Concentration of risk measures: A Wasserstein distance approach

Prashanth L. A.‡

Joint work with Sanjay P. Bhat†

‡ IIT Madras
† TCS Research

Introduction
Risk criteria

- Conditional Value-at-Risk *(Rockafellar, Ursayev 2000)*
- Spectral risk measures *(Acerbi 2002)*
- Cumulative prospect theory *(Tversky, Kahnemann 1992)*
Open Question ???

Given i.i.d. samples and an empirical version of the risk measure, for a distribution with unbounded support

Obtain concentration bounds for each of the three risk measures

Idea: Use finite sample bounds for Wasserstein distance between empirical and true distributions
Empirical risk concentration: summary of contributions

Goal: Bound \(\mathbb{P} [|\hat{r}_n - r(X) | > \epsilon] \)

\(\hat{r}_n \rightarrow \) empirical risk using \(n \) i.i.d. samples,
\(r(X) \rightarrow \) true risk

<table>
<thead>
<tr>
<th>Risk measure</th>
<th>Bounded support</th>
<th>Sub-Gaussian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral risk measures</td>
<td>Our work</td>
<td>Our work</td>
</tr>
<tr>
<td>Cumulative prospect theory</td>
<td>[Cheng et al. 2018]</td>
<td>Our work</td>
</tr>
</tbody>
</table>

Unified approach: For each bound, the estimation error is related to Wasserstein distance between empirical and true distributions\(^1\)

Wasserstein Distance
The Wasserstein distance between two CDFs F_1 and F_2 on \mathbb{R} is

$$W_1(F_1, F_2) = \left[\inf \int_{\mathbb{R}^2} |x - y| dF(x, y) \right],$$

where the infimum is over all joint distributions having marginals F_1 and F_2.

Related to the **Kantorovich mass transference** problem

- **Ship** masses around so that the initial mass distribution F_1 changes into F_2
- **Shipping plan**: given by joint distribution F with marginals F_1 and F_2 such that the amount of mass shipped from a neighborhood dx of x to the neighborhood dy of y is proportional to $dF(x, y)$
- The integral above is then the total transportation distance under the shipping plan F
- **Wasserstein distance** between F_1 and F_2 is the transportation distance under the optimal shipping plan
Wasserstein Distance: Concentration Bounds

\(X \rightarrow \text{r.v. with CDF } F, \quad F_n \rightarrow \text{empirical CDF formed using } n \text{ i.i.d. samples.} \) Then\(^2\),

\[
\mathbb{P} \left(W_1(F_n, F) > \epsilon \right) \leq B(n, \epsilon), \text{ for any } \epsilon > 0,
\]

Exponential moment bound:

If \(\exists \beta > 1 \) and \(\gamma > 0 \) such that \(\mathbb{E} \left(\exp \left(\gamma |X - \mathbb{E}(X)|^\beta \right) \right) < \infty \), then

\[
B(n, \epsilon) = C \left(\exp (-cn\epsilon^2) \mathbb{1} \{\epsilon \leq 1\} + \exp (-cn\epsilon^\beta) \mathbb{1} \{\epsilon > 1\} \right)
\]

Higher moment bound:

If \(\exists \beta > 2 \) such that \(\mathbb{E} \left(|X - \mathbb{E}(X)|^\beta \right) < \infty \), then, for any \(\eta \in (0, \beta) \),

\[
B(n, \epsilon) = C \left(\exp (-cn\epsilon^2) \mathbb{1} \{\epsilon \leq 1\} + n (n\epsilon)^{-(\beta-\eta)/p} \mathbb{1} \{\epsilon > 1\} \right)
\]

Conditional Value-at-Risk
VaR and CVaR are Risk-Sensitive Metrics

- Widely used in financial portfolio optimization, credit risk assessment and insurance
VaR and CVaR are Risk-Sensitive Metrics

• Widely used in financial portfolio optimization, credit risk assessment and insurance

• Let X be a continuous random variable

• Fix a ‘risk level’ $\alpha \in (0, 1)$
VaR and CVaR are Risk-Sensitive Metrics

- Widely used in financial portfolio optimization, credit risk assessment and insurance
- Let X be a continuous random variable
- Fix a ‘risk level’ $\alpha \in (0, 1)$ (say $\alpha = 0.95$)
VaR and CVaR are Risk-Sensitive Metrics

- Widely used in financial portfolio optimization, credit risk assessment and insurance
- Let X be a continuous random variable
- Fix a ‘risk level’ $\alpha \in (0, 1)$ (say $\alpha = 0.95$)

Value at Risk:

$$V_\alpha(X) = F_X^{-1}(\alpha)$$
VaR and CVaR are Risk-Sensitive Metrics

• Widely used in financial portfolio optimization, credit risk assessment and insurance
• Let X be a continuous random variable
• Fix a ‘risk level’ $\alpha \in (0, 1)$ (say $\alpha = 0.95$)

Value at Risk:

$$v_\alpha(X) = F_X^{-1}(\alpha)$$

Conditional Value at Risk:

$$c_\alpha(X) = \mathbb{E} [X | X > v_\alpha(X)]$$

$$= v_\alpha(X) + \frac{1}{1 - \alpha} \mathbb{E} [X - v_\alpha(X)]^+$$
Defining CVaR

Value at Risk:

\[v_\alpha(X) = F_X^{-1}(\alpha) \]

Conditional Value at Risk:

\[c_\alpha(X) = \mathbb{E}[X | X > v_\alpha(X)] \]

\[= v_\alpha(X) + \frac{1}{1 - \alpha} \mathbb{E} [(X - v_\alpha(X))^+] \]

For a general r.v. \(X \),

\[c_\alpha(X) = \inf_\xi \left\{ \xi + \frac{1}{1 - \alpha} \mathbb{E} (X - \xi)^+ \right\}, \quad \text{where} \ (y)^+ = \max(y, 0) \]
CVaR is a Coherent Risk Metric

• **Monotonicity**: If $X \leq Y$, then $c(X) \leq c(Y)$

• **Sub-additivity**: $c(X + Y) \leq c(X) + c(Y)$, i.e., diversification cannot lead to increased risk.

• **Positive Homogeneity**: $c(\lambda X) = \lambda c(X)$ for any $\lambda \geq 0$.

• **Translation Invariance**: For deterministic $a > 0$, $c(X + a) = c(X) - a$.

CVaR is a *Coherent* Risk Metric

- **Monotonicity**: If $X \leq Y$, then $c(X) \leq c(Y)$
- **Sub-additivity**: $c(X + Y) \leq c(X) + c(Y)$, i.e., diversification cannot lead to increased risk.
- **Positive Homogeneity**: $c(\lambda X) = \lambda c(X)$ for any $\lambda \geq 0$.
- **Translation Invariance**: For deterministic $a > 0$, $c(X + a) = c(X) - a$.

Note: VaR is not sub-additive\(^3\)

1. **Exponential Case:** Suppose $X \sim \text{Exp}(\mu)$

 - $v_\alpha(X) = \frac{1}{\mu} \ln \left(\frac{1}{1 - \alpha} \right)$,

 - $c_\alpha(X) = v_\alpha(X) + \frac{1}{\mu}$ (memoryless!)
Examples

1. **Exponential Case:** Suppose $X \sim \text{Exp} (\mu)$

 - $v_\alpha (X) = \frac{1}{\mu} \ln \left(\frac{1}{1 - \alpha} \right),$

 - $c_\alpha (X) = v_\alpha (X) + \frac{1}{\mu}$ (memoryless!)

2. **Gaussian Case:** Suppose $X \sim \mathcal{N} (\mu, \sigma^2)$

 - $v_\alpha (X) = \mu - \sigma Q^{-1} (\alpha)$

 - $c_\alpha (X) = \mu + \sigma c_\alpha (Z), \quad Z \sim \mathcal{N} (0, 1)$
1. **Exponential Case:** Suppose $X \sim \text{Exp}(\mu)$

 - $v_\alpha(X) = \frac{1}{\mu} \ln \left(\frac{1}{1 - \alpha} \right)$,

 - $c_\alpha(X) = v_\alpha(X) + \frac{1}{\mu}$ (memoryless!)

2. **Gaussian Case:** Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$

 - $v_\alpha(X) = \mu - \sigma Q^{-1}(\alpha)$

 - $c_\alpha(X) = \mu + \sigma c_\alpha(Z)$, $Z \sim \mathcal{N}(0, 1)$

For these distributions, no separate CVaR estimate is necessary – estimating μ and σ would do.
Problem: Given i.i.d. samples X_1, \ldots, X_n from the distribution F of r.v. X, estimate

$$c_\alpha(X) = \mathbb{E}[X | X > v_\alpha(X)]$$

Nice to have: Sample complexity $O\left(1/\epsilon^2\right)$ for accuracy ϵ
Empirical distribution function (EDF): Given samples X_1, \ldots, X_n from distribution F,

\[
\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \{X_i \leq x\}, \ x \in \mathbb{R}
\]

Using EDF and the order statistics $X_{[1]} \leq X_{[2]} \leq \ldots, X_{[n]}$, form the following estimates\(^4\):

VaR estimate:

\[
\hat{\nu}_{n,\alpha} = \inf\{x : \hat{F}_n(x) \geq \alpha\} = X_{[\lceil n\alpha \rceil]}.
\]

Empirical distribution function (EDF): Given samples X_1, \ldots, X_n from distribution F,

\[
\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{X_i \leq x\}, \ x \in \mathbb{R}
\]

Using EDF and the order statistics $X_{[1]} \leq X_{[2]} \leq \ldots, X_{[n]}$, form the following estimates4:

VaR estimate:

\[
\hat{\nu}_{n,\alpha} = \inf\{x : \hat{F}_n(x) \geq \alpha\} = X_{[\lceil n\alpha \rceil]}.
\]

CVaR estimate:

\[
\hat{C}_{n,\alpha} = \hat{\nu}_{n,\alpha} + \frac{1}{n(1-\alpha)} \sum_{i=1}^{n} (X_i - \hat{\nu}_{n,\alpha})^+
\]

Concentration bounds for CVaR Estimation

- Need to put some restrictions on the tail distribution to obtain exponential concentration
- Our assumptions:
 - (C1) X satisfies an exponential moment bound, i.e.,
 $\exists \beta > 0$ and $\gamma > 0$ s.t. $\mathbb{E} \left(\exp \left(\gamma |X - \mu|^\beta \right) \right) < T < \infty$, where $\mu = \mathbb{E}(X)$

 or

 - (C2) X satisfies a higher-moment bound, i.e.,
 $\beta > 0$ such that $\mathbb{E} \left(|X - \mu|^\beta \right) < T < \infty$

Sub-Gaussian r.v.s satisfy (C1), while sub-exponential r.v.s satisfy (C2)
A random variable is \(X \) is sub-Gaussian if \(\exists \sigma > 0 \) s.t.

\[
\mathbb{E} \left[e^{\lambda X} \right] \leq e^{\frac{\sigma^2 \lambda^2}{2}}, \quad \forall \lambda \in \mathbb{R}.
\]

Or equivalently, letting \(Z \sim \mathcal{N}(0, \sigma^2) \),

\[
\mathbb{P} [X > \epsilon] \leq c \mathbb{P} [Z > \epsilon], \quad \forall \epsilon > 0.
\]

Tail dominated by a Gaussian
A random variable is X is sub-Gaussian if $\exists \sigma > 0$ s.t.

$$\mathbb{E} \left[e^{\lambda X} \right] \leq e^{\frac{\sigma^2 \lambda^2}{2}}, \; \forall \lambda \in \mathbb{R}. $$

Or equivalently, letting $Z \sim \mathcal{N}(0, \sigma^2)$,

$$\mathbb{P}[X > \epsilon] \leq c \mathbb{P}[Z > \epsilon], \; \forall \epsilon > 0. $$

Tail dominated by a Gaussian

A random variable is X is sub-exponential if $\exists c_0 > 0$ s.t.

$$\mathbb{E} \left[e^{\lambda X} \right] < \infty, \; \forall |\lambda| < c_0. $$

Or equivalently, $\exists \sigma, b > 0$ s.t.

$$\mathbb{E} \left[e^{\lambda X} \right] \leq e^{\frac{\sigma^2 \lambda^2}{2}}, \; \forall |\lambda| \leq \frac{1}{b}. $$

Or

$$\mathbb{P}[X > \epsilon] \leq c_1 \exp(-c_2 \epsilon), \; \forall \epsilon > 0. $$

Tail dominated by an exponential r.v
A few well-known concentration inequalities

Let X_1, \ldots, X_n be i.i.d. samples from the distribution of r.v. X with mean μ, and $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$.

When X is σ-sub-Gaussian:

$$
\mathbb{P} \left[|\hat{\mu}_n - \mu| > \epsilon \right] \leq 2 \exp \left(-\frac{n\epsilon^2}{2\sigma^2} \right)
$$
A few well-known concentration inequalities

Let X_1, \ldots, X_n be i.i.d. samples from the distribution of r.v. X with mean μ, and $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$.

When X is σ-sub-Gaussian:

$$
P [|\hat{\mu}_n - \mu| > \epsilon] \leq 2 \exp \left(-\frac{n \epsilon^2}{2 \sigma^2} \right)
$$

When X is (σ, b)-sub-exponential:

$$
P [|\hat{\mu}_n - \mu| > \epsilon] \leq \begin{cases}
2 \exp \left(-\frac{n \epsilon^2}{2 \sigma^2} \right), & 0 \leq \epsilon \leq \frac{\sigma^2}{b}, \\
2 \exp \left(-\frac{n \epsilon}{2b} \right), & \epsilon > \frac{\sigma^2}{b}.
\end{cases}
$$
A CVaR concentration result using Wasserstein distance: sub-Gaussian case

When X is σ-sub-Gaussian,

$$\mathbb{P} [|\hat{c}_{n,\alpha} - c_\alpha | > \epsilon] \leq 2C \exp \left(-cn(1 - \alpha)^2 \epsilon^2 \right), \text{ for any } \epsilon \geq 0,$$

where C, c are constants that depend on σ.

Idea: Use a concentration result\(^5\) for Wasserstein distance between EDF and CDF.

Note:

1) The dependence on n, ϵ cannot be improved

2) Our bound allows a bandit application, as C, c depend on σ (assumed to be known in bandit settings)

When \(X \) is sub-exponential, for any \(\epsilon \geq 0 \),

\[
\mathbb{P} \left[|\hat{c}_{n,\alpha} - c_{\alpha}| > \epsilon \right] \leq \begin{cases}
C \exp \left[-cn(1 - \alpha)^2\epsilon^2 \right], & 0 \leq \epsilon \leq 1, \\
C n [n(1 - \alpha)\epsilon]^{\eta - 3}, & \epsilon > 1
\end{cases},
\]

where \(C, c \) are universal constants, and \(\eta \) is chosen arbitrarily from \((0, \beta)\).

Note:

For \(\epsilon \leq 1 \), the bound above is satisfactory.

For large \(\epsilon \), the second term exhibits polynomial decay, and this is not an artifact of our analysis. Instead, it relates to the sub-optimal rate obtained in [Fourner-Guillin, 2015].

Recent work in [Prashanth et al. 2019] has closed this gap, using a different proof technique.
Proof Idea

We use the following alternative characterization of the Wasserstein distance

\[W_1(F_1, F_2) = \sup \left| \mathbb{E}(f(X)) - \mathbb{E}(f(Y)) \right|, \]

where (1)

\[X \] and \(Y \) are random variables having CDFs \(F_1 \) and \(F_2 \), respectively, and supremum is over all 1-Lipschitz functions \(f : \mathbb{R} \to \mathbb{R} \).

The estimation error \(|\hat{c}_{n,\alpha} - c_\alpha| \) is related to the Wasserstein distance in (1), with EDF \(F_n \) as \(F_1 \) and the true distribution \(F \) as \(F_2 \), and Wasserstein distance concentration bounds from [Fournier and Guillin. 2015] are invoked.
Spectral risk measures
Spectral Risk Measure

• A risk spectrum $\phi : [0, 1] \rightarrow [0, \infty)$, defines a risk measure

$$M_\phi(X) = \int_0^1 \phi(\beta) F^{-1}(\beta) d\beta$$

• If ϕ is increasing and integrates to 1, then M_ϕ is a coherent risk measure
• CVaR is a special case:

$$c_\alpha(X) = M_\phi \text{ for } \phi = (1 - \alpha)^{-1} \mathbb{I}\{\beta \geq \alpha\}$$

• Using risk spectrum, one can assign higher weight to higher losses. In contrast, CVaR assigns same weight for all tail losses.
Estimating a Spectral Risk Measure

- Idea: apply M_ϕ to the empirical distribution F_n constructed from n i.i.d. samples of X

$$m_{n,\phi} = \int_0^1 \phi(\beta)F_n^{-1}(\beta)d\beta$$

- If $|\phi(\cdot)|$ is bounded above by K, then

$$|M_\phi(X) - m_{n,\phi}| \leq KW_1(F,F_n)$$

- Bounds on $W_1(F, F_n)$ immediately yield concentration bounds for the estimator $m_{n,\phi}$
Proof Idea

We use the following alternative characterization of the Wasserstein distance:

$$W_1(F_1, F_2) = \int_0^1 |F_1^{-1}(\beta) - F_2^{-1}(\beta)| \, d\beta, \text{ where}$$

where $F_i^{-1}(\beta) = \inf\{x \in \mathbb{R} : F_i(x) \geq \beta\}$ is the β-quantile under F_i.

The estimation error $|m_{n,\phi} - M_\phi(X)|$ is related to the Wasserstein distance in (2), with EDF F_n as F_1 and the true distribution F as F_2, and Wasserstein distance concentration bounds from [Fournier and Guillin. 2015] are invoked.
Cumulative prospect theory
AI that benefits humans

Sequential decision making (RL/bandits) setting with rewards evaluated by humans

Cumulative prospect theory (CPT) captures human preferences
Going to office - bandit style

On every day

1. Pick a route to office
2. Reach office and record (suffered) delay
Why not distort?

Delays are stochastic

In choosing between routes, humans *need not* minimize expected delay
Why not distort?

Two-route scenario: Average delay(Route 2) slightly below that of Route 1

Route 2 has a *small* chance of *very* high delay, e.g. jammed traffic

I might prefer Route 1

In choosing between routes, humans *need not* minimize expected delay
Prospect Theory and its refinement (CPT)

Kahneman & Tversky (1979) “Prospect Theory: An analysis of decision under risk” is the second most cited paper in economics during the period, 1975-2000

Cumulative prospect theory - Tversky & Kahneman (1992)
Rank-dependent expected utility - Quiggin (1982)
CPT-value

For a given r.v. X, CPT-value $C(X)$ is

$$C(X) := \int_{0}^{\infty} w^+ \left(\mathbb{P} \left(u^+(X) > z \right) \right) dz - \int_{0}^{\infty} w^- \left(\mathbb{P} \left(u^-(X) > z \right) \right) dz$$

Utility functions $u^+, u^- : \mathbb{R} \rightarrow \mathbb{R}_+$, $u^+(x) = 0$ when $x \leq 0$, $u^-(x) = 0$ when $x \geq 0$

Weight functions $w^+, w^- : [0, 1] \rightarrow [0, 1]$ with $w(0) = 0$, $w(1) = 1$
CPT-value

For a given r.v. X, CPT-value $C(X)$ is

$$C(X) := \int_0^{\infty} w^+ (\mathbb{P}(u^+(X) > z)) \, dz - \int_0^{\infty} w^- (\mathbb{P}(u^-(X) > z)) \, dz$$

Utility functions $u^+, u^- : \mathbb{R} \to \mathbb{R}_+$, $u^+(x) = 0$ when $x \leq 0$, $u^-(x) = 0$ when $x \geq 0$

Weight functions $w^+, w^- : [0, 1] \to [0, 1]$ with $w(0) = 0$, $w(1) = 1$

Connection to expected value:

$$C(X) = \int_0^{\infty} \mathbb{P}(X > z) \, dz - \int_0^{\infty} \mathbb{P}(-X > z) \, dz$$

$$= \mathbb{E}(X^+) - \mathbb{E}(X^-)$$

$(a)^+ = \max(a, 0)$, $(a)^- = \max(-a, 0)$
Utility and weight functions

Utility functions

For losses, the disutility $-u^-$ is **convex**, for gains, the utility u^+ is **concave**.

Weight function

Overweight low probabilities, *underweight* high probabilities.
Problem: Given samples \(X_1, \ldots, X_n \) of \(X \), estimate

\[
C(X) := \int_0^\infty w^+ \left(\Pr(u^+(X) > z) \right) \, dz - \int_0^\infty w^- \left(\Pr(u^-(X) > z) \right) \, dz
\]

Nice to have: Sample complexity \(O\left(1/\epsilon^2\right) \) for accuracy \(\epsilon \)
Empirical distribution function (EDF): Given samples X_1, \ldots, X_n of X,

$$
\hat{F}^+_n(x) = \frac{1}{n} \sum_{i=1}^{n} 1_{(u^+(X_i) \leq x)}, \quad \text{and} \quad \hat{F}^-_n(x) = \frac{1}{n} \sum_{i=1}^{n} 1_{(u^-(X_i) \leq x)}
$$

Using EDFs, the CPT-value $\mathcal{C}(X)$ is estimated by

$$
\bar{C}_n = \int_0^\infty w^+ (1 - \hat{F}^+_n(x)) \, dx - \int_0^\infty w^- (1 - \hat{F}^-_n(x)) \, dx
$$

\hspace{1cm}
Part (I) \hspace{1cm} \text{Part (II)}

Empirical distribution function (EDF): Given samples X_1, \ldots, X_n of X,

$$
\hat{F}_n^+(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{(u^+(X_i) \leq x)}, \quad \text{and} \quad \hat{F}_n^-(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{(u^-(X_i) \leq x)}
$$

Using EDFs, the CPT-value $C(X)$ is estimated by \(^6\)

$$
\bar{C}_n = \int_0^\infty w^+ (1 - \hat{F}_n^+ (x)) \, dx - \int_0^\infty w^- (1 - \hat{F}_n^- (x)) \, dx
$$

\begin{align*}
\text{Part (I)} & = \int_0^\infty w^+ (1 - \hat{F}_n^+ (x)) \, dx \\
\text{Part (II)} & = \int_0^\infty w^- (1 - \hat{F}_n^- (x)) \, dx
\end{align*}

Computing Part (I): Let $X_{[1]}, X_{[2]}, \ldots, X_{[n]}$ denote the order-statistics

$$
\text{Part (I)} = \sum_{i=1}^{n} u^+(X_{[i]}) \left(w^+ \left(\frac{n + 1 - i}{n} \right) - w^+ \left(\frac{n - i}{n} \right) \right),
$$

\(^6\text{Cheng et al. Stochastic optimization in a cumulative prospect theory framework. IEEE Transactions on Automatic Control, 2018.}\)
(A1). Weights w^+, w^- are Hölder continuous, i.e.,
$|w^+(x) - w^+(y)| \leq L|x - y|^\alpha, \forall x, y \in [0, 1]$

(A2). Utilities $u^+(X)$ and $u^-(X)$ are bounded above by $M < \infty$

Concentration bound:
Under (A1) and (A2), for any $\epsilon > 0$, we have

$$
\mathbb{P} \left(|\overline{C}_n - C(X)| > \epsilon \right) \leq 2C \exp \left(-\frac{cn\epsilon^{2/\alpha}}{(2LM)^{2/\alpha}} \right)
$$
(A1). Weights w^+, w^- are Hölder continuous, i.e.,
$|w^+(x) - w^+(y)| \leq L|x - y|^\alpha$, $\forall x, y \in [0, 1]$

(A2). Utilities $u^+(X)$ and $u^-(X)$ are bounded above by $M < \infty$

Concentration bound:
Under (A1) and (A2), for any $\epsilon > 0$, we have

$$
\mathbb{P} \left(|\bar{C}_n - C(X)| > \epsilon \right) \leq 2C \exp \left(- \frac{cn\epsilon^{2/\alpha}}{(2LM)^{2/\alpha}} \right)
$$

Lipschitz weights ($\alpha = 1$): Sample complexity $O \left(1/\epsilon^2 \right)$ for accuracy ϵ

General $\alpha < 1$ case: Sample complexity $O \left(1/\epsilon^{2/\alpha} \right)$ for accuracy ϵ
CPT-value concentration: Sub-Gaussian case

Truncated estimator:

\[
\tilde{C}_n = \int_0^{\tau_n} w^+(1 - \hat{F}^+_n(z))dz - \int_0^{\tau_n} w^-(1 - \hat{F}^-_n(z))dz, \quad \text{where}
\]

\[
\tau_n = \sigma \left(\sqrt{\log n} + \sqrt{\log \log n} \right)
\]

(A1). Weights \(w^+, w^- \) are Hölder continuous

(A2). Utilities \(u^+(X) \) and \(u^-(X) \) are sub-Gaussian with parameter \(\sigma \)

Concentration bound:

For any \(\epsilon > \frac{8L\sigma^2}{\alpha n^{\alpha/2}} \), and for \(n \) s.t. \(\sigma \sqrt{\log \log n} > \max (\mathbb{E}(u^+(X)), \mathbb{E}(u^-(X))) + 1 \),

\[
\mathbb{P} \left(\left| \tilde{C}_n - C(X) \right| > \epsilon \right) \leq 2C \exp \left(-cn \left(\frac{\epsilon - \frac{8L\sigma^2}{\alpha n^{\alpha/2}}}{L\sqrt{\log n}} \right)^{\frac{2}{\alpha}} \right)
\]
Proof Idea: Bounded case

We use the following alternative characterization of the Wasserstein distance

$$W_1(F_1, F_2) = \int_{-\infty}^{\infty} |F_1(s) - F_2(s)| ds$$

where

The estimation error $|\bar{C}_n - C(X)|$ is related to the Wasserstein distance in (3), with EDF F_n as F_1 and the true distribution F as F_2, and Wasserstein distance concentration bounds from [Fournier and Guillin. 2015] are invoked.
CVaR bandits
CVaR-aware bandits: Model

Known # of arms K and horizon n

Unknown Distributions $P_i, i = 1, \ldots, K$,

CVaR-values (at fixed risk level α): $C_\alpha(1), \ldots, C_\alpha(K)$

Interaction In each round $t = 1, \ldots, n$

- pull arm $I_t \in \{1, \ldots, K\}$
- observe a sample loss from P_{I_t}

Benchmark: $C_* = \min_{i=1,\ldots,K} C_\alpha(i)$.

Regret $R_n = \sum_{i=1}^{K} C_\alpha(i)T_i(n) - nC_* = \sum_{i=1}^{K} T_i(n)\Delta_i,$
CVaR-aware bandits: Model

Known # of arms K and horizon n

Unknown Distributions $P_i, i = 1, \ldots, K$,

CVaR-values (at fixed risk level α): $C_\alpha(1), \ldots, C_\alpha(K)$

Interaction In each round $t = 1, \ldots, n$

- pull arm $I_t \in \{1, \ldots, K\}$
- observe a sample loss from P_{I_t}

Benchmark: $C_* = \min_{i=1,\ldots,K} C_\alpha(i)$.

Regret $R_n = \sum_{i=1}^{K} C_\alpha(i)T_i(n) - nC_* = \sum_{i=1}^{K} T_i(n)\Delta_i,$

Goal: Minimize expected regret $E(R_n)$
Optimizing CVaR using confidence bounds

CVaR-LCB

Pull each arm once

For each round $t = 1, 2, \ldots, n$ do

For each arm $i = 1, \ldots, K$ do

Compute an estimate $c_{i,T_i(t-1)}$ of CVaR value $C_{\alpha}(i)$

LCB index: $LCB_t(i) = c_{i,T_i(t-1)} - \frac{2}{1 - \alpha} \sqrt{\frac{\log(C_t)}{c_{T_i(t-1)}}}$

Pull arm $I_t = \arg \min_{i=1,\ldots,K} LCB_t(i)$.

How I learn to stop regretting..

Upper bound

Gap-dependent:

\[\mathbb{E}(R_n) \leq \sum_{i: \Delta_i > 0} \frac{16 \log(Cn)}{(1 - \alpha)^2 \Delta_i} + K \left(1 + \frac{\pi^2}{3} \right) \Delta_i \]

Worst-case bound:

\[\mathbb{E}(R_n) \leq \frac{8}{(1 - \alpha)} \sqrt{Kn \log(Cn)} + \left(\frac{\pi^2}{3} + 1 \right) \sum_i \Delta_i \]

The bound above matches the regular UCB upper bound (for optimizing expected value) up to constant factors.
Sanjay P. Bhat and Prashanth L.A. (2019),
Concentration of risk measures: A Wasserstein distance approach,

Prashanth L.A., Krishna Jagannathan and Ravi Kumar Kolla, (2019),
Concentration bounds for CVaR estimation: The cases of light-tailed and heavy-tailed distributions,

C. Acerbi (2002),
Spectral measures of risk: A coherent representation of subjective risk aversion,
Journal of Banking and Finance.

A. Tversky and D. Kahneman (1992)
Advances in prospect theory: Cumulative representation of uncertainty,
Journal of Risk and Uncertainty.

Deviation inequalities for an estimator of the conditional value-at-risk,

Large deviations bounds for estimating conditional value-at-risk,
Thank you