Cumulative Prospect Theory Meets Reinforcement Learning: Prediction and Control

Prashanth L.A.

Joint work with Cheng Jie, Michael Fu, Steve Marcus and Csaba Szepesvári

University of Maryland, College Park
AI that benefits humans

Reinforcement learning (RL) setting with rewards evaluated by humans

Cumulative prospect theory (CPT) captures human preferences
For a given r.v. X, CPT-value $C(X)$ is

$$
C(X) := \int_0^{+\infty} w^+ \left(\mathbb{P} \left(u^+ (X) > z \right) \right) \, dz - \int_0^{+\infty} w^- \left(\mathbb{P} \left(u^- (X) > z \right) \right) \, dz
$$

- **Utility functions** $u^+, u^- : \mathbb{R} \to \mathbb{R}_+$, $u^+ (x) = 0$ when $x \leq 0$, $u^- (x) = 0$ when $x \geq 0$

- **Weight functions** $w^+, w^- : [0, 1] \to [0, 1]$ with $w(0) = 0$, $w(1) = 1$
For a given r.v. X, CPT-value $C(X)$ is

$$C(X) := \int_{0}^{+\infty} w^+ (\mathbb{P}(u^+(X) > z)) \, dz - \int_{0}^{+\infty} w^- (\mathbb{P}(u^-(X) > z)) \, dz$$

Gains

Losses

Utility functions $u^+, u^- : \mathbb{R} \rightarrow \mathbb{R}_+$, $u^+(x) = 0$ when $x \leq 0$, $u^-(x) = 0$ when $x \geq 0$

Weight functions $w^+, w^- : [0, 1] \rightarrow [0, 1]$ with $w(0) = 0$, $w(1) = 1$

Connection to expected value:

$$C(X) = \int_{0}^{+\infty} \mathbb{P}(X > z) \, dz - \int_{0}^{+\infty} \mathbb{P}(-X > z) \, dz$$

$$= \mathbb{E} [(X)^+] - \mathbb{E} [(X)^-]$$

$(a)^+ = \max(a, 0)$, $(a)^- = \max(-a, 0)$
Utility and weight functions

Utility functions

For losses, the disutility $-u^-$ is convex, for gains, the utility u^+ is concave.

Weight function

Overweight low probabilities, underweight high probabilities.
Kahneman & Tversky (1979) “Prospect Theory: An analysis of decision under risk” is the second most cited paper in economics during the period, 1975-2000
Our Contributions

\[\mathbb{C}(X^\theta) := \int_0^{+\infty} w^+ \left(\mathbb{P} \left(u^+ (X^\theta) > z \right) \right) \, dz - \int_0^{+\infty} w^- \left(\mathbb{P} \left(u^- (X^\theta) > z \right) \right) \, dz \]

Find \(\theta^* = \arg \max_{\theta \in \Theta} \mathbb{C}(X^\theta) \)

- CPT-value estimation using empirical distribution functions
- SPSA-based policy gradient algorithm
- sample complexity bounds for estimation + asymptotic convergence of policy gradient
- traffic signal control application
Problem: Given samples X_1, \ldots, X_n of X, estimate

$$C(X) := \int_0^{+\infty} w^+ \left(\mathbb{P} \left(u^+ (X) > z \right) \right) \, dz - \int_0^{+\infty} w^- \left(\mathbb{P} \left(u^- (X) > z \right) \right) \, dz$$

Nice to have: Sample complexity $O \left(\frac{1}{\epsilon^2} \right)$ for accuracy ϵ
Empirical distribution function (EDF): Given samples X_1, \ldots, X_n of X,

$$\hat{F}_n^+(x) = \frac{1}{n} \sum_{i=1}^{n} 1_{(u^+(X_i) \leq x)}, \quad \text{and} \quad \hat{F}_n^-(x) = \frac{1}{n} \sum_{i=1}^{n} 1_{(u^-(X_i) \leq x)}$$

Using EDFs, the CPT-value $\mathbb{C}(X)$ is estimated by

$$\overline{C}_n = \int_{0}^{\infty} w^+(1 - \hat{F}_n^+(x))dx - \int_{0}^{\infty} w^-(1 - \hat{F}_n^-(x))dx$$

Part (I) \hspace{2cm} Part (II)
Empirical distribution function (EDF): Given samples X_1, \ldots, X_n of X,

$$\hat{F}_n^+(x) = \frac{1}{n} \sum_{i=1}^{n} 1(\text{u}^+(X_i) \leq x), \quad \text{and} \quad \hat{F}_n^-(x) = \frac{1}{n} \sum_{i=1}^{n} 1(\text{u}^-(X_i) \leq x)$$

Using EDFs, the CPT-value $\overline{C}(X)$ is estimated by

$$\overline{C}_n = \int_0^{+\infty} w^+ (1 - \hat{F}_n^+(x)) \, dx - \int_0^{+\infty} w^- (1 - \hat{F}_n^-(x)) \, dx$$

Part (I) \hspace{1cm} Part (II)

Computing Part (I): Let X_1, X_2, \ldots, X_n denote the order-statistics

$$\text{Part (I)} = \sum_{i=1}^{n} u^+(X[i]) \left(w^+ \left(\frac{n + 1 - i}{n} \right) - w^+ \left(\frac{n - i}{n} \right) \right),$$
(A1). Weights w^+, w^- are Hölder continuous, i.e.,
\[|w^+(x) - w^+(y)| \leq H|x - y|^\alpha, \forall x, y \in [0, 1] \]

(A2). Utilities $u^+(X)$ and $u^-(X)$ are bounded above by $M < \infty$

Sample Complexity:

Under (A1) and (A2), for any $\epsilon, \delta > 0$, we have

\[
\mathbb{P} \left(|\bar{C}_n - C(X)| \leq \epsilon \right) > 1 - \delta, \forall n \geq \ln \left(\frac{1}{\delta} \right) \cdot \frac{4H^2M^2}{\epsilon^{2/\alpha}}
\]
(A1). Weights \(w^+, w^- \) are Hölder continuous, i.e.,
\[
|w^+(x) - w^+(y)| \leq H|x - y|^\alpha, \forall x, y \in [0, 1]
\]

(A2). Utilities \(u^+(X) \) and \(u^-(X) \) are bounded above by \(M < \infty \)

Sample Complexity:

Under (A1) and (A2), for any \(\epsilon, \delta > 0 \), we have

\[
P\left(\left| \overline{C}_n - C(X) \right| \leq \epsilon \right) > 1 - \delta, \forall n \geq \ln \left(\frac{1}{\delta} \right) \cdot \frac{4H^2M^2}{\epsilon^{2/\alpha}}
\]

Special Case: Lipschitz weights \((\alpha = 1) \)

Sample complexity \(O \left(\frac{1}{\epsilon^2} \right) \) for accuracy \(\epsilon \)
CPT-value optimization

Find \(\theta^* = \arg \max_{\theta \in \Theta} C(X^\theta) \)

RL application: \(\theta = \) policy parameter, \(X^\theta = \) return

Two-Stage Solution:

inner stage Obtain samples of \(X^\theta \) and estimate \(C(X^\theta) \);

outer stage Update \(\theta \) using gradient ascent

\(\nabla_i C(X^\theta) \) is not given
Update rule: \(\theta_{n+1}^i = \Gamma_i \left(\theta_n^i + \gamma_n \hat{\nabla}_i C(X^\theta_n) \right) \), \(i = 1, \ldots, d \).

Challenge: estimating \(\nabla_i C(X^{\theta}) \) given only biased estimates of \(C(X^{\theta}) \)

Solution: use SPSA [Spall’92]

\[
\hat{\nabla}_i C(X^{\theta}) = \frac{\overline{C}_{n+\delta_n \Delta_n}^{\theta_n} - \overline{C}_{n-\delta_n \Delta_n}^{\theta_n}}{2 \delta_n \Delta_n^i}
\]

\(\Delta_n \) is a vector of independent Rademacher r.v.s and \(\delta_n > 0 \) vanishes asymptotically.
Measurement Oracle $\rightarrow f(x) + \xi$

Zero mean

Simulation optimization

$X, \epsilon \rightarrow$ CPT Estimator $\rightarrow C(X) + \epsilon$

Controlled bias

$\delta_n \Delta_n$

m_n samples

Prediction

$\frac{\theta_n + \delta_n \Delta_n}{C_n}$

Update θ_n

(Gradient ascent)

θ_{n+1}

$\delta_n \Delta_n$

m_n samples

Prediction

$\frac{\theta_n - \delta_n \Delta_n}{C_n}$

Control

Figure 1: Overall flow of CPT-SPSA

How to choose m_n to ignore estimation bias? Ensure $\frac{1}{m_n \alpha/2 \delta_n} \rightarrow 0$
Application: Traffic signal control

- For any path $i = 1, \ldots, M$, let X_i be the delay gain
 - calculated with a pre-timed traffic light controller as reference
- CPT captures the road users’ evaluation of the delay gain X_i
- Goal: Maximize

$$
CPT(X_1, \ldots, X_M) = \sum_{i=1}^{M} \mu^i C(X_i)
$$

μ^i: proportion of traffic on path i
(a) AVG-SPSA

(b) EUT-SPSA

(c) CPT-SPSA

Figure 2: Histogram of CPT-value of the delay gain: AVG uses plain sample means (no utility/weights), EUT uses utilities but no weights and CPT uses both.
Conclusions

• Want AI to be beneficial to humans

• CPT - a very popular paradigm for modeling human decisions
Conclusions

- Want AI to be beneficial to humans
- **CPT** - a very popular paradigm for modeling human decisions
- We lay the foundations for using **CPT** in an **RL** setting
 - Prediction: Sample means (TD) won’t work, but empirical distributions do!
 - Control: No Bellman, but SPSA can be employed

Future directions:

- **Crowdsourcing** experiment to validate CPT online
- **Robustness** to unknown utility and weight function parameters
Thanks! Questions?