Concentration of risk measures: A Wasserstein distance approach

Prashanth L. A.[‡]

Joint work with Sanjay P. Bhat[†]

IIT Madras
† TCS Research

* To appear in the proceedings of NeurIPS-2019.

Introduction

- · Conditional Value-at-Risk (Rockafellar, Ursayev 2000)
- Spectral risk measures (Acerbi 2002)
- Cumulative prospect theory (Tversky,Kahnemann 1992)

Open Question ???

Given i.i.d. samples and an empirical version of the risk measure, for a distribution with unbounded support

Obtain concentration bounds for each of the three risk measures

Idea: Use finite sample bounds for Wasserstein distance between empirical and true distributions

Empirical risk concentration: summary of contributions

Goal: Bound $\mathbb{P}[|\hat{r}_n - r(X)| > \epsilon]$

 $\hat{r}_n \rightarrow \text{empirical risk using } n \text{ i.i.d. samples,} \quad r(X) \rightarrow \text{true risk}$

Risk measure	Bounded support	Sub-Gaussian
Conditional Value-at-Risk	[Brown et al.], [Gao et al.]	Our work
Spectral risk measures	Our work	Our work
Cumulative prospect theory	[Cheng et al. 2018]	Our work

Unified approach: For each bound, the estimation error is related to Wasserstein distance between empirical and true distributions¹

¹N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure. Probability Theory and Related Fields, 2015.

Wasserstein Distance

Wasserstein Distance

The Wasserstein distance between two CDFs F_1 and F_2 on \mathbb{R} is

$$W_1(F_1,F_2) = \left[\inf \int_{\mathbb{R}^2} |x-y| \mathrm{d} F(x,y)\right],$$

where the infimum is over all joint distributions having marginals *F*₁ and *F*₂ Related to the Kantorovich mass transference problem

- Ship masses around so that the initial mass distribution F1 changes into F2
- Shipping plan: given by joint distribution F with marginals F_1 and F_2 such that the amount of mass shipped from a neighborhood dx of x to the neighborhood dy of y is proportional to dF(x, y)
- The integral above is then the total transportation distance under the shipping plan ${\it F}$
- Wasserstein distance between F_1 and F_2 is the transportation distance under the optimal shipping plan

Wasserstein Distance: Concentration Bounds

 $X \rightarrow r.v.$ with CDF F, $F_n \rightarrow empirical CDF$ formed using n i.i.d. samples. Then²,

 $\mathbb{P}(W_1(F_n,F) > \epsilon) \le B(n,\epsilon)$, for any $\epsilon > 0$,

Exponential moment bound:

If $\exists \beta > 1$ and $\gamma > 0$ such that $\mathbb{E}\left(\exp\left(\gamma |X - \mathbb{E}(X)|^{\beta}\right)\right) < \top < \infty$, then $B(n,\epsilon) = C\left(\exp\left(-cn\epsilon^{2}\right)\mathbb{I}\left\{\epsilon \le 1\right\} + \exp\left(-cn\epsilon^{\beta}\right)\mathbb{I}\left\{\epsilon > 1\right\}\right)$

Higher moment bound:

If
$$\exists \beta > 2$$
 such that $\mathbb{E}\left(|X - \mathbb{E}(X)|^{\beta}\right) < \top < \infty$, then, for any $\eta \in (0, \beta)$,
$$B(n, \epsilon) = C\left(\exp\left(-cn\epsilon^{2}\right)\mathbb{I}\left\{\epsilon \le 1\right\} + n\left(n\epsilon\right)^{-(\beta - \eta)/p}\mathbb{I}\left\{\epsilon > 1\right\}\right)$$

² N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure. Probability Theory and Related Fields, 2015.

Conditional Value-at-Risk

• Widely used in financial portfolio optimization, credit risk assessment and insurance

- Widely used in financial portfolio optimization, credit risk assessment and insurance
- Let X be a continuous random variable
- Fix a 'risk level' $\alpha \in (0, 1)$

- Widely used in financial portfolio optimization, credit risk assessment and insurance
- Let X be a continuous random variable
- Fix a 'risk level' $\alpha \in (0, 1)$ (say $\alpha = 0.95$)

- Widely used in financial portfolio optimization, credit risk assessment and insurance
- Let X be a continuous random variable
- Fix a 'risk level' $\alpha \in (0, 1)$ (say $\alpha = 0.95$)

Value at Risk: $v_{\alpha}(X) = F_{X}^{-1}(\alpha)$

- Widely used in financial portfolio optimization, credit risk assessment and insurance
- Let X be a continuous random variable
- Fix a 'risk level' $\alpha \in (0, 1)$ (say $\alpha = 0.95$)

Value at Risk: $v_{\alpha}(X) = F_X^{-1}(\alpha)$ Conditional Value at Risk:

 $c_{\alpha}(X) = \mathbb{E} [X|X > v_{\alpha}(X)]$ $= v_{\alpha}(X) + \frac{1}{1-\alpha} \mathbb{E} [X - v_{\alpha}(X)]^{+}$

Value at Risk: $v_{\alpha}(X) = F_{X}^{-1}(\alpha)$ Conditional Value at Risk: $c_{\alpha}(X) = \mathbb{E} [X|X > v_{\alpha}(X)]$ $= v_{\alpha}(X) + \frac{1}{1-\alpha} \mathbb{E} [X - v_{\alpha}(X)]^{+}$

For a general r.v. X,

$$c_{\alpha}(X) = \inf_{\xi} \left\{ \xi + \frac{1}{(1-\alpha)} \mathbb{E} \left(X - \xi \right)^{+} \right\}, \text{ where } (y)^{+} = \max(y, 0)$$

CVaR is a Coherent Risk Metric

- Monotonicity: If $X \leq Y$, then $c(X) \leq c(Y)$
- Sub-additivity: $c(X + Y) \le c(X) + c(Y)$, i.e., diversification cannot lead to increased risk.
- Positive Homogeneity: $c(\lambda X) = \lambda c(X)$ for any $\lambda \ge 0$.
- Translation Invariance: For deterministic a > 0, c(X + a) = c(X) - a.

³P. Artzner et al. "Coherent measures of risk." Mathematical finance 9.3 (1999).

CVaR is a Coherent Risk Metric

- Monotonicity: If $X \leq Y$, then $c(X) \leq c(Y)$
- Sub-additivity: $c(X + Y) \le c(X) + c(Y)$, i.e., diversification cannot lead to increased risk.
- Positive Homogeneity: $c(\lambda X) = \lambda c(X)$ for any $\lambda \ge 0$.
- Translation Invariance: For deterministic a > 0, c(X + a) = c(X) - a.

Note: VaR is not sub-additive³

³P. Artzner et al. "Coherent measures of risk." Mathematical finance 9.3 (1999).

Examples

1. Exponential Case: Suppose $X \sim Exp(\mu)$

•
$$v_{\alpha}(X) = \frac{1}{\mu} \ln \left(\frac{1}{1 - \alpha} \right),$$

• $c_{\alpha}(X) = v_{\alpha}(X) + \frac{1}{\mu}$ (memoryless!)

Examples

1. Exponential Case: Suppose $X \sim Exp(\mu)$

•
$$v_{\alpha}(X) = \frac{1}{\mu} \ln \left(\frac{1}{1-\alpha} \right),$$

• $c_{\alpha}(X) = v_{\alpha}(X) + \frac{1}{\mu}$ (memoryless!)

2. Gaussian Case: Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$

•
$$V_{\alpha}(X) = \mu - \sigma Q^{-1}(\alpha)$$

• $c_{\alpha}(X) = \mu + \sigma c_{\alpha}(Z), \ Z \sim \mathcal{N}(0, 1)$

1. Exponential Case: Suppose $X \sim Exp(\mu)$

•
$$v_{\alpha}(X) = \frac{1}{\mu} \ln \left(\frac{1}{1-\alpha} \right),$$

• $c_{\alpha}(X) = v_{\alpha}(X) + \frac{1}{\mu}$ (memoryless!)

2. Gaussian Case: Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$

•
$$V_{\alpha}(X) = \mu - \sigma Q^{-1}(\alpha)$$

•
$$c_{\alpha}(X) = \mu + \sigma c_{\alpha}(Z), \ Z \sim \mathcal{N}(0, 1)$$

For these distributions, no separate CVaR estimate is necessary – estimating μ and σ would do

Problem: Given i.i.d. samples X_1, \ldots, X_n from the distribution *F* of r.v. *X*, estimate

$$C_{\alpha}(X) = \mathbb{E}\left[X|X > V_{\alpha}(X)\right]$$

Nice to have: Sample complexity $O(1/\epsilon^2)$ for accuracy ϵ

Empirical distribution function (EDF): Given samples X_1, \ldots, X_n from distribution F,

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\left\{X_i \le x\right\}, \ x \in \mathbb{R}$$

Using EDF and the order statistics $X_{[1]} \le X_{[2]} \le \dots, X_{[n]}$, form the following estimates⁴:

VaR estimate:

$$\hat{v}_{n,\alpha} = \inf\{x : \hat{F}_n(x) \ge \alpha\} = X_{[\lceil n\alpha \rceil]}.$$

⁴ Serfling, R. J. (2009). Approximation theorems of mathematical statistics, volume 162. John Wiley & Sons.

Empirical distribution function (EDF): Given samples X_1, \ldots, X_n from distribution F,

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\left\{X_i \le x\right\}, \ x \in \mathbb{R}$$

Using EDF and the order statistics $X_{[1]} \leq X_{[2]} \leq \ldots, X_{[n]}$, form the following estimates⁴:

VaR estimate:

$$\hat{v}_{n,\alpha} = \inf\{x : \hat{F}_n(x) \ge \alpha\} = X_{[\lceil n\alpha \rceil]}.$$

CVaR estimate:

$$\hat{c}_{n,\alpha} = \hat{v}_{n,\alpha} + \frac{1}{n(1-\alpha)} \sum_{i=1}^{n} (X_i - \hat{v}_{n,\alpha})^+$$

⁴ Serfling, R. J. (2009). Approximation theorems of mathematical statistics, volume 162. John Wiley & Sons.

Concentration bounds for CVaR Estimation

- Need to put some restrictions on the tail distribution to obtain exponential concentration
- Our assumptions:

(C1) X satisfies an exponential moment bound, i.e., $\exists \beta > 0 \text{ and } \gamma > 0 \text{ s.t. } \mathbb{E} \left(\exp \left(\gamma |X - \mu|^{\beta} \right) \right) < \top < \infty$, where $\mu = \mathbb{E}(X)$

or

(C2) X satisfies a higher-moment bound, i.e., $\beta > 0$ such that $\mathbb{E}(|X - \mu|^{\beta}) < \top < \infty$

Sub-Gaussian r.v.s satisfy (C1), while sub-exponential r.v.s satisfy (C2)

A random variable is X is sub-Gaussian if $\exists \sigma > 0$ s.t.

$$\mathbb{E}\left[e^{\lambda X}\right] \leq e^{\frac{\sigma^2 \lambda^2}{2}}, \; \forall \lambda \in \mathbb{R}.$$

Or equivalently, letting $Z \sim \mathcal{N}(0, \sigma^2)$,

 $\mathbb{P}[X > \epsilon] \le c\mathbb{P}[Z > \epsilon], \forall \epsilon > 0.$ Tail dominated by a Gaussian

A random variable is X is sub-Gaussian if $\exists \sigma > 0$ s.t.

$$\mathbb{E}\left[e^{\lambda X}\right] \leq e^{\frac{\sigma^2 \lambda^2}{2}}, \; \forall \lambda \in \mathbb{R}.$$

Or equivalently, letting $Z \sim \mathcal{N}(0, \sigma^2)$,

A random variable is X is sub-exponential if $\exists c_0 > 0$ s.t.

$$\mathbb{E}\left[e^{\lambda X}\right] < \infty, \; \forall |\lambda| < c_0.$$

Or equivalently, $\exists \sigma, b > 0$ s.t. $\mathbb{E}\left[e^{\lambda X}\right] \le e^{\frac{\sigma^2 \lambda^2}{2}}, \forall |\lambda| \in \frac{1}{b}$. Or $\mathbb{P}\left[X > \epsilon\right] \le c_1 \exp(-c_2\epsilon), \forall \epsilon > 0$. \leftarrow Tail dominated by an exponential r.v.

A few well-known concentration inequalities

Let X_1, \ldots, X_n be i.i.d. samples from the distribution of r.v. X with mean μ , and $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

When *X* is σ -sub-Gaussian:

$$\mathbb{P}\left[\left|\hat{\mu}_{n}-\mu\right|>\epsilon\right]\leq 2\exp\left(-\frac{n\epsilon^{2}}{2\sigma^{2}}\right)$$

A few well-known concentration inequalities

Let X_1, \ldots, X_n be i.i.d. samples from the distribution of r.v. X with mean μ , and $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

When *X* is σ -sub-Gaussian:

$$\mathbb{P}\left[\left|\hat{\mu}_{n}-\mu\right|>\epsilon\right]\leq 2\exp\left(-\frac{n\epsilon^{2}}{2\sigma^{2}}\right)$$

When X is (σ, b) -sub-exponential:

$$\mathbb{P}\left[|\hat{\mu}_n - \mu| > \epsilon\right] \le \begin{cases} 2 \exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right), \ 0 \le \epsilon \le \frac{\sigma^2}{b}, \\ 2 \exp\left(-\frac{n\epsilon}{2b}\right), \ \epsilon > \frac{\sigma^2}{b}. \end{cases}$$

A CVaR concentration result using Wasserstein distance: sub-Gaussian case

When X is σ -sub-Gaussian,

$$\mathbb{P}\left[|\hat{c}_{n,\alpha} - c_{\alpha}| > \epsilon\right] \le 2C \exp\left(-cn(1-\alpha)^{2}\epsilon^{2}\right), \text{ for any } \epsilon \ge 0,$$

where C, c are constants that depend on σ .

Idea: Use a concentration result⁵ for Wasserstein distance between EDF and CDF.

Note:

1) The dependence on n, ϵ cannot be improved

2) Our bound allows a bandit application, as C, c depend on σ (assumed to be known in bandit settings)

⁵ N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical measure. Probability Theory and Related Fields, 2015.

A CVaR concentration result using Wasserstein distance: subexponential case

When X is sub-exponential, for any $\epsilon \geq 0$,

$$\mathbb{P}\left[\left|\hat{c}_{n,\alpha}-c_{\alpha}\right| > \epsilon\right] \leq \begin{cases} C \exp\left[-cn(1-\alpha)^{2}\epsilon^{2}\right], 0 \le \epsilon \le 1, \\ C n\left[n(1-\alpha)\epsilon\right]^{\eta-3}, \epsilon > 1 \end{cases},$$

where C, c are universal constants, and η is chosen arbitrarily from $(0, \beta)$.

Note:

For $\epsilon \leq$ 1, the bound above is satisfactory.

For large ϵ , the second term exhibits polynomial decay, and this is not an artifact of our analysis. Instead, it relates to the sub-optimal rate obtained in [Fourner-Guillin, 2015].

Recent work in [Prashanth et al. 2019] has closed this gap, using a different proof technique.

We use the following alternative characterization of the Wasserstein distance

$$W_1(F_1, F_2) = \sup |\mathbb{E}(f(X)) - \mathbb{E}(f(Y))|, \text{ where}$$
(1)

X and *Y* are random variables having CDFs F_1 and F_2 , respectively, and supremum is over all 1-Lipschitz functions $f : \mathbb{R} \to \mathbb{R}$

The estimation error $|\hat{c}_{n,\alpha} - c_{\alpha}|$ is related to the Wasserstein distance in (1), with EDF F_n as F_1 and the true distribution F as F_2 , and

Wasserstein distance concentration bounds from [Fournier and Guillin. 2015] are invoked.

Spectral risk measures

Spectral Risk Measure

• A risk spectrum $\phi : [0, 1] \rightarrow [0, \infty)$, defines a risk measure

$$M_{\phi}(X) = \int_0^1 \phi(\beta) F^{-1}(\beta) \mathrm{d}\beta$$

- If ϕ is increasing and integrates to 1, then ${\rm M}_{\phi}$ is a coherent risk measure
- CVaR is a special case:

$$c_{\alpha}(X) = M_{\phi} \text{ for } \phi = (1 - \alpha)^{-1} \mathbb{I} \{ \beta \geq \alpha \}$$

• Using risk spectrum, one can assign higher weight to higher losses. In contrast, CVaR assigns same weight for all tail losses.

Estimating a Spectral Risk Measure

• Idea: apply M_{ϕ} to the empirical distribution F_n constructed from n i.i.d. samples of X

$$m_{n,\phi} = \int_0^1 \phi(\beta) F_n^{-1}(\beta) \mathrm{d}\beta$$

• If $|\phi(\cdot)|$ is bounded above by *K*, then

$$|M_{\phi}(X) - m_{n,\phi}| \leq KW_1(F,F_n)$$

• Bounds on $W_1(F, F_n)$ immediately yield concentration bounds for the estimator $m_{n,\phi}$ We use the following alternative characterization of the Wasserstein distance

$$W_1(F_1, F_2) = \int_0^1 |F_1^{-1}(\beta) - F_2^{-1}(\beta)| \mathrm{d}\beta, \text{ where}$$
(2)

where $F_i^{-1}(\beta) = \inf\{x \in \mathbb{R} : F_i(x) \ge \beta\}$ is the β -quantile under F_i

The estimation error $|m_{n,\phi} - M_{\phi}(X)|$ is related to the Wasserstein distance in (2), with EDF F_n as F_1 and the true distribution F as F_2 , and

Wasserstein distance concentration bounds from [Fournier and Guillin. 2015] are invoked.

Cumulative prospect theory

AI that benefits humans

Sequential decision making (RL/bandits) setting with rewards evaluated by **humans**

Cumulative prospect theory (CPT) captures human preferences

Going to office - bandit style

On every day

- 1. Pick a route to office
- 2. Reach office and record (suffered) delay

Why not distort?

Delays are stochastic

In choosing between routes, humans ***need not*** minimize **expected delay**

Why not distort?

Two-route scenario: Average delay(Route 2) slightly below that of Route 1

Route 2 has a *small* chance of *very* high delay, e.g. jammed traffic

I might prefer Route 1

In choosing between routes, humans ***need not*** minimize **expected delay**

Prospect Theory and its refinement (CPT)

Amos Tversky

Daniel Kahneman

Kahneman & Tversky (1979) "*Prospect Theory: An analysis of decision under risk*" is the second most cited paper in economics during the period, 1975-2000

Cumulative prospect theory - Tversky & Kahneman (1992) Rank-dependent expected utility - Quiggin (1982)

CPT-value

For a given r.v. X, CPT-value $\mathcal{C}(X)$ is

$$\mathcal{C}(X) := \underbrace{\int_{0}^{\infty} w^{+} \left(\mathbb{P}\left(u^{+}(X) > z \right) \right) dz}_{\text{Gains}} - \underbrace{\int_{0}^{\infty} w^{-} \left(\mathbb{P}\left(u^{-}(X) > z \right) \right) dz}_{\text{Losses}}$$

Utility functions $u^+, u^- : \mathbb{R} \to \mathbb{R}_+, u^+(x) = 0$ when $x \le 0, u^-(x) = 0$ when $x \ge 0$

Weight functions $w^+, w^- : [0, 1] \rightarrow [0, 1]$ with w(0) = 0, w(1) = 1

CPT-value

For a given r.v. X, CPT-value $\mathcal{C}(X)$ is

$$\mathcal{C}(X) := \underbrace{\int_{0}^{\infty} w^{+} \left(\mathbb{P}\left(u^{+}(X) > z \right) \right) dz}_{\text{Gains}} - \underbrace{\int_{0}^{\infty} w^{-} \left(\mathbb{P}\left(u^{-}(X) > z \right) \right) dz}_{\text{Losses}}$$

Utility functions $u^+, u^- : \mathbb{R} \to \mathbb{R}_+, u^+(x) = 0$ when $x \le 0, u^-(x) = 0$ when $x \ge 0$

Weight functions $w^+, w^- : [0, 1] \to [0, 1]$ with w(0) = 0, w(1) = 1

Connection to expected value:

$$\mathcal{C}(X) = \int_0^\infty \mathbb{P}(X > z) \, dz - \int_0^\infty \mathbb{P}(-X > z) \, dz$$
$$= \mathbb{E}(X)^+ - \mathbb{E}(X)^-$$

 $(a)^+ = \max(a, 0), (a)^- = \max(-a, 0)$

Utility and weight functions

For losses, the disutility $-u^-$ is convex, for gains, the utility u^+ is concave

Weight function

Overweight low probabilities, underweight high probabilities

Problem: Given samples X_1, \ldots, X_n of X, estimate

$$\mathcal{C}(X) := \int_0^\infty w^+ \left(\mathbb{P}\left(u^+(X) > z \right) \right) dz - \int_0^\infty w^- \left(\mathbb{P}\left(u^-(X) > z \right) \right) dz$$

Nice to have: Sample complexity $O(1/\epsilon^2)$ for accuracy ϵ

Empirical distribution function (EDF): Given samples X_1, \ldots, X_n of X,

$$\hat{F}_n^+(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(u^+(X_i) \le x)}, \text{ and } \hat{F}_n^-(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(u^-(X_i) \le x)}$$

Using EDFs, the CPT-value $\mathcal{C}(X)$ is estimated by ⁶

$$\overline{\mathcal{C}}_n = \underbrace{\int_0^\infty w^+ (1 - \hat{F}_n^+(x)) dx}_{\text{Part (I)}} - \underbrace{\int_0^\infty w^- (1 - \hat{F}_n^-(x)) dx}_{\text{Part (II)}}$$

⁶Cheng et al. Stochastic optimization in a cumulative prospect theory framework. IEEE Transactions on Automatic Control, 2018.

Empirical distribution function (EDF): Given samples X_1, \ldots, X_n of X,

$$\hat{F}_n^+(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(u^+(X_i) \le x)}, \text{ and } \hat{F}_n^-(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(u^-(X_i) \le x)}$$

Using EDFs, the CPT-value $\mathcal{C}(X)$ is estimated by ⁶

$$\overline{\mathcal{C}}_n = \underbrace{\int_0^\infty w^+ (1 - \hat{F}_n^+(x)) dx}_{\text{Part (I)}} - \underbrace{\int_0^\infty w^- (1 - \hat{F}_n^-(x)) dx}_{\text{Part (II)}}$$

Computing Part (I): Let $X_{[1]}, X_{[2]}, \ldots, X_{[n]}$ denote the order-statistics

Part (I) =
$$\sum_{i=1}^{n} u^+(X_{[i]}) \left(w^+\left(\frac{n+1-i}{n}\right) - w^+\left(\frac{n-i}{n}\right) \right),$$

⁶Cheng et al. *Stochastic optimization in a cumulative prospect theory framework*. IEEE Transactions on Automatic Control, 2018.

CPT-value concentration: Bounded case

(A1). Weights w^+, w^- are Hölder continuous, i.e., $|w^+(x) - w^+(y)| \le L|x - y|^{\alpha}, \forall x, y \in [0, 1]$

(A2). Utilities $u^+(X)$ and $u^-(X)$ are bounded above by $M < \infty$

Concentration bound:

Under (A1) and (A2), for any $\epsilon > 0$, we have

$$\mathbb{P}\left(\left|\overline{\mathcal{C}}_{n}-\mathcal{C}(X)\right|>\epsilon\right)\leq 2C\exp\left(-\frac{cn\epsilon^{2/\alpha}}{(2LM)^{2/\alpha}}\right)$$

CPT-value concentration: Bounded case

(A1). Weights w^+ , w^- are Hölder continuous, i.e., $|w^+(x) - w^+(y)| \le L|x - y|^{\alpha}$, $\forall x, y \in [0, 1]$

(A2). Utilities $u^+(X)$ and $u^-(X)$ are bounded above by $M < \infty$

Concentration bound:

Under (A1) and (A2), for any $\epsilon > 0$, we have

$$\mathbb{P}\left(\left|\overline{\mathcal{C}}_{n}-\mathcal{C}(X)\right|>\epsilon\right)\leq 2C\exp\left(-\frac{cn\epsilon^{2/\alpha}}{(2LM)^{2/\alpha}}\right)$$

Lipschitz weights ($\alpha = 1$): Sample complexity $O(1/\epsilon^2)$ for accuracy ϵ

General $\alpha < 1$ case: Sample complexity $O\left(1/\epsilon^{2/\alpha}\right)$ for accuracy ϵ

CPT-value concentration: Sub-Gaussian case

Truncated estimator:

$$\widetilde{C}_n = \int_0^{\tau_n} w^+ (1 - \hat{F}_n^+(z)) dz - \int_0^{\tau_n} w^- (1 - \hat{F}_n^-(z)) dz, \text{ where}$$
$$\tau_n = \sigma \left(\sqrt{\log n} + \sqrt{\log \log n} \right)$$

(A1). Weights w^+, w^- are Hölder continuous

(A2). Utilities $u^+(X)$ and $u^-(X)$ are sub-Gaussian with parameter σ

Concentration bound:

For any $\epsilon > \frac{8L\sigma^2}{\alpha n^{\alpha/2}}$, and for *n* s.t. $\sigma \sqrt{\log \log n} > \max \left(\mathbb{E}(u^+(X)), \mathbb{E}(u^-(X)) \right) + 1$,

$$\mathbb{P}\left(\left|\widetilde{\mathcal{C}}_{n}-\mathcal{C}(X)\right|>\epsilon\right)\leq 2C\exp\left(-cn\left(\frac{\epsilon-\frac{8L\sigma^{2}}{\alpha n^{\alpha/2}}}{L\sqrt{\log n}}\right)^{\frac{2}{\alpha}}\right)$$

We use the following alternative characterization of the Wasserstein distance

$$W_1(F_1, F_2) = \int_{-\infty}^{\infty} |F_1(s) - F_2(s)| ds$$
, where (3)

The estimation error $|\overline{C}_n - C(X)|$ is related to the Wasserstein distance in (3), with EDF F_n as F_1 and the true distribution F as F_2 , and

Wasserstein distance concentration bounds from [Fournier and Guillin. 2015] are invoked.

CVaR bandits

Known # of arms K and horizon n Unknown Distributions $P_i, i = 1, ..., K$, CVaR-values (at fixed risk level α) : $C_{\alpha}(1), ..., C_{\alpha}(K)$

Interaction In each round t = 1, ..., n

- pull arm $I_t \in \{1, \ldots, K\}$
- observe a sample loss from P_{I_t}

Benchmark:
$$C_* = \min_{i=1,...,K} C_{\alpha}(i).$$

Regret $R_n = \sum_{i=1}^{K} C_{\alpha}(i)T_i(n) - nC_* = \sum_{i=1}^{K} T_i(n)\Delta_i,$

Known # of arms K and horizon n Unknown Distributions $P_i, i = 1, ..., K$, CVaR-values (at fixed risk level α) : $C_{\alpha}(1), ..., C_{\alpha}(K)$

Interaction In each round t = 1, ..., n

- pull arm $I_t \in \{1, \ldots, K\}$
- observe a sample loss from P_{I_t}

Benchmark:
$$C_* = \min_{i=1,...,K} C_{\alpha}(i)$$
.
Regret $R_n = \sum_{i=1}^{K} C_{\alpha}(i)T_i(n) - nC_* = \sum_{i=1}^{K} T_i(n)\Delta_i$,

Goal: Minimize expected regret $E(R_n)$

Optimizing CVaR using confidence bounds¹

CVaR-LCB

Pull each arm once

For each round t = 1, 2, ..., n do For each arm i = 1, ..., K do

Compute an estimate $c_{i,T_i(t-1)}$ of CVaR value $C_{\alpha}(i)$

LCB index:
$$\operatorname{LCB}_{t}(i) = c_{i,T_{i}(t-1)} - \frac{2}{1-\alpha} \sqrt{\frac{\log(Ct)}{c T_{i}(t-1)}}$$

Pull arm $I_t = \underset{i=1,...,K}{\operatorname{arg\,min}} \operatorname{LCB}_t(i).$

[1] Auer et al. (2002) Finite-time analysis of the multiarmed bandit problem. In: MLJ.

Upper bound

Gap-dependent:

Worst-case bound:

$$\mathbb{E}(R_n) \leq \sum_{\{i:\Delta_i>0\}} \frac{16\log(Cn)}{(1-\alpha)^2 \Delta_i} + K\left(1+\frac{\pi^2}{3}\right) \Delta_i$$
$$\mathbb{E}(R_n) \leq \frac{8}{(1-\alpha)} \sqrt{Kn\log(Cn)} + \left(\frac{\pi^2}{3}+1\right) \sum_i \Delta_i$$

The bound above matches the regular UCB upper bound (for optimizing expected value) up to constant factors

References

Sanjay P. Bhat and **Prashanth L.A.** (2019), Concentration of risk measures: A Wasserstein distance approach, 33rd Conference on Neural Information Processing Systems (NeurIPS).

Prashanth L.A., Krishna Jagannathan and Ravi Kumar Kolla, (2019), Concentration bounds for CVaR estimation: The cases of light-tailed and heavy-tailed distributions,

arXiv preprint arxiv:1901.00997.

C. Acerbi (2002),

Spectral measures of risk: A coherent representation of subjective risk aversion, Journal of Banking and Finance.

A. Tversky and D. Kahneman (1992) Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty.

Y. Wang and F. Gao (2010) Deviation inequalities for an estimator of the conditional value-at-risk, Operations Research Letters.

D. B. Brown (2007) Large deviations bounds for estimating conditional value-at-risk, Operations Research Letters.

Thank you