being a vector within the subspace Sr and V � � �V �
r

being orthogonal to Sr. Thus,

k V � � V �;r
� k�k V � � �V �

r k;

implying that �r � 1 8r � 0. Further, from Lemma 6 of Tsitsiklis and Van Roy [1997],

we also obtain that

k V � � V �;r
� k� 1

(1� 
) k V
� � �V �

r k :

Thus we also have �r � 1

1� 
 8r � 0.

(b) By the Pythagorean theorem, we have

k V � � V �;r
� k2=k V � � �V �

r k2 + k �V �
r � V �;r

� k2 : (8.8)

From (8.8), we obtain

�2r = 1 +
k �V �

r � V �;r
� k2

k V � � �V �
r k2

;

or that

k �V �
r � V �;r

� k=
p
�2r � 1 k V � � �V �

r k

� 2K
p
�2r � 1;

where K is an upper bound on k V � k. Thus if �r is close to one, we have that V �;r
� � �V �

r .

�

Now let � > 0 be such that k �V �
r � V �;r

� k< �. Let � > 0 be such that if V =2 D and

z =2 B is a unit vector, then for �0 := projection onto Range(�r) and �00 := projection

onto span(Range(�r) [ fzg), we have

kV � �00(V )k � kV � �0(V )k � �:

Next, we will consider the actual error k V �;r
M � V � k and show that it decreases on the

average as r is increased when M is large enough. We have the following result.
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Theorem 8.2 9�0 > 0 and M0 > 0 such that for � > �0, and M �M0,

E[k V �;r+1
M � V � k] < E[k V �;r

M � V � k]:

Proof: Note that because of the finite (M ) step termination of the TD update in between

two successive updates of the feature matrix, the quantity V �;r
M is random for any given

r � 0. The dynamics of fV �;r
M ; r � 0g can be described according to

V �;r+1
M = V �;r+1

� + �((V �;r
M ; �r+1); �r+1);

where:

1. the i.i.d. variables f�rg denote the new basis vectors being inducted,

2. �r+1 captures the random inputs of the algorithm with the fixed basis, between the

rth and (r + 1)th basis change, and,

3. �r+1 := �((V �;r
M ; �r+1); �r+1) = V �;r+1

M � V �;r+1
� is the error due to inexact conver-

gence (because of the finite run of TD).

Let �r := V �;r
� � �V �

r . Further, as before, let K be an upper bound on k V � k. Note that

by Corollary 14, Chapter 4 of Borkar [2008], 9M0 such that for M � M0, �r+1 can be

bounded by a given � > 0 with probability 1� �, � > 0 prescribed. Let

Ar = f	(�r+1; V �;r
M ) 2 Bg;

Cr = fk�r+1k � �g:
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Then for �1 > P (Ar), we have

E[kV �;r+1
M � V �k] � E[kV �;r+1

� � V �k] + E[k�r+1k]
� E[k �V �

r+1 � V �k] + E[k�r+1k] + E[k�r+1k]
� E[k �V �

r+1 � V �kIAr ] + E[k �V �
r+1 � V �kIAcr ]

+ E[k�r+1k] + E[k�r+1k]
� E[k �V �

r � V �k]� � + 2�1K + E[k�r+1k] + E[k�r+1k]
� E[kV �;r

M � V �k]� � + 2�1K + E[k�rk] + E[k�rk]
+ E[k�r+1k] + E[k�r+1k]

� E[kV �;r
M � V �k]� � + 2((�1 + �)K + (1� �)�+ �):

Let �0 := 2((�1 + �)K + (1� �)�+ �). Then for � > �0,

E[kV �;r+1
M � V �k] < E[kV �;r

M � V �k]:

Further, � > �0 will hold if �; �; �; �1 are sufficiently small and V �;r
M =2 D. �

From Theorem 8.2, the average norm difference between the true value function and the

approximate value function to which TD(0) converges for a given set of bases decreases as

the set of bases is updated after each update of the basis adaptation scheme.

8.4 Application to Traffic Signal Control

We consider the problem of traffic signal control as an application setting. The aim in gen-

eral for this problem is to find an optimal policy for switching signals at traffic junctions

in a road network so as to maximize flows and minimize delays. The signals that can be

switched to green simultaneously form a sign configuration. Q-learning with linear func-

tion approximation has been applied for this control problem in Prashanth and Bhatnagar

[2011a]. We, however, consider the problem of adaptively tuning the feature matrix when

actions are chosen according to a given policy. The policy that we use is obtained using the

Q-learning algorithm from Prashanth and Bhatnagar [2011a], i.e., after convergence of the

Q-learning algorithm. We apply the feature adaptation scheme described in Section 8.2.

The MDP setting of states, actions and costs is exactly same as in previous chapters.We

consider two different road traffic networks: (a) a network with a single traffic signal junc-

tion and (b) a corridor with two traffic signal junctions. The two networks are shown in
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Figure 8.1: A Single-Junction Road Network

Figure 8.2: A Corridor Network with Two Junctions

Figures 8.1 and 8.2, respectively. We implemented these network settings and our algo-

rithm on the green light district (GLD) open source software for road traffic simulations

Wiering et al. [2004].

We study the performance of our feature adaptation scheme using estimates of E[k
V �;r
M k]. Recall that from Theorem 8.2, the estimates E[k V �;r

M � V � k] diminish with r.

The value function V �, however, is not available, so we use the fact that by the foregoing,

E[k V �;r
M k] will tend to increase. For estimating E[k V �;r

M k], we use the sample averages

of the estimates of k V �;r
M k. As mentioned previously, we let V r

n = �r�rn denote the nth

estimate of the value function when the feature matrix is �r. We obtain the aforementioned



Chapter 8. Online Adaptation of Features in Reinforcement Learning 121

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  50000  100000  150000  200000  250000  300000  350000

Z
m

m (cycle)

Zm vs m (cycle)

Single junction

Figure 8.3: Plot of Zm vs. m in the Case of Single-Junction Road Network

sample averages by running the recursion

Zr
n+1 = (1� a)Zr

n + a k V r
n k;

where for any given r 2 f0; 1; : : : ; R � 1g, the above recursion is run for M iterations

i.e., with n 2 f0; 1; : : : ;M � 1g. Next, the value of r is updated and the above procedure

repeated. Here a is a small step-size that we select to be 0.001. By abuse of notation, we

denote Zr
n as Zm in these figures where m denotes the number of cycles or time instants (in

absolute terms) i.e., m 2 f0; 1; : : : ; RM � 1g, when Zm is updated.

We call each group of M cycles when the feature matrix �r is held fixed for some r, an

episode. We conducted our experiments for the cases of single-junction and two-junction-

corridor networks for a total of 150 episodes in each where each episode comprised of

2,500 cycles. Thus M = 2500 and R = 150 in our experiments.

For the single-junction case, we show in Figure 8.3 the plot of Zm as a function of

m (the number of cycles). We observe that there is a significant improvement after the

first episode which results in a steep jump in the Zm value. In subsequent (r) iterations

when the �r matrix is updated, the performance improvement continues, though in smaller
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Figure 8.4: Plot of Zm vs. m after 40,000 Cycles in the Case of Single-Junction Road
Network

steps. The improvement in performance from feature adaptation can be seen more clearly

in Figure 8.4, when the values of Zm are plotted for m � 40; 000. The value of Zm as well

as the difference Zm�ZM�1 i.e., improvement in ‘Zm performance’ in relation to its value

obtained after the completion of the first episode (i.e., with the originally selected feature

matrix) is shown at the end of the 30th, 60th, 90th, 120th and 150th episodes respectively,

in Table 8.1. As expected, the values of Zm are seen to consistently increase here.

Next, for the case of the two-junction corridor road network, we show a similar plot of

Zm as a function of m in Figure 8.5. Further, in Figure 8.6, we show the same plot for cy-

cles 40,000 onwards to show performance improvement resulting from feature adaptation.

Similar observations as for the single-junction case hold in the case of the two-junction

corridor as well.

Finally, as before, we show in Table 8.2, the values of Zm as well as of the difference

Zm � ZM�1 at the end of the 30th, 60th, 90th, 120th and 150th episodes respectively. The

values of Zm are again seen to consistently increase here as well.
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Table 8.1: Performance Improvement with Feature Adaptation for the Single-Junction
Road Network

# Cycle Zm Zm � ZM�1,
(m) (m �M � 1)

2499 51042.23
74999 54003.00 2960.76

149999 54116.59 3074.36
224999 54260.28 3218.05
299999 54255.38 3213.15
374999 54274.72 3232.49
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Figure 8.5: Plot of Zm vs. m in the Case of Two-Junction Corridor Network
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Table 8.2: Performance Improvement with Feature Adaptation for the Two-Junction Corri-
dor Road Network

# Cycle Zm Zm � ZM�1

(m) (m �M � 1)
2499 53480.65

74999 53834.04 353.39
149999 53985.54 504.89
224999 54166.69 686.04
299999 54167.99 687.34
374999 54207.78 727.13
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8.5 Summary

We presented in this chapter a novel online feature adaptation algorithm. We observed

significant performance improvements on two different settings for a problem of traffic

signal control. We considered the problem of prediction here and applied our feature adap-

tation scheme in conjunction with the temporal difference learning algorithm. As future

work, one may consider the application of our algorithm together with other schemes such

as least squares temporal difference (LSTD) learning (Bradtke and Barto [1996], Boyan

[1999]) and least squares policy evaluation (LSPE) (Nedic and Bertsekas [2003], Bert-

sekas and Nedic [2004]). Moreover, one may apply a similar scheme for the problem of

control, for instance, in conjunction with the actor-critic algorithms in Konda and Tsitsiklis

[2003] and Bhatnagar et al. [2009a].



Part II

Service Systems

This part discusses stochastic optimization algorithms for solv-

ing the problem of optimizing labor cost by adapting staffing

levels in a service system. The core of each of the algorithms

is a multi-timescale stochastic approximation scheme that in-

corporates a random perturbation based algorithm for ‘primal

descent’ and couples it with a ‘dual ascent’ scheme for the La-

grange multipliers. The first order algorithms (Prashanth et al.

[2011b], Prasad et al. [2012]) proposed use simultaneous pertur-

bation stochastic approximation (SPSA) based techniques for

gradient estimation in the primal. In particular, we developed al-

gorithms that use SPSA with deterministic perturbations based

on certain Hadamard matrices. We also developed two second

order (Newton) methods (Prashanth et al. [2012b]). The first

algorithm estimates the Hessian of the objective function using

SPSA and involves an explicit inverse, while the second one is

a novel algorithm that leverages Woodbury’s identity to directly

estimate the inverse of the Hessian and hence achieve computu-

tational efficiency. These algorithms were found to perform sig-

nificantly better than the state-of-the-art OptQuest optimization

toolkit, which is being used in IBMs pool simulation project.
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Chapter 9

Adaptive labor staffing

A Service System (SS) is an organization composed of (i) the resources that support, and

(ii) the processes that drive service interactions so that the outcomes meet customer expec-

tations (Alter [2008], Spohrer et al. [2007], Ramaswamy and Banavar [2008]). This chapter

focuses on the SS in the data-center management domain, where customers own data cen-

ters and other IT infrastructures supporting their businesses. Owing to size, complexity, and

uniqueness of these technology installations, the management responsibilities of the same

are outsourced to specialized service providers. A delivery center is a remotely-located

workplace from where the service providers manage the data-centers. Each service request

(SR) that arrives at a delivery center requires a specific skill and is supported by a service

worker (SW) with the corresponding skill set. The SWs work in shifts which are typically

aligned to the business hours of the supported customers. Hence, a group of customers

supported by a group of SWs, along with the operational model of how SRs are routed

constitutes an SS in this chapter. A delivery center may consist of many SS.

In this chapter, we consider the problem of adaptive labor staffing in the context of ser-

vice systems. The objective is to find the optimal staffing levels in a SS for a given dispatch-

ing policy (i.e., a map from service requests to service workers) while maintaining system

steady-state and compliance to aggregate service level agreement (SLA) constraints. The

staffing levels constitute the worker parameter that we optimize and specify the number of

workers in each shift and of each skill level. The SLA constraints specify the target reso-

lution time and the aggregate percentage for an SR originating from a particular customer

and with a specified priority level. For instance, a sample SLA constraint could specify

that 95% of all SRs from customer 1 with ‘urgent’ priority must be resolved within 4 hours.

While the need for SLA constraints to be met is obvious, the requirement for having queues
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holding unresolved SRs bounded is also necessary because SLA attainments are calculated

only for the work completed. The problem is challenging because analytical modeling of

SS operations is difficult due to aggregate SLA constraints and also because the SS charac-

teristics such as work patterns, technologies, and customers supported change frequently.

An important aspect to consider in the design of the adaptive labor staffing algorithm is

its computational efficiency. A truly adaptive labor staffing algorithm is required to have a

low computational time requirement, which in turn helps in making staffing changes on a

shorter timescale, for instance, every week.

We formulate this problem as a constrained hidden Markov cost process (Marbach and

Tsitsiklis [2001] define an analogous Markov reward framework, i.e., in the unconstrained

setting for a continuous parameter) that depends on the worker parameter. To have a sense

of the search space size, an SS consisting of 30 SWs who work in 6 shifts and 3 distinct

skill levels corresponds to more than 2 trillion configurations. Apart from the high cardi-

nality of the discrete parameter set, the constrained Markov cost process involves a hidden

or un-observed state component. We design a novel single stage cost function for the con-

strained Markov cost process in a way that balances the conflicting objectives of worker

under-utilization and SLA under/over-achievement. The performance objective is a long-

run average of this single stage cost function and the goal is to find the optimum steady

state worker parameter (i.e., the one that minimizes this objective) from a discrete high-

dimensional parameter set. However, our problem setting also involves constraints relating

to queue stability and SLA compliance. Thus, the optimum worker parameter is in fact a

constrained minimum. Another difficulty in finding the optimum (constrained) worker pa-

rameter is that the single-stage cost function can be estimated only via simulation. Hence,

the need is for a search algorithm that incrementally updates the worker parameter along a

descent direction, while adhering to a set of queue stability and SLA constraints.

The rest of this chapter is organized as follows: In Section 9.1, we survey relevant liter-

ature in service systems as well as stochastic optimization. In Section 9.2, we introduce the

framework of service systems. In Section 9.3, we present the detailed problem formulation.

In the following chapters of this thesis, we develop novel discrete-optimization algorithms

based on SPSA to solve the above problem and then, empirically establish their usefulness

by comparing against a state-of-the-art optimization toolkit OptQuest on five real-life SS.
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9.1 Literature Survey

We now review literature in two different areas of related work: (1) techniques pertaining

to service systems analysis and (2) developments in stochastic optimization approaches.

9.1.1 Service Systems

In Verma et al. [2011], a two step mixed-integer program is formulated for the problem

of dispatching SRs within service systems. While their goal is similar to ours, their for-

mulation does not model the stochastic variations in arrivals and service times. Further,

unlike our framework, the SLAs in their formulation are not aggregated over a month long

period. In Wasserkrug et al. [2008], the authors propose a scheme for shift-scheduling in

the context of third-level IT support systems. Unlike this chapter, they do not validate their

method against data from real-life third-level IT support. In Cezik and L’Ecuyer [2008] as

well as Bhulai et al. [2008], simulation-optimization methods are proposed for finding the

optimal staffing in a multiskill call center. While Cezik and L’Ecuyer [2008] propose a cut-

ting plane algorithm for solving an integer program, Bhulai et al. [2008] rely on obtaining

a linear programming solution. However, unlike SASOC algorithms, steady-state system

analysis is not performed there. Instead, they consider only a single iteration of the system.

Further, the SLA constraints considered there are not aggregate in nature. Also, the algo-

rithms proposed in Cezik and L’Ecuyer [2008], Bhulai et al. [2008] are heuristic in nature,

whereas the SASOC algorithms are provably convergent. In Chan [2008], the emergent

behavior of a service system consisting of a large number of cells is studied by applying

an agent based simulation method. Each cell contains an analytical M/M/1 queue model.

The simulation helps observe how cells die and neighborhood patterns emerge among cells.

While Chan [2008] exemplifies the human aspects of service systems which would be an

important future direction for our work, it does not aim to propose a labor-optimization

technique. In Robbins and Harrison [2008], usage of a simulation based search method

is proposed for finding the optimal staffing levels in the context of a call-center domain.

They evaluate the system given a staffing level with an analytical model, which is possible

in their simplified domain but would not be feasible for service systems due to aggregate

SLA constraints and dynamic queues. They apply simulation to search for the optimal

staffing level based on a heuristic. An analysis of service systems using the ARENA sim-

ulation tool is presented in Brickner et al. [2010]. Unlike our model, the system there

is not subjected to aggregate SLA constraints. Also, in their work, they do not consider
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preemption of low priority SRs by higher priority SRs and assignment of higher skilled

SWs to growing queues of SRs requiring lower skill levels. Their model assumes a pool

of dedicated SWs for each customer as well as a separate pool of shared SWs. In Banerjee

et al. [2011], a simulation framework for evaluating dispatching policies is proposed. A

scatter search technique is used to search over the space of SS configurations and optimize

the staff allocation. While we share their simulation model, the goal in this chapter is to

propose a stochastic iterative scheme in the framework of constrained hidden Markov cost

processes and prove their convergence to the optimal staffing levels in a SS. In general,

none of the above papers propose an optimization algorithm that is geared for SS and that

leverages simulation to adapt optimization search parameters, when both the objective and

the constrained functions are suitable long-run averages.

In Prashanth et al. [2011a], an algorithm based on SPSA was proposed for the problem

of staffing optimization in service systems. While our SASOC-G algorithm is similar to the

one proposed in Prashanth et al. [2011a], a notable difference is that SASOC-G algorithm

incorporates a novel generalized projection scheme unlike Prashanth et al. [2011a]. Further,

we rigorously specify the constrained hidden Markov cost process framework along with

a detailed proof of convergence of all SASOC algorithms (including SASOC-G) and also

provide detailed experimental results for two different dispatching policies under both flat

as well as bursty SR arrival processes.

9.1.2 Stochastic Optimization

A popular and highly efficient simulation based local optimization scheme for gradient

estimation is Simultaneous Perturbation Stochastic Approximation (SPSA) proposed by

Spall [1992]. SPSA is based on the idea of randomly perturbing the parameter vector using

i.i.d., symmetric, zero-mean random variables. This scheme has the critical advantage that

it needs only two samples of the objective function to estimate the gradient for any N -

dimensional parameter. In Spall [1997], a one-simulation variant of SPSA was proposed.

However, the algorithm in Spall [1997] was not found to work as well in practice as its two

simulation counterpart. Usage of deterministic perturbations instead of randomized ones

was proposed in Bhatnagar et al. [2003]. The deterministic perturbations there were based

either on lexicographic or Hadamard matrix based sequences and were found to perform

better than their randomized perturbation counterparts. In particular, the one-simulation

variant of the SPSA algorithm that is based on Hadamard matrices was found to signifi-

cantly perform better than the one-simulation random-perturbation algorithm presented in
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Spall [1997]. A Newton based SPSA algorithm that needs four system simulations with

Bernoulli random perturbations was proposed in Spall [2000]. In Bhatnagar [2005], three

new SPSA based estimates of the Hessian that require three, two and one system simula-

tions, respectively, were proposed. In Bhatnagar [2007], certain smoothed functional (SF)

Newton algorithms that incorporate Gaussian-based perturbations were proposed. The al-

gorithms of Spall [2000], Bhatnagar [2005] and Bhatnagar [2007] were for unconstrained

optimization. In Bhatnagar et al. [2011b], continuous optimization techniques such as

SPSA and SF, have been adapted to a setting of discrete parameter optimization. Two

simulation based optimization algorithms that involve randomized projections have been

proposed there for an unconstrained setting. In Bhatnagar et al. [2011a], several simula-

tion based algorithms for constrained optimization have been proposed. Two of the algo-

rithms proposed there use SPSA for estimating the gradient, after applying the Lagrange

relaxation procedure to the constrained optimization problem, while the other two incor-

porate smoothed functional approximation. Constrained optimization in the context of

Markov decision processes has been considered, for instance, in Borkar [2005] and Bhat-

nagar [2010]. The algorithm proposed in Borkar [2005] is a three time-scale stochastic

approximation scheme that incorporates an actor-critic algorithm for primal descent and

performs dual ascent on Lagrange multipliers. However, it assumes full state representa-

tion for the underlying MDP. The algorithm proposed in Bhatnagar [2010] combines the

ideas of multi-timescale stochastic approximation and reinforcement learning with func-

tion approximation to develop a simulation based online algorithm for a constrained control

problem, involving function approximation. For a survey of gradient estimation techniques

in the context of simulation optimization, the reader is referred to Henderson and Nelson

[2006].

Our SASOC algorithms differ from the stochastic optimization approaches outlined

above in various ways. Many algorithms, for instance those proposed in Spall [2000] and

Bhatnagar [2005, 2007], are for unconstrained optimization and in a continuous optimiza-

tion setting. However, our staff optimization problem is for a discrete worker parameter and

requires SLA and queue stability constraints to be satisfied. While the algorithms of Bhat-

nagar et al. [2011b] have been proposed for a discrete optimization setting, our SASOC

algorithms differ in the projection technique used and more importantly solve an optimiza-

tion problem under functional (inequality) constraints. While the algorithms of Bhatnagar

et al. [2011a] have been developed for continuous constrained optimization, our SASOC

algorithms optimize a discrete parameter and also differ in the dual ascent procedure, as
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we do not accumulate the long-run averages of the constraint functions. Further, unlike

the Newton-based methods of Bhatnagar et al. [2011a] which estimate the Hessian and

perform an explicit matrix inverse, our SASOC-W algorithm directly tunes the inverse of

the Hessian matrix by employing a procedure based on the Woodbury’s identity. Thus,

the computational complexity of SASOC-W is significantly lower than its Hessian based

counterparts in Bhatnagar et al. [2011a]. To the best of our knowledge, we are the first to

present adaptations of Newton-based search approaches for constrained discrete optimiza-

tion. Simulation-based optimization methods in a Markov reward process framework have

been proposed in Marbach and Tsitsiklis [2001]. However, these have been proposed for a

continuous-valued parameter in a completely observed state setting and further, do not in-

volve constraints. Our problem setting, on the other hand, involves un-observed or hidden

state components and falls within the purview of constrained hidden Markov models.

We now briefly summarize our contributions in the context of adaptive labor staffing,

which forms the content of this as well as Chapters 10 and 11.

Our contributions

1. We present three novel discrete parameter simulation optimization methods based

on simultaneous perturbation stochastic approximation techniques for adaptive labor

staffing in service systems. The first algorithm, referred to as SASOC-G, is a first

order method that uses SPSA based gradient estimate in the primal. The second and

third algorithms, referred to as SASOC-H and SASOC-W, respectively, are second-

order Newton methods. To the best of our knowledge, this is the first work that

develops Newton-based algorithms for constrained discrete parameter optimization.

2. All the three SASOC algorithms that we propose are online, incremental and easy to

implement. Further, they possess the necessary convergence properties.

(a) We combine the approaches discussed in Bhatnagar et al. [2011a] for continu-

ous parameter constrained optimization as well as in Bhatnagar et al. [2011b]

for discrete parameter unconstrained optimization to obtain the aforementioned

three new algorithms for constrained discrete optimization. Unlike Bhatnagar

et al. [2011a] where an explicit inversion of the Hessian at each update step was

advocated, we incorporate the Woodbury’s identity to obtain a novel update step

for the inverse of the Hessian in our algorithm SASOC-W.
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(b) Further, unlike Bhatnagar et al. [2011b] where fully randomized projections

were used, we incorporate a generalized projection operator that is continuously

differentiable in the parameter and works as a deterministic operator over a large

portion of the search space and incorporates randomization over a small portion.

This helps in bringing down the computational requirement as a deterministic

projection scheme requires less computation than a fully randomized one.

3. We evaluate our algorithms on five real-life SS in the data-center management do-

main. For each of the SS, we collect operational data on work arrival patterns, service

times, and contractual SLAs and feed this data into the simulation model of Banerjee

et al. [2011].

4. From the simulation experiments, we observe that our algorithms show overall better

performance in comparison with the state-of-the-art OptQuest optimization toolkit

(Laguna [1998]). Further, our algorithms are 25 times faster than OptQuest and have

a significantly lower execution runtime.

9.2 Service System Framework

Formally, a service system is characterized by the following entities.

A set of customers, denoted by C, supported by the service system.

A set of shifts, denoted by A, across which the service workers are distributed.

A set of skill or complexity levels, denoted by B.

A set of priority levels, denoted by P .

A set of time intervals, denoted by I, where during each interval the arrivals stay station-

ary, with the number of arrivals following a Poisson distribution whose rate parameter

is given by the function � described next.

Arrival rates specified by the mapping � : C � I ! R. We assume that each of the

SR arrival processes from the various customers Ci are independent and Poisson

distributed with �(Ci; Ij) specifying the rate parameter.
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Service time distributions characterized by the mapping � : P �B ! (r1; r2); ri 2 R; i =
1; 2. Here r1 represents the mean and r2 the standard deviation of a truncated log-

normal distributed random variable corresponding to a particular priority-complexity

pair. In other words, if M is a random variable following a normal distribution with

mean r1 and standard deviation r2, then the truncated lognormal random variable is

eM ^ >, where > is a truncation constant that is chosen to be large in practice.

SLA constraints, given by the mapping 
 : C � P ! (r1; r2); ri 2 R; i = 1; 2. Here


(Ci; Pj) = (r1; r2) means that the SLA target for SRs from customer Ci and with

priority Pj is (r1; r2), with r1 specifying the SLA percentage target and r2 the res-

olution time target (in hours). For instance, 
(C1; P1) = (95; 4) translates to the

requirement that at least 95% of the SRs from customer C1 with priority level P1

should be closed within 4 hours. Note that the SLAs are computed at the end of each

month and hence the aggregate SLA targets are applicable to all SRs that are closed

within the month under consideration.

Note that each arriving SR has a customer identifier (2 C) and a priority identifier (2 P )

and any SW works in a particular shift (2 A) and possesses a skill level (2 B). In other

words, each customer can issue multiple SRs with their respective SLA targets and the

SWs with the right skill level and relevant shift have to pull these SRs from the complexity

queues and close them within the deadline specified by the SLA. The set I and the mapping

� allow us to model the variations in arrival rates better than in a setting where the arrivals

are assumed to be Poisson-distributed for the entire period. We assume that the number

of arrivals during any interval (2 I) is upper-bounded by a sufficiently large constant.

Further, the time taken by a SW to complete an SR is stochastic and follows a lognormal

distribution, where the parameters of the distribution are learned by conducting time and

motion exercises described in Banerjee et al. [2011].

In the following we provide the specifics of the simulation framework.

� I contains one element for each hour of the week. Hence, jIj = 168. Each time interval

is one hour long.

� P=fP1; P2; P3; P4g, where, P1 > P2 > P3 > P4.

� B=fHigh, Medium, Lowg, where, High > Medium > Low.

� Swing: Swing is invoked when Low queue length> 10. When this happens, one SW is
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randomly chosen with skill level Medium and the SW is assigned SRs from Low queue

until Low queue length< 10.

� Preemption: Preemption relation ) is the transitive closure of the tuples P1 ) P2,

P2 ) P3, and P2 ) P4.

� Breaks: Each SW takes 3 breaks in a shift independently of other SWs with a total

duration of 75 minutes. The maximum priority SRs preemptible by breaks is P3. In

other words, breaks are modeled as internal SRs with priority P2.

� On-call: Minimum priority above which SRs arriving out of shift hours are routed to

on-call SW is P2. Hence, SRs with priorities P3 or P4 would wait till the next shift if

they arrive in non-shift hours.

� Infrastructure down: The mean-time-between-failures of work infrastructure is 178

hours and the mean down time is 104 minutes (based on historical data). Further, the

time between failures and down-times is distributed exponentially.

Table 9.1(a) illustrates a simple SS configuration, specifying the staffing levels across

shifts and skill levels. This essentially constitutes the worker parameter that we optimize.

In this example,A = fS1, S2, S3g and B = fhigh, medium, lowg. Tables 9.1(b) and 9.2(b)

provide sample utilizations and SLA attainments on a SS with three shifts, two customers

and four priority levels. Table 9.2(a) illustrates the target SLA requirements for the same

SS.

Table 9.1: Sample workers and utilizations
(a) Workers �i

Skill levels
Shift High Med Low
S1 1 3 7
S2 0 5 2
S3 3 1 2

(b) Utilizations ui;j
Skill levels

Shift High Med Low
S1 67% 34% 26%
S2 45% 55% 39%
S3 23% 77% 62%

Figure 9.1 shows the main components of the SS. The SRs arrive from multiple cus-

tomers and the arrival rate is specific to the hour of week, i.e., within each hour of week, and

for each customer-priority pair, the arrivals follow a Poisson distribution. The parameters

of this distribution are learned from historical data over a period of at least 6 months. Once

the SR arrives, it is queued up in a matching complexity queue by the queue manager and
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Table 9.2: Sample SLA constraints
(a) SLA targets 
i;j

Customers
Priority Bossy Corp Cool Inc
P1 95%4h 89%5h
P2 95%8h 98%12h
P3 100%24h 95%48h
P4 100%18h 95%144h

(b) SLA attainments 
0

i;j

Customers
Priority Bossy Corp Cool Inc
P1 98%4h 95%5h
P2 98%8h 99%12h
P3 89%24h 90%48h
P4 92%18h 95%144h

Figure 9.1: Operational model of an SS

the dispatcher would then assign it to a SW based on the dispatching policy. For instance,

in the PRIO-PULL policy, SRs are queued in the complexity queues based directly on the

priority assigned to them by the customers. On the other hand, in the EDF policy, the time

left to SLA target deadline is used to assign the SRs to the SWs i.e., the SW works on the

SR that has the earliest deadline. Note that we have a finite buffer system, i.e., the number

of SRs in each of the complexity queues is upper-bounded by a sufficiently large constant.

Any arriving SR that finds the corresponding complexity queue full will depart the system.

A SW works in exactly one shift (working days and times) and a SS may operate in

multiple shifts. We say that a particular configuration of workers across shifts and skill

levels is feasible if (a) the SLA constraints are met and (b) the complexity queues do not
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become unbounded when using this configuration. While the need for (a) is obvious, the

requirement for having bounded complexity queues is also necessary. This is because SLA

attainments are calculated only for work completed and not for that waiting for completion

in the complexity queues. For instance, say in a given month, 100 SRs arrive at various

times from a customer to a SS and only 50 of them are completed within the target com-

pletion time stipulated by the SLA constraints. The remaining 50 SRs are still in progress

without a known completion time and hence do not have an impact on the SLA attainment

measures. Hence, a healthy SLA attainment alone is insufficient and the bound on the

growth of complexity queues fills the gap.

9.3 Constrained parameterized hidden Markov Cost Pro-

cess

In this section, we describe our problem framework. A similar framework is considered

for instance in Marbach and Tsitsiklis [2001], except that the setting considered there is

unconstrained and the parameter is continuous-valued. Moreover, in Marbach and Tsitsiklis

[2001], the state is fully observable and rewards (and not costs) are considered. Our setting,

however, involves a discrete-time, continuous-space hidden Markov process represented

by f(Xn; Yn); n � 0g. The idea here is that whereas f(Xn; Yn) is Markov for a given

parameter � that we describe below, the portion Xn of this process is observed while Yn is

hidden. We describe Xn and Yn more clearly in Section 9.3.2. The transition probabilities

of this process depend on the worker parameter � = (�1; : : : ; �N)
T 2 D, where N =

jAj � jBj. In the above, �i indicates the number of service workers whose skill level is

(i � 1)%jBj and whose shift index is (i � 1)=jBj, with the indices into the set B starting

from 0, i.e., i 2 f0; 1; : : : ; jBj� 1g. As an example, the worker parameter for the setting in

Table 9.1(a) is � = (�1; : : : ; �9)
T = (1; 3; 7; 0; 5; 2; 3; 1; 2)T . The parameter vector � takes

values in the set D, where D 4
= f0; 1; : : : ;WmaxgN . Here Wmax is an upper bound for the

number of workers in any shift and of any skill level. Note that one can enumerate all the

points in D as D = fD1; D2; : : : ; Dpg for some p > 1.

As illustrated in Fig 9.2, the system stochastically transitions from one state to another,

while incurring a state-dependent cost. In addition, there are state-dependent single-stage

(constraint) functions described via gi;j(Xn); h(Xn); i = 1; : : : ; jCj; j = 1; : : : ; jP j. These

shall correspond to the SLA and queue stability constraints. Note that these functions de-

pend explicitly on only the observed partXn of the state process (Xn; Yn); n � 0. The state
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nT (n+ 1)T
Xn

Instant

State Xn+1

Simulate(�n; T )

Figure 9.2: A portion of the time-line illustrating the evolution of the process

together with the cost and constraint functions constitutes the constrained hidden Markov

cost process. The nth system transition of this underlying process involves a simulation

of the service system for a fixed period T with the current worker parameter �n. For in-

stance, in our experiments, T = 10, i.e., we simulate the service system for a period of ten

months with the staffing levels specified by �n. Also, note that this is a continuously run-

ning simulation, where at discrete time instants nT we update the worker parameter �n and

the simulation output causes a probabilistic transition from the current state (Xn; Yn) to the

next state (Xn+1; Yn+1), while incurring a single stage cost c(Xn). The precise definitions

of the state, the cost and the constraint functions are given in Section 9.3.2. By an abuse of

notation, we refer to the state at instant nT as (Xn; Yn).

9.3.1 The Objective

We use the long-run average cost as the performance objective in our setting. Thus, we are

interested in optimizing the steady-state system performance. The optimization problem is

the following:

Find min
�
J(�)

4
= lim

n!1

1
n

n�1P
m=0

c(Xm)

subject to

Gi;j(�)
4
= lim

n!1

1
n

n�1P
m=0

gi;j(Xm) � 0;

8i = 1; : : : ; jCj; j = 1; : : : ; jP j;
H(�)

4
= lim

n!1

1
n

n�1P
m=0

h(Xm) � 0:

(9.1)

We assume below that the Markov process f(Xn; Yn)g under any parameter � is ergodic. In

such a case, the limits in (9.1) are well-defined. If this is not the case, one may replace the

“lim” with “limsup” in the definitions of J(�); Gi;j(�) and H(�) in (9.1). Given the above

constrained Markov cost process formulation, the optimization problem (9.1) essentially
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stipulates that the optimal worker parameter �� should minimize the long-run average cost

objective J(�) while maintaining queue stability in steady-state (i.e., the long-run average

of h(Xn) should not be above zero) and adhering to contractual SLAs, i.e., that the long-run

average of gi;j(Xn) should not be above zero as well, for any feasible (i; j)-tuple.

The SASOC algorithms that we design subsequently (see Section 10.2) use the cost

c(Xn) and constraint functions gi;j(Xn) and h(Xn) to tune the worker parameter �n at

instant nT , and the system simulation would then continue with the updated worker pa-

rameter. While it is desirable to find the optimum �� 2 S, i.e.,

�� = argmin

�
J(�) s.t. � 2 D; Gi;j(�) � 0; i = 1; : : : ; jCj; j = 1; : : : ; jP j; H(�) � 0

�
;

it is in general very difficult to achieve a global minimum. We apply the Lagrange relax-

ation procedure to the above problem and then provide SPSA based algorithms - both first

as well as second order, for finding a locally optimum parameter ��. We now describe in

detail the state, single stage cost and constraint functions that we adopt for the constrained

hidden Markov cost process formulated for optimizing the staffing in the context of service

systems.

9.3.2 State, Cost and Constraints

The observed part Xn of the state at instant n is the vector of the lengths of waiting SR

queues corresponding to each skill level, the current utilization of workers for each shift

and skill level, and the current SLA attainments for each customer and SR priority. The

un-observed or hidden part Yn is the vector of residual service times, i.e., the pending time

to service completion of SRs which are being worked upon by individual SWs. Thus,

Xn = (N (n); u(n); 
0(n); q(n)); (9.2)

Yn = (R(n)); (9.3)

where,

� N (n) is a vector of complexity queue lengths and is defined asN (n) = (N1(n); : : : ;NjBj(n)),
with Ni(n) denoting the complexity queue length corresponding to the skill level i,
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where i = 1; : : : ; jBj. For instance, N0(n) would give the length of the complexity

queue housing ‘low’ complexity SRs and N1(n);N2(n) would give the corresponding

numbers for ‘medium’ and ‘high’ complexity SRs. Note that since all the complexity

queues are of finite size, we have Ni(n) � &; i = 1; : : : ; jBj, where & > 0 is a suffi-

ciently large constant.

� R(n) is a vector of residual service times and is defined as

R(n) = (R1;1;1(n); : : : ;R1;1;Wmax
(n); : : : ;RjAj;jBj;Wmax

(n)), where Ri;j;k(n) denotes

the residual service time of the SR currently being processed at instant nT by the kth

worker in shift i and of skill level j. By convention, we set Ri;j;k(n) = � if there is no

worker corresponding to the shift i, skill level j and index k with this shift-skill combi-

nation. Here � is a special value used to signify the absence of a worker in a particular

shift-skill level combination.

� The utilization vector u(n) = (u1;1(n); : : : ; ujAj;jBj(n)), where each ui;j(n) 2 [0; 1] is

the average utilization of the workers in shift i and skill level j, at instant n.

� The SLA attainment vector 
0(n) = (
01;1(n); : : : ; 

0
jCj;jP j(n)), where 
0i;j(n) 2 [0; 1]

denotes the SLA attainment for customer i and priority j, at instant n.

� q(n) is an indicator variable that denotes the queue feasibility status of the system at in-

stant n. In other words, q(n) is 0 if the growth rate of the SR queues (for each complexity)

is beyond a threshold and is 1 otherwise. We need q(n) to ensure system steady-state

which is independent of SLA attainments because the latter are computed only on the

SRs that were completed and not on those queued up in the system.

Remark 7 Let S denote the state space. We observe that S is a compact set. This is

because each of the state components in Xn and Yn are closed and bounded. In particular,

each element of u(n), 
0(n) takes values in [0; 1] and 0 � q(n) � 1. The system SR queues

N are also of finite length and hence, Xn is bounded. The residual time vector in Yn also

takes values in a compact set in lieu of the fact that each element ofR is upper bounded by

the total service time at the SR queues and that in turn takes values in [0;>].

Remark 8 In our setting, the service times follow a truncated log-normal distribution. The

residual service time at any point cannot be precisely estimated in a real system. Hence,

R(n) is the hidden state component for the Markov process. Strictly speaking, the setting

falls into the realm of hidden Markov process. However, the cost function c(�) and other
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constraint functions of Xn formulated later in this section do not depend on the value of

R(n) and instead work with the observable components of the state. Further, the algo-

rithms we propose aim to minimize a long average of the cost function, while satisfying the

constraints (also long-run averages) and hence, do not require R(n) in their update rules.

Considering that the queue lengths, utilizations and SLA attainments at instant n + 1

depend only on the state at instant n, we observe that f(Xn(�); Yn(�)); n � 0g is a con-

strained hidden Markov cost process for any given (fixed) parameter �. We now describe

the single stage cost function, whose long-run average sum we try to optimize in (9.1). We

let the cost function c(Xn) have the form:

c(Xn) = r �
�
1�PjAj

i=1

PjBj
j=1 �i;j � ui;j(n)

�
+ s�

 PjCj
i=1

PjP j
j=1

��
0i;j(n)� 
i;j��
jCj � jP j

!
;

(9.4)

where r; s � 0 and r + s = 1. Further, 0 � 
i;j � 1 denotes the contractual SLA for

customer i and priority j. The single stage cost function here can be seen to be bounded.

In fact, from (9.4), we observe that 0 � c(Xn) � 1. This is because ui;j(n); 
i;j; 
0i;j(n) 2
[0; 1] and each component in (9.4) is upper-bounded by 1.

The cost function is designed to balance between the conflicting objectives of maximiz-

ing the utilization of workers and meeting the SLA requirements simultaneously. By the

first component in (9.4), we seek to minimize the under-utilization of workers as it is more

fine-grained and hence, allows tighter minimization in comparison to minimizing just the

sum of workers across shifts and skill levels. The second component in (9.4) represents the

over/under-achievement of SLAs, which is the distance between attained and the contrac-

tual SLAs. While the need for meeting the target SLAs motivates the under-achievement

part in the second component, it is also necessary to minimize over-achievement of SLAs.

This is because an over-achieved SLA, for instance meeting 100% instead of the target of

95% for a particular customer, requires more time and effort than necessary from some

workers and no additional reward is obtained in this case.

Note that the first term in (9.4) uses a weighted sum of utilizations over workers from

each shift and across each skill level. Further, the weights �i;j are fixed and not time-

varying. Using historical data on SR arrivals, the percentage of workload arriving in each

shift and for each skill level is obtained. These percentages decide the weights �i;j used in
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(9.4), that in turn satisfy

0 � �i;j � 1; and
jAjX
i=1

jBjX
j=1

�i;j = 1;

for i = 1; 2; : : : ; jAj; and j = 1; 2; : : : ; jBj. This prioritization of workers helps in optimiz-

ing the worker set based on the given workload. For instance, if 70% of the SRs requiring

low skill worker attention arrive in shift 1, then one may set �1;0 = 0:7, in the cost function

(9.4), where 0 denotes the low skill level index.

The single-stage constraint functions gi;j(�); h(�); i = 1; : : : ; jCj; j = 1; : : : ; jP j; are

given by:

gi;j(Xn) = 
i;j � 
0i;j(n);8i = 1; : : : ; jCj; j = 1; : : : ; jP j; (9.5)

h(Xn) = 1� q(n): (9.6)

Here (9.5) specifies that the attained SLA levels should be equal to or above the contractual

SLA levels for each customer-priority tuple. Further, (9.6) ensures that the SR queues

for each complexity in the system stay bounded. In the constrained optimization problem

formulated below, we attempt to satisfy these constraints in the long-run average sense (see

(9.1)).

The SASOC algorithms treat the parameter as continuous-valued and tune it accord-

ingly. Let us denote this continuous version of the worker parameter by �� = (��1; : : : ; ��N).

Note that ��i 2 [0;Wmax]; i = 1; 2; : : : ; N . We now design a smooth projection operator

� that projects �� on to the discrete space D so that the same can be used for performing

the simulation of the service system. We call the �-operator as a generalized projection

scheme as it lies in between a fully deterministic projection scheme based on mere round-

ing off and a completely randomized scheme, whereby depending on the value of ��j (for

any j = 1; : : : ; N ) one can find points Dk and Dk+1 with Dk < Dk+1, Dk;Dk+1 2 D
such that Dk and Dk+1 are the immediate neighbours of ��j in the set D. Then, one sets the

corresponding discrete parameter as

�j =

8><>:
Dk+1 w.p.

��j �Dk

Dk+1 �Dk
;

Dk w.p.
Dk+1 � ��j
Dk+1 �Dk

:

(9.7)
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9.3.3 A Generalized Projection Operator

For any �� = (��1; : : : ; ��N) with ��j 2 [0;Wmax]; j = 1; 2; : : : ; N , we define a projection

operator �(��) = (�1(��1); : : : ;�N(��N)) 2 D which projects any �� onto the discrete set D
as follows:

Let � > 0 be a fixed real number and ��i be such that Dj � ��i � Dj+1;Dj < Dj+1

for some Dj;Dj+1 2 D. Let us consider an interval of length 2� around the midpoint of

[Dj;Dj+1] and denote it as [ ~D1; ~D2], where ~D1 = Dj+Dj+1

2
� � and ~D2 = Dj+Dj+1

2
+ � .

Then, �i(��i) for �i 2 [Dj; ~D1] [ [ ~D2;Dj+1] is defined by

�i(��i) =

8>>>>>><>>>>>>:

0 if ��i < 0

Dj if ��i � Dj+Dj+1

2
� �

Dj+1 if ��i � Dj+Dj+1

2
+ �

Wmax if �� � Wmax:

(9.8)

Further, �i(��i) for ��i 2 [ ~D1; ~D2] is given by

�i(��i) =

8<:Dj w.p. f( ~D2���i
2�

)

Dj+1 w.p. 1� f( ~D2���i
2�

)
(9.9)

In the above, w.p. stands for with probability and f is any continuously differentiable

function defined on [0; 1] such that f(0) = 0 and f(1) = 1. Note that we deterministi-

cally project onto either Dj or Dj+1 if ��i is outside of the interval [ ~D1; ~D2]. Further, for
��i 2 [ ~D1; ~D2], we project randomly using a smooth function f . It is necessary to have a

smooth projection operator to ensure convergence of our SASOC algorithms as opposed

to a deterministic projection operator that would project ��i 2 [Dj; D
j+Dj+1

2
) to Dj and

��i 2 [D
j+Dj+1

2
;Dj+1] to Dj+1. The problem with such a deterministic operator is that there

is a jump at the midpoint and hence, when extended for any � in the convex hull �D, the

transition dynamics of the process f(Xn; Yn); n � 0g is not necessarily continuously dif-

ferentiable in the parameter. In other words, a non-smooth projection operator does not

allow us to mimic a continuous parameter system.

The SASOC algorithms that we present subsequently tune the worker parameter in the

convex hull ofD, denoted by �D, a set that can be defined as �D = [0;Wmax]
N . This idea has

been used in Bhatnagar et al. [2011b] for an unconstrained discrete optimization problem.
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However, the projection operator used there was a fully randomized operator. The gener-

alized projection scheme that we incorporate has the advantage that while it ensures that

the transition dynamics of the parameter extended Markov process is smooth (as desired),

it requires a lower computational effort because in a large portion of the parameter space

(assuming � is small), the projection operator is essentially deterministic.

We also require another projection operator �� that projects any � 2 RN onto the set �D
and is defined as ��(�) = (��1(�1); : : : ; ��N(�N)), where ��i(�i) = min(0;max(�i;Wmax)),

i = 1; : : : ; N . Thus, ��(�) keeps the parameter updates within the set �D and �(�) projects

them to the discrete set D. The projected updates are then used as the parameter values for

conducting the simulation of the service system.

9.3.4 Assumptions

We now make the following assumptions on the process, cost and step-sizes. For our

algorithms that we present in the next chapter, one of (A2) or (A2’) (below) will be assumed

depending on whether the algorithm incorporates a Newton-based search technique or a

gradient-based procedure.

(A1) The Markov process f(Xn(�); Yn(�)); n � 0g under a given dispatching policy and

parameter � is ergodic.

(A2) The single-stage cost functions c(�), gi;j(�) and h(�) are all continuous. The long-

run average cost J(�) and constraint functions Gi;j(�); H(�) are twice continuously

differentiable with bounded third derivative.

(A2’) The single-stage cost functions c(�), gi;j(�) and h(�) are all continuous. The long-run

average cost J(�) and constraint functions Gi;j(�); H(�) are continuously differen-

tiable with bounded second derivative .

(A3) The step-sizes fa(n)g, fb(n)g and fd(n)g satisfy

P
n a(n) =

P
n b(n) =

P
n d(n) =1;

P
n(a

2(n) + b2(n) + d2(n)) <1;
b(n)

d(n)
;
a(n)

b(n)
! 0 as n!1:

Assumption (A1) ensures that the process f(Xn; Yn)g is stable for any given � and en-

sures that the long-run averages of the single stage cost and constraint functions in (9.1) are
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well-defined. (A2)/(A2’) is a technical requirement needed to push through suitable Tay-

lor’s arguments in order to prove the convergence of the corresponding algorithm. The first

two conditions in (A3) are standard requirements for step-size sequences and the last part

ensures the separation of time scales between the different recursions in SASOC algorithms

discussed in detail in Section 10.1.

Remark 9 As seen before, the state space S is compact and ergodicity of the underlying

Markov process f(Xn; Yn)g will follow if one ensures that there is at least one worker

available for each complexity class.

9.4 Summary

In this chapter, we motivated the discrete optimization problem of adaptively determining

optimal staffing levels in SS. We formulated the problem as a constrained hidden Markov

cost process, with the aim of finding an optimum worker parameter that minimizes a certain

long-run cost objective, while adhering to a set of constraint functions, which are also long

run averages. All SASOC algorithms that we describe in the next chapter are simulation

based optimization methods as the single-stage cost and constraint functions are observable

only via simulation and no closed form expressions are available. The single-stage cost

that we designed balanced the conflicting objectives of maximizing worker utilizations

and minimizing the over-achievement of SLAs. We also described a smooth (generalized)

projection operator that projects a continuous-valued worker parameter onto a discrete set.

As we will see in the next chapter, this helps in imitating a continuous parameter system

with suitably defined transition dynamics and hence facilitates the usage of simultaneous

perturbation technique.

In the next chapter, we present three novel SASOC algorithms for optimizing staff al-

location in the context of SS. These algorithms solve the constrained optimization problem

by applying the Lagrange relaxation procedure and incorporate an SPSA based scheme for

performing gradient descent in the primal and at the same time, ascent in the dual, for the

Lagrange multipliers.



Chapter 10

Simultaneous Perturbation Methods for
Adaptive Labor Staffing

In this chapter, we develop three novel discrete parameter simulation-based optimization

algorithms for solving the problem considered in Chapter 9, that of adaptive labor staffing.

Henceforth, we shall refer to these algorithms as SASOC (Staff Allocation using Stochastic

Optimization with Constraints) algorithms. The overall optimization scheme in all algo-

rithms has two main stages: (a) evaluation of a candidate solution (worker parameter) to

the long-run constrained optimization problem, and (b) updation of the worker parameter

in the negative descent direction of the long-run performance objective. For the evaluation

step (a) above, we leverage the simulation-based operational model developed in Baner-

jee et al. [2011]. All the SASOC algorithms that we propose fall into the category of

simulation-based optimization methods. These methods do not require a priori knowledge

of the service system dynamics in general and the single stage cost function in particular.

Instead, they use the output of the service system simulation to find the optimum of a cer-

tain long term performance objective. Further, all SASOC algorithms that we propose are

based on the crucial idea of perturbing the parameter vector using independent, identically

distributed symmetric Bernoulli random variables. This idea constitutes the simultaneous

perturbation stochastic approximation (SPSA) scheme that is an integral part of all the

SASOC algorithms proposed here. More general perturbation random variables may how-

ever be used, see for instance, Spall [1992, 2000]. All SASOC algorithms involve a certain

generalized smooth projection operator, which is essential to project the continuous-valued

worker parameter tuned by the SASOC algorithms onto the discrete set. The smoothness

is necessary to ensure that the underlying transition dynamics of the constrained Markov

146
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cost process is itself smooth (as a function of the continuous-valued parameter) - a critical

requirement to prove the convergence of all SASOC algorithms.

The rest of this chapter is organized as follows: In Section 10.1, we introduce our

solution methodology and in Section 10.2, we present our stochastic optimization tech-

niques, specifically the first order method SASOC-G as well as two second order methods

- SASOC-H and SASOC-W, respectively. In Section 10.3, we provide the proofs of con-

vergence of all the SASOC algorithms. In the next chapter, we discuss the implementation

of our algorithms as well as OptQuest, and present the performance simulation results.

10.1 Solution Methodology

The constrained long-run average cost optimization problem (9.1) can be expressed using

the standard Lagrange multiplier theory as an unconstrained optimization problem given

below.

max
�

min
�
L(�; �)

4
= lim

n!1

1

n

n�1X
m=0

E

8<:c(Xm) +

jCjX
i=1

jP jX
j=1

�i;jgi;j(Xm) + �fh(Xm)

9=;
(10.1)

where �i;j � 0; 8i = 1; : : : ; jCj; j = 1; : : : ; jP j represent the Lagrange multipliers

corresponding to constraints gi;j(�) and �f represents the Lagrange multiplier for the con-

straint h(�), in the optimization problem (9.1). Also, � = (�i;j; �f ; i = 1; : : : ; jCj; j =

1; : : : ; jP j)T . The function L(�; �) is commonly referred to as the Lagrangian. An optimal

(��; ��) is a saddle point for the Lagrangian, i.e., L(�; ��) � L(��; ��) � L(��; �): Thus, it

is necessary to design an algorithm which descends in � and ascends in � in order to find the

optimum point. The simplest iterative procedure for this purpose would use the gradients

of the Lagrangian with respect to � and � to descend and ascend respectively. However, for

the given system, the computation of gradient with respect to � would be intractable due

to lack of a closed form expression of the Lagrangian. Thus, a simulation based algorithm

is required. The above explanation suggests that an algorithm for computing an optimal

(��; ��) would need three stages in each of its iterations.

1. The inner-most stage which performs one or more simulations over several time steps

and aggregates data, i.e., does the averaging of the single-stage cost and constraint

functions c(�); gi;j(�) and h(�) for any given � and � updates.
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2. The next outer stage which estimates the gradient of the Lagrangian along � and

updates � along a descent direction. This stage would perform several iterations for

a given � and find a good estimate of �; and

3. The outer-most stage which updates the Lagrange multipliers � along an ascent di-

rection, using the converged values of the inner two loops.

The above three steps will have to be performed iteratively till the solution converges

to a saddle point described previously. Note that the loops are nested in the sense that the

loop in iteration (1) would be a sub-loop for iteration (2). Likewise, iteration (2) would

be a sub-loop for iteration (3). Thus, in between two successive updates of an outer loop

(iterations (2) or (3)), one would potentially have to wait for a long time for convergence of

the inner loop procedure (iteration (1) or iterations (1) and (2), respectively). This problem

gets addressed by using simultaneous updates to all three stages in a stochastic recursive

scheme but with different step-size schedules, the outer-most having the smallest while the

inner-most having the largest of step-sizes. The resulting scheme is a multiple time-scale

stochastic approximation algorithm [Borkar, 2008, Chapter 6].

10.2 Our Algorithms

In a deterministic optimization setting (i.e., without stochastic noise), any negative descent

algorithm for obtaining the minimum (in �) of the Lagrangian (10.1) (for a given �) would

have the form

�(n+ 1) = ��(�(n)� 
kH(�(n))�1r�L(�; �)); (10.2)

where H(�(n)) is a positive definite and symmetric matrix and 
k > 0 is a given step-

size parameter. It is easy to see that �H(�(n))�1r�L(�; �) is a descent direction, since

H(�(n))�1 is a positive definite matrix. Using the fact that L(�; �) has bounded second

derivatives (see (A2)) and with suitable assumptions on the step-sizes 
k, it would follow

that (10.2) converges.

However, if the single stage cost function c(�) and the constraint functions gi;j(�) and

h(�) are observable only via simulation or in other words, that r�L(�; �) is not com-

putable, then a stochastic approximation based algorithm for obtaining a saddle point of

the Lagrangian (10.1) would update the worker parameter along a descent direction as fol-

lows:
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�(n+ 1) = ��(�(n)� 
kH�1
n hn): (10.3)

In the above, hn represents the estimate of the gradient and Hn, the positive definite and

symmetric matrix used at update instant n. The convergence of our algorithms, which

have the form (10.3) is established by using a diminishing stepsize sequence (see (A3)

below) and employing a biased estimate using SPSA of the gradient, with the bias vanishing

asymptotically.

All the SASOC algorithms that we propose are noisy variants of (10.3) and use SPSA

techniques to estimate the gradient of the Lagrangian w.r.t. �. In addition, two of our

algorithms, SASOC-H and SASOC-W, use SPSA techniques to generate a sequence of

positive definite and symmetric matrices. The three algorithms mainly differ in the choice

ofHn and hence also the descent direction:

1. SASOC-G: HereHn = I (identity matrix) and hence, this algorithm tunes the worker

parameter in the direction of the negative gradient. The gradient is estimated using a

two-measurement version of SPSA.

2. SASOC-H: Here Hn = r2L(�; �)(n), the Hessian of L w.r.t. �(n) and hence, this

uses a Newton update for optimizing the worker parameter. We use a two pertur-

bation sequence version of SPSA to simultaneously estimate the gradient and the

Hessian. For simplicity in the numerical experiments, as with Bhatnagar [2005], we

implement the Jacobi variant of SASOC-H wherein Hn is a diagonal matrix with

diagonal entries corresponding to the second-order partial derivatives (same as cor-

responding entries in the Hessian) but with all other elements set to zero.

3. SASOC-W: Here, as with SASOC-H, Hn is the Hessian of L. However, in this algo-

rithm, the inverse of the Hessian matrix is tuned directly by using a procedure based

on the Woodbury’s identity. In contrast, SASOC-H estimates the Hessian and per-

forms a matrix inverse. We use the full Hessian in our experiments because of ease

of computation here over the case of direct Hessian inversion.

Thus, SASOC-G is a first-order method performing only gradient estimation while the

other two algorithms SASOC-H and SASOC-W, are second-order methods that estimate

both the gradient and the Hessian.

The overall flow of all SASOC algorithms can be diagrammatically represented as in

Fig. 10.1. Each iteration of the algorithm involves two simulations (each for a period T ) -
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one with �(�(n)), i.e., the current estimate of the parameter projected using the generalized

projection operator so that it takes values in the discrete set D and the other with the (pro-

jected) perturbed parameter, �(�(n) + p(n)). Note that the perturbation p(n) is algorithm-

specific. For SASOC-G, p(n) = ��(n) and for SASOC-H/W, p(n) = �1�(n) + �2�̂(n).

The rationale behind the choice of p(n) will be subsequently clarified when the individ-

ual SASOC algorithms are presented. In every stage of the SASOC algorithms, the two

simulations are carried out as shown in Fig. 10.1. Using the state values of the two simula-

tions, X(n) and X̂(n), the worker parameter � is updated in an algorithm-specific manner.

Algorithm 2 gives the structure of all three of our incremental update SASOC algorithms.

10.2.1 Algorithm structure

+

p(n)

Simulate(�(�̂); T )

Simulate(�(�); T )
UpdateRule(�)

M

�̂(n)
X̂(n)

X(n)

�(n+ 1)

�(n) �(n)

Figure 10.1: Overall flow of the algorithm 2.

Algorithm 2 Skeleton of SASOC algorithms
Input:

� R, a large positive integer;

� �0, initial parameter vector; p(�); �; K � 1

� UpdateRule(), the algorithm-specific update rule for the worker parameter � and

Lagrange multiplier �.

� Simulate(�; T )! X , the simulator of the SS

Output: ��
4
= �(�(R)).

�  �0, n 1
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begin loop
X  Simulate(�(�(n)); T ).

X̂  Simulate(�(�(n) + p(n)); T ).

UpdateRule().

n n+ 1

if n = R then
Terminate and output �(�(R)).

end if
end loop

10.2.2 SASOC-G Algorithm

SASOC-G is a three time-scale stochastic approximation algorithm that does primal de-

scent using a two-measurement SPSA while performing dual ascent on the Lagrange mul-

tipliers.

SPSA based gradient estimate

Here, the gradient of the Lagrangian w.r.t. � is obtained according to

r�L(�; �) = lim
�#0

E

��
L(� + ��; �)� L(�; �)

�

�
��1

���� �; �� ; (10.4)

where � is a vector of perturbation random variables that are independent, zero-mean,

�1-valued and have the symmetric Bernoulli distribution. More general distributions on

these random variables can be chosen as described in Spall [1992, 2000]. In (10.4), ��1

represents a vector of element-wise inverses of the � vector. Note that (10.4) is a one-sided

estimate whose convergence is shown in [Chen et al., 1999, Lemma 1]. For a sufficiently

large K > 1 and small � > 0, the estimate of the gradient can be approximated as follows:

r�L(�; �) � 1

K

KX
i=1

��
L(� + ��(i); �)� L(�; �)

�

�
�(i)�1

�
:
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Update rule of SASOC-G

From the form of the gradient estimator, it is clear that the Lagrangian function would be

needed to compute the gradient estimate. However, for our problem, obtaining a closed-

form expression for the Lagrangian itself is an intractable task. We overcome this by run-

ning two simulations with parameters �(�(n)) and �(�(n) + p(n)). Here, p(n) = ��(n),

a choice motivated by the form of the gradient estimate in (10.4). Using the output of the

two simulations, we estimate the quantities L(� + ��; �) and L(�; �), respectively on the

faster timescale. These estimates are in turn used to tune the worker parameter � in the

negative gradient descent direction. For �i;j and �f , values of gi;j(�) and h(�) respectively

provide a stochastic ascent direction, proof of which will be given later in Theorem 10.6.

Since maximization of the Lagrangian w.r.t. �i;j and �f represents the outer most step,

these parameters are updated on the slowest time-scale. The overall update rule for this

scheme, SASOC-G, is as follows: For all n � 0,

�i(n+ 1) = ��i

�
�i(n) + b(n)

�
�L(nK)��L0(nK)

�4i(n)

��
;8i = 1; 2; : : : ; N;

where for m = 0; 1; : : : ; K � 1,

�L(nK +m+ 1) = �L(nK +m)+

d(n)(c(XnK+m) +
jCjP
i=1

jP jP
j=1

�i;j(nK)gi;j(XnK+m) + �fh(XnK+m)� �L(nK +m));

�L0(nK +m+ 1) = �L0(nK +m)+

d(n)(c(X̂nK+m) +
jCjP
i=1

jP jP
j=1

�i;j(nK)gi;j(X̂nK+m) + �fh(X̂nK+m)� �L0(nK +m));

�i;j(n+ 1) = (�i;j(n) + a(n)gi;j(Xn))
+ ;8i = 1; 2; : : : ; jCj; j = 1; 2; : : : ; jP j;

�f (n+ 1) = (�f (n) + a(n)h(Xn))
+ :

9>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>;
(10.5)

We now explain the various quantities in (10.5).

� K � 1 is a fixed parameter which controls the rate of update of � in relation to that of �L

and �L0. This parameter allows for accumulation of updates to �L and �L0 for K iterations

in between two successive � updates;

� Xm represents the state at iteration m from the simulation run with nominal parameter

�[ n
K
] while X̂m represents the state at iteration m from the simulation run with perturbed
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parameter �[ n
K
] + ��[ n

K
]. Here [ n

K
] denotes the integer portion of n

K
. For simplicity,

hereafter we use � to denote �[ n
K
] and � + �� to denote �[ n

K
] + ��[ n

K
];

� � > 0 is a fixed perturbation control parameter while � is a vector of perturbation

random variables that are independent, zero-mean and have the symmetric Bernoulli

distribution;

� The operator ��(�) ensures that the updated value for � stays within the convex hull �D and

is defined in Section 9.3.3; and

� �L and �L0 represent Lagrange estimates corresponding to � and �+�� respectively. Thus,

for each iteration, two simulations are carried out, one with the nominal parameter � and

the other with the perturbed parameter �+ ��, the results of which are used to update �L

and �L0.

We achieve separation of time-scales between the recursions of �i; �L; �L0 and � via the

difference in the step-sizes a(n); b(n) and d(n) (see (A3)). The chosen step-sizes ensure

that the recursions of Lagrange multipliers �i;j proceed ‘slower’ in comparison to those of

the worker parameter �, while the updates of the average cost - �L and �L0 proceed the fastest.

10.2.3 SASOC-H Algorithm

This is a second-order algorithm for adaptive labour staffing which uses SPSA based tech-

niques to estimate both the gradient and the Hessian. As discussed before, the overall

algorithm structure is represented by Fig. 10.1 with p(n) = �(n) + �1�(n) + �2�̂(n) in

this case. Thus, each iteration of the algorithm involves two simulations (each for a period

T ) - one with �(�(n)) and the other with �(�(n)+ �1�(n)+ �2�̂(n)). As explained in the

next section, the two perturbation sequences � and �̂ are used to simultaneously estimate

the gradient and the Hessian of the Lagrangian w.r.t. �.

SPSA based simultaneous estimates for the gradient and the Hessian

Suppose the Lagrangian in (10.1) is twice differentiable w.r.t. �, then we can look at pos-

sible second order schemes for computing updates to �. If the Lagrangian (10.1) were a

second-degree equation, then the exact solution for the � update to reach the minimum

point would have been �[r2
�L(�0)]

�1r�L(�0) with �0 as the starting point, i.e.,

�� = �0 � [r2
�L(�0)]

�1r�L(�0);
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would be the optimal parameter. For a higher-degree Lagrangian, the above solution can be

used with a step-size parameter iteratively till convergence to an optimal ��. Let � and b� be

two independent vectors of perturbation random variables that are independent, zero-mean,

�1-valued and have the symmetric Bernoulli distribution. More general distributions for

� and b� may however be used, see Spall [1992, 2000]. We use the following estimates

for the gradient and Hessian, respectively, as described in [Bhatnagar et al., 2011a, Section

3.2.1]:

r�L(�; �) = lim
�1;�2#0

E

" 
L(� + �1�+ �2 b�; �)� L(�; �)

�2

! b��1

����� �; �
#
;

r2
�L(�; �) = lim

�1;�2#0
E

"
��1

 
L(� + �1�+ �2 b�; �)� L(�; �)

�1�2

!�b��1
�T ����� �; �

#
;

where ��1 and b��1 represent vectors of element-wise inverses of the � and b� vectors,

respectively. Thus, the inner terms of the above two expectations can be used for estimating

the Hessian and also updating �.

Update rule of SASOC-H

We have the following update rule of SASOC-H using two perturbation sequences with the

rest of the recursions the same as with the previous algorithm. For n � 0, we have

�i(n+ 1) = ��i

 
�i(n) + b(n)

NX
j=1

Mi;j(n)

 
�L(nK)� �L0(nK)

�2 b4j(n)

!!
; (10.6)

Hi;j(n+ 1) = Hi;j(n) + b(n)

 
�L0(nK)� �L(nK)

�14j(n)�2 b4i(n)
�Hi;j(n)

!
; (10.7)

for i; j = 1; : : : ; N . Note that

� The update equations corresponding to �L; �L0, �i;j; i = 1; : : : ; jCj; j = 1; : : : ; jP j and

�f are the same as in SASOC-G (10.5). However, note that the perturbed parameter

in this case is (�(n) + �1�(n) + �2 b�(n)). Thus, unlike SASOC-G, X̂m represents the

state at iterationm from the simulation run with perturbed parameter �(�(n)+�1�(n)+

�2 b�(n)), whileXm continues to have the same interpretation as in the case of SASOC-G.
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� �1; �2 > 0 are fixed perturbation control parameters while �(n) and b�(n); n � 0 are two

independent sequences of vectors of perturbation random variables that are independent,

zero-mean, �1-valued, and have the symmetric Bernoulli distribution;

� H(n) = [Hi;j(n)]
jAj�jBj;jAj�jBj
i=1;j=1 represents the nth Hessian estimate of the Lagrangian.

H(0) is a positive definite and symmetric matrix. We let H(0) = cI , with c > 0 and I

being the identity matrix; and

� M(n) = �(H(n))�1 = [M(n)i;j]
jAj�jBj;jAj�jBj
i=1;j=1 represents the inverse of the Hessian

estimate H(n) of the Lagrangian, where �(�) is a projection operator ensuring that the

Hessian estimates remain symmetric and positive definite. The � operation is assumed

to satisfy assumption (A4).

Assumption (A4)

The projection operator �(�) projects a square matrix to a symmetric positive definite ma-

trix. If fAng and fBng are sequences of matrices inRN�N such that lim
n!1

k An �Bn k =
0, then lim

n!1
k �(An)��(Bn) k = 0 as well. Further, for any sequence fCng of matrices

in RN�N , if sup
n
k Cn k < 1, then supn k �(Cn) k< 1 and supn k f�(Cn)g�1 k< 1;

as well.

We show in a later section with simulation results that second-order approaches exhibit

better convergence behaviour.

10.2.4 SASOC-W Algorithm

The SASOC-H algorithm is more robust than SASOC-G. However, it requires computation

of the inverse of the Hessian H at each stage which is a computationally intensive opera-

tion. We propose an enhancement using Woodbury’s identity to the previous algorithm that

results in significant computational gains. In particular, an application of Woodbury’s iden-

tity brings down the computational complexity fromO(n3)1 toO(n2), where n = jAj�jBj.

Woodbury’s Identity

Woodbury’s identity states that

(A+BCD)�1 = A�1 � A�1B �C�1 +DA�1B
��1

DA�1

1The popular Gauss-Jordan procedure for matrix inverse of a matrix has computational complexityO(n3).
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where A and C are invertible square matrices and B and D are rectangular matrices of

appropriate sizes. The Hessian update in (10.7) without projection can be rewritten as

H(n+ 1) = (1� b(n))H(n) + P (n)Z(nK)Q(n)

where

P (n) =
1

�1

�
1

�1(n)
;

1

�2(n)
; : : : ;

1

�jAj�jBj(n)

�T
; Q(n) =

1

�2

"
1b�1(n)

;
1b�2(n)

; : : : ;
1b�jAj�jBj(n)

#
;

and Z(nK) = b(n)
�
�L0(nK)� �L(nK)

�
.

Now, applying Woodbury’s identity to H(n+ 1)�1 =M(n+ 1), gives us

M(n+ 1) =

 
M(n)

1� b(n)

"
I � b(n)

�
�L0(nK)� �L(nK)

�
P (n)Q(n)M(n)

1� b(n) + b(n)
�
�L0(nK)� �L(nK)

�
Q(n)M(n)P (n)

#!
;

which is a recursive update rule for directly updating the matrix M(n), which is the inverse

of H(n); n � 0.

Update rule of SASOC-W

The modified update scheme, named SASOC-W, is given below. For n � 0,i = 1; : : : ; N ,

�i(n+ 1) =��i

 
�i(n) + b(n)

NX
j=1

Mi;j(n)

 
�L(nK)� �L0(nK)

�1 b4j(n)

!!
; (10.8)

M(n+ 1) =�

 
M(n)

1� b(n)

"
I � b(n)

�
�L0(nK)� �L(nK)

�
P (n)Q(n)M(n)

1� b(n) + b(n)
�
�L0(nK)� �L(nK)

�
Q(n)M(n)P (n)

#!
:

In the above, M(0) is initialized to cI , I being the identity matrix and c > 0. The rest of

the update rule corresponding to �L; �L0, �i;j; i = 1; : : : ; jCj; j = 1; : : : ; jP j and �f stays the

same as with SASOC-G/H.

Our SASOC algorithms differ from the algorithms of Bhatnagar et al. [2011a] in the

following ways: (i) Unlike the algorithms of Bhatnagar et al. [2011a] which are for a

continuous-valued parameter, our SASOC algorithms are for a constrained discrete opti-

mization setting and involve a generalized projection operator that renders the transition

probabilities of the extended Markov process for any � 2 �D smooth. (ii) We allow the

average cost estimates �L and �L0 to accumulate and update the worker parameters Wi and
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Lagrange multipliers �i;j every K instants. (iii) Unlike Bhatnagar et al. [2011a], we do not

need to estimate the average cost for the constraint functions Gi;j(�) and H(�). Instead,

we directly use the sample gi;j(�) for performing gradient ascent in Lagrange multipliers.

(iv) Since the SASOC-W algorithm does not involve explicit computation of the Hessian

inverse, it is computationally more efficient than the second-order algorithms of Bhatnagar

et al. [2011a].

10.3 Convergence analysis

We provide a sketch of the convergence of the SASOC-G, SASOC-H and SASOC-W al-

gorithms. The first step in the convergence analysis is common to all the SASOC algo-

rithms and involves the extension of the dynamics of the underlying Markov process from

a discrete-valued parameter dependent process with the parameter taking values in the setD
to a continuous-valued parameter dependent process with the parameter taking values in �D.

The following subsections then establish the convergence of the three SASOC algorithms

in the continuous parameter.

10.3.1 Extension of the transition dynamics to the continuous param-
eter

Recall that the discrete parameter � of the Markov process f(Xn(�); Yn(�))g takes values in

the set D defined earlier. Using the members of D, one can extend the transition dynamics

p�(i; j) of the underlying Markov process to any � in the convex hull �D as follows:

p�(i; j) =

pX
k=1

�k(�)pDk(i; j); 8� 2 �D; i; j 2 S; (10.9)

where the weights �k(�) satisfy 0 � �k(�) � 1; k = 1; : : : ; p and
pP

k=1

�k(�) = 1. For this

choice of �k(�), p�(i; j); i; j 2 S; � 2 �D can be seen to satisfy the properties of transition

probabilities. We now explain the manner in which these weights are obtained. It is worth

noting here that the weights �k(�) must be continuously differentiable in order to ensure

that the extended transition probabilities are continuously differentiable as well and our

SASOC algorithms converge. Moreover, in the SASOC algorithms, we do not require an

explicit computation of these weights while trying to solve the constrained optimization
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problem (9.1). Consider the case when � = �1 and suppose �1 lies between Dj and Dj+1

(both members ofD). By construction, �k(�) will correspond to the probability with which

projection is done on [Dj; Dj+1] and is obtained using the �-projection operator as follows:

Let us consider an interval of length 2� around the midpoint of [Dj; Dj+1] and denote it as

[ ~D1; ~D2], where ~D1 = Dj+Dj+1

2
� � and ~D2 = Dj+Dj+1

2
+ � . Then, the weights �k(�) are

set in the following manner: �k(�) = 0;8k =2 fj; j + 1g and �j(�); �j+1(�) is given by:

(�j(�1); �j+1(�1)) =

8>>>><>>>>:
(1; 0) if �1 2

h
Dj; ~D1

i
(f(

~D2��1
2�

); 1� f( ~D2��1
2�

)) if �1 2
h
~D1; ~D2

i
(0; 1) if �1 2

h
~D2; D

j+1
i (10.10)

In the above, f to be a continuously differentiable function defined on [0; 1] such that

f(0) = 0 and f(1) = 1 and the �-projection is derived from such an f . The above can

be similarly extended when the parameter � has N components. It can thus be seen that

�k(�); k = 1; : : : ; p are continuously differentiable functions of �. Thus, from (10.9) and

the fact that �k(�) are continuously differentiable, it can be seen that the extended transition

dynamics p�(i; j);8� 2 �D; i; j 2 S are continuously differentiable.

We now claim the following:

Lemma 10.1 For any � 2 �D, f(Xn(�); Yn(�)); n � 0g is ergodic Markov.

Proof: Follows in a similar manner as Lemma 2 of Bhatnagar et al. [2011b]. �

Now, define analogues of the long-run average cost and constraint functions for any

� 2 �D as follows:

�J(�)
4
= lim

n!1

1
n

n�1P
m=0

c(Xm(�));

�Gi;j(�)
4
= lim

n!1

1
n

n�1P
m=0

gi;j(Xm(�)) � 0;

8i = 1; : : : ; jCj; j = 1; : : : ; jP j;
�H(�)

4
= lim

n!1

1
n

n�1P
m=0

h(Xm(�)) � 0:

(10.11)

The difference between the above and the corresponding entitites defined in (9.1) is that �

can now take values in �D.

Lemma 10.2 �J(�); �Gi;j(�); i = 1; : : : ; jCj; j = 1; : : : ; jP j; and �H(�) are continuously

differentiable in � 2 �D.
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Proof: Follows in a similar manner as Lemma 3 of Bhatnagar et al. [2011b]. �

We now prove the SASOC algorithms described previously are equivalent to their anal-

ogous continuous parameter (��) counterparts under the extended Markov process dynamics.

Lemma 10.3 Under the extended dynamics p�(i; j); i; j 2 S of the Markov process

f(Xn(�); Yn(�))g defined over all � 2 �D, we have

(i) SASOC-G algorithm is analogous to its continuous counterpart where �(�) and

�(� + �4) are replaced by ��(�) and ��(� + �4) respectively.

(ii) SASOC-H and SASOC-W algorithms are analogous to their continuous counter-

parts where �(�) and �(�+ �14+ �24̂) are replaced by ��(�) and ��(�+ �14+

�24̂) respectively.

Proof: (i): Consider the SASOC-G algorithm (10.5). Let �(m) be a given parameter update

that lies in �Do (where �Do denotes the interior of the set �D). Let � > 0 be sufficiently

small so that ��1(m) = (��j(�j(m) + ��j(m)); j = 1; : : : ; N)T = (�j(m) + ��j(m)); j =

1; : : : ; N)T .

Consider now the �-projected parameters �1(m) = (�j(�j(m)+��j(m)); j = 1; : : : ; N)T

and �2(m) = (�j(�j(m)); j = 1; : : : ; N)T , respectively. By the construction of the gen-

eralized projection operator, these parameters are equal to �k 2 C with probabilities

�k((�j(m) + ��j(m); j = 1; : : : ; N)T ) and �k(�j(m); j = 1; : : : ; N)T ), respectively.

When the operative parameter is �k, the transition probabilities are p�k(i; l), i; l 2 S. Thus

with probabilities �k((�j(m)+��j(m); j = 1; : : : ; N)T ) and �k((�j(m); j = 1; : : : ; N)T ),

respectively, the transition probabilities in the two simulations equal p�k(i; l), i; l 2 S.

Next, consider the alternative (extended) system with parameters ��1(m) = (��j(�j(m)+

��j(m)) and ��2(m) = ��j(�j(m)), respectively. The transition probabilities are now given

by

p��i(m)(j; l) =

pX
k=1

�k(��
i(m))p�k(j; l);

i = 1; 2, j; l 2 S. Thus with probability �k(��i(m)), a transition probability of p�k(j; l)

is obtained in the ith system. Thus the two systems (original and the one with extended

dynamics) are analogous.

Now consider the case when �(m) 2 @ �D, i.e., is a point on the boundary of �D. Then,

one or more components of �(m) are extreme points. For simplicity, assume that only one
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component (say the ith component) is an extreme point as the same argument carries over

if there are more parameter components that are extreme points. By the ith component of

�(m) being an extreme point, we mean that �i(m) is either 0 or Wmax. By assumption,

the other components j = 1; : : : ; N; j 6= i are not extreme. Thus, �i(m) + ��i(m) can

lie outside of the interval [0;Wmax]. For instance, suppose that �i(m) = Wmax and that

�i(m) + ��i(m) > Wmax (which will happen if �i(m) = +1). In such a case, �1i (m) =

�i(�i(m) + ��i(m)) = Wmax with probability one. Then, as before, �1(m) can be written

as the convex combination �1(m) =

pX
k=1

�k(�
1(m))�k and the rest follows as before. The

same argument carries over when more than one parameter component is an extreme point.

(ii): Follows in a similar manner as part (i) above. �

As a consequence of Lemma 10.3, we can analyze the SASOC algorithms with the

continuous parameter �� used in place of � and under the extended transition dynamics

(10.9). By an abuse of notation, we shall henceforth use � to refer to the latter.

10.3.2 SASOC-G

The convergence analysis of SASOC-G can be split into four stages:

(I) The fastest time-scale in SASOC-G corresponds to the step-size sequence fd(n)g that

is used to update the Lagrangian estimates �L and �L0 corresponding to simulations with

� and � + �� respectively. First, we show that these estimates indeed converge to the

Lagrangian values L(�; �) and L(�+ ��; �) defined in equation (10.1). Note that the � and

� which are updated on slower time-scales, can be assumed to be time invariant quantities

for the purpose of analysis of these Lagrangian estimates.

(II) Next, we show that the parameter updates �(n) using SASOC-G converge to a limit

point of the ODE
_�(t) = �� (�r�L(�(t); �)) ; (10.12)

where �� is defined as follows: For any bounded continuous function �(�),

��(�(�(t))) = lim
�#0

��(�(t) + ��(�(t)))� �(t)
�

: (10.13)

The projection operator ��(�) ensures that the evolution of � stays within the bounded set

D. Again for the analysis of the �-update, the value of � which is updated on the slowest

time-scale is assumed constant.
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(III) We then show that �i;js and �f converge respectively to the limit points of the ODEs

_�i;j(t) = � (Gi;j(�
�)) ;8i = 1; 2; : : : ; jCj; j = 1; 2; : : : ; jP j;

_�f (t) = � (H(��)) ;

where �� is the converged parameter value of SASOC-G corresponding to the Lagrange

parameter �(t) 4
= (�i;j(t); �f (t); i = 1; : : : ; jCj; j = 1; : : : ; jP j)T . For any bounded and

continuous function ��(�),

�(��(�(t))) = lim
�#0

(�(t) + ���(�(t)))+ � �(t)
�

:

Here again, the projection operator � ensures that the evolution of � stays non-negative.

From the definition of the Lagrangian given in equation (10.1), the gradient of the La-

grangian w.r.t. �i;j can be seen to be Gi;j(�
�) and that w.r.t. �f to be H(��). Thus, the

above ODEs suggest that in SASOC-G, �i;js and �f are ascending in the Lagrangian value

and converge to a local maximum point.

(IV) Finally, we show that the algorithm indeed converges to a (local) saddle point of the

Lagrangian with local maximum in �i;js and �f , and local minimum in �.

Lemma 10.4 k�L(n)� L(�(n); �(n))k ! 0 w.p. 1, as n!1.

Proof: The � and � values are updated on slower time-scales, thus assumed to be constant

in this proof. Let

l(XnK+m)
4
= c(XnK+m) +

jCjX
i=1

jP jX
j=1

�i;j(nK)gi;j(XnK+m) + �fh(XnK+m):

The �L update can be re-written as

�L(m+ 1) = �L(m) + d(m)
�
L(�(m); �(m)) + �1(m)� �L(m) +Mm+1

�
;

where �1(m) = (E[l(Xm)jFm�1]� L(�(m); �(m));m � 0 and

Fm = �(Xn; Yn; �(n); �(n); n � m);m � 0 are the associated �-fields. Also, Mm+1 =

l(Xm)�E[l(Xm)jFm�1];m � 0 is a martingale difference sequence. LetNm =
Pm

n=0 d(n)Mn+1.

It can be easily verified that (Nm;Fm);m � 0 is a square-integrable martingale obtained

from the corresponding martingale difference fMmg. Further, from the square summabil-

ity of d(n); n � 0, and the facts that S is compact and l is Lipschitz continuous, it can
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be verified from the martingale convergence theorem that fNm;m � 0g converges almost

surely.

Now from Lemma 10.1 f(Xm; Ym)g is ergodic Markov for any given �(m) 2 �D.

Hence, j�1(m)j ! 0 almost surely on the ‘natural timescale’, as m ! 1. The ‘natural

timescale’ is clearly faster than the algorithm’s timescale and hence �1(m) can be ignored

in the analysis of �L-recursion, see [Borkar, 2008, Chapter 6.2] for detailed treatment of

natural timescale algorithms. The rest of the proof follows by applying Lemma 7.4 (Hirsch

[1989]). �

On similar lines, k�L0(n) � L(�(n) + ��(n); �(n))k ! 0 w.p. 1, as n ! 1. Thus, �

updates which are on the slower time scale fb(n)g, can be re-written as

Wi(n+ 1) = Wi(n)� b(n)
�
L(�(n) + ��(n); �)� L(�(n); �)

��i(n)

�
+ b(n)�n+1; (10.14)

8i = 1; 2; : : : ; jAj � jBj, where �n = o(1) in view of Lemma 10.4. Note here that

�(n) � �; 8n. Now for the ODE (10.12), V �(�) = L(�; �) serves as an associated

Lyapunov function and the stable fixed points of this ODE lie within the set K� = f� 2
S : �� (�rL(�(t); �)) = 0g.

Theorem 10.5 Under (A1),(A2’),(A3), in the limit as � ! 0, �(R)! �� 2 K� almost

surely as R!1.

Proof: From assumption (A2), L(�; �) is continuous in �, for any given �. Hence over

the compact set �D, L(�; �) is uniformly bounded. Thus, from Lasalle’s invariance theorem

(Lasalle and Le fschetz [1961], see also [Kushner and Yin, 1997, Theorem 2.3, pp. 76]),

�(R)! �� 2 K� a.s. as R!1. �

Thus (10.14) can be seen to be an Euler discretization of (10.12) and converges a.s. to

K� in the limit as � ! 0.

For f�(n)g updates on the slowest time-scale fa(n)g, one can replace �(n) by ��(n) 2
K�(n). Let

F �� = f� � 0 : � (Gi;j(�
�)) = 0;8i = 1; 2; : : : ; jCj; j = 1; 2; : : : ; jP j; � (H(��)) = 0g :
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Theorem 10.6 �(R)! �� 2 F �� w.p. 1 as R!1.

Proof: The � update in (10.5) can be re-written as

�i;j(n+ 1) = �i;j(n) + a(n) [Gi;j(�
�(n)) +Nn+1 +Mn+1] ;

where Nn+1 = E[gi;j(Xn)jFn�1] � Gi;j(�
�(n)), Mn+1 = gi;j(Xn) � E[gi;j(Xn)jFn�1]. It

is easy to see from Lemma 10.1 that Nn ! 0 as n ! 1 along the natural timescale (see

Lemma 10.4). Further, fMng is a martingale difference sequence with
Pn

i=0 a(i)Mi+1; n �
0, being the associated martingale that can be seen to be a.s. convergent (See Prop. 4.4 of

Bhatnagar et al. [2011a]). Thus from [Borkar, 2008, Extension 3 of Section 2.2], the result

follows for �i;js. A similar argument holds for �f . �

Now, we need to show that the convergence of the algorithm is indeed to a saddle point,

i.e., �� 2 K�� and �� 2 F �� . This can be shown by first observing that the ODE for the �-

update corresponds to _�i;j(t) = �(r�i;j(L(�
�; �i;j(t))), which corresponds to an ascent in

the space of Lagrange multipliers and then invoking the envelope theorem of mathematical

economics [Mas-Colell et al., 1995, pp. 964-966]; see remark (2) in [Bhatnagar et al.,

2011a, pp 15].

10.3.3 SASOC-H

Convergence analysis of SASOC-H follows along similar lines as that of the SASOC-G

algorithm as given below.

1. As in Lemma 10.4, one can see that �L and �L0 iterations converge almost surely as

follows:

k�L(n)� L(�(n); �(n))k; k�L0(n)� L(�(n) + �1�(n) + �2 b�(n); �(n))k ! 0 as n!1:

2. Next, we show that the parameter updates �(n) of SASOC-H converge to a limit

point of the ODE

_�(t) = ��
���(r2

�L(�(t); �))
�1r�L(�(t); �)

�
; (10.15)

where �� is as defined in equation (10.13).
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3. The rest of the analysis of slower time-scale updates of �i;js and �f , and saddle point

behaviour follows from that of SASOC-G.

Lemma 10.7




L(�(n) + �1�(n) + �2 b�(n); �(n))� L(�(n); �(n))
�2 b�i(n)

�r�iL(�(n); �(n))






! 0 w.p. 1;

with �1; �2 ! 0 as n!1 8i 2 f1; 2; : : : ; jAj � jBjg.
Proof: Follows from [Bhatnagar et al., 2011a, Proposition 4.10]. �

Lemma 10.8




L(�(n) + �1�(n) + �2 b�(n); �(n))� L(�(n); �(n))
�1�i(n)�2 b�j(n)

�r2
�i;j
L(�(n); �(n))






! 0 w.p. 1;

with �1; �2 ! 0 as n!1; 8i; j 2 f1; 2; : : : ; jAj � jBjg.
Proof: Follows from [Bhatnagar et al., 2011a, Proposition 4.9]. �

Lemma 10.9 


Hi;j(n)�r2
�i;j
L(�(n); �(n))




! 0 w.p. 1;

with �1; �2 ! 0 as n!1; 8i; j 2 f1; 2; : : : ; jAj � jBjg.
Proof: Follows from Lemma 10.8 applied to the Hessian update of SASOC-H. �

Lemma 10.10 

M(n)��(r2
�L(�(n); �(n)))

�1


! 0 w.p. 1;

with �1; �2 ! 0 as n!1; 8i; j 2 f1; 2; : : : ; jAj � jBjg.
Proof: Follows from Lemma 10.9 and [Bhatnagar, 2007, Lemma A.9]. �

Let

�K� =

�
� 2 S :

dL(�(t); �)

dt
= �r�L(�(t); �)

T�(r2
�L(�(t); �))

�1r�L(�(t); �) = 0

�
:

Theorem 10.11 Under assumptions (A1),(A2),(A3) and (A4), in the limit as �1; �2 !
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0, �(R)! �� 2 �K� almost surely as R!1.

Proof: Following Lemmas 10.4, 10.7 and 10.10, with �1; �2 ! 0, the update of the param-

eter � can we re-written in vector form as

�n+1 = ��
�
�n � b(n)�(r2

�L(�(n); �))
�1r�L(�(n); �) + b(n)�n

�
with �n = o(1). Thus, the update of parameter � can be viewed as a noisy Euler dis-

cretization of the ODE (10.15) using a standard approximation argument as in [Kushner

and Clark, 1978a, pp. 191-196]. Note that V �(�) = L(�; �) itself serves as the associated

Lyapunov function [Kushner and Yin, 1997, pp. 75] for the ODE (10.15) with stable limit

points of the ODE lying within the set �K�. From assumption (A2), L(�; �) is assumed to

be continuous. Hence over the compact set �D, L(�; �) is uniformly bounded. Thus, from

Lasalle’s invariance theorem (Lasalle and Le fschetz [1961]), �(n) ! �� 2 K� a.s. as

n!1. �

10.3.4 SASOC-W

Convergence analysis of SASOC-W follows from that of SASOC-H with the following

lemma in place of Lemma 10.10.

Lemma 10.12 

M(n)��(r2
�L(�(n); �(n)))

�1


! 0 w.p. 1;

with �1; �2 ! 0 as n!1; 8i; j 2 f1; 2; : : : ; jAj � jBjg.
Proof: From Woodbury’s identity, since M(n); n � 1 sequence of SASOC-W is identical

to the �(H(n))�1; n � 1 sequence of SASOC-H, the result follows from Lemma 10.10.

�

10.4 Summary

In this chapter, we presented three novel discrete parameter simulation-optimization algo-

rithms for optimizing staff allocation in the context of SS. The problem was formulated

as a constrained hidden Markov cost process in Chapter 9. For solving the constrained

optimization problem, we applied the Lagrange relaxation procedure and used an SPSA
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based scheme for performing gradient descent in the primal and at the same time, ascent in

the dual, for the Lagrange multipliers. All SASOC algorithms also incorporated a smooth

(generalized) projection operator that helped imitate a continuous parameter system with

suitably defined transition dynamics. Using the theory of multi-timescale stochastic ap-

proximation, we presented the convergence proof of our algorithms.

The next chapter presents the results from the numerical experiments carried out to eval-

uate each of the algorithms. These experiments are based on real-life SS data and compare

SASOC algorithms against the state-of-the-art simulation optimization toolkit OptQuest.

As we will see in the next chapter, the empirical results demonstrate that the SASOC al-

gorithms in general show overall superior performance compared to OptQuest, while also

being computationally efficient.



Chapter 11

Performance Analysis of SASOC
Algorithms

In this chapter, we present the simulation framework and the results from the empirical

evaluation of the SASOC algorithms described in Chapter 10. The simulation experiments

are performed on five real-life SS in the data-center management domain. For each of

the SS, we collect operational data on work arrival patterns, service times, and contractual

SLAs and feed this data into the simulation model of Banerjee et al. [2011]. As will be

seen later from the simulation experiments, we observe that our algorithms show overall

better performance in comparison with the state-of-the-art OptQuest optimization toolkit

(Laguna [1998]). Further, our algorithms are about 25 times faster than OptQuest and have

a significantly lower execution runtime - a significant advantage aiding the adoption of our

SASOC algorithms for adaptive labor staffing for even short-term staffing changes.

The rest of this chapter is organized as follows: In Section 11.1, we discuss the imple-

mentation of our algorithms as well as the OptQuest algorithm. In Section 11.2 we present

the performance simulation results on both flat-arrival as well as bursty-arrival SS pools.

Finally, in Section 11.3 we provide the concluding remarks.

11.1 Implementation

We use the simulation framework developed in Banerjee et al. [2011] for implementing all

our algorithms. A number of dispatching policies have been developed in Banerjee et al.

[2011]. In particular, we study the PRIO-PULL and EDF policies for performance compar-

isons of the various algorithms. We implemented the following labor staffing algorithms:

167



Chapter 11. Performance Analysis of SASOC Algorithms 168

� SASOC-G: This is a first order method that estimates rL(�; �) using SPSA and is de-

scribed in Section 10.2.2.

� SASOC-H: This is a second order Newton method that involves an explicit inverse of

the Hessian matrix and is described in Section 10.2.3.

� SASOC-W: This is a second order Newton method, which unlike SASOC-H does away

with the inversion of the Hessian matrix and leverages the Woodbury identity in order

to estimate the inverse of the Hessian directly. This algorithm is described in Section

10.2.4.

� OptQuest: This is an algorithm that uses the state-of-the-art optimization tool-kit Op-

tQuest. In particular, we used the scatter search based variant of OptQuest for our exper-

iments.

OptQuest employs an array of techniques including scatter and tabu search, genetic algo-

rithms, and other meta-heuristics for the purpose of optimization and is quite well-known

as a tool for solving simulation optimization problems (Laguna [1998]). OptQuest along

with several other engines from Frontline Systems won the INFORMS impact award1 in

the year 2010.

We choose five real-life SS from two different countries providing server support to

IBM’s customers. The five SS cover a variety of characteristics such as high vs. low

workload, small vs. large number of customers to be supported, small vs. big staffing

levels, and stringent vs. lenient SLA constraints. Collectively, these five SS staff more

than 200 SWs with 40%, 30%, and 30% of them having low, medium, and high skill level,

respectively. Also, these SS support more than 30 customers each, who make more than

6500 SRs every week with each customer having a distinct pattern of arrival depending on

its business hours and seasonality of business domain. Fig 11.1(a) shows the total work

hours per SW per day for each of the SS. The bottom part of the bars denotes customer

SR work, i.e., the SRs raised by the customers whereas the top part of the bars denotes

internal SR work, i.e., the SRs raised internally for overhead work such as meetings, report

generation, and HR activities. This seggregation is important because the SLAs apply

only to customer SRs. Internal SRs do not have deadlines but they may contribute to

queue growth. Note that while average work volumes are significant, they may not directly

correlate to SLA attainment. Fig 11.1(b) shows the effort data, i.e., the mean time taken to

1http://www.solver.com/press201008.htm
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resolve an SR (a lognormal distributed random variable in our setting) across priority and

complexity classes. As shown in Figs. 11.2(a)–11.2(b), the arrival rates for SS4 and SS5

show much higher peaks than SS1, SS2, and SS3, although their average work volumes are

comparable. The variations are significant because during the peak periods, many SRs may

miss their SLA deadlines and influence the optimal staffing result.

We implemented our SASOC algorithms on the simulation framework from Banerjee

et al. [2011] for both the perturbed and the unperturbed simulations (See X and X̂ com-

putations in Algorithm 2). For our SASOC algorithms, the simulations were conducted for

1000 iterations, with each iteration having 20 simulation replications - ten each with unper-

turbed parameter � and perturbed parameter �̂, respectively. Each replication simulated the

operations of the respective SS for a 30 day period. Thus, we set R = 1000 and K = 10

for SASOC algorithms. On the other hand, for the OptQuest algorithm, simulations were

conducted for 5000 iterations, with each iteration of 100 replications of the SS.

For all the SASOC algorithms, we set the weights in the single-stage cost function

c(Xm), see (9.4), as r = s = 0:5. We thus give equal weightage to both the worker

utilization and the SLA over-achievement components. The indicator variable q used in the

constraint (9.6) was set to 0 (i.e., infeasible) if the queues were found to grow by 1000%

over a two-week period during simulation. Each of the experiments are run on a machine

with dual core Intel 2:1 GHz processor and 3 GB RAM.

The � operator implemented for SASOC-W can be described as follows. Let Ĥ be

the Hessian update which needs to be projected. The following sequence of operations

represent this projection. (i) Ĥ  (Ĥ+ĤT )
2

; (ii) Perform eigen decomposition on Ĥ to get

all eigen-values and corresponding eigen-vectors; (iii) Project each eigen-value to
�
�; 1

�

�
where 1 > � > 0. � is chosen to be a small number so as to allow for larger range of

values, but not too small to avoid singularity. The upper limit in the projection range is to

avoid singularity of the inverse of the Hessian estimate; and (iv) Reconstruct Ĥ using the

projected eigen-values but with same eigen-vectors. The � operator in the case of SASOC-

H with diagonal Hessian is one that simply projects each diagonal entry to
�
�; 1

�

�
. It is easy

to see that the � operator satisfies assumption (A4).

On each SS, we compare our SASOC algorithms with the OptQuest algorithm using

Wsum and mean utilization as the performance metrics. Here Wsum
4
=
PjAj

i=1

PjBj
j=1 �i;j

is the sum of workers across shifts and skill levels. The mean utilization here refers to

a weighted average of the utilization percentage achieved for each skill level, with the

weights being the fraction of the workload corresponding to each skill level.
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As evident in Figs. 11.2(a) and 11.2(b), the SS pools SS1, SS2 and SS3 are character-

ized by a flat SR arrival pattern, whereas SS4 and SS5 are characterized by a bursty such

pattern. We present and analyze the results on these pools separately, starting with the flat

arrival pools in the next section.

11.2 Results

11.2.1 Flat-Arrival SS pools

Figs. 11.3(a) and 11.4(a) compare theW �
sum achieved for OptQuest and SASOC algorithms

using PRIO-PULL and EDF on three real life SS with a flat SR arrival pattern (see Fig.

11.2(a)). Here W �
sum denotes the value obtained upon convergence of Wsum. On these SS

pools, namely SS1, SS2 and SS3, respectively, we observe that our SASOC algorithms

find a better value of W �
sum as compared to OptQuest. Note in particular that on SS1,

SASOC algorithms perform significantly better than OptQuest with an improvement of

nearly 100%. Further, on SS2, OptQuest is seen to be infeasible whereas all the SASOC

algorithms obtain a feasible and good allocation.

It is evident that SASOC algorithms consistently outperform the OptQuest algorithm on

these SS pools. Further, among the SASOC algorithms, we observe that SASOC-W finds

better solutions in general as compared to the other two SASOC algorithms. Further, we

observe that in all our experiments that include both flat as well as bursty arrival pools, the

optimal worker parameter obtained by all our SASOC algorithms is feasible, i.e., satisfies

both the SLA as well as queue stability constraints.

Fig. 11.4(a) presents similar results for the case of the EDF dispatching policy. The

behavior of OptQuest and SASOC algorithms here was found to be similar to that when

PRIO-PULL is used with SASOC algorithms showing performance improvements over

OptQuest here as well. We present the utilization percentages across different skill levels

(low, medium and high) in Figs. 11.3(b) and 11.4(b). We observe mean utilization of

workers is a crucial factor for a labor staffing algorithm and it is evident from Figs. 11.3(b)

and 11.4(b) that SASOC algorithms exhibit a higher mean utilization of workers and hence,

better overall performance in comparison to the OptQuest algorithm.
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11.2.2 Bursty-Arrival SS pools

Figs. 11.5(a) and 11.6(a) compare theW �
sum achieved for OptQuest and SASOC algorithms

using PRIO-PULL and EDF on two real life SS with a bursty SR arrival pattern (see Fig.

11.2(b)). The utilization percentages for these pools are presented in Figs. 11.5(b) and

11.6(b). From these performance plots, we observe that OptQuest is seen to be slightly bet-

ter than SASOC-G and SASOC-W when the underlying dispatching policy is PRIO-PULL,

whereas in the case of EDF dispatching policy, the SASOC algorithms clearly outperform

OptQuest. The execution time advantage of SASOC algorithms over OptQuest hold in the

case of these pools as well.

Observation 1 SASOC algorithms are computationally efficient and hence well-suited for

adaptive labor staffing as compared to OptQuest.

Computational efficiency is a significant factor for any adaptive labor staffing algo-

rithm. For instance, if a candidate labor staffing algorithm takes too long to find the optimal

staffing levels, it is not amenable for making staffing changes in a real SS. Both from the

number of simulations required as well as the wall clock run time standpoints, SASOC al-

gorithms are better than OptQuest. This is because OptQuest requires 5000 iterations with

each iteration of 100 replications, whereas the SASOC algorithms require 1000 iterations

of 20 replications each in order to find W �
sum. This results in a 25X speedup for SASOC

algorithms and also manifests in the wall clock runtimes of SASOC algorithms because

simulation run-times are proportional to the number of SS simulations. We observe that

the SASOC algorithms result in at least 10 to 15 times improvement as compared to Op-

tQuest from the wall clock runtimes perspective. For instance, on SS1 the typical run-time

of OptQuest was found to be 24 hours, whereas SASOC algorithms took less than 2:5 hours

each to converge. As mentioned before, these runtimes were measured on a machine with

dual core Intel 2:1 GHz processor and 3 GB RAM.

In fact, we observed in the case of SS2 that OptQuest does not find a feasible solution

even after repeated runs for 5000 search iterations. Also, because OptQuest depends heav-

ily on SLA attainments and respective confidence intervals of previous iterations, it requires

higher number of replications than SASOC. Further, we observed that SASOC algorithms

converge within 500 iterations in all our experiments. Thus, SASOC algorithms require 50

times less number of simulations as compared to OptQuest, while searching for the optimal

SS configuration. This runtime advantage ensures that an SS manager can make staffing

changes even at the granularity of every week by making use of SASOC algorithms and
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the same may not be possible with OptQuest due to its longer runtimes.

Observation 2 The parameter vector � converges to the optimum value in all SASOC

algorithms.

We observe that the parameter � (and hence Wsum) converges to the optimum value for

each of the SS pools considered. This is illustrated by the convergence plots of ‘Wsum vs

number of cycles’ in Figs. 11.7(a) and 11.7(b). This is an important feature of SASOC

as we established convergence of our algorithm in section 10.3 and the plots confirm the

same. In contrast, the OptQuest algorithm is not proven to converge to the optimum even

after repeated runs, as illustrated in the case of SS2 in Fig 11.3(a).

From the above performance comparisons over SS pools with flat as well as bursty SR

arrival patterns, it is evident that our SASOC algorithms show overall better performance

in comparison with OptQuest. Among the SASOC algorithms, we observe that the second

order algorithms (SASOC-H and SASOC-W) perform better than the first order algorithm

(SASOC-G) in many cases, with SASOC-W being marginally better than SASOC-H.

11.3 Summary

In this study of staff allocation algorithms in the context of service systems, presented in

Chapters 9, 10 and 11, we motivated the discrete optimization problem of adaptively deter-

mining optimal staffing levels in SS. We presented three novel SASOC algorithms for op-

timizing staff allocation in the context of SS. We formulated the problem as a constrained

hidden Markov cost process, with the aim of finding an optimum worker parameter that

minimizes a certain long run cost objective, while adhering to a set of constraint functions,

which are also long run averages. All SASOC algorithms are simulation based optimization

methods as the single-stage cost and constraint functions are observable only via simula-

tion and no closed form expressions are available. The single stage cost that we designed

balanced the conflicting objectives of maximizing worker utilizations and minimizing the

over-achievement of SLAs. For solving the constrained optimization problem, we applied

the Lagrange relaxation procedure and used an SPSA based scheme for performing gradient

descent in the primal and at the same time, ascent in the dual, for the Lagrange multipliers.

All SASOC algorithms also incorporated a smooth (generalized) projection operator that

helped imitate a continuous parameter system with suitably extended transition dynamics.

Using the theory of multi-timescale stochastic approximation, we presented the conver-

gence proof of our algorithms. Numerical experiments were performed to evaluate each of
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the algorithms based on real-life SS data against the state-of-the-art simulation optimiza-

tion toolkit OptQuest. SASOC algorithms in general showed overall superior performance

compared to OptQuest, as they (a) exhibited more than an order of magnitude faster con-

vergence than OptQuest, (b) consistently found solutions of good quality and in most cases

better than those found by OptQuest, and (c) showed guaranteed convergence even in sce-

narios where OptQuest did not find feasibility after repeated runs for 5000 iterations. Given

the quick convergence of SASOC algorithms (in minutes), they are particularly suitable for

adaptive labor staffing where a few days of optimization run like in OptQuest would fail

to keep up with the changes. By comparing the results of the SASOC algorithms on two

independent dispatching policies, we showed that SASOC’s performance is independent of

the operational model of SS. As future work, one may consider single-stage cost function

enhancements that include worker salaries as well as other relevant monetary costs.
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Figure 11.1: Characteristics of the service systems used for simulation
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(a) SS1 and SS2 work arrival pattern

(b) SS3, SS4 and SS5 work arrival pattern

Figure 11.2: Work arrival patterns over a week for each SS
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Part III

Sensor Networks

We study the problem of tracking a single object moving ran-

domly through a dense network of wireless sensors such that the

entire sensing region has no discontinuities. However, we wish

to conserve energy by optimizing the sleep times of the sensors

in a way that does not compromise on the tracking quality. We

remove the waking channel assumption, i.e., a sleeping sensor

can be communicated with and model the sleep–wake schedul-

ing problem as a partially-observable Markov decision process

(POMDP). We propose novel RL-based algorithms - with both

long-run discounted and average cost objectives - for solving

this problem. All our algorithms incorporate function approx-

imation and feature-based representations to handle the curse

of dimensionality. Further, the feature selection scheme used

in each of the proposed algorithms intelligently manages the

energy cost and tracking cost factors, which in turn, assists the

search for the optimal sleeping policy. The results from the sim-

ulation experiments suggest that our proposed algorithms per-

form better than two recently proposed algorithms from Fuem-

meler and Veeravalli [2008], Fuemmeler et al. [2011].
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Chapter 12

Sleep–Wake Scheduling for Object
Tracking

Considering the potential range of applications and the low deployment and maintenance

costs, a lot of research attention has gone into the design of Wireless Sensor Networks or

WSNs, specifically on the power management or energy efficiency aspect of it. A typical

WSN consists of tiny compact sensors that are energy-limited, low-powered inexpensive

devices. These sensors, when deployed in a real environment perform network discovery

and establish routing paths to form a connected network, with little or no external inter-

vention. They sense a physical phenomena such as temperature, pressure, etc., collate the

sensing data, and send it to a central node or fusion center.

We consider a WSN application scenario where the objective is to track an object mov-

ing through a given area covered by sensors. This is illustrated in the one-dimensional and

two-dimensional networks described in Figures 12.1 and 12.2 respectively. The movement

of the object is assumed to be random with a given distribution (an assumption that we

relax later). In this setting, it is necessary to optimize the energy usage of each sensor

through sleep-wake cycling and hence increase the lifetime of the network. The sleep–

wake scheduling algorithm has to balance two conflicting objectives - minimize the energy

usage of the individual sensors and track the object to a reasonable accuracy.

The setting we consider is similar to Fuemmeler and Veeravalli [2008], Atia et al.

[2010], as we also remove the waking channel assumption and assume a sleep sensor

cannot be communicated with. However, while Fuemmeler and Veeravalli [2008], Atia

et al. [2010] proposed sub-optimal algorithms, we adopt the reinforcement learning (RL)
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approach to develop sleep–wake scheduling algorithms that find the ‘optimal’ sleeping pol-

icy. RL has the advantages of being model-free (no model of the system is assumed) and

RL algorithms are in general easy to implement, online and have proven convergence guar-

antees.

Figure 12.1: Field of sensors and the movement of object in a one-dimensional network

Our contributions

� We consider the problem of sleep-wake scheduling for object tracking using a wire-

less sensor network and formulate this as a partially-observed Markov decision process

(POMDP), similar to Fuemmeler and Veeravalli [2008], Fuemmeler et al. [2011]. How-

ever, unlike the total cost objective considered in Fuemmeler and Veeravalli [2008], we

consider both discounted as well as average cost objectives in the infinite horizon.

� In the discounted cost POMDP setting, we propose two RL-based algorithms with func-

tion approximation for solving this problem.

- The first sleep–wake scheduling algorithm proposed is based on Q-learning with linear

function approximation, and

Figure 12.2: Field of sensors and the movement of object in a two-dimensional network
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- the second sleep–wake scheduling algorithm proposed is a two timescale convergent

Q-learning algorithm, which also uses linear function approximation. This algorithm

is adapted from Bhatnagar and Lakshmanan [2012] and unlike the above algorithm,

has proven convergence to the optimal policy.

To the best of our knowledge, we are the first to propose reinforcement learning with

function approximation for sleep–wake control.

� In the average cost POMDP setting, we propose two RL-based algorithms with function

approximation.

- The first algorithm uses the Q-learning analogue for the average cost setting with func-

tion approximation.

- The second algorithm proposed is a novel two timescale algorithm that performs on-

policy Q-learning, while employing function approximation. This algorithm uses pol-

icy gradient using a one-simulation SPSA estimate on the faster timescale, while the

Q-value parameter (arising out of linear function approximation architecture for the

Q-values) is updated in an on-policy TD-like fashion on the slower timescale. Further,

on the slower timescale, the average cost is also estimated and used for updating the

Q-value parameter. This algorithm has been presented (in any setting) for the first time

and so we present a rigorous proof of convergence of this algorithm.

� Function approximation and feature-based representations are incorporated in each of

our algorithms to handle the curse of dimensionality associated with high-dimensional

state spaces (as in the case of the sleep–wake control problem considered in this pa-

per). Further, these techniques also considerably simplify the implementation of our

algorithms, owing to the computational (in terms of both space and time) advantages

of function approximation. The feature selection scheme used in each of the proposed

algorithms intelligently manages the energy cost and tracking cost factors, which in turn,

assists the search for the optimal sleeping policy.

� Using a bottom-up approach, we study our algorithms first on a one-dimensional (1d)

setting with no overlaps to establish the usefulness of the RL-based sleep–wake schedul-

ing algorithms. Next, we consider a two-dimensional (2d) setting with overlaps for the

performance comparisons. We also implement two recently proposed algorithms – FCR

and QMDP proposed in Fuemmeler and Veeravalli [2008], Fuemmeler et al. [2011] – for

the sake of comparison. Empirically, our algorithms are seen to be easily implementable
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over all simulation settings and more importantly, they converge rapidly with a short ini-

tial transient phase. Further, the proposed algorithms consistently outperform the FCR

and QMDP algorithms from the perspective of both the number of sensors as well as the

tracking error metrics.

� We also incorporate an online estimation procedure for the transition probability matrix

that captures the movement of the object. This is motivated by the fact that the distribu-

tion of the object movement is often unknown in practice and the sleep–wake scheduling

algorithms proposed above as well as those in the literature (cf. Fuemmeler and Veer-

avalli [2008], Fuemmeler et al. [2011]) base their decisions on the probability vector that

specifies the object’s location. We combine the estimation procedure for the distribu-

tion of the object’s movement with the algorithms outlined above using multi-timescale

stochastic approximation. From the numerical experiments we observe that the pro-

cedure for estimating the transition probability matrix, converges to the true transition

probability matrix in all the network settings considered.

The rest of this chapter is organized as follows: In Section 12.1, we review relevant

literature concerned with recent developments in the area of sleep–wake scheduling using

WSNs. In Section 12.2, we formulate the sleep-wake scheduling problem as a POMDP

in the discounted cost setting. In the next chapter, we present novel RL-based sleep-wake

scheduling algorithms for the infinite horizon discounted as well as average cost objectives

and also present the estimation procedure for the transition probability matrix that describes

the object’s movement. Later, in Chapter 14, we present the results from numerical exper-

iments that include cases when the distribution of object movement is known as well as

when the same is unknown.

12.1 Literature Review

We now review some of the sleep-wake scheduling algorithms previously proposed in the

literature. In Premkumar and Kumar [2008], the authors develop a Markov decision process

(MDP) model for intrusion detection in a WSN. They present three sleep–wake scheduling

algorithms to control the number of sensors in the wake state. In Liu and Elhanany [2006],

the authors propose a MAC protocol for WSNs that is based on reinforcement learning

(RL). The scheduling of the sleep and active periods of sensor nodes is done following a
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Q-learning algorithm that attempts to maximize the throughput while being energy effi-

cient. In Fuemmeler and Veeravalli [2008], the sleep-wake scheduling problem is formu-

lated as a partially observable Markov decision process (POMDP) and several sub-optimal

algorithms are proposed for its solution. Sub-optimal algorithms instead of dynamic pro-

gramming techniques are used in order to tackle the curse of dimensionality. In Atia et al.

[2010], an overlapping sensing range has been considered while following a similar ap-

proach as in Fuemmeler and Veeravalli [2008] while continuous Gaussian observations

have been incorporated in Fuemmeler et al. [2011]. In Gui and Mohapatra [2004], the au-

thors have proposed two sleep-wake scheduling algorithms for single object tracking with

waking channel assumption. A dynamic clustering mechanism has been used for balancing

energy cost and tracking error in Jin et al. [2006]. In Jiang et al. [2008], a sleep scheduling

algorithm based on the target’s moving direction has been proposed and a particle filter

based distributed target tracking scheme has been designed in Jiang and Ravindran [2011]

with low communication costs. In Dousse et al. [2006], the authors study the time delay for

a mobile intruder to be detected by the sensor with a connected path to the sink and contrast

it with the detection time by a sensor network with arbitrary connectivity. Pal et al. [2009]

provide a cooperative node-to-node activation scheme for sleep-wake scheduling for object

tracking with waking channel assumption. Lai and Paschalidis [2008] study sleep-wake

scheduling of nodes to preserve energy while ensuring that network latency is as low as

possible. In Li et al. [2011], object tracking using partial information broadcasting scheme

among sensor nodes for decentralized tracking has been studied. Hong et al. [2009] pro-

posed a prediction based target tracking scheme in which it is not necessary for the sensors

to be aware of their own location. An actor-critic based RL approach has been used for

energy conservation in embedded sensor network by Sridhar et al. [2007]. A Q- learning

based approach has been used for a different problem setting for sleep scheduling in WSNs

in Niu [2010] and for routing problem in Ouferhat and Mellouk [2007]. Finding an efficient

sleep-wake policy for the sensors while maintaining good tracking accuracy by solving an

MDP has been studued in Beccuti et al. [2009]. Naderan et al. [2009] present a survey of

the state-of-the art techniques used in mobile target tracking applications while Anastasi

et al. [2009] survey energy conservation techniques in WSNs. Di and Joo [2007] provide a

survey of machine learning techniques used in WSNs. RL based techniques have also been

used in problems with decentralized settings, see Shah and Kumar [2007], Mihaylov et al.

[2011].
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12.2 The Setting

We study the problem of tracking a single object moving through a dense network of sen-

sors with the sensors totally covering the sensing region. We start off with a simple one-

dimensional network as shown in Figure 1. The sensing range of the sensors is limited and

non-overlapping with that of other sensors, and completely covers the entire region of the

network. We then also consider a two-dimensional grid of sensors with overlapping sens-

ing regions as shown in Figure 2. The object follows a random movement pattern which

can be assumed to be either known a priori or estimated on-line. Clearly, having sleeping

sensors in the network that cannot be woken up can result in tracking errors. Thus, we have

to design sleeping policies for the sensors to optimize the trade off between energy savings

and tracking errors. We assume that there is a central controller which does this optimiza-

tion and assigns sleep times to sensors based on the observations sent by those sensors that

are awake under the constraint that the sensors completely cover the sensing region.

We formulate this problem in the setting of partially observable MDPs and develop two

RL algorithms for solving the same. We now present the adaptation of the sleep–wake

scheduling problem to the MDP framework.

12.2.1 Sleep–wake control POMDP

1-d model (without overlap)

First we consider a network with N sensors placed along a line, as shown in Fig. 12.1.

We assume for simplicity that the sensors cover the area of interest without overlaps1.

Each sensor can be in either of the two states: awake or sleep. A sensor in the sleep

state consumes negligible energy and object sensing can be performed only in the awake

state. The control center collects sensing information at discrete time instants (denoted

n; n + 1; : : :) and decides on the sleeping policy for the sensors that are awake. When a

sleeping sensor wakes up, it remains awake for at least one time unit. We assume that the

sleep time received by a sensor is upper-bounded by �.

The object movement is described by a Markov chain whose state is the current location

of the object, to within the accuracy of a sensing region. There is one additional state in

this Markov chain, namely T that represents the object’s departure from the network and

is an absorbing state. The transition probability matrix of this Markov chain is given by an

1This is a feasible assumption in one-dimensional networks because if the maximum sensing radius of
each sensor is R, then we can place two sensors 2R distance apart in order to have a consistent model.
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(N + 1) � (N + 1) matrix P such that Pij is the probability of the object being in state j

in the next time step given that it is currently in state i. We assume that there is a positive

probability that an object moves from any region to the terminal state. Now, we formulate

the problem as a POMDP, where the states, actions and costs are given as follows:

State, Action and Observation

We define the state as

sk = (lk; rk); where (12.1)

� lk refers to the location of the object at instant k and can take values 1; : : : ; n; T .

� rk = (rk(1); :::; rk(N)) where rk(i) denotes the remaining sleep time of the ith sensor.

While the object transitions from one location to another as specified by the transition

probability matrix P , the remaining sleep time vector rk evolves as follows

rk+1(i) = (rk(i)� 1)Ifrk(i)>0g + ak(i)Ifrk(i)=0g; (12.2)

In (12.2), the remaining sleep time of sensor i (if it is in sleep state at time k) is its current

sleep time decremented by one. Otherwise, the remaining sleep time is the action chosen

(ak(i)) for sensor i at the current step (k), see below for definition of action ak(i). Note

that I denotes the indicator function in (12.2).

However, it is not always possible to track the object at each time instant as the sensors

at the object’s location at a given time instant may be in the sleep state. Hence, we formulate

this problem as a POMDP with imperfect state information. Following the notation from

Fuemmeler and Veeravalli [2008], the observation zk available to the control center is given

by

zk =

8>>><>>>:
lk if lk 6= T and rk(lk) = 0;

� if lk 6= T and rk(lk) > 0;

T if lk = T :
(12.3)

In the above, � denotes a special value signifying that the object is not detected.

The action ak at instant k is the vector of chosen sleep times of the sensors. However

if the ith sensor is asleep, we make sure that ak(i) = rk(i). Each ak(i) can take values

between 0 and �. Thus, the total information available to the control center at instant k is
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given by

Ik = (z0; : : : ; zk; a0; : : : ; ak�1);

where I0 = z0 denotes the initial state of the system. The action ak specifies the chosen

sleep configuration of the n sensors and is a function of Ik. As pointed out in Fuemmeler

et al. [2011], in the above POMDP setting, a sufficient statistic is pk = P ( lkj Ik). In other

words, pk = (pk(1); :::; pk(N); pk(T )) is the distribution at time step k of the object being

in one of the locations 1; 2; :::; N; T and evolves according to

pk+1 = pkPIfrk+1(lk+1)>0g + elk+1Ifrk+1(lk+1)=0g + eT Iflk+1=T g: (12.4)

In the above, eb denotes the degenerate probability distribution with 1 at the bth position

and 0 elsewhere and lk+1 denotes the location of the object at time k + 1.

Single-stage cost

The single stage cost function is defined such that if the object is still within the network

at time k, then the cost incurred is the energy consumed by the sensors that are awake

(i.e., with remaining sleep time of 0) and a constant times an additional cost if the object

is currently at a location where the sensor is asleep (i.e., has a remaining sleep time > 0).

The single stage cost is given by

g(sk; ak) = Iflk 6=T g
0@ X
fi:rk(i)=0g

c+ Ifrk(lk)>0gK
1A ; (12.5)

where c > 0 is the cost per each sensor in the wake state, lk is the location of the object

at time step k and K is a constant. The constant K is chosen such that a tracking error

results in a significantly higher cost (contributed by the second term in brackets above), in

comparison to the energy savings achieved by putting sensors to sleep (contributed by the

first term in brackets above). Note that our cost formulation differs from Fuemmeler and

Veeravalli [2008], Fuemmeler et al. [2011], since a tracking error resulted in a cost of 1

there.

Remark 10 The single stage reward is the negative of the single stage cost, that is, r(sk; ak) =

�g(sk; ak). All the algorithms that we present next attempt to find the optimal sleeping pol-

icy that maximizes the long-run discounted sum of rewards r(�; �), which is equivalent to

minimizing the long-run discounted sum of costs g(�; �) given by (12.5).
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Remark 11 As stated before, we consider the infinite horizon discounted cost framework,

i.e., we attempt to minimize the long-run discounted sum of the single-stage costs g(�; �).
In this setting, the discount factor 
 plays a crucial role. A lower 
 serves to discount the

future costs more, whereas a higher value of 
 puts more emphasis on the future costs. We

set 
 = 0:9 in all our experiments.

2-d model (with overlap)

In this case, due to overlapping sensing regions, the object can be observed by multiple

sensors if they are in the wake state. The observation zk available to the central controller

in this case evolves according to

zk =

8>>><>>>:
lk if lk 6= T and 9j 2 C(lk) such that rj(lk) = 0;

� if lk 6= T and rj(lk) > 0; 8j 2 C(lk)
T if lk = T :

(12.6)

In the above, C(k) denotes the set of sensors that observe the location k and �, as before,

denotes a special value to indicate that the object is not detected. The single-stage cost g(�)
is redefined as follows:

g(sk; ak) = Iflk 6=T g
0@ X
fi:rk(i)=0g

c+ Ifrj(lk)>0;8j2C(lk)gK
1A ; (12.7)

The states, actions and the single-stage cost function for both the settings discussed

above constitute a POMDP. While the formulation here is similar to that of Fuemmeler

et al. [2011], the objective in our case is to minimize the long-run discounted sum of the

single-stage costs (12.5)–(12.7), unlike the total cost setting of Fuemmeler et al. [2011]

(that is equivalent to the stochastic shortest path problem). Further, using the sufficient

statistic pk, we develop two novel RL-based sleep–wake scheduling algorithms – QSA
and T QSA – to find the optimal sleeping policy. As we demonstrate later in our experi-

ments, our algorithms outperform the FCR and QMDP algorithms proposed in Fuemmeler

and Veeravalli [2008] as well as Fuemmeler et al. [2011]. Further, T QSA possesses con-

vergence guarantees to the optimal sleeping policy, while not making assumptions on the

state evolution (12.4).



Chapter 13

Sleep–Wake Scheduling Algorithms

While solutions to MDP can be obtained using well-known DP methods such as value itera-

tion and policy iteration (see Bertsekas [1995]), these require the specification of transition

dynamics which is often unavailable. Reinforcement learning (RL) algorithms are simula-

tion based methods that find the optimal policy, even in the absence of precise knowledge

of the transition dynamics (see Kaelbling et al. [1996], Sathiya Keerthi and Ravindran

[1994], Sutton and Barto [1998c]). We first develop a sleep–wake scheduling algorithm

that is based on the well-known Q-learning algorithm, see Watkins and Dayan [1992b] and

Tsitsiklis [1994b]. While Q-learning finds the optimal policy that maximizes a long run

discounted reward (2.10) even in the absence of a system model, it requires full state rep-

resentations and hence is useful only on manageable-sized state spaces. To alleviate this

problem on high-dimensional state and action spaces, we incorporate feature-based func-

tion approximation methods. The resulting algorithm is henceforth referred to as QSA
and is described in Section 13.1.1. Next, we develop a sleep–wake scheduling algorithm

that employs two-timescale stochastic approximation and performs on-policy updates in

a Q-learning-like fashion. This algorithm has been adapted from Bhatnagar and Laksh-

manan [2012] and solves the off-policy problem that arises when the original Q-learning

algorithm is combined with function approximation. The resulting algorithm in our setting

is henceforth referred to as T QSA.

Background on the Q-learning algorithm and its function approximation variant were

presented in Section 2.2. In the next section, we present the algorithms for discounted cost

objective and later in Section 13.2 we address the average cost setting.

191
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13.1 Sleep–wake scheduling for discounted reward objec-

tive

13.1.1 Q-learning based Sleep–wake Scheduling Algorithm (QSA)

While Q-learning does not require knowledge of the system model, it does suffer from

the computational problems associated with huge state and action spaces as it stores the

Q(s; a) values in a look-up table and requires updates of all Q(s; a) values at each step for

convergence. In our setting, this algorithm becomes intractable as the state-action space is

huge. Even when we quantize probabilities as multiples of 0:01, and with 7 sensors, the

cardinality of the state-action space jS � A(S)j is approximately 1008 � 47 � 47 if we use

� of 3. So, it is not practically feasible to update and store Q-values for such large numbers

of state-action tuples while running the Q-learning algorithm from (2.13). The situation

gets aggravated when we consider larger sensing regions (and hence higher number of

sensors). To deal with this problem of the curse of dimensionality, we develop a feature

based Q-learning algorithm as in Chapter 5.

We now describe our Q-learning based algorithm with linear function approximation

for finding the optimal sleeping policy. While the full state Q-learning algorithm in (2.13)

cannot be used on even moderately sized sensing regions, its function approximation based

variant uses feature based representations and is computationally efficient both in terms of

space and time.

Update rule of QSA

Let sk and sk+1 denote the state at instants k and k + 1, respectively. Let �k be the kth

update of the parameter. Our algorithm works with a single online simulation trajectory of

states and actions, and updates � according to

�k+1 = �k + �(k)�sk;ak

�
r(sk; ak) + 
 max

b2A(sk+1)
�Tk �sk+1;b � �Tk �sk;ak

�
; (13.1)

where �0 is set arbitrarily. In (13.1), the action ak is chosen in state sk according to an

��greedy policy, i.e., with a probability of (1� �), a greedy action given by

argmaxb2A(sk)(�
T
k �sk;b) is chosen and with probability �, another action is randomly cho-

sen.
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Feature selection

The features are chosen as follows:

�sk;ak = (�sk;ak(1); :::; �sk;ak(N))T ; (13.2)

where �i(k); i � N is the feature value corresponding to sensor i. These are defined

as follows:

Let �k = c(�� ak(i))�
ak(i)X
j=1

[pPj]i: (13.3)

Then,

�sk;ak(i) =

8<:V � sgn(�k(i)) if 0 � j�kj � �;

�V � sgn(�k(i)) otherwise :
(13.4)

The first term in (13.3) represents the energy cost incurred when sensor i is assigned a

sleep time of a(i), while the second component there represents the tracking error incurred.

In particular, the second component sums the probability of the object being in location i at

each of the future time instants until a(i) time slots. The idea behind the feature selection

scheme (13.4) then is to (a) first prune the actions so as to shortlist only those actions that

ensure that the energy cost is �-close to the tracking error and (b) select an action, among

the �-optimal actions that minimizes the approximate Q-value.Thus, the feature selection

scheme intelligently balances the energy cost and tracking error component, resulting in

the choice of an action that effectively ensures that as many sensors are kept awake while

incurring minimal energy cost. Note that the choice of features is identical for both this

algorithm as well as the T QSA algorithm described in the next section.

Algorithm 3 gives the structure of the QSA algorithm.

13.1.2 Two-timescale Q-learning based sleep–wake scheduling algo-
rithm (T QSA)

Although Q-learning with function approximation has been successful in many cases, it is

theoretically difficult to prove that it converges to the optimal solution. In fact, there have

been instances in which it has been shown to be unstable. A possible reason behind this

problem is the off-policy characteristic of QSA accompanied by the resolution problem
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Algorithm 3 Pseudo-code for QSA
1: Initialize value of � arbitrarily.
2: Set M to be a large integer.
3: Let s0 = s be a given initial state.
4: Let �0 be initial value of parameters.
5: begin loop
6: for each episode k = 0; 1; : : : ;M � 1
7: begin loop
8: for each time step
9: Choose action ak from A(sk) using an ��greedy policy

10: Take action ak, observe the instantaneous reward r(sk; ak) and the next state sk+1

11: Compute �k+1 using (13.1)
12: end loop
13: end loop

introduced by the feature based Q-learning with Function Approximation. The off-policy

problem here arises because of the presence of the “max” operation inside the Q-learning

update. Note that if instead of the “max” operation, actions are selected according to a

given policy, then the Q-learning update would resemble a temporal difference (TD) learn-

ing update for the joint (state-action) Markov chain. It has been shown in Tsitsiklis and

Van Roy [1997] that TD with linear function approximation converges. The “max” opera-

tion in Q-learning introduces a nonlinearity in the update step that precisely results many

times in non-convergence of the Q-learning update. The resolution problem arises due to

the fact that the feature dimension is much less than the cardinality of the state-action space

leading to inaccuracies in the estimates. A variant of Q-learning (see Bhatnagar and Lak-

shmanan [2012]) has been recently proposed and has been shown to be convergent. This

algorithm uses two-timescale simultaneous perturbation stochastic approximation (SPSA)

with deterministic perturbation sequences (Bhatnagar et al. [2003]).

The policy � is a randomized stationary policy with a Boltzmann distribution, parame-

terized by w and has the form

�w(s; a) =
ew

>�s;aP
a02A(s) e

w>�
s;a0
; 8s 2 S ; 8a 2 A: (13.5)

Remark 12 Note that any policy that satisfies the following assumption can be used in

place of the above �:

(A1) For any state–action pair (s; a), �(s; a) is continuously differentiable in the parameter
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�.

We also make the following assumption on the underlying Markov process fXn; n �
0g:
(A2) The Markov process fXng under any randomized stationary policy � is ergodic

Markov.

The T QSA algorithm is a two-timescale stochastic approximation algorithm that em-

ploys a linear approximation architecture and parameterizes the policy. The function ap-

proximation parameter � is tuned on the slower timescale in a TD-like fashion, while the

policy parameter w is tuned on the faster timescale in the negative gradient descent direc-

tion using SPSA. Let �0n = �(wn+��n)
4
= (�(wn+��n)(i; a); i 2 S; a 2 A(i))T , where � > 0

is a given small constant, be the randomized policy parameterized by (wn + ��n) during

the nth instant. Here �n; n � 0 are perturbations obtained from certain Hadamard matrices

as described below.

Update rule of T QSA

The update rule of the T QSA algorithm is given by

�n+1 = �1

�
�n + b(n)�sn;an

�
r(sn; an) + 
�Tn�sn+1;an+1 � �Tn�sn;an

��
;

wn+1 = �2

�
wn + a(n)

�Tn�sn;an
�

��1
n

�
; (13.6)

In the above, the choice of features �sn;an is the same as in the previous algorithm. Further,

�1 : Rd ! D, �2 : RN ! C denote two projection operators that project any x 2 R
d

and x 2 RN to D and C, respectively. Here C and D are compact and convex subsets of

R
N and Rd respectively. For any x 2 RN , �2(x) 2 C is the closest point in C to x, i.e.,

�2(x) = argmin
y2C
k y � x k. Likewise, for any y 2 Rd, �1(y) 2 D is the closest point in D

to y, i.e., �1(z) = argmin
r2D
k r � z k. We make the following assumption on the step-size

sequences fa(n)g and fb(n)g below:

(A3) The step-sizes fa(n)g and fb(n)g satisfy

X
n

a(n) =
X
n

b(n) =1;
X
n

(a2(n) + b2(n)) <1; and lim
n!1

b(n)

a(n)
= 0:
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The first two conditions in (A3) are standard stochastic approximation requirements on

the step-sizes, while the last condition above ensures that the �-update recursion proceeds

‘slower’ in comparison to that of the policy parameter w.

Remark 13 Note that the two projection operators �1 and �2 ensure that the iterates �

and w remain uniformly bounded. In other words, supn jjwnjj; supn jj�njj < 1. This is a

critical requirement to ensure convergence of our algorithm.

Remark 14 The construction of the perturbation sequence �(n) using Hadamard matri-

ces is described in Section 7.2.1.

Algorithm 4 gives the structure of the T QSA algorithm.

Algorithm 4 Pseudo-code for T QSA
1: Initialize value of � arbitrarily.
2: Set M to be a large integer.
3: Let s0 = s be a given initial state.
4: Let �0; w0 be initial values of the parameters � and w.
5: begin loop
6: for each episode n = 0; 1; : : : ;M � 1
7: begin loop
8: for each time step
9: Choose action an from A(sn) using the Boltzmann policy � (13.5)

10: Take action an, observe the instantaneous reward r(sn; an) and the next state sn+1

11: Compute �n+1;wn+1 using (13.6)
12: end loop
13: end loop

13.2 Sleep–wake scheduling for average reward objective

While the states, actions and single-stage cost function for the average-cost setting remain

the same as those specified for the discounted-cost POMDP in Section 12.2, the primary

difference is in the long-run performance objective that we seek to maximize via an optimal

policy. In an infinite horizon average reward framework, the aim is to find a policy � so as

to maximize the long-run average reward defined below:

J(�) = lim
N!1

1

N

N�1X
n=0

r(sn; an); (13.7)
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starting from any given state i (i.e., with s0 = i).

Let h(i) be the differential reward function corresponding to state i, under policy �.

Then h(:) satisfies

J(�) + h(i) = max
a

X
j

p(i; j; a)(r(i; a) + h(j));8i 2 S: (13.8)

Define the Q-factors Q(i; a); i 2 S; a 2 A(i) as

Q(i; a) =
X
j

p(i; j; a)(r(i; a) + h(j)): (13.9)

From (13.8) and (13.9), we have

J(�) + h(i) = max
a
Q(i; a);8i 2 S: (13.10)

Now from (13.9) and (13.10), we have

Q(i; a) =
X
j

p(i; j; a)(r(i; a) + max
b
Q(j; b)� J(�))or (13.11)

J(�) +Q(i; a) =
X
j

p(i; j; a)(r(i; a) + min
b2A(j)

Q(j; b)); (13.12)

for all i 2 S; a 2 A(i).
Note that in order to solve this equation, one requires the knowledge of the transition

probabilities p(i; j; a) that constitute the system model. Moreover, the state and action

spaces should be manageable in size. As in the case of the discounted setting, the algo-

rithms presented subsequently for the average reward objective work with a lack of system

model (like any RL algorithm) and further, effectively handle large state and action spaces

by incorporating function approximation and feature based representations.

We first present a sleep–wake scheduling algorithm which is the function approximation

analogue of the Q- learning with average reward algorithm proposed in Abounadi et al.

[2002]. The second algorithm is a two-timescale algorithm with proven convergence to the

optimal policy, unlike the Q-learning based algorithm. We shall henceforth refer to the first

algorithm as QSA-A and the second as T QSA-A.
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13.2.1 Q-learning based Sleep–wake Algorithm – Average-cost vari-
ant (QSA-A)

The Q-learning algorithm, described previously for the discounted reward setting, is a

stochastic approximation version of the value iteration procedure for MDPs. However,

in an average reward setting, the extension is non-trivial and involves using the relative

value iteration procedure. Let sn+1 denote the state of the system at instant (n + 1) when

the state at instant n is i and action chosen is a. Let Qn(i; a) denote the Q-value estimate at

instant n associated with the tuple (i; a). The relative Q-value iteration (RQVI) scheme is

Qn+1(i; a) =
X
j

p(i; j; a)(r(i; a) + max
b2A(j)

Qn(j;b))� max
r2A(s)

Qn(s; r); (13.13)

where s 2 S is an arbitrarily chosen prescribed state.

The Q-learning analogue for the average reward setting estimates the ‘Q-factors’Q(i; a)

of all feasible state-action tuples (i; a), i.e., those with i 2 S and a 2 A(i) using the relative

value iteration of Q-factors (Abounadi et al. [2002]). The update rule for this algorithm is

then given by

Qn+1(i; a) = Qn(i; a) + �(n)(r(i; a) + max
b2A(j)

Qn(j;b)� max
r2A(s)

Qn(s; r)); (13.14)

for all i 2 S and a 2 A(s). In the above, �(n); n � 0 are the step-sizes that satisfy the

standard stochastic approximation conditions. The last term maxr2A(s)Qn(s; r) in (13.14)

asymptotically converges to the optimal average reward per stage. Further, the iterates in

(13.14) converge to the optimal Q-values Q�(i; a) that satisfy the corresponding Bellman

equation (2.4) and

maxa2A(i)Qn(i; a) then gives the optimal differential reward h�(i). The optimal action in

state i corresponds to argmaxa2A(i)Q
�(i; a). The reader is referred to Abounadi et al.

[2002] for a detailed convergence proof of this algorithm.

For the function approximation variant of the above algorithm, we associate with each

state-action tuple (i; a), a state-action feature denoted by �i;a as described in Section 13.1.1.

The Q-function is then approximated as

Q(i; a) � �T�i;a: (13.15)
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Let sn; sn+1 denote the state at instants n; n + 1, respectively, measured online. Let �n be

the estimate of the parameter � at instant n. Let s be any fixed state in S.

The algorithm QSA-A uses the following update rule:

�n+1 = �n + �(n)�sn;an

�
r(sn; an) + max

v2A(sn+1)
�Tn�sn+1;v � max

r2A(s)
�Tn�s;r

�
; (13.16)

where �0 is set arbitrarily. In (13.16), the action an is chosen in state sn according to

an = argmaxv2A(sn) �
T
n�sn;v.

The overall algorithm here is similar to Algorithm 3, except that � is updated according

to (13.16) in Step 11 of the algorithm.

13.3 Two-timescale Q-learning based Sleep–wake algorithm

– Average-cost variant (T QSA-A)

As in the case of the discounted setting, the Q-learning algorithm with function approxi-

mation is not guaranteed to converge even in average reward setting as well (cf. Prashanth

and Bhatnagar [2011c]). In this section, we develop a novel convergent two-timescale

Q-learning algorithm in the average cost setting. This algorithm falls under the realm of

Policy-Gradient Reinforcement Learning. The idea here is to parameterize the policy and

perform a stochastic gradient descent in the policy parameter. The descent here is w.r.t.

the Q-value function. However, owing to the high-dimensional state space, we parame-

terize the Q-value function using a linear function approximation architecture, similar to

(13.15). Further, we estimate the gradient of the approximate Q-value function using a

one-simulation SPSA scheme, which employs certain Hadamard matrices for perturbation.

We now formalize these notions below.

As in the case of the earlier three algorithms, we approximate the Q-value function

as in (13.15). The policy here is setup in a manner similar to T QSA. In other words,

what we have is an SRP �w, parameterized by w. The parameter w = (w1; : : : ; wN)
T

is assumed to take values in a compact and convex set C � R
N . Further, the parameter

� = (�1; : : : ; �d)
T 2 RD is assumed to take values in a compact and convex set D � Rd.

Further, the gradient of the approximate Q-value function w.r.t. w is estimated using a

one-simulation SPSA scheme with the following estimate as in Bhatnagar and Lakshmanan
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[2012]: For any function f ,

rf(wn) � f(w + ��n)

�
��1

n ; (13.17)

where � > 0 is a fixed small real number and �n = (�n(1); : : : ;�n(N))T is the perturba-

tion vector constructed using Hadamard matrices, as described in Section 7.2.1.

Thus, we have a two timescale algorithm with the following characteristics:

� On the slower timescale, the Q-value parameter is updated using the regular Q-learning

update for a given policy;

� On the faster timescale, the policy parameter is updated along a gradient descent direc-

tion using an SPSA-like estimate (13.17);

� Further, on the slower timescale, we also estimate the average reward (13.7) and use the

estimate in the update of the Q-value parameter. Note that, unlike the discounted reward

setting, the Q-values here satisfy a Bellman equation (13.12) that includes the average

reward � as well.

The update rule for T QSA-A algorithm is given by

�n+1 = �1

�
�n + b(n)�sn;an

�
r(sn; an)� Ĵn+1 + �Tn�sn+1;an+1 � �Tn�sn;an

��
;

(13.18)

Ĵn+1 =Ĵn + c(n)
�
r(sn; an)� Ĵn

�
; (13.19)

wn+1 = �2

�
wn + a(n)

�Tn�sn;an
�

��1
n

�
: (13.20)

In the above,

� The step-sizes a(n) and b(n) satisfy (A3) as in the case of the T QSA algorithm. Further,

c(n) = kb(n), for a positive scalar k.

� �1 and �2 are projection operators that project the iterates �n and wn to the compact

sets D and C, respectively and are the same as the ones used in T QSA algorithm (see

Section 13.1.2). The recursions (13.18) and (13.20) are stable recursions because of

these projection operators.
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The overall algorithm here is similar to Algorithm 4, except that � is updated according

to (13.18) in Step 11 of the algorithm.

13.3.1 Convergence analysis for T QSA-A

The ODE approach is adopted for analyzing the convergence of � and w recursions (13.6).

In essence, the two-timescale stochastic approximation architecture employed in the

T QSA-A algorithm allows (i) the faster timescale analysis of the w-recursion in (13.18)

assuming that the slower �-recursion is constant (quasi-static), and (ii) the slower timescale

analysis of the �-recursion in (13.18) assuming that the faster w-recursion has converged.

The convergence analysis comprises of the following important steps:

� Theorem 13.3, in effect, states that the w-recursion performs a gradient descent using

one-simulation SPSA and converges to a set of points in the neighborhood of the local

minimum of the approximate Q-value function R(�; w) (defined below). Note that this

analysis is for the w-recursion on the faster timescale, assuming the Q-value function

parameter � to be a constant.

� Analyzing �-recursion on the slower timescale. Theorem 13.8 claims that the iterates

(w; �) asymptotically converge to (w�; ��), where w� belongs to a neighborhood set of

the local minimum of R(�; w), while �� solves a projected form of the Bellman equation

and depends on w.

We present below the precise statements of these results. Let C(C) (resp. C(D)) denote

the space of all continuous functions from C (resp. D) to RN (resp. Rd). We define two

operators �̂1 : C(D)! C(Rd) and �̂2 : C(C)! C(RN) as follows:

�̂1(u(�)) = lim
�#0

�
�1(� + �u(�))� �

�

�
;

�̂2(v(w)) = lim
�#0

�
�2(w + �v(w))� w

�

�
:

Consider the ODE associated with thew-recursion on the faster timescale, assuming �(t) �
� (a constant independent of t):

_w(t) = �̂2 (�rwR(�; w(t))) : (13.21)
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Theorem 13.3 establishes that the w-recursion tracks the above ODE. In the above,

R(�; w)
4
=

X
i2S;a2A(i)

fw(i; a)�
T�i;a;

where fw(i; a) are the stationary probabilities fw(i; a) = d�w(i)�w(i; a), i 2 S, a 2 A(i)
for the joint process f(Xn; Zn)g, obtained from the state-action tuples at each instant. Here

d�w(i) is the stationary probability distribution for the Markov chain fXng under policy �w
being in state i 2 S. The ergodicity of the joint process f(Xn; Zn)g and the existence of

stationary distribution fw(i; a) follows from the proposition below:

Proposition 13.1 Under (A1) and (A2), the process (Xn; Zn); n � 0 with Zn, n � 0

obtained from the SRP �w, for any given w 2 C, is an ergodic Markov process.

Proof: See [Bhatnagar and Lakshmanan, 2012, Proposition 1, Section 3]. �

Lemma 13.2 Under (A1) and (A2), the stationary probabilities fw(i; a), i 2 S, a 2 A(i)
are continuously differentiable in the parameter w 2 C.

Proof: See [Bhatnagar and Lakshmanan, 2012, Lemma 1, Section 3]. �

Let K� denote the set of asymptotically stable equilibria of (13.21), i.e., the local min-

ima of the function R(�; �) within the constraint set C. Given � > 0, let K�
� denote the

�-neighborhood of K�, i.e.,

K�
� = fw 2 C jk w � w0 k< �;w0 2 K�g:

Theorem 13.3 Let �n � �; 8n, for some � 2 D � Rd. Then, given � > 0, there exists

�0 > 0 such that for all � 2 (0; �0], fwng governed by (13.6) converges to a point w� 2 K�
�

almost surely.

Proof: See [Bhatnagar and Lakshmanan, 2012, Theorem 2, Section 3]. �

We now analyze the �-recursion, which is the slower recursion in (13.18).

Lemma 13.4 With probability one, jĴn�J(�)j ! 0 as n!1, where J(�) is the average

reward under �.
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Proof: The Ĵ update can be re-written as

Ĵn+1 = Ĵn + b(n)
�
J(�) + �n � Ĵn +Mn+1

�
: (13.22)

In the above,

� Fn = �(�m;Mm;m � n); n � 0 is a set of �-fields.

� �n = (E[r(sn; an)jFn�1]� J(�)); n � 0 and

� Mn+1 = r(sn; an)� E[r(sn; an)jFn�1]; n � 0 is a martingale difference sequence.

Let Nm =
Pm

n=0 d(n)Mn+1. Clearly, (Nm;Fm);m � 0 is a square-integrable and almost

surely convergent martingale. Further, from Proposition 13.1, j�nj ! 0 almost surely on

the ‘natural timescale’, as n ! 1. The ‘natural timescale’ is faster than the algorithm’s

timescale and hence �n can be ignored in the analysis of Ĵ-recursion, see [Borkar, 2008,

Chapter 6.2] for detailed treatment of natural timescale algorithms.

The ODE associated with (13.22) is

_̂
J(t) = J(�)� Ĵ(t) 4

= H(Ĵ(t)): (13.23)

Let H1(Ĵ(t)) = limc!1
H(cĴ(t))

c
= �Ĵ(t). Note that the ODE

_̂
J(t) = �Ĵ(t)

has the origin as it unique globally asymptotically stable equilibrium. Further, the ODE

(13.23) has Ĵ� = J(�) as it unique asymptotically stable equilibrium. The claim follows

from Theorems 2.1-2.2 of Borkar and Meyn [2000]. �

Lemma 13.5 Given � > 0, there exists a �0 > 0 such that for all � 2 (0; �0], (wn; �n) !
f(w; �) j w 2 K�

�; � 2 Dg almost surely as n!1.

Proof: Follows in a similar manner as [Bhatnagar and Lakshmanan, 2012, Lemma 7] with
�X(n) = �Xn;Zn(g(Xn; Zn) � J(�) + �Tn�Xn+1;Zn+1 � �Tn�Xn;Zn) used in place of �X(n)

defined there. �

Lemma 13.6 The map w : D ! C is continuous.
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Proof: Follows in a similar manner as [Bhatnagar and Lakshmanan, 2012, Lemma 8]. �

We now recall an important theorem related to convergence of general projected stochas-

tic approximation from Bhatnagar and Lakshmanan [2012]. We use this result to prove

Theorem 13.8 below. Let � : RL ! E � RL denote a projection operator mapping any

r 2 RL to the set E. Consider the following L-dimensional stochastic recursion

rn+1 = �
�
rn + c(n)(h(rn) + �n + 
n)

�
; (13.24)

under the assumptions (A1)–(A5) listed below. Also, consider the following ODE associ-

ated with (13.24):

_r(t) = ��(h(r(t))); (13.25)

where for any continuous y : E ! RL,

��(y(r)) = lim
�!0

�
�(r + �y(r))� r

�

�
:

Let S denote the set of all asymptotically stable equilibria of the ODE (13.25). Let

t(n); n � 0 be a sequence of positive real numbers defined according to t(0) = 0 and for

n � 1, t(n) =
n�1X
j=0

c(j). Let m(t) = maxfn j t(n) � tg.

(A1) The function h : RL ! RL is continuous.

(A2) The step-sizes c(n); n � 0 satisfy

c(n) > 08n;
X
n

c(n) =1; c(n)! 0 as n!1:

(A3) The sequence 
n; n � 0 is a bounded random sequence with 
n ! 0 almost surely

as n!1.

(A4) There exists T > 0 such that 8� > 0,

lim
n!1

P

0@sup
j�n

max
t�T

������
m(jT+t)�1X
i=m(jT )

a(i)�i

������ � �

1A = 0:

(A5) The set E � RL is compact and convex.

As a consequence of (A2), t(n)!1 as n!1. Hence, m(t)!1 as t!1.
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Theorem 13.7 [Kushner and Clark, 1978b, Theorem 5.3.1 (pp. 191-196)] Under (A1)–

(A5), the recursions rn; n � 0 governed by (13.24) converge to a point r� 2 S.

Let Tw : RjS�A(S)j ! RjS�A(S)j be the operator given by

Tw(J)(i; a) = g(i; a)� J(�)e+
X

j2S;b2A(j)

pw(i; a; j; b)J(j; b); (13.26)

or in more compact notation

Tw(J) = G� J(�)e+ 
PwJ;

where G is the column vector with components g(i; a); i 2 S; a 2 A(i) and Pw is the

transition probability matrix with components pw(i; a; j; b). Here pw(i; a; j; b) denotes the

transition probabilities of the joint process f(Xn; Zn)g.
In compact notation, the ODE associated with the �-recursion of (13.6) corresponds to

_�(t) = �̂1

�
�T
Fw(�(t))(Tw(�(t))(��(t))� ��(t))

�
: (13.27)

In the above, Fw denotes the diagonal matrix with elements along the diagonal being

fw(i; a), i 2 S, a 2 A(i). The notation w � w(�) refers to any point in K�, the set of equi-

librium points of (13.21) and w(�) can be seen as a map from D � Rd to C � RN . Also,

� denotes the matrix with rows �Ts;a; s 2 S; a 2 A(s). The number of rows of this matrix

is thus jS � A(S)j, while the number of columns is N . Then � = (�(i); i = 1; : : : ; d)

where �(i) is the column vector

�(i) = (�s;a(i); s 2 S; a 2 A(s))T ; i = 1; : : : ; N:

Consider now the set of equilibria of (13.27):

Ĉ
4
= f� 2 D j �̂1

�
�T
Fw(�)(Tw(�)(��)� ��)

�
= 0g:

The main result is then given as follows:

Theorem 13.8 Under Assumptions (A1)-(A3), given � > 0, there exists �0 > 0 such that

for all � 2 (0; �0], the iterates (wn; �n), n � 0 governed by (13.6) satisfy

(wn; �n)! f(w�; ��) j w� 2 K�
�� ; �

� 2 Ĉg; with probability one:



Chapter 13. Sleep–Wake Scheduling Algorithms 206

Proof: The � update recursion (13.18) can be re-written as follows:

�n+1 =�1

�
�n + b(n)

X
(i;a)

fw(�n)(i; a)
�
g(i; a)� J(�) + 
�n

T
X
(j;b)

pw(�n)(i; a; j; b)�j;b

� �nT�i;a
�
�i;a + b(n)�1(n) + b(n)Y (n+ 1)

�
;

where �1(n) constitute the ‘Markov noise’ that vanishes asymptotically along the natural

timescale and is defined as follows:

�1(n) =E
��
g(Xn; Zn)� J(�) + �Tn�Xn+1;Zn+1 � �Tn�Xn;Zn

�
�Xn;Zn j G(n)

�
�
X
(i;a)

fw(�n)(i; a)
�
g(i; a)� J(�) + �n

T
X
(j;b)

pw(�n)(i; a; j; b)�j;b � �nT�i;a
�
:

Further, Y (n+ 1) is defined as follows:

Y (n+ 1) =
�
g(Xn; Zn)� J(�) + �Tn�Xn+1;Zn+1 � �Tn�Xn;Zn

�
�Xn;Zn

� E ��g(Xn; Zn)� J(�) + �Tn�Xn+1;Zn+1 � �Tn�Xn;Zn

�
�Xn;Zn j G(n)

�
;

where G(n) = �(�r; Xr; Zr; r � n); n � 0 is a sequence of associated sigma fields. Let

N(n) =
Pn�1

m=0 b(m)Y (m + 1). Then, (N(n);G(n)); n � 0 can be seen to be a square-

integrable and almost surely convergent martingale.

The main result now follows from Theorem 13.7 with the following correspondance:

rn � �n, �(�) = �1(�) and c(n) = b(n); n � 0. The aforementioned theorem requires

assumptions (A1)-(A5) to be satisfied. We verify these assumptions here.

� (A1) requires that the map ĝ(�) (defined below) be continuous in �.

ĝ(�) =
X
(i;a)

fw(�)(i; a)
�
g(i; a) + 
�T

X
(j;b)

pw(�)(i; a; j; b)�j;b � �T�i;a)�i;a
�
:

This follows from the facts that w(�) is continuous from Lemma 13.6, fw(�)(i; a)

is continuous from Lemma 13.2 and pw(�)(i; a; j; b) is continuous from (A1) and

Lemma 13.6.

� (A2) holds as a consequence of the assumption that we made earlier on the step-size

sequences fa(n)g and fb(n)g.

� (A3) requires that �n ! 0 almost surely as n ! 1 and sup
n
j�1(n)j < 1. This
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follows from Proposition 13.8.

� (A4) holds as a consequence of the fact that N(n); n � 0; is a convergent martingale

sequence and hence, Y (n) can be used in place of �n in Theorem 13.7.

� Since the updates to � take place in the set D, which is a compact and convex subset

of RN , (A5) holds with D in place of E in Theorem 13.7.

Hence, by an application of Theorem 13.7, we see that �n ! �� 2 Ĉ. Further, as we

established in Lemma 13.5, wn ! w� 2 K�� . Hence proved. �

13.3.2 Convergence result for T QSA

We provide the main convergence result (cf. Theorem 13.9) for the T QSA algorithm. The

detailed convergence proof is available in [Bhatnagar and Lakshmanan, 2012, Section 3].

Consider the mapping Tw : RjS�A(S)j ! RjS�A(S)j given by

Tw(J)(i; a) = g(i; a) + 

X

j2S;b2A(j)

pw(i; a; j; b)J(j; b); (13.28)

or in more compact notation

Tw(J) = G+ 
PwJ;

where G and Pw are as before in Section 13.3.1.

In compact notation, the ODE associated with the �-recursion of (13.6) corresponds to

_�(t) = �̂1

�
�T
Fw(�(t))(Tw(�(t))(��(t))� ��(t))

�
: (13.29)

Note that the difference of this ODE with (13.27) because of the change in operator Tw that

is now defined as in (13.28). In the above, Fw, as before in Section 13.3.1, refers to the

diagonal matrix with elements fw(i; a), i 2 S, a 2 A(i). Recall that the set K� denotes

the set of equilibrium points of (13.21) and w(�) can be seen as a map from D � Rd to

C � RN . Consider now the set of equilibria of (13.29):

Ĉ
4
= f� 2 D j �̂1

�
�T
Fw(�)(Tw(�)(��)� ��)

�
= 0g:

We now state the convergence result for the joint parameter vector sequence (�n; wn); n �
0.
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Theorem 13.9 Under Assumptions (A1)-(A4), given � > 0, there exists �0 > 0 such that

for all � 2 (0; �0], the iterates (wn; �n), n � 0 governed by (13.6) satisfy

(wn; �n)! f(w�; ��) j w� 2 K�
�� ; �

� 2 Ĉg; with probability one:

Proof: See [Bhatnagar and Lakshmanan, 2012, Theorem 3, Section 3]. �

13.4 Extension to unknown P

The sleep–wake scheduling algorithms presented in the previous section attempt to opti-

mize the sleep-times of the individual sensors, using the distribution of the object move-

ment as input. However, in practice, this distribution of the object movement is unknown

in advance and hence a more challenging problem is to solve the sleep–wake scheduling

POMDP under various long-run performance objectives under the absence of knowledge

of the transition probability matrix P , which specifies the distribution of object movement.

We develop an online scheme for estimating P in this section. This scheme can be

combined with any of the four algorithms presented before, via multi-timescale stochastic

approximation. The idea is to run the P estimation procedure on the faster timescale, while

having any of the earlier sleep–wake scheduling algorithms run on the slower timescale.

This, in effect means that the recursions of each algorithm essentially see a converged

value of P from the estimation procedure.

We make an assumption that P is stationary, i.e., it does not change with time. Let P0 be

the initial estimate of the transition probability matrix P . We propose an update procedure

given below.

Pk+1 = �
�
Pk + �(k)p̂kp̂

T
k+1

�
; (13.30)

where Pk is the estimate of P at instant k, p̂k = [pk(i) : i = 1; 2; : : : ; n+ 1]T is the estimate

of probability distribution at instant k (this is explained better below) and �(k) is the step

length such that
1P
k=1

�(k) =1,
1P
k=1

�2(k) <1 and �(k) = o(�(k)). Also, �(�) is a projec-

tion operator that ensures that Pk+1 satisfies the properties of a transition probability matrix.

Further �(k), k � 0, is a faster step-size schedule than �(k), so corresponding to the �k
update, Pk appears to have practically converged to P , see Chapter 6 of Borkar [2008] for

a general treatment of multi-timescale stochastic approximation algorithms. In our simula-

tion experiments we show that the above update procedure gives a “good enough” estimate
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of P such that the main iteration of � provides the desired results.

Discussion Consider the case where location of the object at instants k and k + 1, i.e.,

lk and lk+1, respectively, is known. Then, p̂k (respectively p̂k+1) would be vectors tak-

ing the value 1 in the component lk (respectively lk+1) and 0 elsewhere, Thus, the update

p̂kp̂
T
k+1 would be a matrix with 1 at row lk and column lk+1 and 0 in the remaining entries.

The above update procedure in such cases would exhibit a sample averaging behaviour to

estimate the transition probability matrix P . In the remaining cases, i.e., (i) known lk to

unknown lk+1, (ii) unknown lk to known lk+1, and (iii) unknown lk to unknown lk+1, a

similar behaviour can be expected.



Chapter 14

Performance Analysis of Sleep–Wake
Scheduling Algorithms

14.1 Simulation Experiments - Discounted Setting

In this section, we present numerical results from the performance analysis of our dis-

counted cost algorithms.

14.1.1 Implementation

We implemented the following sleep–wake scheduling algorithms:

� QSA: This is the Q-learning based sleep–wake scheduling algorithm that incorporates

function approximation and is described in Section 13.1.1.

� T QSA: This is the two-timescale Q-learning based sleep–wake scheduling algorithm,

adapted from Bhatnagar and Lakshmanan [2012] and is described in Section 13.1.2.

� FCR: This is an algorithm proposed in Fuemmeler and Veeravalli [2008] and is briefly

described below in Section 14.1.1.

� QMDP : This is another algorithm proposed in Fuemmeler and Veeravalli [2008] based

on the popular policy iteration procedure for MDPs and is briefly described below in

Section 14.1.1.

� QSA-UP: This is the sleep–wake scheduling algorithm that results from a combination

of the QSA algorithm with the estimation procedure (13.30).

210
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� T QSA-UP:This is the sleep–wake scheduling algorithm where the estimation proce-

dure for P (13.30) is combined with the T QSA algorithm.

We now briefly review the FCR and QMDP algorithms from Fuemmeler and Veeravalli

[2008], Fuemmeler et al. [2011], that we implement for the sake of comparison.

FCR

This algorithm approximates the state evolution (12.4) by

pt+1 = ptP; (14.1)

and then attempts to find the sleep time for each sensor by solving the following balance

equation:

V (l)(p) = min
u

 
uX

j=1

[pPj]l +
NX
i=1

c[pPu+1]i + V (l)(pPu+1)

!
: (14.2)

Thus, the sleeping policy here is obtained locally for each sensor by solving a per-sensor

Bellman equation (14.2), with a strong approximation on the state evolution. Note that our

algorithms - QSA and T QSA make no such assumptions and attempt to find the optimal

sleeping policy in the global sense (i.e., considering all the sensors) and not in the local

sense (i.e., treating the sensors individually).

QMDP

In this approach, the decomposition into the per sensor problem is the same as in FCR.

However here, the underlying assumption is that the location of the object will always be

known in the future. Thus, instead of (12.4) the state evolves here according to

pk+1 = elk+1P: (14.3)

The objective function for a sensor l, given the state component p, is given by

V (l)(p) = min
u

 
uX

j=1

[pPj]l +
NX
i=1

c[pPu+1]i +
NX
i=1

[pPu+1]iV
(l)(ei)

!
: (14.4)

It can be noted that the only difference between (14.4) and (14.2) is in the third term on

the right hand side representing the future cost. In the case of QMDP , the future cost is
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the conditional expectation of the cost incurred from the object location after u time units

given the current distribution as its location. Thus, one can solve V (l)(p) for any p once

V (l)(ei); 1 � i � N are known. The QMDP algorithm then attemps to find a solution to

(14.4) using the well-known dynamic programming procedure - policy iteration for MDPs.

Remark 15 An important drawback with the dynamic programming approaches is the

curse of dimensionality (i.e., the computational complexity with solving the associated

Markov decision process increases exponentially with the dimension and cardinality of

the state and action spaces). Reinforcement learning algorithms that incorporate function

approximation techniques alleviate this problem and make the computational complexity

manageable, while still ensuring that the RL algorithms converge to a ‘good enough’ pol-

icy.

14.1.2 Experimental Setup

We perform our experiments on two different network setups, described as follows:

1-D network Here we have a one-dimensional network of 41 sensors in a line. We assume

that the overall sensing region is continuous and without overlaps. The mobility

model of the object in this setting follows a uniform distribution for the probability

of reaching a particular location, with the object’s location at the next time step being

either its current location or one of the locations on its left or right.

2-D network In this case, we have a 11 � 11 grid of 121 sensors. The assumption of

continuous sensing range still holds but the sensor regions now overlap. We have

used a simple overlap model where each sensor node’s sensing region overlaps with

that of 8 other nodes – the ones to the right, left, front and back and to the 4 corners:

left-front,left-back,right-back and right-front, respectively. The mobility model of

the object in this setting also follows a uniform distribution. However, the object’s

location at the next time step here is either its current location or one of the adjacent

eight locations to its current location. Note the probability of the object moving to

a particular location (including staying in its current location) is
1

9
and if some of

these locations fall outside the network then those probabilities are summed up and

assigned to the probability that the object moves outside the network.

The simulations were conducted for a total of 10000 cycles for all algorithms. In all

our experiments, we set � = 5. Recall that � denotes the maximum sleep time assigned
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to any sensor. Further, we set c and K for the single-stage cost function (12.5) to 1 and

N2� c respectively. The rationale behind this assignment is that we consider encountering

a tracking error to be as bad as keeping the square of the number of sensors in the network

awake. Next, for both QSA as well as T QSA, we set 
 = 0:9 in our experiments. For

QSA, the step-sizes are chosen to be �(n) =
1

n
; n � 1. For T QSA, the choice of step-

sizes is as follows:

b(n) =
1

n
; a(n) =

1

n0:55
; n � 1: (14.5)

Further, for T QSA, we set � = 0:001. This value is seen to show the best results for a

range of �-values in terms of the number of sensors awake as well as the number of detects

(see Table 14.1 for a sensitivity analysis).

At each time instant, the object either moves randomly to an adjacent location or stays

in its current location. However due to the large size of the action space, it is not feasible

to evaluate each and every action vector. So, we deterministically prune off certain actions

and present a smaller action space to the agent to choose from. For instance, if at location

i, the probability of presence of the object is nearly 0 and the closest location j which has a

reasonable probability of the object being there, is more than Vmax distance away from i, it

can safely be given a sleep time that is directly proportional to its distance from the current

possible location of the object. We narrow down the action space in this manner and hence,

we need to determine the sleep times for those sensors that are awake and within Vmax

proximity of the probable locations of the object’s presence. This makes our algorithm fast

irrespective of the network size. We have used the value of Vmax as 1 in all our experiments.

That is in one time step, the object can travel from its current location to any of its adjacent

locations with uniform probability.

14.1.3 Results

We use the number of sensors awake per time step and the number of detects per time step

as performance metrics for comparing the sleep–wake scheduling algorithms. The first

metric is the ratio of the total number of sensors in the wake state to the number of time-

steps, whereas the second metric is a similar ratio where the number of successful detects

of the object is used instead.

Figure 14.1 presents the results of the number of sensors awake and the number of de-

tects per time step on a 1-d network. Figure 14.2 presents similar results on a 2-d network.
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Figure 14.1: Tradeoff characteristics in 1-d network
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Figure 14.2: Tradeoff characteristics in 2-d network
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The settings for these networks are shown in Figures 12.1 and 12.2, respectively.

Observation 1 QSA and T QSA achieve satisfactory levels of energy cost to tracking

cost tradeoff.

This is evident from the plots in Figures 14.1 and 14.2. While the number of sensors awake

for FCR algorithm is lower than that for QSA and T QSA algorithms, the tracking ac-

curacy is also significantly lower in comparison. This is true in results from both 1-d as

well as the 2-d networks. On comparing our algorithms with QMDP , we observe that while

QMDP keeps a lower number of sensors awake, it also results in lower tracking accuracy.

Further, note from Figure 14.1 that whenever QMDP has a higher tracking accuracy in com-

parison to our algorithms (cf. the numbers around the 2200th time instant), it pushes the

number of sensors awake higher. Further, QMDP is not an incremental update learning al-

gorithm and it does not stabilize the number of sensors awake and the tracking errors in

the long-term. This is because, at each time instant, QMDP attempts to solve the balance

equation (14.4) in an approximate fashion and no information about the solution thus ob-

tained is carried forward to the future instants. This can also be observed in the variations

in the number of sensors awake and the tracking accuracy of the QMDP algorithm. On the

contrary, our algorithms learn the optimal sleeping policy for the individual sensors with

contextual information being carried forward from one time step to the next. As evident

in the performance plots of Figures 14.1 and 14.2, this results in a stable regime for the

number of sensors awake and the tracking accuracy, unlike QMDP .

Observation 2 The parameter vector � converges for the T QSA algorithm.

From Figures 14.3 (a) and (b), we observe that the Q-value parameter � converges in both 1-

d as well as 2-d networks. This is a significant feature of T QSA as it possesses theoretical

convergence guarantees, unlike QSA.

Observation 3 QSA and T QSA are empirically faster than QMDP .

For instance, on a 1-d setting, the runtime of our algorithms QSA and T QSA was under

3 hours, whereas QMDP took 12 hours. The runtime advantage of our algorithms over the

QMDP algorithm is probably due to the fact that QMDP employs a policy iteration procedure

per sensor in each time step to determine the sleeping policy, whereas our algorithms em-

ploy function approximation techniques to achieve computational efficiency. This is also

reflected in the run-times observed in a 2-d setting, where our algorithms were seen to

converge in 3 hours, whereas the QMDP algorithm required several days.
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Figure 14.3: Convergence trends of � with T QSA - Illustration on 1-d and 2-d networks
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Table 14.1: Tradeoff characteristics in 1-d network with T QSA for different values of �
� Number of sensors awake Number of detects
0.0001 10.17 � 0.65 0.82 � 0.14
0.001 10.53 � 0.59 0.94 � 0.08
0.01 10.54 � 0.54 0.93 � 0.08
0.1 10.46 � 0.59 0.93 � 0.08

14.2 Simulation Experiments – Average Setting

In this section, we present numerical results obtained from simulations for the average

reward setting. We implemented the QSA-A algorithm, which is the Q-learning with

function approximation variant for the average setting as well as the T QSA-A algorithm,

which is the convergent two-timescale algorithm. For performance comparisons, we have

once again used FCR and QMDP that were described in section 14.1. The network setups

here are the same as the ones used in the discounted cost setting, i.e., a 1-d network with 41

sensors without overlap and a 2-d network with a 11� 11 grid of 121 sensors with overlap.

The overlap model is also the same as in section 14.1.

14.2.1 Implementation

ForQSA-A, we have taken the fixed state s00 as hp0; ri where p0 is the initial belief distri-

bution and r is a random sleep time vector. The rationale here is that for this choice of the

special state, there is a positive probability that the object will stay in its starting location

after one time step. Moreover, as we explore the action space more towards the start of the

experiment, it results in a positive probability of a random action being chosen at the initial

time step leading to random remaining sleep times of the sensors after the first time step.

Thus there is a positive probability that s00 will be observed within the first few steps from

the start of the experiment. The fact that a state satisfying such a criterion can be used as

the fixed state has been established in Bertsekas [1995]. Other parameters remain the same

as in section 14.1.

14.2.2 Results

Figures 14.4 and 14.5 present the number of sensors awake and the number of detects per

time step, for each of the algorithms studied on two different network settings, respec-

tively. As in the case of the discounted cost setting, we observe that both QSA-A and
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(a) Number of sensors awake per time step

(b) Number of detects per time step

Figure 14.4: Tradeoff characteristics in 1-d network
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(a) Number of sensors awake per time step

(b) Number of detects per time step

Figure 14.5: Tradeoff characteristics in 2-d network
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T QSA-A have been able to adaptively learn fairly good policies and consistently achieve

better tradeoff in comparison to FCR and QMDP . The QMDP exhibits fluctuating behaviour

with extremely good tradeoffs for many episodes while poor tradeoffs at certain episodes.

This, we suspect, is due to the underlying requirement of complete future observations in

QMDP . This leads to assuming the propagation in the belief distribution and consequently

when in the simulation there happen to be more frequent tracking errors, QMDP fails to

adapt to that situation and results in poor performance. Meanwhile our algorithms, QSA
and T QSA adaptively learn the Q-value parameter � which dictates the choice of actions

that subsequently lead to a satisfactory tradeoff with greater consistency. The same argu-

ments hold for the 2-d case as is evident from Figures 14.2 (a) and (b).

We observe from Figures 14.6 that the �-values have converged for T QSA-A in both

1-d and 2-d networks thereby indicating stability of the algorithm. This is an important

advantage of T QSA-A over QSA-A, as it possesses theoretical convergence guarantees

and empirically performs on par (and sometimes better) with QSA-A.

14.3 Results – unknown P case

Figure 14.7 presents the performance plots (number of sensors awake and number of

detects) from the experiments on a 2-d network, where QSA is combined with the P -

estimation procedure (13.30). Figure 14.8 presents similar results for the T QSA algo-

rithm. As illustrated in Figures 14.7–14.8, even with an unknown P setting, the algorithms

QSA-UP and T QSA-UP show performance on par with their corresponding variants

with known P , i.e., QSA and T QSA algorithms, respectively.

In the average setting, we studied the performance of the algorithms QSA-A-UP and

T QSA-A-UP . These algorithms combine QSA-A and T QSA-A respectively, with the

P estimation procedure (13.30). We observe that, as in the discounted setting,QSA-A-UP
and T QSA-A-UP exhibit performance on par with their known P variants, i.e., QSA-A
and T QSA-A respectively. This is evident from Figure 14.10.

Further, we also observe that in the algorithms for the discounted setting (QSA-UP
and T QSA-UP) as well as the algorithms for the average setting (QSA-A-UP and

T QSA-A-UP), the estimates Pk of the transition probability matrix P converge to the true

P . This is illustrated by the convergence plots corresponding to a 2-d network in Figure

14.9 for the discounted setting and in Figure 14.11 for the average setting. In particular,

Figure 14.9 shows that for a 2-d network, the value of Pk(i; j), where i corresponds to the
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(6; 6)th cell and j corresponds to the (6; 5)th cell converges to the actual P (i; j) value of

0:11, for both QSA-UP as well as T QSA-UP . In contrast, the QMDP algorithm requires

full knowledge of the distribution of the object movement and hence, cannot be applied in

the setting of unknown P .

14.4 Conclusions and Future Work

Wireless sensor networks show a lot of promise when we consider monitoring applica-

tions, as they are cheap, easy to deploy and require little maintenance. Designing a WSN

that achieves close to optimal performance from an energy efficiency perspective in an

object tracking application is a challenging task. In other words, the problem we stud-

ied is to track an object moving randomly through a dense network of wireless sensors

such that the entire sensing region has no discontinuities and the aim is to conserve energy

by optimizing the sleep times of the sensors in a way that does not compromise on the

tracking quality. Reinforcement learning presents an interesting paradigm for solving such

design problems. We propose novel RL-based algorithms - with both long-run discounted

and average cost objectives - for solving this problem. All our algorithms incorporate

function approximation and feature-based representations to handle the curse of dimen-

sionality. Further, the feature selection scheme used in each of the proposed algorithms

intelligently manages the energy cost and tracking cost factors, which in turn, assists the

search for the optimal sleeping policy. The results from the simulation experiments sug-

gest that our proposed algorithms perform better than two recently proposed algorithms

from Fuemmeler and Veeravalli [2008]. Amongst our algorithms, we observed the con-

vergent two-timescale Q-learning algorithm showed similar performance as compared to

Q-learning. However, as explained previously, T QSA is seen to converge theoretically

while Q-learning with function approximation may not converge (Baird [1995], Tsitsiklis

and Van Roy [1997]). Hence, T QSA is a reliable and provably convergent algorithm un-

like QSA that may or may not work in certain settings, see Bhatnagar and Lakshmanan

[2012] for applications in multi-stage queueing networks where T QSA is clearly better in

comparison to QSA. We also incorporated a novel estimation scheme for the transition

probability matrix when the object movement distribution is not known. We combined this

online estimation procedure for P with the two proposed algorithmsQSA and T QSA, re-

spectively, using multi-timescale stochastic approximation. Empirically, we observed that

the transition probability estimates converged to the true values in all experimental settings



Chapter 14. Performance Analysis of Sleep–Wake Scheduling Algorithms 224

 0

 10

 20

 30

 40

 50

 60

 70

 0  2000  4000  6000  8000  10000

N
u
m

b
e
r 

o
f 
s
e

n
s
o

rs
 a

w
a

k
e
 p

e
r 

ti
m

e
 s

te
p

time steps

QSA
QSA-UP

(a) Number of sensors awake per time step

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000

N
u
m

b
e
r 

o
f 
d

e
te

c
ts

 p
e
r 

ti
m

e
 s

te
p

time steps

QSA
QSA-UP

(b) Number of detects per time step

Figure 14.7: Tradeoff characteristics in 2-d network with known and unknown P forQSA
algorithm



Chapter 14. Performance Analysis of Sleep–Wake Scheduling Algorithms 225

 0

 10

 20

 30

 40

 50

 60

 70

 0  2000  4000  6000  8000  10000

N
u
m

b
e
r 

o
f 
s
e

n
s
o

rs
 a

w
a

k
e
 p

e
r 

ti
m

e
 s

te
p

time steps

TQSA
TQSA-UP

(a) Number of sensors awake per time step

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2000  4000  6000  8000  10000

N
u
m

b
e
r 

o
f 
d

e
te

c
ts

 p
e
r 

ti
m

e
 s

te
p

time steps

TQSA
TQSA-UP

(b) Number of detects per time step

Figure 14.8: Tradeoff characteristics in 2-d network with known and unknown P for
T QSA algorithm



Chapter 14. Performance Analysis of Sleep–Wake Scheduling Algorithms 226

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  2000  4000  6000  8000  10000

e
s
ti
m

a
te

 o
f 

P
 p

e
r 

ti
m

e
 s

te
p

time steps

P[60][59]

(a) For QSA-UP

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  2000  4000  6000  8000  10000

e
s
ti
m

a
te

 o
f 

P
 p

e
r 

ti
m

e
 s

te
p

time steps

P[60][59]

(b) For T QSA-UP

Figure 14.9: Convergence of Pk for both QSA and T QSA algorithms - illustration using
Pk(i; j) where i corresponds to the (6; 6)th cell and j to the (6; 5)th cell in the 2-d network.
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considered.

However, this work has several open avenues for further research. Some of these are:

- Sleep-Wake scheduling for object tracking under noisy observations by the sensors. Ran-

dom interference leads to noisy observations by the sensors. Thus, the central controller

needs probabilistic data association techniques to distinguish between observations that

truly associate with the data and false reports.

- Sleep-Wake scheduling for multi-object tracking. In this case, the objective will be to

find a tradeoff between observing more number of objects while keeping many sensors

asleep.

- Decentralized object tracking in absence of central controller using cooperative decision

making by the sensor nodes. In the absence of the central controller, sensor nodes would

have to participate in decision making and routing. Especially in the case of overlapping

sensing ranges, the nodes can compete among themselves for greater sleep times in order

to save more energy. This problem can be addressed by applying both cooperative and

non-cooperative game theoretic techniques and designing a mechanism for the same.



Part IV

Mechanism Design

Several key economic scenarios involve agents having limited

capacities whose types change with time, e.g., service workers

attending to service requests, power plants supplying to power

grids, and machines connected to computing grids. Dynamic

mechanisms have been proposed to address the issue of dy-

namic types. Also, a few mechanisms have been proposed to

account for limited capacities in static settings. This part pro-

poses two novel mechanisms – first, a static mechanism having

capacity constraints and second, a dynamic mechanism in a set-

ting where the types are dynamic and include a unit cost and

capacity. We show that each of our mechanisms is ex-post in-

centive compatible, ex-post individually rational, and socially

efficient.
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Chapter 15

Static mechanism design with capacity
constraints

Mechanism design has been a key technique for decision making in various economic

scenarios. In many of the economic scenarios of interest, the agents’ types change with

time, e.g., the cost of production of a good. Also, in most real economic scenarios, agents

have limited capacities, for instance, the supply capacity of a power plant on a given day.

In this chapter, we consider a static setting and handle the extension to a dynamic setting

in which the private types evolve over time according to a Markov process, in the next

chapter. We first propose an enhanced static mechanism that provides a correction to the

transfer scheme of Dash et al. [2007] to deal with over-reported capacity. The novelty here

is a variable penalty scheme that penalizes an agent to the extent of damage his misreport

caused in the allocation to the other agents. Next, we extend this idea for the domain that

lies at the intersection of the two scenarios – agents having limited capacities and types that

change with time in Chapter 16.

We consider a procurement setting in which a single buyer attempts to obtain D units

of a good from a set of n sellers. Each seller i is capacity-constrained in the sense that they

can produce up to ci units at a constant unit price ui. The capacity and unit price are private

information. While a simple VCG-like transfer scheme ensures truthful unit price reports

from the individual agents, the same is not true w.r.t. capacity type element (See Example

1).

Several mechanisms have been proposed to deal with the case of limited capacity of

agents in the static case, but we focus on the work of Dash et al. [2007]. In their work, the

limited capacity of agents is accommodated by ensuring that an agent is never allocated
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more than its reported capacity and by imposing a fixed penalty of a positive � to ensure

truthtelling w.r.t. the capacity type element. Here, if an agent misreports its capacity,

produces less units than allocated, and is penalized as above, the agent would derive utility

of ��. In a static setting, such a fixed penalty scheme is shown to be strategyproof, i.e.,

truthful type reports is a dominant strategy for each of the agents, see Dash et al. [2007].

In spite of the fact that a fixed �-penalty achieves strategyproofness as shown by Dash

et al. [2007], in practical competitive scenarios, agents could be willing to incur a loss of �,

if it is relatively small compared to the major losses inflicted to other agents due to the mis-

report. We incorporate the preference of agent to harm other agents via capacity misreport

through an additive term that captures the agent’s allocation under the reported capacity.

Note that the reported capacity of an agent may be overstated, resulting in an increased

allocation at the cost of other agents. In this modified utility setting, as we demonstrate

via examples later, the mechanism of Dash et al. [2007] does not ensure truthful capacity

reports. In other words, a fixed �-penalty does not deter capacity misreports by an agent

because the degree of losses inflicted on other agents via a capacity misreport is a variable,

which depends on the allocation and hence the individual agents’ reported types.

We present a static mechanism MC that enhances the mechanism from Dash et al.

[2007], to incorporate a novel variable penalty scheme. The penalty imposed on agents

misreporting their capacities is the same as the loss of allocation to other agents due to

misreported capacities. We formally show that MC is strategyproof. In particular, we

show that MC ensures truthful capacity reports from the individual agents in a setting

where the agents have a preference to overstate capacity and hence, negatively impact the

allocation of other agents.

Dynamic mechanism design is a key area, especially when the center makes allocations

to participating agents repeatedly. For example, service workers employed by a service

provider would typically attend to thousands of service requests during their employment

period. Each service worker has a limited amount of time (which keeps changing every day)

and her estimate of the amount of time required to resolve service requests also changes

with skill gain or decay. For an efficient allocation, i.e., for minimizing the total time re-

quired to resolve a set of service requests, it is not enough for the provider to consider the

current types of service workers but also the future horizon. Significant results have been

already established in this area, see Bergemann and Välimäki [2010], Cavallo [2008] and

Cavallo et al. [2009]. We focus on the work of Bergemann and Valimaki (B&V) (Berge-

mann and Välimäki [2010]), that proposes a dynamic pivot mechanism that is truthful,
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efficient, and individually rational. The optimal allocation is computed as the expectation

on the discounted sum of valuations of each agent with his payoff computed based on his

marginal contribution. However, B&V’s mechanism considers a setting where a common

resource is allocated to an agent at every time step and the agent’s capacities are not con-

sidered. Hence the question of capacity misreports and the consequent need to penalize

misreporting agents does not arise in their work.

Unfortunately, capacity constraints are nontrivial to accommodate in the design of truth-

ful and socially efficient dynamic mechanisms. The main challenge is that in a given time

step, the payoff to an agent cannot be determined until the time that the actual units pro-

duced by an agent is known. If the allocation � to agent i to produce �i units is made at

time t1 based on the expected discounted sum of current and future valuations of all agents,

and the actual number of units �ci produced by agent i is known at a later time t2 > t1, then

the payoff to agent i for the allocation � cannot be made prior to t2 because it depends on

�ci. However, because the valuations are discounted in the future, the marginal contribu-

tion computed at t1 may not yield allocative efficiency at t2. This is because, intuitively, a

payment made at t1 is worth more than the same payment at t2. The question then is what

should the payoff to agent i be at time t2 for allocation � such that the resulting mechanism

is truthful in terms of unit costs as well as capacities and is socially efficient? Note that

this question does not arise for B&V’s work because the payoffs can be made at t1, i.e., the

time of allocations.

To answer the above question, we develop a delayed transfer scheme that consists of

a marginal contribution component and a penalty component. The marginal contribution

component is similar to the transfer scheme in the dynamic pivot mechanism (Bergemann

and Välimäki [2010]). However, we establish via a counterexample that providing the

marginal contribution alone is not sufficient to ensure incentive compatibility of the mech-

anism. For this purpose, a penalty component is necessary in the transfer to the agents.

With this motivation, we propose DMC, the first dynamic mechanism to tackle capac-

ity constraints. While DMC is an extension ofMC for the dynamic case, a key novelty

of DMC is the delayed transfer scheme where payoffs are adjusted based on the period

elapsed since allocation. We establish that DMC is allocatively efficient, within period

ex-post incentive compatible, and individually rational.

The rest of this chapter is organized as follows: In Section 15.1, we survey previously

proposed literature that covers both static as well as dynamic mechanisms. In Section 15.2,

we describe in detail the static mechanism MC with a novel variable penalty structure.
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In the following chapter, we present the dynamic mechanism framework with capacity

constraints and develop an extension of the static mechanismMC to the dynamic setting.

15.1 Literature review

For a survey of the core results to date in the area of dynamic mechanism design, the reader

is referred to Cavallo [2009]. The authors in Cavallo et al. [2009] present a dynamic mech-

anism without capacity constraints wherein agents become unavailable for a period after

the allocation is made and the payoffs can only happen when the agents eventually become

available. The payoffs are adjusted upwards by compounding the discount factor for all the

time points during which the agent is unavailable. In Athey and Segal [2007], the authors

obtain a Bayes-Nash incentive compatible, efficient and budget-balanced mechanism for a

persistent-population, dynamic-type environment with private values and independent type

transitions. In Nath et al. [2011], the authors propose a two-phased dynamic mechanism

that involves type-reporting and value-reporting stages, while the transfer scheme is similar

to that of the dynamic pivot mechanism (Bergemann and Välimäki [2010]). In Deb [2008],

a method for a dynamic setting where the buyers learn their value of an object over multiple

periods is proposed. At each period, the agents update their valuations based only on their

consumption experience. Such a setting applies to our work wherein the agents learn the

cost of performing a unit of work and capacity over multiple periods, resulting in a higher

social welfare over periods. In Kakade et al. [2011], the authors consider the problem of

maximizing revenues while preserving efficiency in dynamic settings. While revenue max-

imization is an important property, it remains to be seen whether it can be achieved without

compromising incentive compatibility and individual rationality in the dynamic settings.

An indirect, efficient, and revenue maximizing mechanism for a setting where the arrivals

of buyers, the demand, and supply are stochastic is Said [2010].

In Gerding et al. [2010], the authors consider a static case where the work units come

with deadlines and the center wants to maximize the probability of work completion within

the deadlines. They show how this can be achieved by having the provider agents report

their service times. Deadlines are considered in the context of a dynamic setting in Mieren-

dorff [2009]. An optimal mechanism is derived there for the case when incentive constraint

for the deadline can be neglected as well as for a specific case of two buyers where the

incentive constraint cannot be neglected.

While the works outlined above consider interesting and realistic extensions to dynamic
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mechanism design, they do not consider capacity constraints unlike our work.

15.2 Static Mechanism with constraints (MC)

15.2.1 The Setting

Consider a setting involving N agents (numbered 1; 2; : : : ; N ) that are capable of perform-

ing certain manufacturing tasks 1. A central controller receives a task of manufacturing D

items of a certain commodity. Each agent i is characterized by his type information - a

tuple (ui; ci), where ui is the unit price and ci is the maximum capacity that agent i can

provide. We assume here that the agents are aware of their capacities and that their collec-

tive capacity exceeds the demand D. We also assume that the collective capacity exceeds

the demand D even in the absence of an agent i, where i = 1; : : : ; N . The type vector � is

given by � = (�1; : : : ; �N), where �i = (ui; ci). We let �i 2 �i, where �i denotes the type

space of agent i. The joint type � is then given by � = �1 � : : : � �N . The problem at

the central controller is to obtain an efficient allocation such that the demand is met and the

total cost is minimized as well. We denote an allocation by y = (y1; : : : ; yN), where yi is

the number of items that have to be produced by agent i.

The central controller thus solves the following optimization problem:

Find �(�) = argmin
y2Y

NP
j=1

ujyj

s.t. 0 � yj � cj; j = 1; 2; : : : ; N;

and
NP
j=1

yj = D:

(15.1)

In the above, Y is the set of all possible allocations. The policy �(�) obtained as a solution

to (15.1) is called socially efficient and we use �i to denote the allocation to agent i under

the efficient policy �. For the purpose of defining payments to agent i in the marginal sense,

we also require the solution to (15.1) with agent i removed, i.e., a solution to the following

optimization problem:

1Note that the results of this chapter would apply to any domain where the agents are allocated some work
for the external customers.
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�̂i = (ûi; ĉi)
��i = (ûi; �ci)

Allocation Transfer

Find ��i(�) = argmin
y2Y

P
j 6=i

ujyj

s.t. 0 � yj � cj; j 6= i;

and
P
j 6=i

yj = D:

(15.2)

The allocation to agent j under the policy obtained as a solution to (15.2) is denoted ��i;j .

The problem now is to define a mechanism that results in truthful type reports by the in-

dividual agents. This will happen if the agent’s utility function is maximized under true

reports, which constitutes strategyproofness. Before formalizing our mechanism, we de-

fine the utility function Ui of an agent i in our setting.

Definition 15.1 The utility function Ui of agent i is quasi-linear and is given by

Ui(�; ti; �̂) = ti � ui�ci(�̂) + �i((ui; ĉi); �̂�i); (15.3)

In the above, �ci(�̂) denotes the achieved capacity of agent i, given that its allocation was

�i(�̂). Note that if the agent has overstated its capacity, then the achieved capacity can in

fact be lesser than the allocation (See Figure 15.2.1). The second term in (15.3) signifies

the cost to agent i under the allocation policy � and ti is the payment that agent i receives

from the central controller. The rationale behind the final term �i(�) above is that the utility

an agent derives increases linearly with its allocation, even if it is at the cost of other

agents. This is evident by noting that �i(�) = D �P
j 6=i

�j(�). Thus, the final term captures

the preference of an agent to ruin others by overstating capacity. This is unlike the utility

function formulation in Dash et al. [2007], where the utility function contained the first two

terms of (15.3).

Remark 16 One could also use a reward function f(�) that converts from allocation units

to money or reward points in the utility function (15.3) as follows:

Ui(�; ti; �̂) = ti � ui�ci(�̂) + f(�i((ui; ĉi); �̂�i)); (15.4)
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The exact details of the reward function f(�) is immaterial for the discussion here, as long

as it is ensured to be monotonic in its parameter. Further, we do not incorporate the reward

function in the material next and the analysis can be seen to be trivially extended to include

f(�).
Formally, a mechanism is a tuple (�; t), where � is the policy component that maps

the types to an allocation vector and t denotes the transfer scheme, with ti : � ! R de-

noting the monetary payment received by agent i. The policy employed in our mechanism

is socially efficient (as defined by (15.1)). Further, the transfer scheme t ensures strate-

gyproofness and individual rationality - properties desirable of any mechanism. We later

prove these properties formally.

Definition 15.2 A mechanism is strategyproof if truth-telling constitutes a dominant strat-

egy for the agents, i.e., for all agents i = 1; 2; : : : ; N ,

Ui(�; ti(�i; �̂�i); (�i; �̂�i)) � Ui(�; ti(�̂); �̂); 8�̂ 2 �

where �̂ denotes the reported types of all agents and �̂�i the reported types without agent i.

Definition 15.3 A strategyproof mechanism is individually rational if the agents have an

incentive to participate than leave it i.e., for all agents i = 1; 2; : : : ; n, for all types � 2 �

Ui(�; ti(�); �) � 0:

We assume that the utility an agent derives by leaving the mechanism is 0.

An important aspect of the mechanism MC worth noting here is that on completion

of a production task by agent i, the allocation is re-computed with achieved capacity of

agent i being used instead of the reported capacity. The policy that results from this allo-

cation is used to decide the transfer for agent i (see Figure 15.2.1). Table 15.1 summarizes

the notation used for the policies obtained by solving (15.1) under different type vector

arguments. Note that the allocation to individual agents is obtained via subscripting. For

instance, �j(��i; �̂�i) denotes the allocation to agent j when (15.1) is solved with the type

argument (��i; �̂�i).

15.2.2 Motivation

Before formalizing the various aspects of MC , we present a motivating example that

considers a limited capacity setting and shows that the popular VCG mechanism’s transfer
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Table 15.1: Summary of the various allocation policies used inMC
Notation Description Input type

�(�̂) Efficient allocation with reported types
�̂ = (�̂1; �̂2; : : : ; �̂N),
where �̂i = (ûi; ĉi)

�(��i; �̂�i)
Efficient allocation with achieved type of agent i (��i; �̂�i),

and reported types of all other agents where ��i = (ûi; �ci)

scheme as well as the transfer scheme featuring a fixed �-penalty proposed by Dash et al.

[2007] fail to ensure truthful capacity reports. However, note that eliciting truthful unit

price reports is not a problem and the VCG mechanism’s transfer scheme ensures this part.

It is the capacity constraints that make the problem non-trivial. In all the example scenarios

through the paper, the demand D is assumed to be 150.

Example 1 Consider a scenario where there are three agents with their types given by

(u1; c1) = (1; 100), (u2; c2) = (2; 50) and (u3; c3) = (3; 130). Suppose agent 1 misreports

his capacity to be 125 while reporting his unit price truly. The other agents report their

true types. Now, the efficient allocation with reported types is (125; 25; 0). However, after

the agents complete their task, the achieved capacities would be (100; 25; 0). A VCG-like

payment scheme in this setting would be according to:

ti =
X
j 6=i

buj��i;j(�̂�i)�X
j 6=i

buj�j(�̂): (15.5)

As per the above payment rule, agent 1’s payoff would be t1 = (2�50+3�100)�(2�25) =
350. On the other hand, if agent 1 reported his capacity truthfully, he would have received

as transfer t1 = (2 � 50 + 3 � 100) � (2 � 50) = 300. Thus, it is evident that agent 1

has an incentive to misreport his capacity and receive a higher transfer at the cost of other

agents.

To handle capacity constrants, the mechanism of Dash et al. [2007] incorporated a

fixed �-penalty based transfer scheme, where the payment ti to an agent i is according to:

ti =
X
j 6=i

buj��i;j(�̂�i)�X
j 6=i

buj�j(��i; �̂�i)� ��i: (15.6)

In the above, �i is a binary variable which is equal to 1 if �ci < �i(�̂), i.e., when the agent

has over-stated his capacity, and 0 otherwise. The first two terms in (15.6) refer to the

marginal contribution of agent i. This is calculated using the achieved capacity of agent i,
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denoted by �ci.

Thus, as per (15.6), agent 1’s payoff would be t1 = (2�50+3�100)� (2�50)� � =
300 � �. On the other hand, if agent 1 reported his capacity truthfully, he would have

received as transfer t1 = (2� 50 + 3� 100)� (2� 50) = 300.

While the mechanism proposed in Dash et al. [2007] achieved strategyproofness, the utility

function of agent i in their setting was Ui(�; ti; �) = ti � ui�ci(�). However, in our setting

with the utility function as defined in (15.3), strategyproofness isn’t necessarily ensured

using the transfer of Dash et al. [2007]. This is because, an agent i has an incentive to

misreport his capacity and improve his allocation at the cost of others (see the last term in

(15.3)). To make this precise, the utility U1 of agent 1 in our setting, i.e., with Ui given by

(15.3), turns out to be (300 � � � 1 � 100 + 125) = 325 � �, whereas with true capacity

report it is (300�1�100+100) = 300. Thus, it is clear that truthtelling w.r.t. the capacity

element does not guarantee a higher utility for all values of �.

The choice of utility function in our setting is realistic because in practical competitive

scenarios, agents could choose to inflict major losses to other agents. The mechanism of

Dash et al. [2007] penalized a misreporting agent by a fixed �, which in our setting may

not be enough to ensure truthful capacity reports. This is because, an agent may be willing

to incur a loss of �, if it is relatively small compared to the major losses inflicted to other

agents due to the misreport. This is evident in the above example where agent 1 may choose

to misreport his capacity and significantly impact the allocation of agent 2 (reduced by 25

units) while incurring a penalty of a potentially relatively small �. On the other hand, a

large value of � also is not advisable. Consider again the above example and assume that

� = 1000. It can be the case that agent 1 was probably capable of producing 125 units but

fell short due to some unforeseen issues that he faced during production. A large � may not

be appropriate in this scenario. In general, precisely because the degree of losses to others

that can be caused by capacity misreports in a given market are unknown, it is difficult to

determine a fixed � that effectively deters capacity misreports. Instead, it is necessary to

devise a transfer scheme that penalizes the agent with the extent of damage (in the marginal

sense) his misreport caused.MC achieves this by having a novel variable penalty scheme,

that we present below.

Remark 17 As we observed in the above example, an agent has an incentive to overstate

its capacity, while it has no incentive to under-state its capacity. Suppose an agent under-

reports its capacity and this inuences the optimal allocation (1). This would imply that the
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optimal allocation (1) would be performed with tighter constraints and hence the marginal

contribution of the agent is reduced, implying a reduced utility to the agent. In a similar

fashion, it can be argued that an agent has no incentive to over-report its unit price.

15.2.3 The Mechanism

Given the above problem description, we now define our centralized mechanism. Our

mechanism builds on the one proposed by Dash et al. [2007], while incorporating a novel

variable penalty scheme. The penalty scheme proposed here enables our mechanism to

ensure zero loss to other agents when one or more agents misreport their capacities. Our

mechanism is direct where each agent reports his type information and the central controller

then calculates an efficient allocation. The transfer, however, happens with a delay and is

made only after the agent completes the allotted production task (See Figure 15.2.1).

Transfer Scheme

The transfer ti that an agent i receives is a sum of two components and is made when

agent i’s production task is completed. The first component, denoted xi, is the marginal

contribution of agent i to the system, while the second component is a penalty, denoted pi,

imposed on the agents who misreport their capacities to influence the efficient allocation.

The transfer components are given by:

ti = xi + pi;

where

xi =
P
j 6=i

buj��i;j(�̂�i)�P
j 6=i

buj�j(��i; �̂�i)
pi =

P
j 6=i

�j(�̂)�
P
j 6=i

�j(��i; �̂�i):

(15.7)

The first component xi of the payment ti to the agent i is his marginal contribution

towards reducing the total production cost, i.e., the difference between total costs of allo-

cation that other agents obtain without agent i and with agent i, respectively. The penalty

component pi is also marginal in the sense that it is the difference between the total costs of

allocation that other agents obtain with agent i’s reported capacity and achieved capacity,

respectively. Hence, the loss caused by agent i’s misreport is compensated via pi.
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Remark 18 Considering that
NP
j=1

�j = D, the penalty component can be seen as equiva-

lent to

pi = �i(��i; �̂�i)� �i(�̂):

Remark 19 The reward function f(�) mentioned previously, can be incorporated into the

penalty component as follows:

pi =
X
j 6=i

f(�j(�̂))�
X
j 6=i

f(�j(��i; �̂�i)):

15.2.4 Discussion

I) Now we demonstrate the usefulness of our penalty scheme using example 1, which in-

volved a single agent misreporting his capacity. In example 1, ��1(�̂�1) = (50; 100)

and �(��1; �̂�1) = (100; 50; 0). MC would result in a payment of x1 = (2 � 50) �
(2 � 50) = 0 to agent 1 and the penalty component would be p1 = 25 � 50 = �25.

Note that while the marginal contribution component withMC is 0 as for Dash et al.

[2007], the penalty is variable and calculated based on the damage caused by agent

1’s misreport, unlike Dash et al. [2007] where it was a fixed quantity �. As explained

before, the utility U1 derived by agent 1 under true capacity report is 300, while under

capacity misreport, U1 = 325�� in the case of Dash et al. [2007]. On the other hand,

U1 in the corresponding case forMC turns out to be (300�25)�1�100+125 = 300,

which is equal to the utility derived under true report.

II) We now provide an example to illustrate that truth-telling in unit price is a weakly

dominant strategy inMC. Suppose there are three agents with (u1; c1) = (3; 125),

(u2; c2) = (2; 50) and (u3; c3) = (4; 100). Assume that the agents report their true

capacities. With a unit price report of (bu1; bu2; bu3) = (1; 2; 4), i.e., with agent 1

misreporting his unit price, the optimal allocation is �(�̂) = (125; 25; 0). In this case,

agent 1’s payment is (2 � 50 + 4 � 100) � 2 � 25 = 450, whereas with the true

type reports, it is (2 � 50 + 4 � 100) � 2 � 50 = 400. Hence, the utility derived by

agent 1 in the former case (with unit price misreport) is 450� 3� 125 + 100 = 175,

whereas with true type report, agent 1’s utility is 400 � 3 � 100 + 100 = 200. This

illustrates that MC forces truth telling by agent 1 in the unit price component and

hence is dominant.
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III) We now provide an example where both unit price and capacity elements are misre-

ported. Suppose there are three agents with (u1; c1) = (3; 75), (u2; c2) = (2; 50) and

(u3; c3) = (4; 100). Agent 1 misreports its type as (1; 125), whereas the other agents

report their true types. The optimal allocation �(�̂) = (125; 25; 0) and �(��1; ��1) =

(75; 50; 25). The transfer components x1 and p1 to agent 1 can be calculated as fol-

lows:

x1 =(2� 50 + 4� 100)� (2� 50 + 4� 25) = 300;

p1 =75� 125 = �50:

Thus, the utility of agent 1 is (300 � 50) � 3 � 75 + 75 = 100. On the other

hand, the optimal allocation under true type report by all agents (including agent 1)

is �(�) = (75; 50; 25). Since the penalty to agent 1 is 0, the transfer to agent 1 can be

calculated from the marginal contribution component x1 as (2�50+4�100)� (2�
50+ 4� 25) = 300. Thus, the utility derived by agent 1 is 300� 3� 75+ 75 = 150,

which is strictly greater than the utility of 100 derived under the case when agent 1

misreported its type.

15.2.5 Strategyproofness of MC

Strategyproofness ofMC will be established by the following steps:

(i) First, in Proposition 15.5, we show that reporting the true unit price is utility maxi-

mizing for agent i, regardless of the reported capacity of agent i and of what other

agents report, i.e., Ui(�̂) � Ui((ui; ĉi); �̂�i):

(ii) Next, in Proposition 15.6, we show that reporting the true capacity is utility maximiz-

ing for agent i, given true unit price report and regardless of what other agents report,

i.e., Ui((ui; ĉi); �̂�i) � Ui(�i; �̂�i):

(iii) Theorem 15.7 then establishes that reporting true type is always a utility-maximizing

strategy, regardless of what other agents do, i.e., Ui(�̂) � Ui(�i; �̂�i):

Lemma 15.4 If � � �, then

(i) �i((�; ĉi); �̂�i) � �i((�; ĉi); �̂�i).

(ii) �i((ûi; �); �̂�i) � �i((ûi; �); �̂�i).
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Proof: The proof is straightforward from the definition of � in (15.1). �

Proposition 15.5 Ui(�̂) � Ui((ui; ĉi); �̂�i):

Proof: Using the definitions of utility function (15.3) and the transfer scheme (15.7), the

LHS of the above claim is:

Ui(�̂) =
X
j 6=i

buj��i;j(�̂�i)�X
j 6=i

buj�j((ûi; �ci); �̂�i)
+ �i((ûi; �ci); �̂�i)� �i(�̂)� ui�ci(�̂) + �i((ui; ĉi); �̂�i) (15.8)

The RHS can be simplified as follows:

Ui((ui; ĉi); �̂�i) =
X
j 6=i

buj��i;j(�̂�i)�X
j 6=i

buj�j((ui; �ci); �̂�i)
+ �i((ui; �ci); �̂�i)� �i(ui; ĉi); �̂�i)� ui�ci((ui; ĉi); �̂�i) + �i((ui; ĉi); �̂�i)

(15.9)

Comparing (15.8) and (15.9), we need to establish that

�
X
j 6=i

buj�j((ûi; �ci); �̂�i) + �i((ûi; �ci); �̂�i)� �i(�̂)� ui�ci(�̂)

��
X
j 6=i

buj�j((ui; �ci); �̂�i) + �i((ui; �ci); �̂�i)� �i((ui; ĉi); �̂�i)� ui�ci((ui; ĉi); �̂�i)

We note that �i can be seen as a two-dimensional distribution from the following:

�i(u; c) � 0;

umaxX
u=0

DX
c=0

�i(u; c) = L;

where L is some positive constant that depends on the specific production setting consid-

ered. Note from the definition of � in (15.1) that for any u � 0, �i(u; �) = 0 and similarly,

for any c � 0, �i(�; c) = 0. Further, it is safe to assume that the capacities of the individual

agents are upper bounded by D, as any agent capacity upwards of D does not impact the

allocation �i. It is also clear that the allocation �i will be zero if the agent has considerably

overstated its unit price and hence, there exists a umax, which acts a threshold for the unit

price beyond which the agent’s allocation �i is zero.
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Now, if one normalizes �i using L, then the following

�i((ûi; ĉi); �̂)� �i((ûi; �ci); �̂�i)� �i((ui; ĉi); �̂�i) + �i((ui; �ci); �̂�i) � 0; (15.10)

holds because it is the probability of the rectangle with end points (ui; �ci),(ui; ĉi),(ûi; �ci)

and (ûi; ĉi), calculated using �i. Hence, we need to establish that

�
X
j 6=i

buj�j((ûi; �ci); �̂�i)� ui�ci(�̂) � �X
j 6=i

buj�j((ui; �ci); �̂�i)� ui�ci((ui; ĉi); �̂�i)
Or equivalently,

�
X
j 6=i

buj�j((ûi; �ci); �̂�i)� ui�ci(�̂) � � min
yj�bcj ;yi��ci

"X
j 6=i

bujyj + uiyi

#
:

The above inequality holds because of the ‘min’ in the RHS. Hence proved.

�

Proposition 15.6 Ui((ui; ĉi); �̂�i) � Ui(�i; �̂�i):

Proof: Using the definitions of utility function (15.3) and the transfer scheme (15.7), the

LHS of the above claim can be simplified as follows:

Ui((ui; ĉi); �̂�i) =
X
j 6=i

buj��i;j(�̂�i)�X
j 6=i

buj�j((ui; �ci); �̂�i)
+ �i((ui; �ci); �̂�i)� �i((ui; ĉi); �̂�i)� ui�ci((ui; ĉi); �̂�i) + �i((ui; ĉi); �̂�i)

=
X
j 6=i

buj��i;j(�̂�i)�X
j 6=i

buj�j((ui; �ci); �̂�i)
+ �i((ui; �ci); �̂�i)� ui�ci((ui; ĉi); �̂�i): (15.11)

In the above, note that �ci(�̂) denotes the achieved capacity of agent i. The term

ui�ci((ui; ĉi); �̂�i) is the cost to agent i and the utility Ui an agent derives, see (15.3), is the

difference between the payment he receives and the cost he incurs, plus an additive term

representing his allocation with the reported capacity (and true unit price).
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The RHS of the claim in this proposition can be simplified as follows:

Ui(�i; �̂�i) =
X
j 6=i

buj��i;j(�̂�i)�X
j 6=i

buj�j((ui; �ci); �̂�i)
+ pi(�i; �̂�i)� ui�ci(�i; �̂�i) + �i(�i; �̂�i)

=
X
j 6=i

buj��i;j(�̂�i)�X
j 6=i

buj�j((ui; �ci); �̂�i)
� ui�ci(�i; �̂�i) + �i(�i; �̂�i): (15.12)

The last step holds because under true report, agent i’s penalty term pi(�i; �̂�i) is 0.

Comparing (15.11) and (15.12), it is enough if we establish that,

� ui�ci((ui; ĉi); �̂�i) + �i((ui; �ci); �̂�i)

�� ui�ci(�i; �̂�i) + �i(�i; �̂�i):

By applying Lemma 15.4, it can be seen that �i((ui; �ci); �̂�i) � �i(�i; �̂�i) because

�ci � ci (the achieved capacity �ci of agent i can be at most his true capacity ci). Further, the

achieved capacity remains the same regardless of whether agent i overstated its capacity or

reported it truly, i.e., �ci(�i; �̂�i) = �ci((ui; ĉi); �̂�i). The claim follows. �

Theorem 15.7 The mechanismMC is strategyproof.

Proof: Follows from Propositions 15.5 and 15.6. �

Theorem 15.8 The mechanismMC is individually rational.

Proof: Assuming that the utility derived by an agent by not participating is 0 and the fact

thatMC is strategyproof, we need to establish that Ui(�) � 0. This claim follows from the

following:

� It can be seen in a similar manner as Proposition 3 of the mechanism proposed in

Dash et al. [2007] that ti � ui�i(�) � 0.

� Further, �i � 0.

�
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15.3 Summary

In this chapter, we presented a novel mechanismMC that enhances the static mechanism

of Dash et al. [2007] to incorporate a variable penalty scheme. The penalty scheme in

MC penalized a capacity-misreporting agent only to the extent of damages caused by his

misreport. Unlike Dash et al. [2007], the utility function in our setting included an additive

factor that captured the preference of an agent to harm others by overstating its capacity.

We established the strategyproofness ofMC in this enhanced setting.

In the next chapter, we extend the variable penalty idea to a dynamic setting, where

agent types evolve with time and the agent’s utility factors its preference to ruin other

agents by overstating the capacity. We establish the incentive compatibility of our proposed

dynamic mechanism.



Chapter 16

Dynamic mechanism design with
capacity constraints

A natural and crucial extension of Dash et al. [2007] is to consider the private unit costs and

capacities that change with time. Such settings naturally arise and are especially important

when the center makes allocations to participating agents repeatedly. For example, service

workers employed by a service provider would typically attend to thousands of service

requests during their employment period. Each service worker has a limited amount of

time (which keeps changing every day) and her estimate of the amount of time required to

resolve service requests also changes with skill gain or decay. For an efficient allocation,

i.e., for minimizing the total time required to resolve a set of service requests, it is not

enough for the provider to consider the current types of service workers but also the future

horizon. Significant results have been already established in this area, see Bergemann and

Välimäki [2010], Cavallo [2008] and Cavallo et al. [2009].

We focus on the work of Bergemann and Välimäki [2010], that proposes a dynamic

pivot mechanism that is truthful, efficient, and individually rational. The optimal allocation

is computed as the expectation on the discounted sum of valuations of each agent with his

payoff computed based on his marginal contribution. However the dynamic pivot mecha-

nism considers a setting where a common resource is allocated to an agent at every time

step and the agent capacities are assumed to be infinite. Hence the question of capacity

misreports and the consequent need to penalize misreporting agents does not arise in their

work.

Unfortunately, capacity constraints are nontrivial to accommodate in the design of truth-

ful and socially efficient dynamic mechanisms. The main challenge is that in a given time

247
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step, the payoff to an agent cannot be determined until later when the actual number of

units produced by an agent is known. If the allocation � to agent i to produce �i units is

made at time t1 based on the expected discounted sum of current and future valuations of

all agents, and the actual number of units �ci produced by agent i is known at a future point

in time t2 (t2 > t1), then the payoff to agent i for the allocation � cannot be made prior to

t2 because it depends on �ci. However, because the valuations are discounted in the future,

the marginal contribution computed at t1 may not yield allocative efficiency at t2. This

is because, intuitively, a payment at t1 is worth more than the same payment at t2. The

question then is what should the payoff to agent i be at time t2 for allocation � such that the

resulting mechanism is truthful in terms of unit costs as well as capacities and is socially

efficient? Note that this question does not arise for the dynamic pivot mechanism because

the payoffs can be made at t1, i.e., the time of allocations.

Addressing the above question, we develop our dynamic mechanism DMC for a set-

ting where agent type includes a unit cost and a capacity of production. The key novelty

of DMC is a delayed transfer scheme that consists of a marginal contribution component

and a penalty component. The marginal contribution component is similar to the transfer

scheme in the dynamic pivot mechanism (Bergemann and Välimäki [2010]). However,

we establish via a counterexample that providing the marginal contribution alone is not

sufficient to ensure incentive compatibility of the mechanism. For this purpose, a penalty

component is necessary in the transfer to the agents. The penalty scheme in DMC pe-

nalizes the agent only to the extent of the damage caused by his capacity misreport. We

establish that DMC is within period ex-post incentive compatible, allocatively efficient,

and individually rational.

16.1 The Dynamic Setting

UnlikeMC, here we consider a dynamic setting that involves an infinite time horizon over

which the individual agent types evolve. The DMC that we develop in the following in-

volves 1. a socially efficient allocation which differs from B&V (Bergemann and Välimäki

[2010]) as the capacity constraints are included, and 2. a novel delayed transfer scheme that

involves a penalty component apart from the payment.While the payment to an agent is his

marginal contribution as in B&V, the penalty component that ensures true capacity reports

is new. We illustrate the need for the delayed penalty based scheme via an example and

also prove that DMC is incentive compatible in Theorem 16.6.
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16.1.1 The Setting

Consider a setting where there areN agents (numbered 1; 2; : : : ; N ), capable of performing

certain manufacturing tasks. A central controller receives new tasks from external sources.

We use an infinite horizon discrete time-line 1; 2; : : : ; n; : : : to indicate allocation of new

tasks and also completion of tasks by individual agents. We allow for completion of a

particular task by different agents to be at different instants. Upon arrival of a new task

at current instant requiring manufacturing of D 2 �c number of units of commodity, the

central controller performs allocation to all the agents based on the current capacity ci and

unit cost ui of manufacturing for each agent i. Let �i = (ui; ci) 2 �i be the cost-capacity

type vector for agent i and � = (D; �1; �2; : : : ; �N) 2 �
4
= �c � �1 � �2 � � � � � �N be

the joint type vector. As before, we use sub-script �i to denote all agents other than i. For

instance, ��i = (D; �1; �2; : : : ; �i�1; �i+1; : : : ; �N) 2 ��i
4
= �c ��1 ��2 � : : :��i�1 �

�i+1 � � � � ��N .

We assume that � evolves as a Markov process on the discrete-time horizon. Also, we

assume that the Markov process thus formed is ergodic for all allocation scenarios from the

central controller. Thus, we restrict ourselves to stationary Markovian allocation policies

where allocation is given by y : � ! R
N , i.e., at a given instant if the Markov process is

at �, the allocation is given by y(�). Let yi : � ! R denote the allocation to agent i. Let

Y be the set of all admissible allocation scenarios. When necessary for clarification, we

use super-script n to denote a quantity at time instant n. For example, �n 2 � represents

the types at time instant n, Dn represents the number of units to be manufactured at time

instant n, etc. Note that unlike the setting in the static mechanism MC, this setting for

dynamic mechanism allows for all parameters including the manufacturing capacity ci of

each agent i, to evolve or change with time instants.

Allocative Efficiency

Given the Markov process of �, the central controller needs to allocate to all agents in a

way that the total cost of manufacturing is minimized with no agent asked to manufacture

beyond its capacity. Also, the central controller needs to ensure that the requirement of

manufacturing of a particular D units for the task at each instant is met. Thus, the central

controller performs optimal allocation according to the following optimization problem:
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Find � 4
= argmin

y2Y

P
�2�

NP
i=1

Vi(�; y)

s.t.

0 � yi(�) � ci; i = 1; 2; : : : ; N; 8�
NP
i=1

yi(�) = D; 8�;

9>>>>>>>=>>>>>>>;
(16.1)

where

Vi(�; y) = E

"
1X
k=0


kvi(�
k; yi)j�0 = �; y

#
represents the discounted cost infinite horizon value added to the system by agent i, where

vi(�
k; yi) = uki yi(�

k) represents the cost incurred at instant k by that agent and 0 < 
 < 1

is the discount factor. The expectation is over various sample paths (�; �1; �2; : : : ) starting

with �. The expression for Vi(�; y) could be rearranged using dynamic programming as

follows:

Vi(�; y) = vi(�; yi) + 
E [Vi(�
0; y)j�] ;

where the expectation is now over the next state �0 2 �. We assume that for all possible

� 2 �,
PN

i=1 ci � D; so that there are feasible solutions available for the above opti-

mization problem. In the optimization problem (16.1), we assume that only one optimal

allocation exists which is defined to be � 2 Y . In cases where there are multiple optimal

allocations possible, � is assumed to represent any one of them. We also formulate an

auxiliary optimization problem which is for computing optimal allocation without an agent

i:

Find ��i
4
= argmin

y2Y�i

P
�2�

NP
j=1

j 6=i

Vj(�; y)

s.t.

0 � yj(�) � cj; j = 1; 2; : : : ; N; j 6= i; 8�
NP
j=1

j 6=i

yj(�) = D; 8�:

9>>>>>>>>>>=>>>>>>>>>>;
(16.2)

In the above, Y�i denotes the set of admissible allocation policies of the form y : ��i !
R
N�1. The optimal allocation thus obtained is denoted by ��i 2 Y�i. Also, ��i;j : �j ! R

represents efficient allocation to agent j without participation by agent i.
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Given �, the problem thus is simply to solve the optimization problem (16.1). However,

in practical circumstances there are two potential issues: (i) �i is the private information of

agent i. Thus, the controller needs to derive this information either directly or indirectly.

In either case, the problem is to obtain the correct �-value as otherwise the allocation via

� may not make any useful sense; and (ii) The capacity, though assumed to be ci by an

agent i, would be subject to realization. Thus, the actual capacity attained by the end of

manufacturing may be ci which could be different from ci. So, the problem here is that the

allocation is done at the beginning of a task while the attained capacity (ci) is known only

at the end of the task.

In order to address these issues, we will formulate in the next subsection, a dynamic

mechanism (�; t) where � is an optimal allocation policy discussed previously and t =

(t1; t2; : : :) is the payment policy for the entire time horizon. At each time instant, agents

are asked to report their types, represented by �̂ =
�
D; �̂1; �̂2; : : : ; �̂N

�
, based on which

a suitable payment t is given by the controller. Let ��i = (ûi; �ci) represent the type with

achieved capacity of agent i. Then, the payment for each allocation corresponding to instant

n is of the functional form, tni : �i ! R, i.e., tni (��i; �̂i; �̂�i).

Remark 20 As in the case of the static setting, the payment to agent i is made using the

report type vector (�̂k) as well as its achieved capacity (�ci). The need for using the achieved

capacity of an agent (known only at a later instant, see Figure 16.1) is illustrated via

Example 2.

We assume that �i : �i ! �i, a stationary strategy, is used by agent i to report its type,

i.e., �̂i = �i(�i);8i = 1; : : : ; N . Henceforth, we use �̂i and �i(�i) interchangeably. Let

� = (�1; �2; : : : ; �N). Also, we use Vi(�; �; �) interchangeably with Vi(�̂; �).

We define the utility Ui realized by participation by agent i as follows.

Definition 16.1 The utility Ui realized by agent i is given by

Ui(�; �; �i) = E

"
1X
k=0


k ~Ui(�
k
i ; �i; �̂

k)j�0 = �; �; �i

#
; (16.3)

where

~Ui(�
k
i ; �i; �̂

k) = tki (
��ki ; �̂

k)� vi(�ki ; �i) + �i((u
k
i ; ĉ

k
i ); �̂

k
�i) (16.4)
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is the quasi-linear single-stage utility of agent i at instant k. While the first component

in ~Ui(�) above is the transfer of agent i, the second component is the cost and the third

component is the allocation received under agent i’s (possibly misreported) type. Note

that the utility function formulation above is different from the one used in Bergemann and

Välimäki [2010]. The difference is that, unlike Bergemann and Välimäki [2010], we have

an extra additive term (the last term in (16.4)) that denotes the allocation to agent i at

instant k, under true unit price report and a possibly overstated capacity report. As noted

in the static setting, this factor is incorporated to capture the preference of an agent to

harm others by obtaining a higher allocation. Further, as in the static setting, the reward

function f(�) can be incorporated to convert from allocation units to money in the last term

of (16.4).

Summing the individual components over the infinite horizon, one obtains the following

form for the utility of agent i:

Ui(�; �; �i) = Ti(�̂; �; �i)� Vi(�; �; �i) +Ai(~�; �; �i);

where

Ti(�̂; �; �i) =E

"
1X
k=0


k+�i(k)ti(��
k
i ; �̂

k)j�0 = �̂; �; �

#
; (16.5)

Ai(~�; �; �i) =E

"
1X
k=0


k�i(~�
k)j�0 = ~�; �; �

#
; (16.6)

where ~� = ((ui; ĉi); �̂�i) and ~�k = ((uki ; ĉ
k
i ); �̂

k
�i). In (16.5), �i(k) is the time taken by agent

i to complete the task allocated at instant k. As discussed later, ti(��ki ; �̂
k) is a payment

made to agent i after completion of the task by him. So, in order to account for the delay,


�i(k) discount factor is used in the above definition of the total transfer to agent i.

We now define within-period ex-post Nash equilibrium, incentive compatibility and

individual rationality in a similar manner as Cavallo [2008].

Definition 16.2 (WITHIN-PERIOD EX-POST NASH EQUILIBRIUM) For a given dynamic

mechanism (�; t), we say that a strategy profile � constitutes a within-period ex-post Nash

equilibrium if and only if for all agents i = 1; 2; : : : ; N , for all possible types �i 2 �i, and

for all profiles �0i,

Ui(�; �; �i) � Ui(�; �; �
0
i):



Chapter 16. Dynamic mechanism design with capacity constraints 253

Definition 16.3 (WITHIN-PERIOD EX-POST INCENTIVE COMPATIBILITY) We say that a

dynamic mechanism (�; t) is within-period ex-post incentive compatible if and only if for

all agents i = 1; 2; : : : ; N , for all possible types �i 2 �i, and for all �i,

Ti(�; �)� Vi(�; �) � Ui(�; �; �i):

Definition 16.4 (WITHIN-PERIOD EX-POST INDIVIDUAL RATIONALITY) We say that a

dynamic mechanism (�; t) is within-period ex-post individually rational if and only if there

exists a within-period ex-post Nash equilibrium strategy profile � such that for all agents

i = 1; 2; : : : ; N , for all possible types �i 2 �i,

Ui(�; �; �i) � 0:

In the next section, we provide a dynamic mechanism DMC for this setting and prove

that it is within period ex-post incentive compatible and individually rational.

16.1.2 Motivation

Capacity constraints are not considered previously in the context of dynamic mechanism

design. For instance, B&V (Bergemann and Välimäki [2010]) propose a marginal con-

tribution based transfer scheme for allocating a common resource. The transfer scheme

proposed in B&V’s work cannot be applied in our setting where agents have limited capac-

ities. This is because the transfer scheme of B&V would not ensure true capacity reports

from the agents. On the other hand, in DMC the same is ensured via a delayed penalty

based transfer scheme.

Example 2 We illustrate by this example that the transfer scheme from B&V’s mechanism

would not ensure incentive compatibility, when the setting involves capacity constraints.

Consider a scenario where Dn = 150; n � 0. Let there be three agents with their types

given by (un1 ; c
n
1 ) = (1; 100), (un2 ; c

n
2 ) = (2; 50) and (un3 ; c

n
3 ) = (3; 100), for all n � 0. Fix

a time instant n and suppose that the reported types at n are given by (ûn1 ; ĉ
n
1 ) = (1; 125),

(ûn2 ; ĉ
n
2 ) = (2; 50) and (ûn3 ; ĉ

n
3 ) = (3; 100). Also, assume that the agents report truthfully

for all time instants m > n. Hence, we have a scenario where agent types are static and

agent 1 misreports his capacity at time instant n.

From the fact that the future joint type of agents remain the same in the above setting
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and also that the agents report truthfully in the future, we have that �i(�k) � �i, a con-

stant allocation for all time instants. Hence, the efficient allocation to agents remains as

(100; 50; 0) for all time instants m > n in the future. Further, the value function of agent i

turns out as follows:

Vi(�
m; �) =

1X
k=m


k�muki �i(�
k) = ui�i

1X
k=m


k�m =
ui�i
1� 
 :

Assuming 
 = 3
4
, we obtain

V (�m; �) =
3X
i=1

Vi(�
m; �)

=
1� 100 + 2� 50 + 3� 0

1
4

= 800: (16.7)

Also, it is easy to see that V1(�m; �) = 400 = V2(�
m; �) and V3(�m; �) = 0;8m > n.

We denote the payment made to agent i at instant n using the transfer scheme from

B&V’s mechanism as ~xni (�̂), i.e.,

~xni (�̂) = V�i(�̂; ��i)�
�
v�i(�̂�i; �(�̂))

+
 E�0

h
V�i(�

0; ��i)j�̂; �(�̂)
i�

:

For the given example, since types are constant for all time instants, this payment simplifies

to

~xni (�̂) = V�i(�̂; ��i)�
h
v�i(�̂�i; �(�̂)) + 
V�i(�̂; ��i)

i
:

We observe that for instant n, the efficient allocation is �(�̂n) = (125; 25; 0) and ��1(�̂n�1) =

(50; 100). Hence, V�1(�̂; ��1) =
(2� 50 + 3� 100)

1
4

= 1600 and

~xn1 (�̂) = 1600� (2� 25 +
3

4
� 1600) = 350;

while with true report, the agent would have got,

xn1 (�) = 1600� (2� 50 +
3

4
� 1600) = 300:

Hence, the mechanism of B&V Bergemann and Välimäki [2010] did not penalize agent
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1 for misreporting his capacity. In the DMC scheme that we present subsequently, we

design a delayed transfer scheme with a penalty that compensates the loss caused by agent

1’s capacity misreport.

Note that any mechanism which gives a penalty < 0 to an agent upon misreport of

capacity by him will not necessarily be ex-post incentive compatible. For instance, we

could simply extend the static mechanism of Dash et al. [2007], i.e., give a constant penalty

p < 0 upon misreport regardless of the value of the misreported capacity. However, as

observed in the static case, the utility derived by an agent i in our setting, i.e., according to

(16.3), may be higher with a misreported capacity as compared to that with true capacity

report. This is clear in the example setting above where the utility derived under true report

by agent is 300 � 1 � 100 + 100 = 300, whereas with a capacity misreport (agent 1

overstating his capacity to be 125), the utility is 300� � � 1� 100 + 125 = 325� �.
As we observed in the above example, an agent has an incentive to overstate his ca-

pacity. In order to design a mechanism that results in truthful reporting by the agents in

the system, we devise a delayed transfer scheme that considers the achieved capacity of

an agent and gives the marginal contribution of the agent as his payment. An important

aspect of the mechanism worth noting here is that on completion of a production task by

agent i, the allocation is re-computed with achieved capacity of agent i being used instead

of the reported capacity. The policy that results from this allocation is used in deciding the

transfer for agent i. We formalize these aspects of DMC below.

16.1.3 The Mechanism

We employ a direct dynamic mechanism in which the central controller solicits type infor-

mation �̂ from each agent i at every time instant n. Based on the reported types, the central

controller then makes an efficient allocation. The payment, however, is not immediately

disbursed. Instead, the agent continues to produce according to the allocation and on com-

pletion of the production task, the central controller observes the achieved capacity level of

the agent and makes a payment which is the marginal contribution.

We use the notation as in Table 15.1 for denoting allocations with reported and achieved

types and combinations thereof. The overall allocation process in the dynamic mechanism

can be illustrated by the Figure 16.1. At instant n, an allocation is performed based on

reported types �̂ of all the agents. The task gets completed by agent i in a time span of

�i(n). The achieved capacity of agent i is captured in ��i = (ûi; �ci) at completion instant �ni.
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n n+ 1 �ni

�̂

Allocation

�0 ��i

Completion by i

�i(n)

Figure 16.1: A portion of the time-line illustrating the process

The transfer ti(��i; �̂) to agent i for the task allocated at instant n is performed upon

completion of the task by that agent. In order to account for this delay in payment, a

compounding factor of
1


�i(n)
is used in computing the transfer tni .

DMC can be described step-by-step as follows:

1. Solicit the types, i.e., the unit price and capacity of each of the agents. The reported

type vector is �̂ as noted before.

2. Perform an allocation �(�̂), by solving the system (16.1) using the reported unit

prices and capacities of the agents.

3. The individual agents perform production tasks as per the above allocation.

4. Each agent i completes his part of the allocated task at instant �ni. Wait till all agents

finish their portions of the task.

5. Compute the transfer to each agent according to (16.8).

The above procedure is repeated in the infinite horizon.

Transfer scheme

The expression for tni is as given below:

ti(��i; �̂) =
1


�i(n)

h
xi(��i; �̂) + pi(��i; �̂)

i
; (16.8)

which is composed of two additive components: (i) xi(��i; �̂), the marginal gain brought into

the process by agent i’s participation at instant n, and (ii) pi(��i; �̂), the penalty imposed on
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agent i to cover the damage caused to the process by misreport of capacity by him. Let

W�i(�) =v�i(��i; �(�)) + 
 E�0 [V�i(�
0; ��i)j�; �(�)] ;

where

v�i(��i; ��i) =
NX
j=1

j 6=i

vj(�; ��i;j); V�i(�; ��i) =
NX
j=1

j 6=i

Vj(�; ��i):

In the above, the expectation is with respect to F (�0j�; �(�)), the conditional distribution

of the next state �0 of the Markov process, given � and the allocation policy �. The two

components of transfer ti(��i; �̂) can be now written as

xi(��i; �̂) = V�i(�̂; ��i)�W�i(��i; �̂�i); and (16.9)

pi(��i; �̂) =
P
j 6=i

�j(�̂)�
P
j 6=i

�j(��i; �̂�i): (16.10)

The quantity V�i(�̂; ��i) in (16.9) represents the total cost incurred by all agents other

than i if agent i had not participated at all while the second term in the equation represents

the total cost incurred by them if agent i did participate. Thus, the difference gives the

marginal gain brought in by agent i into the setting at instant n. On the other hand, because

of the misreporting of capacity, the possible loss caused by agent i is characterized in

pi(��i; �̂) in equation (16.10). If not for capacity related constraints, pi(��i; �̂) would not

be needed and the payment can simply be the marginal contribution xi(��i; �̂) which may

have been given at time instant n itself without waiting for task to be completed. But as

shown previously in an example, the marginal contribution alone given as payment would

not be enough to ensure that revealing true capacity is incentive compatible. As will be

shown later, the additive marginal compensation pi(��i; �̂) is sufficient to ensure this fact.

In equation (16.10), the first term represents the total cost incurred by agents other than i

when agent i misreports its capacity and the second term represents the total cost incurred

by them when the achieved capacity by agent i is used instead of its reported capacity. Thus

one can see that the difference gives the net loss created by the misreport of capacity by

agent i. As noted before in the static setting, the penalty pi(��i; �̂) can be seen as equivalent

to �i(��i; �̂�i)��i(�̂). Further, the reward function can be included in the penalty component

in exactly the same manner as in the static setting (see Remark 19). Several remarks are in
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order.

Remark 21 Comparing with the transfer scheme in Bergemann and Välimäki [2010], i.e.,

~xi(�̂) and the payment in our scheme, i.e., xi(��i; �̂), we note that both are similar in form

except that the former is computed without the achieved capacity and is paid at the alloca-

tion instant. However, as discussed previously in example 2, agent i will have incentive to

misreport capacity in the former case.

Remark 22 In the example mentioned above, �cn1 = 100 and hence, ��(��ni ; �̂
n
�i) = (100; 50; 0).

Using the transfer scheme of DMC (16.8), we obtain:

xni (
��ni ; �̂

n) = 1600� (100 + 3
4
� 1600) = 300;

pni (
��ni ; �̂

n) = 25� 50 = �25 < 0:
(16.11)

The utility derived by agent 1 with an overstated capacity of 125, can be calculated as

300 � 25 � 1 � 100 + 125 = 300. On the other hand, as noted before, the utility with

true capacity report turns out to be 300. Hence, in comparison to the dynamic pivot mech-

anism’s Bergemann and Välimäki [2010] transfer scheme, DMC penalizes the agent i to

the extent of the damage his misreport caused. This is a unique feature of DMC, which we

subsequently use to prove the incentive compatibility property (see Theorem 2).

16.1.4 Incentive Compatibility of DMC

We now provide a proof of the incentive compatibility of our mechanism DMC. Let

Ti(�̂) = Xi(�̂) + Pi(�̂) where Xi and Pi denote the expected discounted sums of the xi
and pi components of the transfer defined similar to (16.5). Thus,

Xi(�̂; �; �) =E

"
1X
k=0


kxi(�̂
k; ��i)

����� �0 = �̂; �; �

#
;

Pi(�̂; �; �) =E

"
1X
k=0


kpi(�̂
k; ��i)

����� �0 = �̂; �; �

#
:

Note that the multiplication factor
1


�i(n)
is absorbed in the discounted sum.

Lemma 16.5 Xi(�̂i; ��i) = V�i((�̂i; ��i); ��i)� V�i((�̂i; ��i); �).
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Proof: Recall from (16.9) that

xi((�̂i; ��i); ��i) =V�i((�̂i; ��i); ��i)�W�i(��i; ��i)

=V�i((�̂i; ��i); ��i)�
�
v�i(��i; �(��i; ��i))

+ 
 E�0
�
V�i(�

0; ��i)j(��i; ��i); �(��i; ��i)
��

:

Now, in the RHS, performing discounted summation and taking the expectation over

the second term, we obtain

E
�
1P
k=0


kv�i(�
k
�i; �(

��i; ��i))

�
= V�i((�̂i; ��i); �):

Combining the other two terms of xi, we obtain

E
�
1P
k=0


k
�
V�i((�̂

k
i ; �

k
�i); ��i)� 
V�i((�̂k+1i ; �k+1�i ); ��i)

��
= V�i((�̂i; ��i); ��i):

(16.12)

The claim follows. �

Theorem 16.6 DMC is ex-post incentive compatible.

Proof: Suppose there is a simplified mechanism where we know the achieved capacity of

agent i at the instant of allocation. Hence, the payment can be made in each period without

any delay. Let ~ti denote the payment in this simplified mechanism, i.e.,

~ti(��i; �̂) =
h
xi(��i; �̂) + pi(��i; �̂)

i
;

which does not have any scaling factor with 
. Let ~Ti(�̂) denote the total payment in the

simplified mechanism. So,

~Ti(�̂) = E

"
1X
k=0


k~ti(�̂
k; ��i)j�0 = �̂; �; �

#
:
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Note that ~Ti(�̂) = Ti(�̂) because

E

"
1X
k=0


k+�i(k)ti(�̂
k; ��i)j�0 = �̂; �; �

#

=E

"
1X
k=0


k~ti(�̂
k; ��i)j�0 = �̂; �; �

#
:

So, we use Ti(�̂) itself to represent the payment rather that ~Ti(�̂) in the simplified mecha-

nism. We now establish that this simplified mechanism is incentive compatible. Later, we

prove that the expected discounted sum of transfers in our mechanism is equivalent to this

simplified mechanism where transfers are made without any delay.

For the first part of the proof, i.e., to establish the incentive-compatibility of the simpli-

fied mechanism, we need to show that

Ti(�)� Vi(�; �) +Ai(�; �)

�Ti(�̂i; ��i)� Vi((�̂i; ��i); �) +Ai(~�; �); (16.13)

i.e., we need to show that the utility that agent i derives under true report is better than the

one derived under a misreport. Recall the ~� = ((ui; ĉi); ��i) is the joint type with true unit

price and a possibly overstated capacity of agent i and true types of other agents.

The LHS of (16.13) can be simplified as follows:

LHS = V�i(�; ��i)� V (�; �) +Ai(�; �): (16.14)

Note that we have used the fact that under true type report, the penalty component of the

transfer vanishes and the above then follows from Lemma 16.5. Now the RHS of (16.13)

satisfies

RHS = Xi(�̂i; ��i) + Pi(�̂i; ��i)� Vi((�̂i; ��i); �) +Ai(~�; �)

= V�i((�̂i; ��i); ��i)� V�i((�̂i; ��i); �) + Pi(�̂i; ��i)� Vi((�̂i; ��i); �) +Ai(~�; �)

(16.15)

= V�i((�̂i; ��i); ��i)� V ((�̂i; ��i); �) + Pi(�̂i; ��i) +Ai(~�; �): (16.16)
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The equality (16.16) follows by combining the second and fourth term in (16.15). Now, we

combine the last two terms in (16.16) with Ai(~�; �) on the LHS and simplify as follows:

Ai(�; �)� Pi(�̂i; ��i)�Ai(~�; �)

=E

"
1X
k=0


k
�
�i(�

k)� pi(�̂k; ��i)� �i((uki ; ĉki ); �k�i)
������ �0 = �̂; �; �

#
� 0

The inequality above holds because each of term inside the infinite summation (see below)

can be seen to non-negative by using an argument similar to the one used in Proposition

15.5 (see (15.10)).

�i(�
k)� pi(�̂k; ��i)� �i((uki ; ĉki ); �k�i)

=�i(�
k)� �i(��ki ; �k�i) + �(�̂ki ; �

k
�i)� �i((uki ; ĉki ); �k�i) � 0

Using the above simplifications, it is enough if we show that

V�i(�; ��i)� V (�; �)
�V�i((�̂i; ��i); ��i)� V ((�̂i; ��i); �):

Note that V�i(�; ��i) = V�i((�̂i; ��i); ��i) as we are concerned only with the value function

V�i and allocation ��i of agents other than i, which turn out to be the same on both sides.

Finally, note that

V (�; �) � V ((�̂i; ��i); �);

holds from the optimality of �. The claim follows. �

Theorem 16.7 DMC is ex-post individually rational.

Proof: By optimality of �, V�i(�n; ��i) � V (�n; �). Further, Ai(�; �) � 0. Using these

facts and also (16.14) in the proof above, it follows that the utility Ui of agent i is non-

negative. �
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16.2 Conclusions and Future Work

We presented two novel mechanisms with progressively realistic assumptions about agent

types aimed at economic scenarios where agents have limited capacities. For the simplest

case where agent types consist of a unit cost of production and a capacity that does not

change with time, we proposed a novel mechanism MC that extends the work of Dash

et al. [2007] with a novel variable penalty based transfer scheme. We established the strat-

egyproofness of this mechanism. Next, we proposed DMC that accommodates agents

having dynamic types inMC. A penalty scheme is needed for achieving truthful reporting

of capacities. However, penalties cannot be determined until the actual number of units pro-

duced by agents are known. We showed the non-triviality of extending the current dynamic

frameworks in determining the payoffs in the case of limited capacities. In DMC, this was

achieved by adjusting the payoffs upwards based on a compounded future discount factor.

We showed that DMC possesses the desired properties of ex-post incentive compatibility,

individual rationality, and allocative efficiency.

Our proposed mechanisms, especially the dynamic variant is applicable to several real-

world settings involving capacity constraints. To name a few, work dispatch in service sys-

tems, purchase of electricity from power plants, resource allocation for computational grids

and sensor networks are some application scenarios where our proposed dynamic mecha-

nism can be effective, unlike the dynamic pivot mechanism (Bergemann and Välimäki

[2010]) which does not guarantee truthful capacity reports in the limited capacity setting.

Although we established the usefulness of these mechanisms theoretically, it is impor-

tant to validate them via simulation experiments followed by actual pilots in real economic

setups. We plan to leverage service worker and service provider environments to perform

the needed validations. Further, there are real scenarios exhibiting additional aspects of

agent types that our mechanisms may not readily accommodate. We plan to further study

such scenarios and either extend or establish afresh the relevant theoretical results.

Extension to type as a function of allocation A practical extension of our setting is

where unit cost and capacity depend on allocation. For example, in a certain manufacturing

setup, upto 100 units of manufacturing might be with a unit price of 10 while beyond that

it might be priced lower, say 5, per unit. On similar lines, one could consider a case

where the capacity changes with ranges of allocation. Such scenarios could be modelled

by considering the unit price u and capacity c to be functions of the allocation � and in the

mechanism, agents be asked to report these functions rather than a pair of numbers. For the



Chapter 16. Dynamic mechanism design with capacity constraints 263

static setting, the optimization problem could be written as follows:

Find � = argmin
�2�

nP
i=1

ui(yi)yi

s.t. yi � ci(yi); i = 1; 2; : : : ; n;

and
nP
i=1

yi = D:

(16.17)

A simple example illustrating the functions u(yi) and c(yi) is as follows: Consider a

scenario of two agents where

u(yi) =

�
10 if yi � 10;

5 if yi > 10:

c(yi) =

�
10 if yi � 10;

100 if yi > 10:

(16.18)

It is clear that the allocation (16.17) is different in comparison to the allocation of (15.1).

However, the transfer scheme of the mechanism is still the same in this modified setting.

Similarly, the dynamic mechanism DMC could also be extended to handle such types.

We plan to further study such scenarios and either extend or establish afresh the relevant

theoretical results.



Chapter 17

Conclusions and Future Directions

In this thesis, we studied problems of resource allocation under various uncertainties. The

problems investigated encompass complex application domains such as vehicular traffic

control, service systems, wireless sensor networks and mechanism design. In the first three

studies, the uncertainty arose as a result of the inherent stochastic dynamic environment,

whereas in the mechanism design application, it was due to the private information of the

individual agents. Further, the algorithms had to grapple with the high-dimensional state

and action spaces and computational efficiency was a critical requirement in this regard.

The aim of the resource allocation algorithms was to search for the ‘best’ solution in dif-

ferent sequential decision making problems:

Vehicular traffic control

The aim here was to optimize the ‘green time’ resource of the individual lanes in a road

network that maximized a certain long performance objective. We considered both dis-

counted as well as average cost objectives. We formulated this problem using the MDP

framework and proposed several reinforcement learning based algorithms for its solution.

All the algorithms incorporated function approximation and hence, novel feature selection

schemes to handle the curse of dimensionality associated with large road networks. Fur-

ther, they worked with coarse estimates of the congestion levels on the individual lanes of

the road networks - an advantage considering the fact that it is hard to obtain precise queue

length estimates in practice. The congestion levels on the lanes were estimated by means

of thresholds.

The next sub-problem considered was to develop an algorithm to tune the threshold val-

ues used in any thresholds based TLC algorithm to the optimum. This is motivated by the

264
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fact that the threshold values were fixed in all the traffic light control (TLC) algorithms and

this may not be optimal for all choices of road network settings. We proposed a threshold

tuning algorithm based on SPSA with deterministic perturbations. This algorithm is online,

provably convergent and works with any threshold-based TLC algorithm to find the opti-

mal values for the thresholds. The empirical usefulness of this algorithm was established

in various road network settings and in conjunction with three different TLC algorithms,

that were all thresholds based.

The final sub-problem we considered in this application context is of optimal feature

selection. Note that all the TLC algorithms proposed here incorporated feature based repre-

sentations and the choice of features in each algorithm was dependent on our understanding

of ‘what captures the system state effectively via features’. A problem of interest is to find a

way to adapt features so as to tune to the optimal choice. We partially answer this question

by developing a novel feature adaptation method and establishing its empirical usefulness

by studying it in conjunction with the Q-learning based TLC algorithm.

Service Systems

The aim here was to optimize the ‘workforce’, the critical resource of any service system.

However, adapting the staffing levels to the workloads in such systems is nontrivial as the

queue stability and aggregate SLA constraints have to be complied with. We formulated

this problem as a parameterized Markov process with (a) a discrete worker parameter that

specifies the number of workers across shifts and skill levels, (b) hidden or unobserved state

component, (c) a novel single stage cost function that balances the conflicting objectives

of utilizing workers better and attaining the target SLAs, and (d) the aggregate SLA and

queue stability constraints. The aim was to find the optimum worker parameter from a

discrete high-dimensional parameter set, that minimizes the long run average of the single-

stage cost function, while adhering to the constraints relating to queue stability and SLA

compliance. Another difficulty in finding the optimum (constrained) worker parameter is

that the single stage cost and constraint functions can be estimated only via simulation.

We propose novel simultaneous perturbation based simulation optimization algorithms

for solving the above problem. The algorithms include both first order as well as second or-

der methods and incorporate SPSA based gradient estimates in the primal, with dual ascent

for the Lagrange multipliers. All the algorithms that we propose are online, incremental

and easy to implement. Further, they involve a certain generalized smooth projection oper-

ator, which is essential to project the continuous-valued worker parameter tuned by SASOC
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algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying

transition dynamics of the constrained Markov cost process is itself smooth (as a func-

tion of the continuous-valued parameter) - a critical requirement to prove the convergence

of all SASOC algorithms. We validated our algorithms on five real-life service systems

and compared them with a state-of-the-art optimization tool-kit OptQuest. Being 25 times

faster than OptQuest, our algorithms are particularly suitable for adaptive labor staffing.

Also, we observe that our algorithms guarantee convergence and find better solutions than

OptQuest in many cases.

Sensor Networks

We studied the problem of tracking a single object moving randomly through a dense net-

work of wireless sensors such that the entire sensing region has no discontinuities. How-

ever, we wish to conserve energy by optimizing the sleep times of the sensors in a manner

that does not compromise on the tracking quality. We remove the waking channel as-

sumption, i.e., a sleeping sensor can be communicated with. In this context, the resource

considered is the ‘sleep time’ of the individual sensors and the objective is to manage the

sleep times of the sensors efficiently, while keeping the tracking error to a minimum.

We model the sleep–wake scheduling problem as a partially-observable Markov de-

cision process (POMDP). We propose novel RL-based algorithms - with both long-run

discounted and average cost objectives - for solving this problem. All our algorithms in-

corporate function approximation and feature-based representations to handle the curse of

dimensionality. Further, the feature selection scheme used in each of the proposed algo-

rithms intelligently manages the energy cost and tracking cost factors, which in turn, assists

the search for the optimal sleeping policy. The results from the simulation experiments sug-

gest that our proposed algorithms perform better than a recently proposed algorithm from

Fuemmeler and Veeravalli [2008].

Mechanism Design

From a single agent in a stochastic dynamic environment, we progressed to multiple self-

interested agents sharing a resource in this study. In addition to the inherent stochasticity

of the system, the setting also involved uncertainty in the form of private information of

the agents. The aim of the resource allocator here then is to be allocatively efficient and

also maximize the social welfare via the ‘right’ transfer payments. In other words, the
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problem was to find an incentive compatible transfer scheme following a socially efficient

allocation.

We presented two novel mechanisms with progressively realistic assumptions about

agent types aimed at economic scenarios where agents have limited capacities. For the

simplest case where agent types consist of a unit cost of production and a capacity that

does not change with time, we proposed a novel mechanism MC that extends the work

of Dash et al. [2007] with a novel variable penalty based transfer scheme. We established

the strategyproofness of this mechanism. Next, we proposed DMC that accommodates

agents having dynamic types in MC. A penalty scheme is needed for achieving truthful

reporting of capacities. However, penalties cannot be determined until the actual number

of units produced by agents are known. We showed the non-triviality of extending the

current dynamic frameworks in determining the payoffs in the case of limited capacities.

In DMC, this was achieved by adjusting the payoffs upwards based on a compounded

future discount factor. We showed that DMC possesses the desired properties of ex-post

incentive compatibility, individual rationality, and allocative efficiency.

17.0.1 Future Work

We briefly summarize four possible research directions geared towards optimal resource

allocation under uncertainty using techniques from reinforcement learning and its allied

areas:

� The problem of feature adaptation has been receiving a lot of research attention in

the RL community. An algorithm that combines both exploration and exploitation

in trying to find the optimal features was proposed in Bhatnagar et al. [2012a]. It

would be interesting to continue work in this direction, for instance, by combining

feature adaptation algorithms with well-known prediction algorithms such as LSTD

and LSPE and also, developing actor-critic or LSPI like algorithms in conjunction

with a feature adaptation scheme for the problem of control. Also challenging in

this context is establishing the convergence of feature adaptation algorithms to the

optimal choice of features.

� In the context of vehicular traffic control, it would be interesting to consider modeling

of driver behaviour, ambulance movement, VIP passage, accidents, etc and study

the impact of such exogenous events on allocating the “green time”. Further, it is

worth studying adaptive traffic light control in a setting where a car-following model
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is incorporated. A car-following model captures a driver’s response to the current

traffic conditions.

� In the context of service systems, one could incorporate enhancements into the single-

stage cost function where even monetary costs are considered apart from staff utiliza-

tion and SLA attainment factors. An orthogonal direction of future work in this con-

text is to develop skill updation algorithms, i.e., derive novel work dispatch policies

that improve the skills of the workers beyond their current levels by way of assign-

ing work of a higher complexity. However, the setting is still constrained and the

SLAs would need to be met while improving the skill levels of the workers. The skill

updation scheme could then be combined with the SASOC algorithms presented in

Chapter 10 to optimize the staffing levels on a slower timescale.

� The problem of decision making under uncertainty is further complicated in a dy-

namic setting involving multiple agents who are selfish and hold private information.

This falls into the purview of dynamic mechanism design, where the agent types

evolve as an MDP. A novel mechanism for a capacity-constrained setting was pro-

posed in Prashanth et al. [2012a]. However, if we assume no model information in

this context, it is non-trivial to design RL-like algorithms that converge to a desir-

able equilibrium point. Another challenge here is that of computation, i.e., of finding

a socially optimal policy in a manner that is computationally efficient. It is indeed

interesting to note that this problem has reductions to a multi-armed bandit setting.

� Exploration-exploitation dilemma has been studied in various contexts and multi-

armed bandits probably present the simplest, nevertheless a challenging setting for

this problem. This is a decision making problem involving several factors of uncer-

tainty and it would be interesting to develop novel solution approaches and apply

them in an MDP/RL setting to find the optimal strategy for choosing actions.
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