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ABSTRACT

KEYWORDS: Zeroth-Order Stochastic Optimization; Stochastic Approximation;

Simultaneous Perturbation; Random Directions Stochastic Ap-

proximation; Gaussian Smoothing.

Problems of optimization under uncertainty arise in many areas of science and engi-

neering, such as machine learning, communication networks, manufacturing systems,

vehicular traffic control, service systems, and several others. Specific applications are

varied but include: running simulations to refine the placement of acoustic sensors on

a beam, deciding when to switch traffic lights at signal junctions for optimal flow, and

optimizing the parameters of a statistical model for a given data set. The usual way to

model these problems analytically is by defining an objective or a cost function whose

optimum constitutes the desired solution. However, a large number of input variables,

randomness (noise) in the input data, and the lack of a system model prohibit a precise

analytical solution. A viable alternative is to employ simulation-based optimization.

We consider the following stochastic optimization problem

minx∈Rd {f(x) = Eξ[F (x, ξ)]} , where the function f : Rd → R is assumed to

be smooth, and ξ is the noise factor that captures stochastic nature of the problem.

We operate in a simulation optimization setting (Fu, 2015), where F (·, ξ) is not given

explicitly, but through a black-box simulation procedure. Gradient-based methods

are popular for solving such optimization problems. In the simulation-optimization

context, gradient information is typically unavailable and has to be estimated from

noisy function measurements. This setting is also referred to as the zeroth-order

stochastic optimization. Simultaneous perturbation (Bhatnagar et al., 2013; Nesterov

and Spokoiny, 2017) refers to a class of algorithms that can provide biased gradient

and Hessian information, albeit with a bias that can be controlled, usually at the

cost of increased variance in the gradient and Hessian estimate, using noisy function

measurements.

We consider two problems in the context of zeroth-order stochastic optimization. In
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the first problem, we introduce deterministic perturbation schemes for the recently pro-

posed random directions stochastic approximation (RDSA) method (Prashanth et al.,

2017), and propose new first-order and second-order algorithms. In the latter case,

these are the first second-order algorithms to incorporate deterministic perturbations.

We show that the gradient and/or Hessian estimates in the resulting algorithms with de-

terministic perturbations are asymptotically unbiased, so that the algorithms are prov-

ably convergent. Furthermore, we derive convergence rates to establish the superiority

of the first-order and second-order algorithms, for the special case of a convex and a

quadratic optimization problem, respectively. Finally, we perform numerical experi-

ments to validate our theoretical results.

In the second problem, we consider the problem of optimizing an objective function

with and without convexity in a simulation-optimization context, where only stochastic

zeroth-order information is available. We consider two techniques for estimating gradi-

ent/Hessian, namely simultaneous perturbation (SP) and Gaussian smoothing (GS). We

introduce an optimization oracle to capture a setting where the function measurements

have an estimation error that can be controlled. Our oracle is appealing in several prac-

tical contexts where the objective has to be estimated from i.i.d. samples, and increas-

ing the number of samples reduces the estimation error. In the stochastic non-convex

optimization context, we analyze the zeroth-order variant of the randomized stochas-

tic gradient (RSG) (Ghadimi and Lan, 2013) and quasi-Newton (RSQN) (Wang et al.,

2017) algorithms with a biased gradient/Hessian oracle, and with its variant involving

an estimation error component. In particular, we provide non-asymptotic bounds on the

performance of both algorithms. Our results provide a guideline for choosing the batch

size for estimation, so that the overall error bound matches with the one obtained when

there is no estimation error. Next, in the stochastic convex optimization setting, we pro-

vide non-asymptotic bounds that hold in expectation for the last iterate of a stochastic

gradient descent (SGD) algorithm, and our bound for the GS variant of SGD matches

the bound for SGD with unbiased gradient information. We perform simulation experi-

ments on synthetic as well as real-world datasets, and the empirical results validate the

theoretical findings.
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CHAPTER 1

Introduction

1.1 Motivation and Overview

Optimization problems involving uncertainties are common in many areas of science

and engineering, such as machine learning, vehicular traffic control, service systems,

communication networks, financial systems, and several others. For instance, in a gen-

eral traffic signal control setting, a goal could be to dynamically find the optimal order to

switch traffic lights at signal junctions and the amount of time that a lane signal should

be green when inputs such as the number of vehicles waiting at other lanes are provided.

Similarly, in a general communication network, a goal could be to optimally allocate

link bandwidth amongst competing traffic flows. The problems themselves may involve

system identification, model fitting, optimal control, or performance evaluation based

on observed data. A usual way to model these problems analytically is by defining an

objective or a cost function whose optimum constitutes the desired solution. However,

a large number of input variables, randomness (noise) in the input data, and the lack

of a system model prohibit a precise analytical solution, and a viable alternative is to

employ simulation-based optimization.

We consider the following stochastic optimization problem

minx∈Rd {f(x) = Eξ[F (x, ξ)]} , where the function f : Rd → R is assumed to

be smooth, and ξ is the noise factor that captures stochastic nature of the problem.

We operate in a simulation optimization setting (Fu, 2015), where F (·, ξ) is not given

explicitly, but through a black-box simulation procedure. The idea here is to simulate

the stochastic system under consideration a few times while updating the system

parameters until a good enough solution is obtained, and gradient-based methods

are popular for solving such optimization problems. In the simulation-optimization

context, gradient information is typically unavailable and has to be estimated from

noisy function measurements. This setting is also referred to as the zeroth-order

stochastic optimization, where an optimization algorithm is provided with noisy



function measurements and has to construct gradient/Hessian estimates from these

measurements.

Robbins and Monro (1951) developed an incremental-update algorithm that esti-

mates the zeros of the function f when only its noisy measurements are available.

This algorithm has found applications in several engineering domains such as signal

processing, manufacturing, communication networks, autonomous systems, vehicular

traffic networks, etc., where it is often used to find either (a) the fixed points of a certain

function or (b) the optima of a certain objective given noisy function measurements.

The earliest gradient search algorithm in this setting is the Kiefer and Wolfowitz

(1952) procedure. This, however, requires 2d function measurements when the pa-

rameter dimension is d. In (Katkovnik and Kulchitsky, 1972; Rubinstein, 1981), the

authors proposed a random search technique that became known as the smoothed func-

tional (SF) algorithm. The key idea here is that the convolution of the objective function

gradient with a multivariate Gaussian PDF is seen via an integration-by-parts argument

as the convolution of the objective function itself with a scaled multivariate Gaussian.

Thus, a single noisy function measurement at a perturbed value of the parameter up-

date, perturbed using a multivariate Gaussian, is sufficient to obtain an estimate of

the full gradient. This results in a one-measurement estimator that however has high

bias. A balanced two-sided estimator of the gradient (requiring two function measure-

ments) that has significantly lower bias than the one-measurement SF estimator was

proposed in (Styblinski and Tang, 1990), see also (Chin, 1997) for comparisons of the

one-measurement and two-measurement SF algorithms.

Random directions stochastic approximation (RDSA) (Kushner and Clark, 1978)

is another gradient search procedure, in which the perturbation variables are consid-

ered to be uniformly distributed over the surface of the unit sphere in Rd. Obtaining

these perturbation random variables is, however, computationally expensive, particu-

larly when the dimension d is large. In a landmark paper, (Spall, 1992) introduced

the simultaneous perturbation stochastic approximation (SPSA) algorithm, a random

search technique that estimates the gradient using random perturbations that are inde-

pendent, symmetric, zero-mean and satisfying an inverse moment bound. The most

commonly used and studied class of perturbations within this category are those that

are independent, symmetric, ±1-valued, Bernoulli random variables. This algorithm
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(the standard SPSA, as it is known), requires two function measurements at each up-

date step, and became popular because of its computational simplicity, as well as the

convergence and rate guarantees that it provides. In another paper (Spall, 1997), pre-

sented a one-measurement counterpart of SPSA. This algorithm, however, does not

show good performance, as it suffers from a large bias in its gradient estimates. (Bhat-

nagar et al., 2003) presented certain deterministic perturbation variants of SPSA. Here

two constructions for the perturbation variates were proposed, of which, a construction

based on Hadamard matrices is seen to show remarkable improvements in the empirical

performance of one-measurement SPSA.

Adaptive Newton-type schemes that estimate the Hessian using noisy objective

function measurements, as with the gradient, have also gathered considerable attention

over the years. The earliest such scheme, due to (Fabian, 1971), estimated the Hessian

using finite-difference estimates and required O(d2) samples of the objective function

at each update epoch. (Spall, 2000), presented a simultaneous perturbation estimate of

the Hessian that was based on four noisy function measurements. Two of these mea-

surements also estimate the gradient. In the case when noisy gradient measurements are

directly available, he also presented a Newton scheme requiring three measurements.

(Bhatnagar, 2005) presented three additional algorithms that estimate the Hessian as

well as the gradient, using simultaneous perturbation estimates. In the process, new gra-

dient and Hessian SPSA estimators were developed. (Bhatnagar and Prashanth, 2015)

presented a balanced estimator of the Hessian using three function measurements. This

paper also presented two algorithms, one of which estimated the inverse Hessian us-

ing a recursive procedure based on the Sherman-Morrison-Woodbury lemma, while the

other did not require one to compute or estimate the inverse Hessian at each step. It was

shown nonetheless that the asymptotic behaviour of the latter algorithm is analogous to

a Newton algorithm that would involve a computation of the inverse Hessian matrix at

each update step. (Spall, 2009) presented enhancements to the four-simulation Hessian

estimator of (Spall, 2000) using certain weighting and feedback mechanisms. These

enhancements are seen to improve the performance of the resulting scheme.

The class of SF algorithms was extended by (Bhatnagar, 2007) to include two

Newton-based algorithms governed by standard Gaussian perturbations. As with the

gradient estimator, the Hessian estimator was obtained from the idea that if one con-

volves the Hessian with a multivariate Gaussian density, then from an integration-by-

3



parts argument applied twice, the same can be viewed as a convolution of the objective

function with a scaled multivariate Gaussian. This results in a single-measurement Hes-

sian estimator - the same measurement also estimates the gradient. A two-measurement

SF algorithm presented there, involving a balanced (two-measurement) Hessian estima-

tor, is seen to work better in practice - again the same two measurements also estimate

the gradient. In (Ghoshdastidar et al., 2014b,a), gradient and Newton SF algorithms

based on the multi-variate q-Gaussian density as the smoothing functional, i.e., the

perturbation distribution, have been presented. This gives rise to a class of smooth-

ing densities parameterized by the q-parameter. Densities such as multivariate Normal,

Cauchy and Uniform that were known to satisfy the properties required of smoothing

functionals (Rubinstein and Shapiro, 1993) in SF algorithms, emerge as special cases of

the q-Gaussian density for different values of the parameter q. Thus, these papers have

served to significantly extend the class of perturbations that play the role of smoothing

densities in SF algorithms.

Finally, the RDSA procedure has recently been revisited in detail by (Prashanth

et al., 2017), and novel gradient and Newton algorithms have been devised. Recall

that in the original RDSA procedure described in (Kushner and Clark, 1978), the per-

turbation variates are required to be uniformly distributed over the surface of the unit

sphere in Rd, d being the parameter dimension. The approach taken in (Prashanth et al.,

2017) involves a uniform distribution over a unit cube as opposed to the surface of the

unit sphere. The perturbation (component) random variables are thus allowed to be

independent, symmetric, and uniformly distributed over an interval that is symmetric

around zero. Another class of perturbations, namely asymmetric Bernoulli, have been

investigated and found to work nearly as well as SPSA in both theory and practice. Hes-

sian estimators derived from these perturbations have also been proposed in (Prashanth

et al., 2017), and both gradient and Newton algorithms have been investigated in detail.

The reader is referred to (Bhatnagar et al., 2013) for a rigorous introduction to the class

of simultaneous perturbation methods.

Of particular interest to our work is simultaneous perturbation stochastic ap-

proximation (SPSA) and its close cousin random directions stochastic approximation

(RDSA) algorithm. SPSA, proposed in (Spall, 1992), has been shown to perform well,

both in theory and in practice, using Bernoulli perturbations. RDSA, proposed first

in (Kushner and Clark, 1978), uses perturbations drawn randomly on a d-dimensional
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unit sphere. A recent enhancement to RDSA, proposed in (Prashanth et al., 2017), uses

asymmetric Bernoulli perturbations and has been shown to work nearly as well as SPSA

in theory and practice.

1.2 Our Contributions

We consider two problems in the context of zeroth-order stochastic optimization.

• Deterministic perturbations: We introduce deterministic perturbation schemes in

the random directions stochastic approximation (RDSA) method and propose new

first-order and second-order algorithms. We show that the gradient and/or Hessian

estimates in the resulting algorithms with deterministic perturbations are asymptoti-

cally unbiased, so that the algorithms are provably convergent. Furthermore, we de-

rive convergence rates to establish the superiority of the first-order and second-order

algorithms, for the special case of a convex and quadratic optimization problem, re-

spectively. Finally, we perform numerical experiments to validate our theoretical

results.

• Non-asymptotic bounds: We study gradient-based algorithms for solving zeroth-

order stochastic convex and non-convex optimization problems given a biased gradi-

ent/Hessian oracle, and with its variant involving an estimation error component. For

the case of a convex objective function, we provide non-asymptotic bounds that hold

in expectation for the last iterate of a stochastic gradient descent (SGD) algorithm.

For a non-convex objective function, we analyze the zeroth-order variant of the ran-

domized stochastic gradient (RSG) and stochastic quasi-Newton (RSQN) algorithm

and provide non-asymptotic bounds. In both convex and non-convex setting, we pro-

vide a guideline for choosing the batch size for estimation, so that the overall bound

matches with the one obtained when there is no estimation error. Finally, we validate

our theoretical findings through simulation experiments on synthetic and real-world

datasets.

1.3 Organization of the thesis

The rest of the thesis is organised as follows:
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• Chapter 2 provides the background material on stochastic optimization, and vari-

ous methods for estimating gradient and Hessian from noisy function measurements,

namely finite difference stochastic approximation (FDSA), simultaneous perturba-

tion stochastic approximation (SPSA), random direction stochastic approximation

(RDSA) and Gaussian smoothing (GS).

• Chapter 3 introduces a deterministic perturbation scheme in the RDSA method, and

proposes new first-order as well as second-order algorithms. This chapter provides

a convergence analysis that includes asymptotic unbiasedness, strong convergence,

and convergence rate results. Finally, this chapter presents results from numerical

experiments.

• Chapter 4 studies gradient-based algorithms for solving zeroth-order stochastic con-

vex and non-convex optimization problems. This chapter introduces an optimization

oracle to capture a setting where the function measurements have an estimation er-

ror that can be controlled. For both convex and non-convex objective function, this

chapter provides non-asymptotic bounds that hold in expectation. The bounds pro-

vide a guideline for choosing the batch size for estimation, so that the overall bound

matches with the one obtained when there is no estimation error. Finally, this chap-

ter presents results from simulation experiments on synthetic as well as real-world

datasets.

• Chapter 5 concludes the thesis and discusses a few directions for future research.
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CHAPTER 2

Background

A general optimization problem has the following form:

Find x∗ that solves min
x∈X

f(x), (2.1)

where f : Rd → R is called the objective function, x is a d-dimensional parameter of

interest and X ⊂ Rd is the feasible region in which x takes values.

Optimization problems can be classified into two categories as deterministic and

stochastic optimization problem. If we have complete information about the objective

function f , its derivatives, and the set X then (2.1) would be a deterministic optimiza-

tion problem. Furthermore, one can use this information to search the optima deter-

ministically. Unfortunately, many real-world problems do not fall in this class, since

the function f cannot be known accurately for a variety of reasons. The first reason

is due to a simple measurement error. The second reason is that some data represent

information about the future (e.g., product demand or price for a future time period) and

simply cannot be known with certainty. Optimization problems involving uncertainties

are very common in many areas of science and engineering, such as machine learn-

ing, vehicular traffic control, manufacturing systems, service systems, communication

networks, financial systems, and several others. Specific applications are varied but

include: running simulations to refine the placement of acoustic sensors on a beam, de-

ciding when to switch traffic lights at signal junctions for optimal flow, and optimizing

the parameters of a statistical model for a given data set.

2.1 Stochastic Optimization

Optimization under uncertainty or stochastic optimization refers to a collection of meth-

ods for minimizing or maximizing an objective function when randomness is present.

The randomness may be present as either noise in measurements or Monte Carlo ran-

domness in the search procedure, or both. Random input data arise in many areas



such as real-time estimation and control, problems where there is an experimental (ran-

dom) error in the measurements, and simulation-based optimization where Monte Carlo

simulations are run as estimates of an actual system. In stochastic optimization the un-

certainty is incorporated into the model, it presumes that we have little knowledge on

the structure of f and moreover f cannot be obtained directly, but we are given sample

access, i.e.,

f(x) = Eξ[F (x, ξ)], (2.2)

where ξ is the noise factor that captures stochastic nature of the problem, and one is

allowed to observe only the F (x, ξ) samples. These kinds of optimization problems

are more challenging to solve in comparison to a deterministic optimization problem

because we have to find x∗ = arg min
x∈X

f(x), given only noisy function samples. A

large number of input variables, randomness (noise) in the input data, and the lack of a

system model prohibit a precise analytical solution, and a viable alternative is to employ

simulation-based optimization.

Simulation optimization (Fu, 2015) is built on two assumptions: (i) a closed-form

expression of the objective function is unavailable; and (ii) a simulator that outputs

(noisy) function measurements for any input parameter, is available. The implicit as-

sumption in these problems is that function evaluation is computationally expensive.

x Simulator F (x, ξ)

Figure 2.1: Simulation optimization

As illustrated in Figure 2.1, the idea here is to simulate the stochastic system under

consideration a few times until a good enough solution is obtained. A standard approach

is to devise an iterative algorithm that updates the parameter xk in the descent direction

using the gradient and/or Hessian of the objective function f . Stochastic approxima-

tion algorithms are most popular and best suited for solving simulation optimization

problems. The first-order stochastic approximation algorithm (SA) takes the following

iterative form:

xk+1 = xk − γk∇̂f (xk) , (2.3)

where xk is the solution found at iteration k, ∇̂f (xk) is an estimate of the gradient
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∇f (xk) and γk is a step size (sometimes called the learning rate in machine learning)

satisfying the following properties:

∞∑
k=1

γk =∞, and
∞∑
k=1

γ2
k <∞. (2.4)

Under appropriate conditions, one can guarantee local convergence to x∗ almost surely

as n→∞.

The second-order stochastic approximation algorithm (SA) takes the following iter-

ative form:

xk+1 = xk − γk
[
Υ
(
H̄k

)]−1 ∇̂f (xk) , (2.5)

where γk is the step-size that satisfies (2.4), Υ is an operator that projects a matrix

onto the set of positive definite matrices, and ∇̂f (xk) and H̄k are estimates of the

gradient and Hessian, respectively. The first- and second-order SA algorithm can be

considered as the stochastic version of the well-known gradient descent and Newton

method, respectively.

Second-order methods provide many advantages over their first-order counterparts.

The main benefit of second-order methods over first-order methods is that they con-

verge at the optimum rate without requiring knowledge of minimum eigenvalue of

∇2f(x∗) for setting the stepsize. Other benefits include (i) faster convergence in the

final phase, i.e., when the iterate is close to the optima as second-order methods mini-

mize a quadratic model of f and (ii) scale-invariance, i.e., second-order methods adjust

automatically to the scale of the parameter and hence, the update rule is unaffected. On

the flip side, second-order schemes require estimating the Hessian in addition to the

gradient of f and have a higher per-iteration cost due to matrix inversion.

In practice, one can only obtain noisy function measurements through black-box

simulation, and the challenge is to estimate the gradient and/or Hessian from these

measurements. For gradient and Hessian estimation in a zeroth-order optimization set-

ting, we have two important alternatives. The first approach provides an estimate of the

objective gradient/Hessian with an additive bias, say of O(η2), where η is a parameter

to be chosen by the optimization algorithm. The variance of the gradient estimate is

O(1/η2), and hence, the choice of η relates to bias-variance tradeoff (Hu et al., 2016).

Such an approach can be seen in (Spall, 1992; Bhatnagar et al., 2013; Spall, 2005). We

9



shall refer to this as the SP approach, as it involves the simultaneous perturbation trick

for gradient estimation. The second approach finds an alternative (smooth) function

that is not far from the objective, and provides a gradient estimate for this alternative

function (cf. (Nesterov and Spokoiny, 2017; Ghadimi and Lan, 2013)). We shall refer

to this as the GS approach, as it involves smoothing using a Gaussian distribution. In

the following sections, we present a brief survey of existing gradient and/or Hessian

estimation schemes.

2.2 Finite Difference Stochastic Approximation (FDSA)

One of the oldest algorithms for estimating gradients using noisy function measure-

ments is the finite difference stochastic approximation (FDSA) by (Kiefer and Wol-

fowitz, 1952), also known as Kiefer Wolfowitz algorithm. FDSA perturbs the value

of each component of x separately while holding the other components at the nominal

value.

Let y+
ki = f (xk + ηkei) + ξ+

ki and y−ki = f (xk − ηkei) + ξ−ki, for i = 1, . . . , d,

where the perturbation constant ηk → 0 as k →∞, ξ+
ki, ξ

−
ki are independent and identi-

cally distributed (i.i.d.), and ei is the unit vector with a 1 in the ith place. FDSA based

gradient estimate is of the following form:

∇̂f (xk) =


y+
k1−y

−
k1

2ηk
...

y+
kd−y

−
kd

2ηk

 . (2.6)

The convergence of the FDSA based gradient and Hessian estimators are based on

the assumption that the noise vector
(
ξ+
ki − ξ

−
ki, i = 1, 2, . . . , d

)> is a martingale dif-

ference sequence for every k ≥ 0, the step-sizes γk and perturbation constants ηk are

positive for all k, and satisfy

γk, ηk → 0 as k →∞,
∑
k

γk =∞ and
∑
k

(
γk
ηk

)2

<∞. (2.7)
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Detailed convergence analysis of this algorithm can be seen in (Kiefer and Wol-

fowitz, 1952). Note that the FDSA based gradient estimation scheme requires 2d noisy

function measurements, where d is the dimension of the parameter vector x. Further,

(Fabian, 1971) presented Hessian estimation scheme using O(d2) noisy function mea-

surements. This is the main drawback of this algorithm as it is computationally ex-

pensive for high dimensional problems. Therefore, simultaneous perturbation methods

such as SPSA and RDSA which uses a constant number of function measurements for

estimating gradient and Hessian, irrespective of the parameter dimension, have been

analyzed.

2.3 Simultaneous Perturbation Stochastic Approxima-

tion (SPSA)

Simultaneous perturbation (SP) refers to a class of algorithms that can provide bi-

ased gradient/Hessian information, albeit with a bias that can be controlled, usually

at the cost of increased variance in the gradient/Hessian estimate, using noisy function

measurements. SP methods are a popular and efficient approach for estimating gra-

dient/Hessian from function samples, especially in high dimensional problems as the

number of function measurements needed to form an estimator of the gradient/Hessian

is independent of the dimension of the parameter vector. The reader is referred to (Bhat-

nagar et al., 2013) for a rigorous introduction to the class of simultaneous perturbation

methods.

SPSA is a popular SP method. In a landmark paper, (Spall, 1992) introduced the

first-order simultaneous perturbation stochastic approximation algorithm, henceforth

referred to as 1SPSA. The 1SPSA scheme requires only two function measurements to

estimate the gradient, regardless of the dimension of the parameter vector. The idea

here is to simultaneously perturb all components of the parameter randomly.

Gradient estimate: Let y+
k = f (xk + ηk∆k) + ξ+

k , and y−k = f (xk − ηk∆k) + ξ−k ,

where ξ+
k , ξ

−
k are i.i.d. random vectors in Rd, ∆k =

(
∆1
k, . . . ,∆

d
k

)> is any vector con-

sisting of i.i.d., zero-mean, symmetric random variables whose inverse second moments

are bounded. The most commonly used perturbations within this category are the sym-
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metric, ±1-valued, Bernoulli random variables. SPSA based gradient estimate is of the

following form:

∇̂f (xk) =


y+
k −y

−
k

2ηk∆1
k...

y+
k −y

−
k

2ηk∆d
k

 . (2.8)

Sketch of the proof: By Taylor’s series expansions of f (xk + ηk∆k) and

f (xk − ηk∆k), we obtain,

f (xk + ηk∆k) = f (xk) + ηk∆
>
k∇f (xk) +

η2
k

2
∆>k∇2f (xk) ∆k +O

(
η3
k

)
,

f (xk − ηk∆k) = f (xk)− ηk∆>k∇f (xk) +
η2
k

2
∆>k∇2f (xk) ∆k +O

(
η3
k

)
.

Combining the above two equations with (2.8), the ith component of the gradient esti-

mation is given by

f (xk + ηk∆k)− f (xk − ηk∆k)

2ηk∆i
k

= ∇if (xk) +
d∑

j=1,j 6=i

∆j
k

∆i
k

∇jf (xk) +O
(
η2
k

)
.

Then taking conditional expectation, we obtain

E
[
f (xk + ηk∆k)− f (xk − ηk∆k)

2ηk∆i
k

|Fk
]

= ∇if (xk) +O
(
η2
k

)
, (2.9)

where we used the fact that ∆j
k is independent of ∆i

k when j 6= i and E[∆j
k] = 0,∀j.

The convergence of the SPSA based gradient estimators are based on the assumption

that the noise vector ξ+
k − ξ−k ,∀k ≥ 0 is a martingale difference sequence, the step-

sizes γk and perturbation constants ηk are positive for all k and satisfy (2.7). Detailed

convergence analysis of this algorithm can be seen in (Spall, 1992, 2005).

Note that the 1SPSA algorithm requires only two function measurements to estimate

the gradient, regardless of the dimension of the parameter vector. As a result, 1SPSA

became popular because of its computational simplicity, as well as the convergence and

rate guarantees that it provides.

Hessian estimate: Let y+
k = f (xk + ηk∆k) + ξ+

k , y−k = f (xk − ηk∆k) + ξ−k ,

y++
k = f

(
xk + ηk∆k + η̂k∆̂k

)
+ ξ++

k , and y−+
k = f

(
xk − ηk∆k + η̂k∆̂k

)
+ ξ+−

k ,

where the noise terms ξ+
k , ξ

−
k , ξ

++
k , ξ−+

k satisfy E
[
ξ++
k − ξ+

k − ξ
−+
k − ξ−k |Fk

]
= 0, with

12



Fk = σ (xm,m ≤ k) denoting the underlying sigma-field. The perturbation sequence{
∆i
k, ∆̂

i
k, i = 1, . . . , d, k = 1, 2, . . .

}
is independent. The SPSA based Hessian esti-

mate is of the following form (Spall, 2000):

Ĥk =
(
∆−1
k

)(y++
k − y+

k − y
−+
k − y−k

2ηkη̃k

)(
∆̃k
−1
)T

.

Note that the number of function measurements required for estimating Hessian

is just four, regardless of the parameter dimension d. This algorithm is also referred

to as the second-order SPSA algorithm (2SPSA). The second-order SPSA algorithm

performs an update iteration as follows:

xk+1 = xk − γkΥ
(
H̄k

)−1 ∇̂f (xk) , (2.10)

H̄k =
k

k + 1
H̄k−1 +

1

k + 1
Ĥk. (2.11)

In the above, H̄k is a smoothed version of Ĥk, Υ is an operator that projects a ma-

trix onto the set of positive definite and symmetric matrices, and is crucial to ensure

progress along a descent direction. The reader is referred to (Spall, 2000) for detailed

convergence results.

2.4 Random Directions Stochastic Approximation

(RDSA)

A close cousin of the SPSA is RDSA. The gradient estimate in RDSA differs from

SPSA, both in the construction and in the choice of random perturbations. (Kushner and

Clark, 1978) proposed gradient search procedure, in which the perturbation variables

are considered to be uniformly distributed over the surface of the unit sphere in Rd,

where d is the parameter dimension.

The RDSA procedure has recently been revisited in detail by (Prashanth et al.,

2017), and two novel gradient and Newton algorithms have been proposed by incor-

porating random perturbations based on the uniform distribution and a particular asym-

metric Bernoulli distribution. RDSA is found to work nearly as well as SPSA in both

theory and practice.
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We now present the gradient and Hessian estimates using RDSA.

Let y+
k = f (xk + ηk∆k) + ξ+

k , y−k = f (xk − ηk∆k) + ξ−k , and yk = f(xk) + ξk,

(2.12)

where ξ+
k , ξ

−
k , ξk is the measurement noise, ηk is a perturbation constant, and ∆k =(

∆1
k, . . . ,∆

d
k

)> are i.i.d. random perturbations.

In (Prashanth et al., 2017), two choices for ∆k are explored. The first is a uniform

distribution, i.e., ∆i
k,∀i = 1, . . . , d, and ∀k ≥ 0 are i.i.d. zero mean uniform random

variables taking values in the interval U[−u, u] for some u > 0. Let yk, y+
k and y−k be

as defined in (2.12), then, the gradient and Hessian is estimated as follows:

∇̂f (xk) =
3

u2
∆k

[
y+
k − y

−
k

2ηk

]
, Ĥk =

9

2u4
Mk

(
y+
k + y−k − 2yk

η2
k

)
, where,

Mk =


5
2

(
(∆1

k)
2 − u2

3

)
· · · ∆1

k∆
d
k

∆2
k∆

1
k · · · ∆2

k∆
d
k

∆d
k∆

1
k · · · 5

2

((
∆d
k

)2 − u2

3

)
 .

We shall refer to the RDSA with uniform perturbations as RDSA-Unif.

The second choice for perturbations is to employ a asymmetric Bernoulli distribu-

tion, i.e., ∀i = 1, . . . , d, and ∀k ≥ 0,

∆i
k =

 −1 w.p. (1+ε)
(2+ε)

,

1 + ε w.p. 1
(2+ε)

,

for some constant ε > 0. Let yk, y+
k and y−k be as defined in (2.12), then, the gradient

and Hessian estimates are formed as follows:

∇̂f (xk) =
1

1 + ε
∆k

[
y+
k − y

−
k

2ηk

]
, Ĥk = Mk

(
y+
k + y−k − 2yk

η2
k

)
,where,

Mk =


1
κ

(
(∆1

k)
2 − (1 + ε)

)
· · · 1

2(1+ε)2 ∆1
k∆

d
k

1
2(1+ε)2 ∆2

k∆
1
k · · · 1

2(1+ε)2 ∆2
k∆

d
k

1
2(1+ε)2 ∆d

k∆
1
k · · · 1

κ

((
∆d
k

)2 − (1 + ε)
)
 .

In the above, κ = τ
(

1− (1+ε)2

τ

)
and τ =

(1+ε)(1+(1+ε)3)
(2+ε)

. We shall refer to the RDSA
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with asymmetric Bernoulli perturbations as RDSA-AsymBer.

Similar to SPSA, RDSA variants such as RDSA-Unif and RDSA-AsymBer also

requires only two function measurements (i.e., y+
k and y−k ) for estimating gradient, while

constructing a Hessian estimate would require a third function evaluation (i.e., yk),

and the second-order RDSA (2RDSA) algorithm performs an update iteration given by

(2.10) and (2.11). Further, the convergence of the RDSA based gradient and Hessian

estimators are based on assumptions similar to those in SPSA. The reader is referred to

(Prashanth et al., 2017) for detailed convergence results.

In Chapter 3, we propose a variant of RDSA that loops through a deterministic

sequence to cancel out the bias in the gradient estimate – a property that regular RDSA

achieves in expectation through a zero-mean random perturbation. We propose two new

choices for deterministic perturbations, the first choice is based on a semi-lexicographic

sequence, while the second employs permutation matrices.

2.5 Gaussian Smoothing (GS)

We consider a smooth approximation of the objective function f. It is well-known

(Conn et al., 2009) that the convolution of f with any nonnegative, measurable and

bounded function ψ : Rd → R satisfying
∫
Rd ψ(u)du = 1 is an approximation of f

which is at least as smooth as f. Let ∆k ∼ N (0, Id) be a standard Gaussian random

vector. For some ηk > 0, a smooth approximation of f is defined as:

fηk(xk) =
1

(2π)
d
2

∫
f(xk + ηk∆k)e

− 1
2
‖∆k‖2d∆k = E∆k

[f(xk + ηk∆k)].

In (Nesterov and Spokoiny, 2017), the authors establish that:

∇fηk(xk) = E∆k

[
f(xk + ηk∆k)

ηk
∆k

]
= E∆k

[
f(xk + ηk∆k)− f(xk)

ηk
∆k

]
=

1

(2π)d/2

∫
f(xk + ηk∆k)− f(xk)

ηk
∆ke

− ‖∆k‖
2

2 d∆k.

This relation implies that we can estimate a gradient of fηk by only using evaluations of

f. The Gaussian smoothing (GS) approach uses Gaussian distribution in the convolution
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to find an alternative (smooth) function that is not far from the objective, and then

provides a gradient estimate for this alternative function (cf. (Nesterov and Spokoiny,

2017; Ghadimi and Lan, 2013)).

Let y+
k = f (xk + ηk∆k) + ξ+

k , y−k = f (xk − ηk∆k) + ξ−k and yk = f(xk) + ξk,

where ∆k is a d-dimensional Gaussian vector composed of standard normal r.v.s., i.e.,

∆k ∼ N (0, Id). The GS-based gradient and Hessian estimate is of the following form:

∇̂f (xk) = ∆k

[
y+
k − yk
ηk

]
and Ĥk =

[
y+
k + y−k − 2yk

2η2
k

]
(∆k∆

T
k − Id).

Similar to SPSA and RDSA, GS approach also requires only two function measure-

ments for estimating gradient, and three function measurements for estimating Hessian.

The reader is referred to (Nesterov and Spokoiny, 2017) for detailed convergence re-

sults.
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CHAPTER 3

Random Directions Stochastic Approximation with

Deterministic Perturbations

We introduce deterministic perturbation schemes for the recently proposed RDSA

(Prashanth et al., 2017), and propose new first-order and second-order algorithms. In

the latter case, these are the first second-order algorithms to incorporate deterministic

perturbations. We show that the gradient and/or Hessian estimates in the resulting al-

gorithms with deterministic perturbations are asymptotically unbiased, so that the algo-

rithms are provably convergent. Furthermore, we derive convergence rates to establish

the superiority of the first-order and second-order algorithms, for the special case of a

convex and quadratic optimization problem, respectively. Numerical experiments are

used to validate the theoretical results.

3.1 Introduction

Recall from Chapter 2 that we consider the following problem:

Find x∗ = arg min
x∈Rd

f(x). (3.1)

We operate in a setting in which the analytical form of the objective function f is not

known, but noisy measurements of the function can be obtained. Furthermore, noisy

estimates of the objective function gradient are not directly available, so the function

gradient needs to be estimated using the aforementioned noisy measurements. Simul-

taneous perturbation (Bhatnagar et al., 2013) refers to a class of algorithms that can

provide biased gradient information, albeit with a bias that can be controlled, usually

at the cost of increased variance in the gradient/Hessian estimate, using noisy function

measurements.

In this chapter, we are concerned with developing deterministic perturbation vari-

ants of first and second-order RDSA algorithms, henceforth referred to as RDSA-DP



family of algorithms, with 1RDSA-DP (resp. 2RDSA-DP) denoting first (resp. second)

order variants. The principal aim is to incorporate deterministic perturbation sequences

into RDSA, such that the resulting gradient estimates are still asymptotically unbiased

and the overall stochastic gradient algorithm converges, preferably at the same rate as

that of the random perturbation RDSA counterparts. We consider two novel choices for

deterministic perturbations - a semi-lexicographic sequence and a permutation matrix-

based sequence. We combine the two sequences with first and second-order RDSA.

In the case of 1RDSA-DP, the resulting algorithms, under both choices for deter-

ministic perturbations, possess theoretical guarantees that are comparable to those of

their random perturbation counterparts. This statement is true when we consider the

asymptotic unbiasedness of the gradient estimation and asymptotic convergence of the

overall 1RDSA-DP family of algorithms. Moreover, from a non-asymptotic bound that

we derive for the special case of strongly-convex objective functions, we observe that

the permutation matrix-based perturbations perform best, and even match the rate of a

first-order method, whose gradients are directly available.

In the case of second-order RDSA, we incorporate both perturbation sequences to

arrive at two variants of 2RDSA-DP, say 2RDSA-Lex-DP and 2RDSA-Perm-DP. How-

ever, the theoretical guarantees for the two variants differ significantly. For 2RDSA-

Lex-DP, the asymptotic unbiasedness claim holds for the full Hessian, while a similar

claim holds only for the Jacobi variant of 2RDSA-Perm-DP involving a diagonal matrix

with diagonal elements being those of the Hessian. Furthermore, for the special case of

a quadratic optimization problem in the noise-free regime, 2RDSA-Lex-DP is shown to

exhibit a convergence rate that is comparable to that of 2SPSA with an adaptive feed-

back sequence that was proposed in (Spall, 2009). Note that a similar rate result does

not exist for regular 2RDSA, and we believe, cannot be established. In any case, to

the best of our knowledge, no deterministic perturbation sequences exist for the class

of second-order simultaneous perturbation algorithms, including the popular 2SPSA

(Spall, 1997).

In comparison to (Bhatnagar et al., 2003), which is the closest related work, we

remark that (i) we propose a novel deterministic perturbation scheme and combine it

with first-order and second-order RDSA, while the deterministic perturbation schemes

in (Bhatnagar et al., 2003) are only for first-order SPSA; (ii) unlike (Bhatnagar et al.,
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2003), we provide asymptotic normality results that quantify the convergence rate; and

(iii) the permutation matrix-based perturbations that we propose are much easier to

implement and require much less computational memory in comparison to the deter-

ministic perturbation sequences proposed in (Bhatnagar et al., 2003). In particular, the

permutation matrices have a linear dependence on the dimension d, while the lexico-

graphic/Hadamard matrix-based perturbations in (Bhatnagar et al., 2003) scale expo-

nentially with d.

The rest of this chapter is organized as follows: Section 3.2 presents the first-

order RDSA variants with two deterministic perturbation sequences, and Section 3.3

describes deterministic perturbation variants of the second-order RDSA algorithm. The

main theoretical guarantees for 1RDSA-DP and 2RDSA-DP algorithms are presented

in Sections 3.2–3.3, while Section 3.4 provides detailed convergence proofs. Section

3.5 presents simulation experiments that compare the performance of the DP variants

of RDSA with several algorithms that employ the simultaneous perturbation technique.

Finally, Section 3.6 summarizes the results.

3.2 First-order RDSA with deterministic perturbations

Recall from 2.1 that a first-order method, given the gradient ∇f(·), would feature an

incremental update as follows:

xk+1 = xk − γk∇f(xk). (3.2)

In the simulation optimization setting, we are given noisy function measurements, from

which the gradient has to be estimated. The simultaneous perturbation method (Bhat-

nagar et al., 2013) is a popular approach for obtaining such gradients. Recall that the

RDSA based gradient estimate is of the following form:

∇̂f(xk) =
1

1 + ε
∆k

[
y+
k − y

−
k

2ηk

]
, (3.3)

where y±k = f(xk± ηk∆k) + ξ, ξ is the measure noise and ηk is a perturbation constant.

Further, ∆k = (∆1
k, . . . ,∆

d
k)

T is the random perturbation vector, with ∆i
k, i = 1, . . . , d

chosen using the asymmetric Bernoulli distribution, i.e., ∆i
k = −1 with probability
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(w.p.)
(1 + ε)

(2 + ε)
and 1 + ε w.p.

1

(2 + ε)
for some ε > 0.

In this chapter, we propose a variant of 1RDSA that loops through a deterministic

sequence to cancel out the bias in the gradient estimate – a property that regular RDSA

achieves in expectation through a zero-mean random perturbation. We consider two

deterministic constructions for the perturbations ∆k. The first choice is based on a

semi-lexicographic sequence, while the second employs permutation matrices. In both

cases, we perform gradient descent similar to (3.2), with a gradient estimate inspired

from that of 1RDSA. However, unlike (3.3) that has a random source for perturbations

∆k, we loop through a deterministic sequence (cf. Tables 3.1 and 3.2 below).

Table 3.1: Illustration of the deterministic perturbation sequence construction for two-
dimensional and three-dimensional settings.

(a) Case d = 2

Inner loop counter m D1
2 D2

2

0 −1 −1
1 −1 −1
2 −1 2
3 −1 −1
4 −1 −1
5 −1 2
6 2 −1
7 2 −1
8 2 2

(b) Case d = 3

Inner loop D1
3 D2

3 D3
3 Inner loop D1

3 D2
3 D3

3 Inner loop D1
3 D2

3 D3
3

counter m counter m counter m

0 −1 −1 −1 9 −1 −1 −1 18 2 −1 −1
1 −1 −1 −1 10 −1 −1 −1 19 2 −1 −1
2 −1 −1 2 11 −1 −1 2 20 2 −1 2
3 −1 −1 −1 12 −1 −1 −1 21 2 −1 −1
4 −1 −1 −1 13 −1 −1 −1 22 2 −1 −1
5 −1 −1 2 14 −1 −1 2 23 2 −1 2
6 −1 2 −1 15 −1 2 −1 24 2 2 −1
7 −1 2 −1 16 −1 2 −1 25 2 2 −1
8 −1 2 2 17 −1 2 2 26 2 2 2

3.2.1 Semi-lexicographic sequence-based perturbations

Algorithm 1 presents the pseudocode for the 1RDSA-Lex-DP algorithm that employs a

semi-lexicographic sequence for perturbations.
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Algorithm 1 1RDSA-Lex-DP
Input: initial parameter x0 ∈ Rd, perturbation constants ηk > 0, step-sizes γk,
deterministic perturbations {∆0, . . . ,∆3d−1}.
for k = 0, 1, 2, . . . do

. Fix xk and loop through the rows of matrix Dd for perturbations ∆m.
for m = 0, 1, 2, . . . , 3d − 1 do

Obtain function values y+
m = f(xk + ηk3d+m∆m) + ξ and y−m = f(xk −

ηk3d+m∆m) + ξ, where ξ is the measure noise.

Set gm = ∆m

[
y+
m − y−m

2ηk3d+m

]
.

end for

Gradient estimate: ∇̂f(xk) =
1

2× 3d

3d−1∑
m=0

gm. (3.4)

Parameter update: xk+1 = xk − γk∇̂f(xk). (3.5)

end for
Return xk.

Our proposed construction for perturbations ∆m is illustrated for the case when

d = 2 and d = 3 in Tables 3.1a and 3.1b, respectively. Letting Id denote the d × d

identity matrix, for d = 2, we have

32−1∑
m=0

∆m∆T

m =

 18 0

0 18

 =⇒ 1

2× 32

32−1∑
m=0

∆m∆T

m = I2.

In a similar fashion, for d = 3, we have

33−1∑
m=0

∆m∆T

m =


54 0 0

0 54 0

0 0 54

 =⇒ 1

2× 33

33−1∑
m=0

∆m∆T

m = I3.

For any d, we require that 1
2×3d

3d−1∑
m=0

∆m∆T
m = Id to ensure that the gradient estimate

∇̂f(xk) (see (3.4) in Algorithm 1) is asymptotically unbiased. The crucial ingredient

in the asymptotic-unbiasedness proof, presented later in Lemma 2, is the following step

that uses suitable Taylor’s series expansions:

∆m

[
f(xk + ηk∆m)− f(xk − ηk∆m)

2ηk

]
= ∆m∆T

m∇f(xk) +O(η2
k).

Hence, if the product ∆m∆T
m sums to identity over a loop, then ∇̂f(xk) would be
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asymptotically unbiased.

We now present the deterministic perturbation sequence for a general d. Set D1
1 =

−1

−1

2

 and apply the following recursion d− 1 times to obtain Di
d:

Di
d =


Di−1
d−1

Di−1
d−1

Di−1
d−1

 , i = 2, . . . , d. (3.6)

The deterministic perturbation sequence loops through the rows in the matrix, say Dd,

with columns Di
d. Notice that each column Di

d, i = 1, . . . , d in Dd is of length 3d.

Further, in the first column of Dd, the first 2× 3d−1 elements are −1 and the remaining

3d−1 elements are 2. On the other hand, the columns 2 through d in Dd are obtained

from D1
d−1, . . . , D

d−1
d−1, respectively by concatenating the Di

d−1 columns thrice.

3.2.2 Permutation matrix-based perturbations

While the semi-lexicographic sequence-based perturbations result in a gradient estimate

that is asymptotically unbiased, the inner loop for the perturbations becomes exponen-

tially longer as a function of the dimension d. This exponential dependence on d is

problematic, because the descent in parameter xk occurs at the end of the inner loop

(see Algorithm 1), and hence, a long inner loop would imply slow updates (and slow

convergence) to xk.

In this section, we propose an efficient alternative to the semi-lexicographic de-

terministic sequence; the approach is based on permutation matrices. A permutation

matrix is a matrix whose rows are the rows of an identity matrix in some order. For

instance, the permutation matrices in two dimension are 1 0

0 1

 and

 0 1

1 0

 .
In three dimensions, there are 6 permutation matrices. In general, there are d! permuta-

tion matrices in dimension d.
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In the case of permutation matrix-based deterministic perturbations, the overall al-

gorithm follows the template provided in Algorithm 1, except that the perturbations are

generated using a permutation matrix in d-dimensions, the inner loop for m runs from

0 to d− 1 and the gradient estimate in (3.4) is replaced by

∇̂f(xn) =
d−1∑
m=0

gm. (3.7)

Table 3.2 illustrates the perturbations ∆m used in Algorithm 1, for d = 2 and d = 3.

In a nutshell, the sequence shown in Table 3.2 loops through the rows of the identity

matrix in some order.

Table 3.2: Illustration of the permutation matrix-based deterministic perturbation se-
quence construction for two-dimensional and three-dimensional settings.

(a) Case d = 2

Inner loop D1
2 D2

2

counter m

0 1 0
1 0 1

(b) Case d = 3

Inner loop D1
3 D2

3 D3
3

counter m

0 0 1 0
1 0 0 1
2 1 0 0

Remark 1. The classic Kiefer-Wolfowitz (K-W) algorithm (Kiefer and Wolfowitz, 1952)

obtains 2d function samples per iteration, corresponding to parameters xk ± ηkei, i =

1, . . . , d and updates the parameter as follows:

xik+1 = xik − γk
(
yi+k − y

i−
k

2ηk

)
,

where yi±k = f(xk ± ηkei), i = 1, . . . , d.

The 1RDSA-Perm-DP algorithm that we propose resembles K-W in the sense that

the inner loop obtains 2d samples before updating the parameter xk. However, the

gradient estimate features a product with the perturbation vector ∆m and this is unlike

K-W, where the individual coordinates are independently updated.
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3.2.3 Main results

Let D1
d, . . . , D

d
d denote the d columns of the semi-lexicographic perturbation variables.

Consider the matrix

Md =


(D1

d)
TD1

d (D1
d)

TD2
d . . . (D1

d)
TDd

d

(D2
d)

TD1
d (D2

d)
TD2

d . . . (D2
d)

TDd
d

...
...

...

(Dd
d)

TD1
d (Dd

d)
TD2

d . . . (Dd
d)

TDd
d

 .

Lemma 1. For 1RDSA-Lex-DP Md = 2× 3dId, and for 1RDSA-Perm-DP Md = Id.

Proof. See Section 3.4.1.

Before providing the convergence claims for 1RDSA-DP with either perturbation

choice, we outline the necessary assumptions below.

(A1) f : Rd → R is three-times continuously differentiable1 with
∣∣∇3

i1i2i3
f(x)

∣∣ <
α0 <∞, for i1, i2, i3 = 1, . . . , d and for all x ∈ Rd.

(A2) {ξ+
m, ξ

−
m,m = 0, . . . , P, k = 1, 2, . . .} satisfy E [ξ+

m − ξ−m| Fk] = 0, where P =

3d−1 for semi-lexicographic 1RDSA-DP and P = d−1 for permutation matrix-

based 1RDSA-DP.

(A3) For some α0, α1 > 0 and for all m, k, E |ξ±m|
2 ≤ α0, E |f(xk ± η∆m)|2 ≤ α1 for

any η > 0 and ∆m, m = 0, . . . , P .

(A4) The step-sizes γk and perturbation constants ηk are positive, for all k and satisfy

γk, ηk → 0 as k →∞,
∑
k

γk =∞ and
∑
k

(
γk
ηk

)2

<∞.

(A5) supk ‖xk‖ <∞ w.p. 1.

The assumptions above are common to the analysis of simultaneous perturbation meth-

ods, and can be found, for instance, in the context of 1SPSA (Spall, 1992) – see also

(Bhatnagar et al., 2013) for the analysis of other simultaneous perturbation schemes

1Here ∇3f(x) =
∂3f(x)

∂xT∂xT∂xT
denotes the third derivative of f at x and ∇3

i1i2i3
f(x) denotes the

(i1i2i3)th entry of∇3f(x), for i1, i2, i3 = 1, . . . , d.
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that employ similar assumptions. The first two are necessary to establish asymptotic

unbiasedness of the 1RDSA-DP gradient estimate through a Taylor series expansion

facilitated by (A1), while ignoring the noise owing to (A2). The third and fourth as-

sumptions are necessary to ignore the effects of noise on the convergence behavior of

xk. The final assumption requiring boundedness of the iterates xk can be ensured by

constraining the iterates xk to evolve in a certain compact region and projecting them

back each time they go out of the region, see (Kushner and Clark, 1978) (Chapter 5). If

the projected region contains the optima, then the stochastic gradient algorithms (RDSA

or SPSA) would converge to this point, and in the complementary case, the algorithm

would get stuck on the boundary of the projection region. In the literature, there also

exist approaches to overcome the latter case, by either growing the projection region

(Chen et al., 1987), or performing sparse projections (Dalal et al., 2018) (i.e., at time

instants that grow exponentially to infinity, while not projecting the iterates at the re-

maining time instants).

Lemma 2. (Asymptotic unbiasedness of 1RDSA-DP gradient estimate) Under (A1)-

(A5),

(i) for ∇̂f(xk) defined according to (3.4), we have a.s. that2

∣∣∣E [∇̂if(xk)
∣∣∣Fk]−∇if(xk)

∣∣∣ = C0η
2
k3d ,

for i = 1, . . . , d, where C0 = α0d
33d−1 and Fk = σ(xn, n ≤ k), k ≥ 1.

(ii) for ∇̂f(xk) defined according to (3.7), we have a.s. that

∣∣∣E [∇̂if(xk)
∣∣∣Fk]−∇if(xk)

∣∣∣ = C0η
2
kd, (3.8)

for i = 1, . . . , d, where C0 = α0d
3/6.

Proof. See Section 3.4.1.

The advantage of the permutation matrix approach is that the dependence on the

dimension d is linear, whereas the semi-lexicographic sequence has an exponential de-

pendence on d.

2Here ∇̂if(xk) and ∇if(xk) denote the ith coordinates in the gradient estimate ∇̂f(xk) and true
gradient∇f(xk), respectively.
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We now have an asymptotic convergence claim for xk updated according to (3.5);

the claim is verbatim from Theorem 2 of (Prashanth et al., 2017).

Theorem 3. (Strong Convergence) Let x∗ be an asymptotically stable equilibrium of

the following ordinary differential equation (ODE): ẋt = −∇f(xt), with domain of

attraction D(x∗), i.e., D(x∗) = {x0 | limt→∞ x(t | x0) = x∗}, where x(t | x0) is

the solution to the ODE with initial condition x0. Assume (A1)-(A5), and also that

there exists a compact subset D of D(x∗) such that xk ∈ D infinitely often. Let xk be

governed by (3.5), with the gradient estimate ∇̂f(xk) defined either according to (3.4)

or (3.7). Then,

xk → x∗ a.s. as k →∞.

Proof. See Section 3.4.1.

For the special case when the objective f is strongly-convex, we present a non-

asymptotic bound for 1RDSA-DP with permutation matrix-based perturbations. More

precisely, we assume the objective function f satisfies the following assumption:

(A1’) For any x, x′, we have

(∇f(x)−∇f(x′))T(x− x′) ≥ µ ‖x− x′‖2
2 ,

for some µ > 0.

Theorem 4. (Non-asymptotic bound) Under (A1’) and (A2)-(A5), we have,

E ‖xk+1 − x∗‖2 ≤
√

2 exp(−µΓk) ‖x0 − x∗‖2︸ ︷︷ ︸
initial error

+

3
k∑

n=1

γ2
n exp(−2µ(Γk − Γn))C2

0η
4
n︸ ︷︷ ︸

bias error

+ 2
k∑

n=1

γ2
n exp(−2µ(Γk − Γn))C1η

−2
n︸ ︷︷ ︸

sampling error


1
2

,

(3.9)

where x∗ is the global minimizer of f , Γk :=
∑k

i=1 γi, C0 is as defined in Lemma 2, and

C1 = α1d/2.

Proof. See Section 3.4.1.
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The initial error depends on the starting point x0 of the algorithm. The sampling

error relates to a martingale difference sequence, which arises due to the fact that only

noisy measurements of the objective function are available. The bias error arises out of

the need to estimate gradients from function measurements and quantifies the error in

gradient estimation. The initial and sampling error components are common to classic

stochastic convex optimization settings, while the bias error is specific to the simulation

optimization framework, i.e., a setting where gradients are not directly available and

have to be estimated from noisy function measurements.

Now we specialize the result above by choosing the step-size γk and perturbation

constant ηk to obtain an order O
(

1√
k

)
bound in expectation on the optimization error

of the algorithm.

Corollary 5. Let γk = c/k and ηk = η0/k
η. Then under (A1’), (A2) and (A3),

E ‖xk − x∗‖2 ≤
√

2 ‖x0 − x∗‖2

kµc
+

√
3cC0η

2
0√

2µc− 4η − 1
k−

(1+4η)
2 +

√
3C1c

η0

√
2µc+ 2η − 1

kη−
1
2 .

Proof. See Section 3.4.1.

Choosing η = 0, one can recover the optimal rate of the order O
(
k−1/2

)
for si-

multaneous perturbation schemes. Further, choosing c such that µc > 1/2, it is easy to

observe that the initial error is forgotten faster than the other error components. In con-

trast, for the more general case of non-convex objective f , the authors in (Spall, 1992;

Chin, 1997) are able to establish a rate ofO
(
k−1/3

)
obtained from an asymptotic mean

square error analysis using the second moment of the limiting normal distribution. More

recently, for the case of convex (and not necessarily strongly-convex) objective f , an

error of the orderO
(
k−1/3

)
is unavoidable from an information-theoretic (or minimax)

viewpoint – see (Hu et al., 2016) for further details.

3.3 Second-order RDSA with deterministic perturba-

tions

Recall from 2.1 that second-order methods provide many advantages over their first-

order counterparts. Using the two deterministic sequences, i.e., semi-lexicographic and
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permutation matrix-based choices, presented in the previous section, we provide two

variants of the 2RDSA algorithm proposed in (Prashanth et al., 2017).

3.3.1 Semi-lexicographic sequence-based perturbations

Algorithm 2 2RDSA-Lex-DP
Input: initial parameter x0 ∈ Rd, perturbation constants ηk > 0, step-sizes {γk, βk},
matrix projection operator Υ. The deterministic perturbation {∆m} sequence is cho-
sen in the same manner as in 1RDSA-DP.
for k = 0, 1, 2, . . . do

Obtain function value yk = f(xk) + ξ, where ξ is the measure noise.
. As in 1RDSA, fix xk and loop through the rows of matrix Dd for

perturbations ∆m.
for m = 0, 1, 2, . . . , 3d − 1 do

Obtain function values y+
m = f(xk + ηk3d+m∆m) + ξ and y−m = f(xk −

ηk3d+m∆m) + ξ, where ξ is the measure noise.

Set gm = ∆m

[
y+
m − y−m

2ηk3d+m

]
, (3.10)

Set H̃m = Mm

[
y+
m + y−m − 2yk
η2
k3d+m

]
, where (3.11)

Mm=


κ
(
(∆1

m)2−2× 3d
)
· · · ∆1

m∆d
m

∆2
m∆1

m · · · ∆2
m∆d

m
...

...
...

∆d
m∆1

m · · · κ
(
(∆d

m)2−2× 3d
)
 ,

and κ =

(
1

2× 3d−1
− 1

)−1

.

end for

Gradient estimate: ∇̂f(xk) =
1

2× 3d

3d−1∑
m=0

gm. (3.12)

Hessian estimate: Ĥk =
1

(2× 3d)2

3d−1∑
m=0

H̃m. (3.13)

Hessian update: Hk = (1− βk)Hk−1 + βkĤk. (3.14)

Parameter update: xk+1 = xk − γkΥ(Hk)
−1∇̂f(xk). (3.15)

end for
Return xk.

Algorithm 2 presents the pseudocode for the 2RDSA-Lex-DP algorithm that em-

ploys a semi-lexicographic sequence for perturbations illustrated in Table 3.1. The
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reason such deterministic choices for perturbations work in the context of 2RDSA can

be seen as follows: Using suitable Taylor’s series expansions (see Lemma 6 below), we

have

E[Ĥk | Fk] =

1

2× 3d

3d−1∑
m=0

(
Mm

d∑
i=1

(∆i
m)2∇2

iif(xk) +2
d−1∑
i=1

d∑
j=i+1

∆i
m∆j

m∇2
ijf(xk) +O(η2

k)

)
.

(3.16)

From Lemma 1, it can be seen that

1

2× 3d

3d−1∑
m=0

d∑
i=1

(∆i
m)2 = 1, and

3d−1∑
m=0

d−1∑
i=1

d∑
j=i+1

∆i
m∆j

m = 0.

The above equality can be directly verified for the case when d = 2 and d = 3 using

Table 3.1.

Plugging the fact above into (3.16) followed by a tedious calculation (see Lemma 6

below), we obtain

E[Ĥk(i, j) | Fk] = ∇2
ijf(xk) +O(η2

k3d).

Remark 2. (Jacobi variant) If the Hessian is known to be in a diagonal form, i.e., if

the requirement is for an algorithm to estimate ∇2
iif(·), then the estimate of Algorithm

2 can be replaced by the following:

Ĥk =
1

2× 3d

3d−1∑
m=0

H̃m,

with the inner-loop Hessian estimate given by

H̃m =

[
y+
m + y−m − 2yk
η2
k3d+m

]
.

Notice that, unlike Algorithm 2, the scheme above (the so-called Jacobi variant of

stochastic Newton algorithms - cf. (Bhatnagar, 2005)) can estimate the diagonal en-

tries of the Hessian, and, more importantly, cannot estimate the off-diagonal entries of

the Hessian, as the off-diagonal perturbation terms of interest zero out over the inner
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loop, i.e.,
3d−1∑
m=0

d−1∑
i=1

d∑
j=i+1

∆i
m∆j

m = 0.

3.3.2 Permutation matrix-based perturbations

In the case of permutation matrix-based deterministic perturbations, it is not possible

to estimate the off-diagonal entries of the Hessian. This is because
d−1∑
m=0

∆i
m∆j

m =

0, i 6= j for permutation matrix-based perturbations. While a similar property holds for

semi-lexicographic perturbations as well, we could add correction factors through the

Mm matrix (see Algorithm 2) to produce an estimate for all the entries in the Hessian

matrix. A similar correction factor is not feasible for the case of permutation matrix-

based perturbations, because each column of a permutation matrix contains only one

positive (= 1) entry, while the rest are zero. In other words, in (3.16), the second term

inside the brackets always sums to zero when the outside summation for m goes up to

d− 1, irrespective of the choice for Mm.

However, using a permutation matrix, it is possible to estimate the diagonal entries

of the Hessian. In this case, the overall algorithm follows the template provided in

Algorithm 2, except that the perturbations are generated using a permutation matrix in

d-dimensions, the inner loop for m would run from 0 to d− 1, and the gradient/Hessian

estimates in Algorithm 2 are replaced by

Gradient estimate: ∇̂f(xk) =
d−1∑
m=0

gm, (3.17)

Hessian estimate: Ĥk =
d−1∑
m=0

H̃m, (3.18)

where

H̃m =

[
y+
m + y−m − 2yk

η2
kd+m

]
.

Alternative using two permutation matrices

Let Dd and D̂d be two d-dimensional permutation matrices that are not identical. Let

y+
m = f(xk + ηk∆m + ηk∆̂m) + ξ and y−m = f(xk − ηk∆m − ηk∆̂m) + ξ be function

measurements, where ξ is the measure noise, ∆m and ∆̂m are sourced from Dd and D̂d,

respectively. In other words, ∆m and ∆̂m would loop through the rows of Dd and D̂d,
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respectively. Consider the following estimate for the Hessian, in place of (3.13):

Hessian estimate: Ĥk =
d−1∑
m=0

H̃m, (3.19)

where

H̃m =

[
y+
m + y−m − 2yk

η2
kd+m

]
.

3.3.3 Main results

The analysis of 2RDSA-DP is under assumptions that match those employed for study-

ing the convergence behavior of regular second-order SPSA and RDSA algorithms (i.e.,

with random perturbations), and we list them below for the sake of completeness.

(C1) The function f is four-times differentiable3 with
∣∣∇4

i1i2i3i4
f(x)

∣∣ < ∞, for

i1, i2, i3, i4 = 1, . . . , d and for all x ∈ Rd.

(C2) For each k and all x, there exists a ρ > 0 not dependent on k and x, such that

(x− x∗)Tf̄k(x) ≥ ρ ‖xk − x‖, where f̄k(x) = Υ(Hk)
−1∇f(x).

(C3) {ξm, ξ+
m, ξ

−
m,m = 0, . . . , P, k = 1, 2, . . .} satisfy E [ξ+

m + ξ−m − 2ξm| Fk] = 0,

where P = 3d − 1 for semi-lexicographic 2RDSA-DP and P = d− 1 for permu-

tation matrix-based 2RDSA-DP.

(C4) Same as (A4).

(C5) For each i = 1, . . . , d and any ρ > 0, P ({f̄ki(xk) ≥ 0 i.o} ∩ {f̄ki(xk) < 0 i.o} |

{|xki − x∗i | ≥ ρ, ∀k}) = 0.

(C6) The operator Υ satisfies η2
kΥ(Hk)

−1 → 0 a.s. and E(‖Υ(Hk)
−1‖2+ζ

) ≤ ρ for

some ζ, ρ > 0.

(C7) For any ς > 0 and nonempty S ⊆ {1, . . . , d}, there exists a ρ′(ς, S) > ς such that

lim sup
k→∞

∣∣∣∣∑i/∈S(x− x∗)if̄ki(x)∑
i∈S(x− x∗)if̄ki(x)

∣∣∣∣ < 1 a.s.

for all |(x− x∗)i| < ς when i /∈ S and |(x− x∗)i| ≥ ρ′(ς, S) when i ∈ S.

3Here ∇4f(x) =
∂4f(x)

∂xT∂xT∂xT∂xT
denotes the fourth derivative of f at x and ∇4

i1i2i3i4
f(x) denotes

the (i1i2i3i4)th entry of ∇4f(x), for i1, i2, i3, i4 = 1, . . . , d.
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(C8) For some α0, α1 > 0 and for allm, k, E|ξm|2 ≤ α0, E|ξ±m|2 ≤ α0, E|f(xk)|2 ≤ α1

and E|f(xk ± η∆m)|2 ≤ α1, for any η > 0.

(C9)
∑

k
1

(k+1)2η4
k
<∞.

Comments on assumptions (C1)-(C9): (C1) and (C2) are basic assumptions about the

smoothness and steepness of the function f . (C1) holds if f is twice continuously

differentiable with a bounded second derivative on Rd and (C2) ensures the function

f has enough curvature. (C3) and (C4) are common martingale-difference noise and

step-sizes conditions and can be motivated in a similar manner as in the case of 1RDSA-

DP (see Section II-C). (C5) says that if xk is uniformly bounded away from x∗, then

xk cannot be bouncing around causing the change in signs of the normalized gradient

elements an infinite number of times. (C6) can be ensured by having Υ(A) defined

as performing an eigen-decomposition of A followed by projecting the eigenvalues to

the positive side by adding a large enough scalar. (C7) ensures that, after sufficiently

large iterations, each element of f̄k(x) tends to make a non-negligible contribution to

products of the form (x − x∗)T f̄k(x) (see C2). (C5) and (C7) are not necessary if the

iterates are bounded, i.e., supk ‖xk‖ < ∞ a.s. Finally, (C8) and (C9) are necessary

to ensure convergence of the Hessian recursion, in particular, to invoke a martingale

convergence result (see Theorem 7 and the proof of (Spall, 2000, Theorem 2a)). For a

more detailed interpretation of the above conditions, the reader is referred to Section III

and Appendix B of (Spall, 2000).

The main claim that establishes the asymptotic unbiasedness of the Hessian estimate

in the DP variants of 2RDSA that we propose is given below.

Lemma 6. (Asymptotic unbiasedness of 2RDSA-DP Hessian estimate) Under (C1)-

(C9),
(i) for Ĥk defined according to (3.13), we have a.s. that4, for i, j = 1, . . . , d,

∣∣∣E [Ĥk(i, j)
∣∣∣Fk]−∇2

ijf(xk)
∣∣∣ = O(η2

k3d). (3.20)

(ii) for Ĥk defined according to (3.18), we have a.s. that

∣∣∣E [Ĥk(i, i)
∣∣∣Fk]−∇2

iif(xk)
∣∣∣ = O(η2

kd), (3.21)

4Here Ĥk(i, j) and∇2
ijf(·) denote the (i, j)th entry in the Hessian estimate Ĥk and the true Hessian

∇2f(·), respectively.
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for i = 1, . . . , d.

Proof. See Section 3.4.2.

Once we have the asymptotic unbiasedness for the 2RDSA-DP Hessian estimate,

the convergence of the Hessian recursion is immediate and is given below for the sake

of completeness.

Theorem 7. (Strong Convergence) Assume (C1)-(C9). Then xk → x∗ a.s. as k →∞,

where xk is given by (3.15). For 2RDSA-Lex-DP Hk → ∇2f(x∗) a.s. as k → ∞,

furthermore, if the true Hessian is diagonal, then even for 2RDSA-Perm-DP Hk →

∇2f(x∗) a.s. as k →∞, where Hk is governed by (3.14).

Proof. See Section 3.4.2.

We next present a convergence rate result for the special case of a quadratic

objective function under the following additional assumptions, which have been used

to establish a rate result for a variant of 2SPSA in (Spall, 2009):

(C10) f is quadratic and∇2f(x∗) > 0.

(C11) The operator Υ is chosen such that E ‖ Υ(Hk)−Hk ‖2= O(e−2b0k1−r/(1−r)) and

‖ Υ(H)−H ‖2 / (1+ ‖ H ‖2) is uniformly bounded.

The assumptions (C10) and (C11) are much stronger compared to (C1) and (C6), re-

spectively. In a noise-free setting, after suitable Taylor series expansions, the Hessian

estimate of 2SPSA can be written as

Ĥk(2SPSA) = ∇2H(xk) + Ψ(H(xk)),

where H(xk) is the Hessian at iterate xk and Ψ(H(xk)) is a function that involves the

Hessian at xk and random perturbations used in 2SPSA. More importantly, Ψ(H(xk))

is zero-mean. In (Spall, 2009), since the true HessianH(xk) is not known in practice, in

place of Ĥk in the Hessian update in (3.14), the author uses the following improved Hes-

sian estimate: Ĥk(2SPSA)−Ψ(Hk). The rationale underlying this replacement is that

subtracting the Ψ(Hk) term reduces the error in Hessian estimation. In (Reddy et al.,
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2016), the authors use a similar trick to reduce the Hessian estimation error in regular

2RDSA. We claim such a feedback term is not necessary in the context of 2RDSA-DP

and this can be argued as follows: From the proof passage leading to (3.37), it is easy

to infer the following after ignoring the noise terms:

Ĥk(i, j) = ∇2
ijf(xk) +O(η2

k3d).

The principal difference with feedback variants of 2SPSA/2RDSA is that the equation

above implies that there are no zero-mean terms involving the perturbations that one

needs to worry about in case of 2RDSA-DP.

To substantiate the claim that the feedback terms are not necessary for 2RDSA-DP,

we provide a rate result that parallels a corresponding result for 2SPSA with feedback

(Spall, 2009). The proof given later is also much simpler than the corresponding ver-

sion for 2SPSA, due to the fact that there are no extra terms involving perturbations to

handle.

Theorem 8. (Non-asymptotic bound) Assume (C9), (C10) and (C11), and also that

the setting is noise-free. Let bk = b0/k
r, k = 1, 2, . . . , n, where 1/2 < r < 1 and

0 < b0 ≤ 1. Let H∗ = ∇2f(x) for any x, and Λn = Hn −H∗. Then, we have

trace[E(ΛT

kΛk)] = O(e−2b0k1−r/(1−r)). (3.22)

Proof. See Section 3.4.2.

3.4 Convergence proofs

3.4.1 Proofs for 1RDSA variants with deterministic perturbations

Proof of Lemma 1

Proof.

Case 1: Semi-lexicographic sequence-based perturbations

We prove the claim by induction. Consider first the case of d = 1. Now D1
1 =
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
−1

−1

2

. Note that M1 = (D1
1)TD1

1 = 6. Thus the result holds for d = 1.

Suppose that the claim above holds for d = k, i.e., Mk = 2 × 3kIk. Consider the

case of d = k + 1. We make the following observations:

1. The size of each column Di
k+1, i = 1, . . . , k + 1 is 3k+1.

2. The columns D2
k+1, . . . , D

k+1
k+1 are obtained from D1

k, . . . , D
k
k , respectively by con-

catenating the Di
k columns thrice, i.e.,

Di
k+1 =


Di−1
k

Di−1
k

Di−1
k

 , i = 2, . . . , k + 1. (3.23)

3. In the first column, i.e., D1
k+1, the first 2× 3k elements are −1 and the remaining 3k

elements are 2.

4. The off-diagonal terms in Mk+1 are all zero. This is argued as follows: For i 6= j,

i, j ∈ {2, . . . , k + 1}, we have that (Di
k+1)TDj

k+1 = 0. This follows from (3.23)

because (Di
k+1)TDj

k+1 = 3(Di−1
k )TDj−1

k = 0 (by induction hypothesis).

For off-diagonal terms of the type (D1
k+1)TDi

k+1, where i ∈ {2, . . . , k + 1}, we first

re-write D1
k+1 and Di

k+1 as follows:

D1
k+1 =


−1

−1

2

 , (3.24)

where −1 and 2 are k × 1 vectors with each entry −1 and 2, respectively. Thus,

from (3.23) and the foregoing,

(D1
k+1)TDi

k+1 =−1TDi−1
k −1

TDi−1
k +2TDi−1

k = 0.

5. Finally, the diagonal terms of Mk+1 are 2 × 3k+1. This can be seen as follows: For

i = 1, . . . , k + 1,

(Di
k+1)TDi

k+1 =
2

3
× (−1)2 × 3k+1 +

1

3
× (2)2 × 3k+1
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= 2× 3k+1.

In the above, we have used the fact that Di
k+1 is a 3k+1-dimensional vector with

two-third entries −1 and the remaining one-third entries as 2.

Thus,Mk+1 = 2×3k+1Ik+1 and the claim follows for semi-lexicographic perturbations.

Case 2: Permutation matrix-based perturbations

Let Dd, the columns Di
d, be the d-dimensional permutation matrix. Recall that

1RDSA-Perm-DP loops through the rows in Dd and the columns Di
d in Dd are in d-

dimensions. It is well-known that D−1
d = DT

d for a permutation matrix Dd, cf. Proposi-

tion 2.7.21 of (Goodaire, 2013) for a detailed proof. Hence, the claim that Md = Id fol-

lows for the case of permutation matrix based deterministic perturbation sequences.

Proof of Lemma 2

Proof. We prove the claim for semi-lexicographic perturbations; the claim for the case

of permutation matrix-based perturbations follows by an analogous argument.

By Taylor’s series expansions, we obtain, a.s.,

f(xk ± ηk∆m) = f(xk)± ηk∆T
m∇f(xk) +

η2
k

2
∆T
m∇2f(xk)∆m

± η3
k

6
∇3f(x̃+

k )(∆m ⊗∆m ⊗∆m)

where ⊗ denotes the Kronecker product and x̃+
k (respectively, x̃−k ) are on the line seg-

ment between xk and (xk + ηk∆m) (respectively, (xk − ηk∆m)). Then

E
[
∇̂f(xk)

∣∣∣Fk]
=

1

2×3d

3d−1∑
m=0

E [gm| Fk]

=
1

2×3d

3d−1∑
m=0

E
[

∆m

2η(k3d+m)

×
(
f(xk + η(k3d+m)∆m)− f(xk − η(k3d+m)∆m)

)∣∣Fk]
=

1

2×3d

3d−1∑
m=0

[
∆m∆T

m∇f(xk) +
η2

(k3d+m)

12
∆m(∇3f(x̃+

k )
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+∇3f(x̃−k ))(∆m ⊗∆m ⊗∆m)

]
= ∇f(xk) + C0η

2
k3d . (3.25)

The first term on the RHS of (3.25) follows from Lemma 1. Now, the lth coordinate of

the second term in the RHS of (3.25) can be upper-bounded as follows:

3d−1∑
m=0

η2
(k3d+m)

12
∆m(∇3f(x̃+

k ) +∇3f(x̃−k ))(∆m ⊗∆m ⊗∆m)

≤
α0η

2
k3d

6

3d−1∑
m=0

d∑
i1=1

d∑
i2=1

d∑
i3=1

(∆l
m∆i1

m∆i2
m∆i3

m)

≤
α0η

2
k3d
d3(2× 3d)2

6

The first inequality above follows from (A1), while the second inequality follows from

the fact that
3d−1∑
m=0

(∆l
m∆i1

m∆i2
m∆i3

m) is non-zero only if either l = i2 and i1 = i3 or vice-

versa and in this case, we have

3d−1∑
m=0

(∆l
m)2(∆i1

m)2 = (2× 3d)2.

The equality above can be easily inferred using induction arguments similar to proof of

Lemma 1 and we omit the details.

Proof of Theorem 3

Proof. Follows in exactly the same manner as the proof of Theorem 2 of (Prashanth

et al., 2017), given the asymptotic unbiasedness result in Lemma 2.

Proof of Theorem 4

Proof. Fixing ηk for the inner loop and using arguments from the proof of Lemma 2,

we obtain

∇̂f(xk) = ∇f(xk) + C0η
2
k +

d−1∑
m=0

∆m

(
ξ+
m − ξ−m

2ηk

)
.
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Letting ζk =
d−1∑
m=0

∆m

(
ξ+
m − ξ−m

2ηk

)
, the update in (3.5) is equivalent to

xk+1 = xk − γk
[
∇f(xk) + C0η

2
k + ζk

]
. (3.26)

Since∇f(x∗) = 0, we have the following from the fundamental theorem of calculus:

(∫ 1

0

∇2f(x∗ + λ(xk − x∗))dλ
)
zk = ∇f(xk).

Here zk := xk − x∗ denotes the optimization error at instant k of 1RDSA-DP. Then,

using (3.26), we have the following recursive update form for zk:

zk+1 =(I − γkJk)zk + γk
(
C0η

2
k + ζk

)
=Πkz0 +

k∑
n=1

γnΠkΠ
−1
n (C0η

2
n + ζn), (3.27)

where Jk :=
∫ 1

0
∇2f(x∗ + λ(xk − x∗))dλ and Πk :=

∏k
n=1 (I − γnJn). A similar

unrolling of a general stochastic approximation recursion can be found in (Frikha and

Menozzi, 2012). However, our setting involves biased gradient estimates and the non-

asymptotic bounds require a careful handling of the perturbation constant ηk, so that

the overall convergence rate is of the order O
(

1/
√
k
)

. Moreover, we make all the

constants explicit in the final bound.

Now, for the square of the error ‖zk+1‖2
2, we use (3.27) and Jensen’s inequality to

obtain

(E ‖zk+1‖2)2 ≤ E(〈zk, zk〉)

=E
[
‖Πkz0‖2

2 +

∥∥∥∥∥
k∑

n=1

γnΠkΠ
−1
n C0η

2
n

∥∥∥∥∥
2

2

+

∥∥∥∥∥
k∑

n=1

γnΠkΠ
−1
n ζn

∥∥∥∥∥
2

2

+

〈
Πkz0,

k∑
n=1

γnΠkΠ
−1
n C0η

2
n

〉
+

〈
Πkz0,

k∑
n=1

γnΠkΠ
−1
n ζn

〉

+

〈
k∑

n=1

γnΠkΠ
−1
n C0η

2
n,

k∑
n=1

γnΠkΠ
−1
n ζn

〉]

≤ 2 ‖Πkz0‖2
2 + 3

k∑
n=1

γ2
n

∥∥ΠkΠ
−1
n

∥∥2

2
C2

0η
4
n + 2

k∑
n=1

γ2
n

∥∥ΠkΠ
−1
n

∥∥2

2
E ‖ζn‖2

2 . (3.28)

For the last inequality, we have used the fact that ζn is zero-mean (see (A2)) in order
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to ignore a cross term. For the other two cross terms, we have used Cauchy-Schwarz

to conclude 〈a, b〉 ≤ max(‖a‖2
2 , ‖b‖

2
2) and hence, the first and last square terms can

appear at most twice, while the second square term can appear at most thrice.

The second moment of the noise factor ζk can be bounded as follows:

E ‖ζk‖2
2 ≤

d−1∑
m=0

‖∆m‖2
2 E
(
ξ+
m − ξ−m

2ηk

)2

≤ dα1

2η2
k

, (3.29)

where we have used the fact that for permutation matrix-based perturbation ‖∆m‖2 = 1

and E(ξ+
m − ξ−m)2 ≤ 2α1 from assumption (A3).

The term ‖ΠkΠ
−1
n ‖2 is bounded as follows:

∥∥ΠkΠ
−1
n

∥∥
2

=

∥∥∥∥∥
k∏

j=n+1

(I − γjJj)

∥∥∥∥∥
2

=
k∏

j=n+1

‖(1− γjµ)I − γj(Jj − µI)‖2

≤
k∏

j=n+1

‖(1− γjµ)I‖2 ≤
k∏

j=n+1

(1− γjµ)

≤ exp (−µ(Γk − Γn)) . (3.30)

The second inequality above follows by observing that ‖I − γkJk‖2 ≤ exp(−µγk),

since∇2f(x)−µI is positive semi-definite owing to strong-convexity of f (see (A1’)).

The main claim now follows by plugging in the bounds in (3.29) and (3.30) into

(3.28).

Proof of Theorem 5

Proof. We bound each of the error terms on the RHS of (3.9) separately. For bounding

the initial error, we use the following inequality:

exp(−µΓk) ≤ exp(−µc ln k) ≤ k−µc.

In arriving at the bound above, we have compared a sum with an integral.

39



Substituting γk = c/k and ηk = η0/k
η into the bias error term in (3.9), we obtain

k∑
n=1

γ2
n exp(−2µ(Γk − Γn))C2

0η
4
n ≤

k∑
n=1

c2

n2
k−2µcn2µcC2

0

η4
0

k4η

≤ c2k−2µcC2
0η

4
0

k∑
n=1

n2µc−4η−2

≤ c2C2
0η

4
0

(2µc− 4η − 1)
k−1−4η.

Along similar lines, the sampling error term in (3.9) can be upper-bounded as fol-

lows:

k∑
n=1

γ2
n exp(−2µ(Γk − Γn))

C1

η2
n

≤ c2C1

η2
0(2µc− 4η − 1)

k−1+2η.

The claim follows by combining the bounds derived above on each of the error terms

on the RHS of (3.9).

3.4.2 Proofs for 2RDSA variants with deterministic perturbations

Proof of Lemma 6

Proof.

Case 1: Semi-lexicographic sequence-based perturbations

As in the proof of Lemma 4 in (Prashanth et al., 2017), we employ Taylor’s series

expansions of f(·) at xk ± ηk∆k to obtain

f(xk + η(k3d+m)∆m) + f(xk − η(k3d+m)∆m)− 2f(xk)

η2
(k3d+m)

=∆T

m∇2f(xk)∆m +O(η2
(k3d+m))

=
d∑
i=1

d∑
j=1

∆i
m∆j

m∇2
ijf(xk) +O(η2

(k3d+m))

=
d∑
i=1

(∆i
m)2∇2

iif(xk) + 2
d−1∑
i=1

d∑
j=i+1

∆i
m∆j

m∇2
ijf(xk) +O(η2

(k3d+m)). (3.31)
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Recall that the Hessian estimate is given by

Ĥk =
1

(2× 3d)2

3d−1∑
m=0

Mm

(
y+
m + y−m − 2yk

η2
k

)
, where

Mm is as defined in Algorithm 2. For the sake of simplicity, we ignore the zero-mean

noise term ξ+
m + ξ−m − 2ξ temporarily and analyze the following product inside the

Hessian estimate:

1

(2× 3d)2

3d−1∑
m=0

Mm

(
d∑
i=1

(∆i
m)2∇2

iif(xk) + 2
d−1∑
i=1

d∑
j=i+1

∆i
m∆j

m∇2
ijf(xk))

)
. (3.32)

Off-diagonal terms in (3.32)

We now consider the (h, l)th term in (3.32): Assume without loss of generality, that

h < l. Then,

1

(2× 3d)2

3d−1∑
m=0

[
∆h
m∆l

m

(
d∑
i=1

(∆i
m)2∇2

iif(xk) +2
d−1∑
i=1

d∑
j=i+1

∆i
m∆j

m∇2
ijf(xk)

)]

=
1

(2× 3d)2

d∑
i=1

∇2
iif(xk)

3d−1∑
m=0

(
∆h
m∆l

m(∆i
m)2
)

+
1

(2× 3d)2

d−1∑
i=1

d∑
j=i+1

∇2
ijf(xk)

3d−1∑
m=0

(
∆h
m∆l

m∆i
m∆j

m

)
(3.33)

=∇2
jlf(xk). (3.34)

The last equality follows from the fact that the first term in (3.33) is 0 since h 6= l and

3d−1∑
m=0

(
∆h
m∆l

m(∆i
m)2
)

= 0 for any i,

while the second term in (3.33) can be seen to be equal to ∇2
hlf(xk) using induction

arguments similar to proof of Lemma 2.
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Diagonal terms in (3.32)

Consider the lth diagonal term inside the conditional expectation in (3.32):

κ

(2× 3d)2

3d−1∑
m=0

(
(∆l

m)2 − (2× 3d)
)
×

(
d∑
i=1

(∆i
m)2∇2

iif(xk)

+2
d−1∑
i=1

d∑
j=i+1

∆i
m∆j

m∇2
ijf(xk)

)

=
κ

(2× 3d)2

3d−1∑
m=0

(∆l
m)2

d∑
i=1

(∆i
m)2∇2

iif(xk)

+
2κ

(2× 3d)2

3d−1∑
m=0

(∆l
m)2

d−1∑
i=1

d∑
j=i+1

∆i
m∆j

m∇2
ijf(xk)

− κ

(2× 3d)

3d−1∑
m=0

d∑
i=1

(∆i
m)2∇2

iif(xk)−
2κ

(2× 3d)

3d−1∑
m=0

d−1∑
i=1

d∑
j=i+1

∆i
m∆j

m∇2
ijf(xk).

(3.35)

Now, we analyze each of the four terms on the RHS above.

The first term on the RHS of (3.35) can be simplified as follows:

κ

(2× 3d)2

3d−1∑
m=0

(∆l
m)2

d∑
i=1

(∆i
m)2∇2

iif(xk)

=
κ

(2× 3d)2

3d−1∑
m=0

(∆l
m)4∇2

llf(xk) +
3d−1∑
m=0

d∑
i=1,i 6=l

(∆l
m)2(∆i

m)2∇2
iif(xk)


=

κ

(2× 3d)2

(
(2× 3d+1)∇2

llf(xk) + (2× 3d)2

d∑
i=1,i 6=l

∇2
iif(xk)

)
.

For the second equality above, we have used the fact that
3d−1∑
m=0

(∆l
m)4 = 2 × 3d+1

(easy to infer this claim along the lines of point (5) in the proof of Lemma 1) and
3d−1∑
m=0

(∆l
m)2(∆i

m)2 = (2× 3d)2, ∀l 6= i.

The second term in (3.35) is zero because
3d−1∑
m=0

(
∆i
m∆j

m(∆l
m)2
)

= 0 for any l and

i 6= j – a claim that can be easily proved using an induction argument.
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The third term in (3.35) without the negative sign can be simplified as follows:

κ

(2× 3d)

3d−1∑
m=0

d∑
i=1

(∆i
m)2∇2

iif(xk) =
κ

(2× 3d)

d∑
i=1

3d−1∑
m=0

(∆i
m)2∇2

iif(xk)

= κ
d∑
i=1

∇2
iif(xk), a.s.

Combining the above followed by some algebra, we obtain

κ

(2× 3d)2
E

[(
(∆l

m)2 − (2× 3d)
)( d∑

i=1

(∆i
m)2∇2

iif(xk)

+2
d−1∑
i=1

d∑
j=i+1

∆i
m∆j

m∇2
ijf(xk)

)∣∣∣∣∣Fk
]

= ∇2
llf(xk). (3.36)

The fourth term in (3.35) is zero from Lemma 1.

Denote the product in (3.32) by (A) and the (i, j)th term there by (A)i,j . Then,

E[Ĥk(i, j) | Fk] = E [(A) | Fk] + E[ξ+
k + ξ−k − 2ξk | Fk] (3.37)

= ∇2
ijf(xk) +O(η2

(k3d)).

The last equality above follows from (C3), while the term involving the factor (A)

reduces to the true Hessian with a bias of O(η2
(k3d)

) due to (3.34) and (3.36).

The main claim follows.

Case 2: Permutation matrix-based perturbations

From the first step involving Taylor series expansions in Case 1, we have

f(xk + η(kd+m)∆m) + f(xk − η(kd+m)∆m)− 2f(xk)

η2
(kd+m)

=
d∑
i=1

(∆i
m)2∇2

iif(xk) + 2
d−1∑
i=1

d∑
j=i+1

∆i
m∆j

m∇2
ijf(xk) +O(η2

(kd+m)). (3.38)

Using the facts that
d−1∑
m=0

d∑
i=1

∆i
m∆j

m = 0 for i 6= j and
d−1∑
m=0

(∆i
m)2 = 1 for any i, we
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obtain

d−1∑
m=0

[
f(xk + η(kd+m)∆m) + f(xk − η(kd+m)∆m)− 2f(xk)

η2
(kd+m)

]

=
d∑
i=1

d−1∑
m=0

(∆i
m)2∇2

iif(xk) + 2
d−1∑
i=1

d∑
j=i+1

∇2
ijf(xk)

d−1∑
m=0

∆i
m∆j

m +O(η2
(kd+m)) (3.39)

= ∇2
iif(xk) +O(η2

(kd)).

Denote the term on LHS in (3.39) by (B), and following an argument similar to that

used in simplifying the noise terms in (3.37), we obtain

E[Ĥk(i, i) | Fk] = E [(B) | Fk] + E[ξ+
k + ξ−k − 2ξk | Fk]

= ∇2
iif(xk) +O(η2

(kd)).

Hence proved.

Proof of Theorem 7

Proof. Follows in a similar manner as that of the proofs of Theorem 5 and 6 in

(Prashanth et al., 2017).

Proof of Theorem 8

Proof. From the quadratic assumption, we have that H(x) is a constant, independent of

x. From the proof leading up to (3.37), we have that Ĥk = ∇2H(xk) = H∗. Now, we

follow the technique from (Spall, 2009) to derive the main claim.

Notice that for some n ≥ 1,

Λn = (1− bn)Λn−1 + bn(Hn −H∗) = (1− bn)Λn−1.

Unrolling the recursion above, we obtain

Λk =

[
k∏

n=1

(1− bn)

]
Λ0.
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Using the above, we can arrive at a simpler representation for the trace
[
E(ΛT

kΛk)
]

as

follows:

E(ΛT
kΛk) =

[
k∏

n=1

(1− bn)

]2

E(ΛT
0 Λ0), leading to

trace
[
E(ΛT

kΛk)
]

=

[
k∏

n=1

(1− bn)

]2

trace
[
E(ΛT

0 Λ0)
]
.

Simplifying further, using the fact that 1− bn = e−bn(1−O(b2
n)), with theO(b2

n) being

strictly positive as e−bn is convex, we have

trace
[
E(ΛT

kΛk)
]

= e−2bsum(1,k)c0ktrace
[
E(ΛT

0 Λ0)
]
, (3.40)

where bsum(i, j) =
∑j

n=i bn and cnk =
[∏k

i=n+1(1−O(b2
i ))
]2

, n ≥ 0 and ckk = 1.

Since 0 < bn < 1, ∀n ≥ 2, and r > 1/2, the cnk are uniformly bounded in magnitude.

Further,

bsum(1, k) ≥
∫ k+1

1

b0

xr
dx ≥

(
b0

1− r

)(
k1−r − 1

)
.

Using the bound derived above in (3.40), we obtain

trace
[
E(ΛT

kΛk)
]
≤ e−2b0k1−r/(1−r)e2b0c0ktrace

[
E(ΛT

0 Λ0)
]
.

The main claim follows.

3.5 Experiments

3.5.1 Implementation5

We consider the following problem:

min
x

Eξ [F (x, ξ)] , (3.41)

where F (x, ξ) is the sample observation of the objective function f(x) corrupted with

zero mean noise ξ. In particular, the noise is [xT , 1]ξ, where ξ is a multivariate Gaussian

5The implementation is available at https://github.com/prashla/RDSA/archive/
master.zip.
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distribution with mean zero and covariance σ2Id+1. A similar noise structure has been

used earlier in the implementation of both RDSA and SPSA algorithms in (Prashanth

et al., 2017) and (Spall, 2000), respectively. For all the experiments, we consider two

different settings of noise: (i) low noise with σ = 0.001; and (ii) high noise with

σ = 0.1.

We consider three different functional forms for F (x, ξ), namely quadratic, fourth-

order and Rastrigin, respectively, in both d = 5 and d = 10 dimensions, for evaluating

our algorithms. Before describing the example functions, we present the details about

the algorithms implemented.

We implement the first-order and second-order algorithms proposed in this chapter

and compare them with several baselines that are based on the simultaneous perturba-

tion method.

The first-order algorithms implemented include 1RDSA-Lex-DP, 1RDSA-Perm-DP

and 1RDSA-KW-DP - the three deterministic perturbation variants of 1RDSA (see Sec-

tion 3.2 for a detailed description). We compare these algorithms with the follow-

ing baselines: RDSA with uniform and asymmetric Bernoulli perturbations proposed

in (Prashanth et al., 2017) and henceforth referred to as 1RDSA-Unif and 1RDSA-

AsymBer, respectively, and SPSA with Bernoulli perturbations, henceforth referred to

as 1SPSA.

The second-order algorithms implemented include 2RDSA-Lex-DP and 2RDSA-

Perm-DP - the two deterministic perturbation variants of 2RDSA (see Section 3.3 for

a detailed description). We compare these algorithms with the following baselines:

second-order RDSA with uniform and asymmetric Bernoulli perturbations proposed

in (Prashanth et al., 2017) and henceforth referred to as 2RDSA-Unif and 2RDSA-

AsymBer, respectively, and second-order SPSA with Bernoulli perturbations, hence-

forth referred to as 2SPSA.

The settings of the parameters ηk and γk for both first- and second-order algorithms

are listed in Table 3.3, and a similar setting has been used in implementation of both

RDSA and SPSA algorithms in (Prashanth et al., 2017) and (Spall, 2000), respectively.

The distribution parameter for RDSA variants is set as follows: u = 1 for RDSA-Unif,

ε = 0.0001 for 1RDSA-AsymBer, and ε = 1 for 2RDSA-AsymBer, and a similar

46



setting has been used earlier for RDSA implementation in (Prashanth et al., 2017).

Each coordinate of the parameter is projected onto the set [−2.048, 2.047], which helps

to keep the iterates stable. All results are averages over 50 independent runs.

Table 3.3: Step-size and perturbation constant parameter settings, for first and second
order algorithms.

Algorithms ηk γk

First-order 1.9/k0.101 1/(k + 50)

Second-order 3.8/k0.101 1/k0.6

To compare the algorithms’ performance, we use parameter error as the perfor-

mance metric. For a given simulaton budget, the parameter error measures the distance

between the final iterate obtained after the final update iteration and the optimum pa-

rameter x∗. More precisely, we use the following form for the parameter error, after

suitable normalization:

Parameter error =
||xτ − x∗||2

||x0 − x∗||2
,

where τ is the number of times x is updated until the end of the simulation. Notice

that τ varies with the algorithm and the number of function measurements. For exam-

ple, with a budget of 5000 measurements for d = 10, τ = 250 for 1RDSA-Perm-DP

and 1RDSA-KW-DP as they use 2d measurements per iteration. Further, τ = 2500

for 1SPSA as well as for both variants of 1RDSA, as they use two measurements per

iteration. Notice that 1RDSA-Lex-DP does not make much progress under low sim-

ulation budgets, as it requires 2 × 3d measurements per iteration. On the other hand,

for second-order algorithms, an initial 20% of the measurements were used up by the

corresponding first-order algorithm for initialization. Thus, for d = 10 and a budget of

5000 measurements, the initial 1000 measurements are used for the first-order algorithm

and the remaining 4000 are used by the second-order algorithm. As a consequence of

the simulation budget split, the number of update iterations τ = 4000/30 ≈ 133 for

2RDSA-Perm-DP, 4000/4 = 1000 for 2SPSA, and 4000/3 ≈ 1333 for 2RDSA algo-

rithms. The 2RDSA-Lex-DP algorithm does not output a meaningful parameter with a

low simulation budget, owing to its high inner loop length. The difference here is due

to the fact that 2RDSA-Perm-DP uses 3d measurements per iteration, while 2RDSA-
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Figure 3.1: Parameter error for various second-order algorithms under the quadratic ob-
jective (3.42) for a five-dimensional problem with a simulation budget of
50000 and σ = 0.001 and 0.1.

Lex-DP needs 3× 3d, 2RDSA needs 3 and 2SPSA needs 4.

3.5.2 Example 1: Quadratic objective

Let A be such that dA is an d× d upper triangular matrix with aij = 1 for i ≤ j and let

b be an d-dimensional vector of ones. Then the quadratic objective function is defined

as follows:

F (x, ξ) = xTAx+ bTx+ ξ. (3.42)

The initial point x0 is set to the d-dimensional vector of ones and the optimal point x∗

is dimension dependent. For instance, with d = 10, the optimal point x∗, is the 10-

dimensional vector of −0.9091 for the choice of A and b described earlier. Note that

f(x∗) = Eξ[F (x∗, ξ)] = −4.55.

Figures 3.1 and 3.2 present the parameter error for the first-order and second-order

algorithms under the quadratic objective (3.42) for dimension 5 and σ = 0.001 and 0.1.

Among the first-order algorithms, for both settings of noise, 1RDSA-Perm-DP and

1RDSA-KW-DP exhibited similar performance and outperformed the other algorithms.

The parameter error in 1RDSA-Perm-DP and 1RDSA-KW-DP is of the order of 10−5,

while for the others, the same is of the order of 10−3. 1RDSA-Lex-DP (not shown in
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the figure) showed a parameter error that was an order of magnitude higher than the

other algorithms.

Among the second-order algorithms, for both settings of noise, 2RDSA-Lex-DP ex-

hibited the best performance. Furthermore, it is interesting to see that for both settings

of noise 2RDSA-Perm-DP, and 2RDSA-Lex-DP gave consistent performance with pa-

rameter error of the order of 10−4 and 10−7, respectively, while the parameter error of

2RDSA-AsymBer, 2RDSA-Unif, and 2SPSA increased with noise. Further, the benefit

of using second-order algorithms is more noticeable under the low noise setting.

For the low noise setting, the parameter error of 2RDSA-Perm-DP is not shown in

the figure, for the sake of readability in comparing the errors of the other algorithms.
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Figure 3.2: Parameter error for various first-order algorithms under the quadratic ob-
jective (3.42) for a five-dimensional problem with a simulation budget of
50000 and σ = 0.001 and 0.1.

Figure 3.3 compares the parameter error of 1RDSA-Perm-DP, 1RDSA-KW-DP, and

both variants of 1RDSA and 1SPSA algorithms for the quadratic objective with dimen-

sion 10, σ = 0.001 and a simulation budget of 50000 function measurements. As in

the case of the problem with dimension 5, 1RDSA-Perm-DP and 1RDSA-KW-DP per-

formed best, while the result of 1RDSA-Lex-DP is not reported due to its high inner

loop length.
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Figure 3.3: Evolution of the parameter error as the simulation budget is varied, for the
first-order algorithms under the quadratic objective with d = 10 and σ =
0.001.

3.5.3 Example 2: Fourth-order objective

The function given below has been used for evaluating both RDSA and SPSA algo-

rithms in (Prashanth et al., 2017) and (Spall, 2000), respectively.

F (x, ξ) = xTATAx+ 0.1
d∑
j=1

(Ax)3
j + 0.01

d∑
j=1

(Ax)4
j + ξ, (3.43)

Figure 3.4: A plot of the fourth-order objective (3.43), d = 2.

where A and ξ are the same as in the quadratic objective. The initial point x0 is set to

the d-dimensional vector of ones and the optimal point x∗ is the d-dimensional vector

50



1R
DSA-P

erm
-D

P

1R
DSA-K

W
-D

P

1R
DSA-L

ex
-D

P

1R
DSA-A

sy
mBer

1R
DSA-U

nif

1S
PSA

0.05

0.10

0.15
Pa

ra
m

et
er

er
ro

r

σ = 0.001
σ = 0.1

(a) First-order algorithms

2R
DSA-P

erm
-D

P

2R
DSA-L

ex
-D

P

2R
DSA-A

sy
mBer

2R
DSA-U

nif

2S
PSA

0

0.2

0.4

0.6

Pa
ra

m
et

er
er

ro
r

σ = 0.001
σ = 0.1

(b) Second-order algorithms

Figure 3.5: Parameter error for various algorithms under the fourth-order objective
(3.43) for a five-dimensional problem with a simulation budget of 50000
and σ = 0.001 and 0.1.

of zeros, with f(x∗) = Eξ[F (x∗, ξ)] = 0. Figure 3.4 shows a plot of the fourth-order

objective (3.43).

Figure 3.5 presents the parameter error for both first and second order algorithms

in the case of the fourth-order objective (3.43) with dimension 5 and σ = 0.001 and

0.1. Among the first-order algorithms, for both settings of noise, all algorithms except

1RDSA-Lex-DP exhibited similar performance.

Among the second-order algorithms, similar to the quadratic case, for both settings

of noise, 2RDSA-Perm-DP and 2RDSA-Lex-DP gave consistent performance with pa-

rameter error of the order of 10−2. Under the low noise setting, i.e., σ = 0.001, 2RDSA-

Unif exhibited the best performance, while under the high noise setting with σ = 0.1,

2RDSA-Lex-DP outperformed the other algorithms. Thus, we observe that 2RDSA-

Lex-DP and 2RDSA-Perm-DP algorithms are more tolerant to the noise, as compared

to their random counterparts 2RDSA-AsymBer, 2RDSA-Unif, and 2SPSA.

Since the fourth-order objective is more difficult to optimize than the quadratic one,

we observe that under the low noise setting, the parameter error in the case of the fourth-

order objective for the first-order algorithms is higher, of the order of 10−2 compared

to 10−5 for the quadratic case. For the second-order algorithms, the same is also of the

order of 10−2 compared to 10−6 for the quadratic case. A similar trend is observed in

the high noise regime.
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Figure 3.6 compares the parameter error of 2RDSA-Perm-DP, as well as both vari-

ants of 2RDSA and 2SPSA algorithms, for the fourth-order objective function with

dimension 10, σ = 0.001 and a simulation budget of 50000 function measurements.

As in the five-dimensional problem, 2RDSA-Unif and 2SPSA exhibited similar per-

formance and outperformed the other algorithms. The results of the 2RDSA-Lex-DP

algorithm are not displayed as it requires 3× 310 function measurements per iteration.
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Figure 3.6: Evolution of the parameter error as the simulation budget is varied, for the
second-order algorithms under the fourth-order objective with d = 10 and
σ = 0.001.

3.5.4 Example 3: Rastrigin objective

The Rastrigin objective function is defined as follows:

F (x, ξ) =
d∑
i=1

(x2
i − 10 cos(2πxi)) + 10d+ 1 + ξ, (3.44)

where ξ is the same as for the quadratic objective. The initial point x0 is set to the

d-dimensional vector of twos and the optimal point x∗ is the d-dimensional vector of

zeros, with f(x∗) = Eξ[F (x∗, ξ)] = 1. Figure 3.8 shows a plot of the Rastrigin objective

(3.44), which has many local minima.
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Figure 3.7: Parameter error for various algorithms under the Rastrigin objective (3.44)
for a five-dimensional problem and a simulation budget of 50000 and σ =
0.001 and 0.1.

Figure 3.8: A plot of the Rastrigin objective (3.44), d = 2.

Figure 3.7 presents the parameter error for both first-order and second-order algo-

rithms for the Rastrigin objective (3.44) with dimension 5 and σ = 0.001 and 0.1.

For both settings of noise, among the first-order algorithms, 1RDSA-Unif outper-

formed the other algorithms, while 2RDSA-Lex-DP performed the best among the

second-order algorithms.

Similar to the quadratic and fourth-order objective, first-order algorithms, 2RDSA-

Perm-DP and 2RDSA-Lex-DP gave consistent performance under both settings of

noise.
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In summary, for all the three objectives, among the first-order algorithms, we ob-

served that 1RDSA-Perm-DP and 1RDSA-KW-DP performed best, while 1RDSA-Lex-

DP showed poor performance. On the other hand, among the second-order algorithms,

2RDSA-Lex-DP exhibited the best performance.

3.6 Summary

We incorporated two novel deterministic perturbation (DP) schemes into the RDSA

class of simultaneous perturbation algorithms. The proposed DP variants of first-order,

as well as second-order, RDSA were shown to result in asymptotically unbiased gradi-

ent/Hessian estimates, thus resulting in provably convergent 1RDSA/2RDSA variants.

We also performed numerical experiments to validate the theoretical findings.
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CHAPTER 4

Non-Asymptotic Bounds for Zeroth-Order Stochastic

Optimization

We consider the problem of optimizing an objective function with and without convex-

ity in a simulation-optimization context, where only stochastic zeroth-order informa-

tion is available. We consider two techniques for estimating gradient/Hessian, namely

simultaneous perturbation (SP) and Gaussian smoothing (GS). We introduce an opti-

mization oracle to capture a setting where the function measurements have an estima-

tion error that can be controlled. Our oracle is appealing in several practical contexts

where the objective has to be estimated from i.i.d. samples, and increasing the number

of samples reduces the estimation error. In the stochastic non-convex optimization con-

text, we analyze the zeroth-order variant of the randomized stochastic gradient (RSG)

and quasi-Newton (RSQN) algorithms with a biased gradient/Hessian oracle, and with

its variant involving an estimation error component. In particular, we provide non-

asymptotic bounds on the performance of both algorithms, and our results provide a

guideline for choosing the batch size for estimation, so that the overall error bound

matches with the one obtained when there is no estimation error. Next, in the stochastic

convex optimization setting, we provide non-asymptotic bounds that hold in expecta-

tion for the last iterate of a stochastic gradient descent (SGD) algorithm, and our bound

for the GS variant of SGD matches the bound for SGD with unbiased gradient informa-

tion. We perform simulation experiments on synthetic as well as real-world datasets,

and the empirical results validate the theoretical findings.

4.1 Introduction

We consider the problem of minimizing a smooth objective function, when the opti-

mization algorithm is provided with function measurements corrupted by zero-mean

noise. Recall that this setting falls under the realm of simulation optimization and

gradient-based methods are popular for solving such optimization problems. We study



stochastic gradient algorithms that incorporate either SP-based or GS-based gradi-

ent/Hessian estimates and provide non-asymptotic bounds in a setting where the ob-

jective is convex as well as one where it is not.

In (Hu et al., 2016), the gradient estimation schemes motivated by SP and GS ap-

proaches have been formalized as biased gradient oracles. However, the aforementioned

reference focused primarily on a convex objective, and derived an upper bound for a

mirror-descent scheme. In contrast, we derive a matching upper bound, albeit with a

regular stochastic gradient descent algorithm, with the added advantage that the step-

size we employ does not require knowledge of the underlying smoothness parameter.

More importantly, unlike (Hu et al., 2016), we study stochastic non-convex optimiza-

tion problems with the biased gradient oracles mentioned before.

We also propose a variant of the zeroth-order setting, where the objective function

has to be estimated from i.i.d. samples, leading to an estimation error component. The

latter model is applicable in a reinforcement learning (RL) context, where the objec-

tive is not perfectly observable, and has to be estimated from sample trajectories. We

formalize this through an optimization oracle, that outputs biased gradient information,

while taking in an additional input of the mini-batch size. Finally, we also consider

an optimization oracle that provides a biased gradient as well as Hessian information,

along with a variant that incorporates an estimation error component. We study the

performance of gradient-based algorithms in the convex as well as non-convex regimes

under the proposed oracle.

We summarize our contributions in the stochastic non-convex optimization context.

We analyze the performance of the zeroth-order gradient as well as quasi-Newton al-

gorithms by deriving non-asymptotic bounds. In particular, we study the randomized

stochastic gradient (RSG) (Ghadimi and Lan, 2013), and randomized quasi-Newton

(RSQN) (Wang et al., 2017) algorithms. The case of unbiased gradient information

is addressed in the aforementioned references. We consider the zeroth-order feedback

model, i.e., a setting where only biased gradient information is available, and derive

non-asymptotic bounds for zeroth-order variants of RSG and RSQN algorithms.

From our analysis in the stochastic non-convex optimization setting, we derive the

following conclusions:

1. In the case of the zeroth-order setting without estimation error, we observe that the
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overall rate for the SP method isO(N−1/3), which is weaker than the corresponding

result for the GS method (i.e., O(N−1/2)) (Ghadimi and Lan, 2013). This is not

surprising, as the SP approach results in a gradient estimate whose variance scales

inversely with the perturbation constant η, and this is unlike the Gaussian smoothing

approach, where such an inverse scaling is absent.

2. In the zeroth-order setting with estimation errors, we observe that an order of

O(N−1/2) (resp. O(N−1/3)) bound can be obtained for GS method (resp. SP

method), and this matches the rate in the model above, i.e., biased gradients without

estimation error. An advantage with our approach is that, unlike (Ghadimi and Lan,

2013) approach for without estimation error setting, we do not require knowledge

of the function value at the optima for choosing a smoothing parameter, which is

employed in gradient estimation. Our results hold for a choice of a batch size that

increases asymptotically, while a constant batch size would lead to sub-optimal rates.

3. The bounds for RSQN that are given biased gradient information with/without esti-

mation errors, match the corresponding bounds for RSG up to constant factors. This

is expected, since the net effect of RSG algorithm is that of iterate averaging in ex-

pectation. Such a finding is not surprising, and the reader is referred to an analysis

of iterate averaging and second-order methods in Section 5 of (Dippon and Renz,

1997), albeit from an asymptotic convergence rate viewpoint, to see the parallel.

Next, we summarize our contributions in the stochastic convex optimization context.

Using a proof technique that is similar to the one employed in the non-convex case,

we provide a non-asymptotic bound for the RSG algorithm in a zeroth-order setting.

A disadvantage with this approach is that it requires knowledge of the smoothness pa-

rameter for choosing stepsize. We overcome this dependency by employing a different

algorithm that is based on the SGD scheme analyzed in (Jain et al., 2019). We provide

non-asymptotic bounds that hold in expectation for the final iterate of the stochastic

gradient algorithm with biased gradient information. For the case of unbiased gradient

information, the authors in (Jain et al., 2019) provide a bound of the order O
(
N−1/2

)
,

whereN is the number of steps of the algorithm. We also provide a similar order bound,

when the gradients are obtained using the GS approach. On the other hand, when SP-

based gradient estimates are employed, the bound we obtain is of the order O
(
N−1/3

)
.

The latter bound is not surprising, considering a matching information-theoretic lower
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bound obtained in (Hu et al., 2016).

Finally, we perform simulation experiments on synthetic as well as real-world

data sets, and observe that: (i) RSG algorithm, when provided with unbiased gradi-

ent/Hessian information outperforms the other algorithms, and this is not surprising;

and (ii) In the zeroth-order setting, among the variants of the RSG algorithm, where

the variation is in the perturbation vectors used for gradient estimation, we observe that

the GS method outperformed those using SP method. Among the RSQN variants, we

observed that 2RDSA-Perm-DP, a recently proposed SP method that uses deterministic

perturbations based on permutation matrices (Prashanth et al., 2020), performed best.

Moreover, RSQN variants outperformed the RSG variants.

The rest of this chapter is organized as follows: Section 4.2 presents the SP method

based zeroth-order optimization oracles, Section 4.3 considers the stochastic non-

convex optimization problem, and presents non-asymptotic bounds for both gradient

and quasi-Newton algorithms, Section 4.4 considers the stochastic convex optimization

problem and presents non-asymptotic bounds that hold in expectation for the random

and last iterate of a stochastic gradient descent algorithm, Section 4.5 presents the non-

asymptotic bounds using Gaussian smoothing method for both convex and non-convex

objectives. Section 4.6 provides the proofs of all the bounds which are presented in

this chapter, Section 4.7 describes the simulation experiments, and finally, Section 4.8

summarizes the results.

Notation: Throughout this chapter we assume ‖ · ‖ = ‖ · ‖2 and 1m×n is an m× n

matrix with each entry as one.

4.2 Zeroth-order optimization oracles

Recall from 2.1 that we consider the following stochastic optimization problem:

min
x∈W
{f(x) = Eξ[F (x, ξ)]} , (4.1)

where the function f : Rd → R is assumed to be smooth, ξ is the noise factor that

captures stochastic nature of the problem, andW is a closed convex subset of Rd. We

operate in a simulation optimization setting (Fu, 2015), i.e., we are given noisy mea-
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surements of the objective f . Gradient-based methods are very popular for solving the

optimization problem formulated above, and we consider an iterative algorithm which

obtains∇f(·) via subsequent calls to a stochastic zeroth-order oracle.

Algorithm Oracle Environment

x, η,m

g(x, η,m),
H(x, η,m)

f

Figure 4.1: The interaction of the algorithms with a stochastic zeroth-order oracle
that provides a gradient estimate g(x, η,m) and/or a Hessian estimate
H(x, η,m) at the query point x, with perturbation parameter η and mini-
batch size parameter m controlling the estimation error.

In this chapter, we consider two oracles: (i) a biased gradient oracle, and its variant

involving an estimation error; and (ii) a biased gradient/Hessian oracle, with a variant

involving an estimation error. Figure 4.1 shows the interaction of the algorithms with

the gradient/Hessian estimation oracle and environment.

We define the oracle corresponding to (i) below.

(O1) Biased gradient oracle

Input: x ∈ Rd and perturbation parameter η > 0.

Output: a gradient estimate g(x, ξ) ∈ Rd that satisfies

(a) Eξ [g (x, ξ)] ≤ ∇f (x) + c1η
21d×1,

(b) Eξ
[
‖g (x, ξ)− Eξ [g (x, ξ)]‖2] ≤ c2

η2 ,

for some constants c1, c2 > 0.

Gradient estimation through the simultaneous perturbation (SP) method is a popular

approach (see (Bhatnagar et al., 2013) for a textbook introduction), and the SP-based

gradient estimates can be used to construct an oracle of type (O1), assuming that the

underlying function f is either three-times continuously differentiable or convex and

smooth (cf. (Spall, 1992; Prashanth et al., 2017, 2020; Bhatnagar et al., 2013; Hu

et al., 2016) for a proof). Simultaneous perturbation stochastic approximation (SPSA)

(Spall, 1992) and random directions stochastic approximation (RDSA) (Prashanth et al.,

2017) are two popular SP-based estimation schemes, and for these methods, we have

c1 = κ1d
3 and c2 = κ2d, where κ1, κ2 > 0 are dimension-independent constants. The

reader is referred to Section 4.2.1 for further details.
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The second type of oracle, which is defined below, first estimates function value f

as an average from m i.i.d. samples, and then uses the sample average to obtain the

gradient information by using the SP method.

(O2) Biased gradient oracle with estimation error

Input: x ∈ Rd, perturbation parameter η > 0, and mini-batch size m > 0.

Output: a gradient estimate g(x, ξ,m) ∈ Rd, that satisfies
(a) Eξ [g (x, ξ,m)] ≤ ∇f (x) + c1η

21d×1 + c3
η
√
m
1d×1,

(b) Eξ
[
‖g (x, ξ,m)− Eξ [g (x, ξ,m)]‖2] ≤ c2

η2 ,

for some constants c1, c2, c3 > 0.

The oracle outlined above is appealing in several practical applications where f has

to be estimated from i.i.d. samples coming from r.v. X . E.g., let f̂mk be an estimate of f

frommk i.i.d. samples. Then, one usually has a Hoeffding type bond P(|f̂mk−f(X)| ≥

ε) ≤ 2 exp(−cmkε
2), and this leads to E|f̂mk − f(X)| ≤ c3√

mk
, where c3 is an absolute

constant. Such a oracle can also be used in policy-gradient type RL algorithms, where

one usually simulates several episodes of the underlying Markov decision process, and

then estimates the value function. The latter quantity will have an estimation bias, of

the order O
(

1√
mk

)
, where mk is the number of episodes.

Next, we define a biased gradient/Hessian oracle below.

(O3) Biased gradient/Hessian oracle

Input: x ∈ Rd and perturbation parameter η > 0.

Output: a gradient estimate g(x, ξ) ∈ Rd, and a Hessian inverse estimate

H(x, ξ) ∈ Rd×d. These quantities satisfy
(a) Same as (O1)-(a),

(b) Same as (O1)-(b),

(c) Eξ [H(x, ξ)] ≤ H(x) + c
′
1η

21d×d,

for some constant c′1 > 0.

SP-based methods can be used to obtain estimates of the Hessian, in addition to gradi-

ent estimates, when the underlying function f is either four-times continuously differ-

entiable or convex and smooth. The reader is referred to Lemma 6 in (Prashanth et al.,

2020) or Lemma 7.11 in (Bhatnagar et al., 2013) for an SP-based Hessian estimate that

satisfies the condition (c) above.

Next, we define a variant of (O3) that is along of the lines of (O2).
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(O4) Biased gradient/Hessian oracle with estimation error

Input: x ∈ Rd, perturbation parameter η > 0 and mini-batch size m > 0.

Output: a gradient estimate g(x, ξ) ∈ Rd, and a Hessian inverse estimate

H(x, ξ,m) ∈ Rd×d. These quantities satisfy
(a) Same as (O2)-(a),

(b) Same as (O2)-(b),

(c) Eξ [H(x, ξ,m)] ≤ H(x) + c
′
1η

21d×d + c3
η
√
m
1d×d,

for some constants c′1, c3 > 0.

We also consider an alternative gradient estimation scheme based on the idea of Gaus-

sian smoothing (GS) (Nesterov and Spokoiny, 2017) method. Variant of oracles (O1)

and (O2), motivated by the GS method are presented in Section 4.5.

4.2.1 Value of constants for the SP-based oracles

The constants for the various SP-based gradient estimates depend on the type of random

perturbation used, and also, the nature of the objective, i.e., whether it is convex or not.

We summarize these constants below, while hiding the dependence on the moments of

the random perturbation inside constant factors.

1. If the function f is three-times continuously differentiable, then the constants c1 and

c2 are as follows (see (Spall, 1992; Prashanth et al., 2017, 2020)):

c1 = α0d
3 and c2 = α1d,

where the constant α0 depends on the second moment of the random perturbation

employed in the gradient estimate, and a bound on the third derivative of the objec-

tive f . The constant α1 depends on the variance of the measurement noise.

2. If the function f is convex and smooth, then the constants c1 and c2 are as follows

(see (Hu et al., 2016)):

c1 = α0Ld
2 and c2 = α1d,

where L is the Lipschitz constant defined in (A1), α0 is a constant that depends on

the second moment of the random perturbation employed in the gradient estimate,
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and α1 is a constant that depends on the variance of the measurement noise.

The constant c′1, which features in the bias of the Hessian estimate in oracle (O3), is of

the same order as c1, in terms of the dependence on the dimension d.

4.3 Stochastic Non-convex Optimization

In this section, we consider the problem in (4.1), where the objective f is not assumed to

be convex. We analyze gradient-based algorithms for solving (4.1), under the following

smoothness assumption:

(A1) Function f has Lipschitz continuous gradient with constant L > 0, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd.

We study the performance of the randomized stochastic gradient and quasi-Newton

algorithms, proposed in (Ghadimi and Lan, 2013; Wang et al., 2017). The gradient

method is analyzed in the section below, while the quasi-Newton method is handled in

the subsequent section.

We make the following assumption for the analysis of the gradient-based methods in

a zeroth-order setting (a similar assumption is used in (Balasubramanian and Ghadimi,

2018)):

(A2) The feasible set W is bounded and there exists a constant B > 0 such that

‖∇f(x)‖1 ≤ B, ∀x ∈ W .

4.3.1 Zeroth-order randomized stochastic gradient (ZRSG)

The pseudocode for the ZRSG algorithm is given below. The ZRSG algorithm per-

forms an incremental update as defined in (4.2), and outputs a random iterate, after N

iterations.

Bounding the optimization error, i.e., f(xN)− f(x∗) is difficult, when the objective

is non-convex. However, a popular alternative is to show that the RSG algorithm con-

verges to a point, where the gradient of the objective is small (quantified by a bound
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Algorithm 3 Zeroth-order Randomized Stochastic Gradient (ZRSG)
Input: Initial point x1 ∈ W , iteration limit N , stepsizes γk, perturbation parameter
ηk, mini-batch sizemk (for the oracle (O2) with estimation error), projection operator
ΠW , and probability mass function PR(·) supported on {1, . . . , N} (Let R denote the
corresponding random variable).
for k = 1, . . . , R do

Call the oracle (O1) with xk and ηk, or call the oracle (O2) with xk, ηk and mk,
to obtain the gradient estimate gk.

Perform the following stochastic gradient update:

xk+1 = ΠW(xk − γkgk), (4.2)

where ΠW is a operator that projects on to the closed convex setW ⊂ Rd and

gk =

{
g (xk, ξk) with (O1),
g (xk, ξk,mk) with (O2).

(4.3)

end for
Return xR.

on the squared norm of the gradient) (cf. (Ghadimi and Lan, 2013; Bottou et al., 2018;

Wang et al., 2017)), and the following definition makes the optimization objective ap-

parent.

Definition 1. (ε-stationary point) Let xR be the output of an algorithm. Then, xR is

called an ε-stationary point of problem (4.1), if E ‖∇f (xR)‖2 ≤ ε.

We provide below a non-asymptotic bound for ZRSG with the oracle (O1)1. The

oracle variant with estimation error is handled in the subsequent theorem.

Theorem 9. (ZRSG with the oracle (O1))

Assume (A1) and (A2). With the oracle (O1), suppose that the ZRSG algorithm is run

with the stepsize γk and perturbation constant ηk set as follows:

γk = min

{
1

L
,

1

(d2N)2/3

}
, and ηk =

1

(d5N)1/6
, ∀k ≥ 1. (4.4)

Then, for any N ≥ 1, we have

E ‖∇f (xR)‖2 ≤ BSP :=
2LDf

N
+
Z1

N1/3
,

1The bounds in Section 4.3 are for a random iterate xR, where R is uniformly distributed over
{1, . . . , N}, and the expectation is taken with respect to R and noise ξ.
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where Z1 = 2Dfd
4/3 + 4Bc1

d5/3 +
Lc21

d11/3N
+Lc2d

1/3, constants c1, c2 are defined in (O1), B

is as defined in (A2),

Df = f(x1)− f(x∗), (4.5)

and x∗ is an optimal solution to (4.1).

Proof. See Section 4.6.1.

The overall rate, from the bound above, is O
(
N−1/3

)
, and this is not surprising

because the bias of the gradient cannot be made arbitrarily small by setting η to a low

value, as the variance of the gradient estimates scales inversely with η. The (asymptotic)

convergence rate results for SPSA in (Spall, 1992), and RDSA in (Prashanth et al.,

2017), also exhibit the same order.

Using the bound in Theorem 9, it is easy to see that the total number of iterations

required for finding an ε-stationary point is at most O(d
4

ε3
). The stepsize γk and pertur-

bation constant ηk are chosen as in (4.4), so that the overall rate is O(d
4

ε3
) for finding an

ε-stationary point. In arriving at this choice, we have considered dimension dependence

in the constants c1 and c2 (see Section 4.2.1).

Remark 3. In (Ghadimi and Lan, 2013), the authors derive a non-asymptotic bound

for a zeroth-order variant of their RSG algorithm under an oracle that is a variant to

(O1) (see Section 4.5 below). Our result in Theorem 9 matches their bound. Moreover,

unlike (Ghadimi and Lan, 2013), we derive a non-asymptotic bound for the oracle (O2),

which involves an estimation error component (see Theorem 10 below).

An advantage with our analysis is that it allows a simpler distribution for picking

the final iterate (see Proposition 1 in the Section 4.6.1). In particular, our bounds hold

for an iterate xR that is picked uniformly at random from {x1, . . . , xN}. The net effect

is that of iterate averaging, except that the averaging happens in expectation.

Theorem 10. (ZRSG with the oracle (O2))

Assume (A1) and (A2). With the oracle (O2), suppose that the ZRSG algorithm is run

with the stepsize γk and perturbation constant ηk set as defined in (4.4).
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(i) If the mini-batch size mk = N,∀k ≥ 1, then, for any N ≥ 1, we have

E ‖∇f (xR)‖2 ≤ BSP +
Z2

N1/3
, (4.6)

where Z2 = 4Bc3d
5/6 + L

N

(
c2

3d
1/2 + 2c1c3

d7/6

)
, constants c1, c2 and c3 are as defined in

(O2), B is as defined in (A2), and BSP is as defined in Theorem 9.

(ii) If the mini-batch size mk = kβ,∀k ≥ 1, for some constant β > 0, then, for any

N ≥ 1, we have

E ‖∇f (xR)‖2 ≤ BSP +
4Bc3d

5/6

N
3β−1

6

(
−β

2
+ 1
)︸ ︷︷ ︸

(I)

+
2Lc1c3

d7/6N
3β+5

6

(
−β

2
+ 1
)︸ ︷︷ ︸

(II)

+
Lc2

3d
4/3

N
3β+1

3 (−β + 1)︸ ︷︷ ︸
(III)

,

where constants are the same as in part (i).

Proof. See Section 4.6.1.

It is interesting to note that, even with estimation error, the mini-batch size mk can

be controlled to recover a rate that matches the order in the oracle (O1) up to constant

factors (see Theorem 9). As before, the total number of iterations required for finding

an ε-stationary point is at most O(d
4

ε3
).

From Theorem 10, it is apparent that increasing the mini-batches at a rate kβ , with

β > 2, leads to a better bound as compared to the case when the batch sizes increase lin-

early with N . More precisely, while the overall order of the bound remainsO
(
N−1/3

)
,

the terms marked (I), (II) and (III) are significantly smaller in the case when β > 2.

Remark 4. By a completely parallel argument to that in the proof of Theorem 10, one

can infer that a constant batch size, i.e., mk ≡ m0, would result in an orderO
(
N−1/6

)
bound. The latter bound is clearly inferior to those with increasing batch sizes.

4.3.2 Zeroth-order randomized stochastic quasi-Newton (ZRSQN)

method

The zeroth-order variant of RSQN (Wang et al., 2017) is presented below. As with

ZRSG, the algoritm below picks a random iteration, after N update iterations using
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(4.7).

Algorithm 4 Zeroth-order Randomized Stochastic quasi-Newton (ZRSQN)
Input: Initial point x1 ∈ W , iteration limit N , stepsizes γk, perturbation parameter
ηk, mini-batch sizemk (for the oracle (O4) with estimation error), projection operator
ΠW , and probability mass function PR(·) supported on {1, . . . , N} (Let R denote the
corresponding random variable).
for k = 1, . . . , R do

Call the oracle (O3) with xk and ηk, or call the oracle (O4) with xk, ηk and mk,
to obtain the gradient estimate gk, and a Hessian inverse estimate Hk.

Perform the following stochastic quasi-Newton update:

xk+1 = ΠW(xk − γkHkgk), (4.7)

where ΠW is a operator that projects on to the closed convex set W ⊂ Rd, gk is as
defined in (4.3) and

Hk =

{
H (xk, ξk) with (O3),
H (xk, ξk,mk) with (O4).

end for
Return xR.

For the sake of analysis, we make the following assumption:

(A3) For any k ≥ 1,
(a) There exist a positive constant Λ < ∞ such that, −ΛI � ∇2f(xk) � ΛI,

and

(b) there exist positive constants Cl, Cu <∞ such that, ClI � H(xk, ξk) � CuI,

and ClI � H(xk, ξk,mk) � CuI,

where the notation A � B with A,B ∈ Rd×d means that A − B is positive

semidefinite.

The assumption above can be ensured by having H(xk, ξk) = [Υ(B(xk, ξk))]
−1,∀k ≥

1, where B(xk, ξk) is an approximation of the Hessian ∇2f(xk), and the projec-

tion operator Υ(B(xk, ξk)) is defined as performing an eigen-decomposition of matrix

B(xk, ξk) followed by projecting the eigenvalues on to the range [Cl, Cu], as discussed

in (Prashanth et al., 2020).

We provide below a non-asymptotic bound for ZRSQN with the oracle (O3). The

subsequent theorem handles the oracle variant that involves an estimation error compo-

nent.
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Theorem 11. (ZRSQN with the oracle (O3))

Assume (A2) and (A3). With the oracle (O3), suppose that the ZRSQN algorithm is run

with the stepsize γk and perturbation constant ηk set as follows:

γk = min

{
2Cl − 1

ΛC2
u

,
1

(d2N)2/3

}
, and ηk =

1

(d5N)1/6
, ∀k ≥ 1, (4.8)

where Λ, Cl, and Cu are as in (A3). Then, for any N ≥ 1, we have

E ‖∇f (xR)‖2 ≤ 2ΛC2
uDf

2NCl −N
+
Z3

N1/3
,

where Z3 = 2Dfd
4/3 + ΛC2

u(
c21

d11/3N
+ c2d

1/3) + 2B
d5/3 (3c1Cl +

c1c
′
1

d2/3N1/3 + c
′
1B), constants

c1, c2 are as defined in (O1), B is as defined in (A2), and Df is as defined in (4.5).

Proof. See Section 4.6.2.

A second-order method such as RSQN would provide a rate similar to that in RSG,

since the net effect of RSG algorithm is that of iterate averaging in expectation. Such

a finding is not surprising, and the reader is referred to an analysis of iterate averaging

and second-order methods in Section 5 of (Dippon and Renz, 1997), albeit from an

asymptotic convergence rate viewpoint, to see the parallel.

Comparing the bound obtained above with that in Theorem 9, we observe that,

the initial error (the first term in either bound) that relates to the starting point of the

algorithm is forgotten a little faster in the quasi-Newton case, while the other term

matches up to constant factors.

Theorem 12. (ZRSQN with the oracle (O4))

Assume (A2) and (A3). With the oracle (O4), suppose that the ZRSQN algorithm is run

with the stepsize γk and perturbation constant ηk set as in Theorem 11, and mini-batch

size mk = N, ∀k ≥ 1. Then, ∀N ≥ 1, we have

E ‖∇f (xR)‖2 ≤ 2ΛC2
uDf

2NCl −N
+
Z4

N1/3
,

where Z4 = 2Dfd
4/3 + 2B

(
BK2 +K1

(
3Cl + dK2

N1/3

))
+ ΛC2

u

(
K2

1

d1/3N
+ c2d

1/3
)

, K1 =

c1d
−5/3 + c3d

5/6, K2 = c
′
1d
−5/3 + c3d

5/6, constants c1, c
′
1, c2 and c3 are as defined in

(O4), B is as defined in (A2), and Df is as defined in (4.5).
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Proof. See Section 4.6.2.

From the bounds in Theorems 11 and 12, we observe that the number of iterations

required for finding an ε-stationary point is at most O(d
4

ε3
).

As in the case of ZRSG, the stepsize γk and perturbation constant ηk are chosen as

in (4.8), so that the overall rate is O(d
4

ε3
) for finding an ε-stationary point. In arriving at

this choice, we have considered dimension dependence in the constants c1, c
′
1 and c2 in

oracles (O3) and (O4).

4.4 Stochastic Convex Optimization

In this section, we consider the problem in (4.1), under the assumption that f is a convex

function, andW is a bounded convex set. These assumptions are made precise below.

(A4) The function f satisfies ‖∇f(x)‖ ≤ G, for every x ∈ W .

(A5) The setW is convex and compact. Further, ‖x − y‖ ≤ D, ∀x, y ∈ W , for some

D > 0.

Note that the function f is not assumed to be strongly convex. Let x∗ ∈ W be a

minimizer of f(·). We first analyze the ZRSG algorithm in a convex setting, and sub-

sequently present the ZSGD algorithm, which is a zeroth-order variant of the algorithm

in (Jain et al., 2019).

4.4.1 Zeroth-order randomized stochastic gradient (ZRSG)

We provide below a non-asymptotic bound for ZRSG with the oracle (O1). The subse-

quent theorem handles the oracle variant that involves an estimation error component.

Theorem 13. (ZRSG with the oracle (O1))

Assume (A1) and (A5). With the oracle (O1), suppose that the ZRSG algorithm is run

with the stepsize γk and perturbation constant ηk set as defined in (4.4), then, for any

N ≥ 1, we have

E [f (xR)]− f(x∗) ≤ LD2

N
+
K1

N1/3
,
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whereK1 = D2d4/3 + 4Dc1
d7/6 +

c21
d11/3N

+d1/3c2, constants c1 and c2 are as defined in (O1),

and D as defined in (A5).

Proof. See Section 4.6.3.

The O(N−1/3) bound of the RHS above matches that in Theorem 9 with the non-

convex objective. However, unlike non-convex case, we bound the optimization error

E[f(xR)] − f(x∗) and as a result few terms are independent of L. A similar obser-

vation holds for the Theorem 14 below with the oracle involving an estimation error

component.

Theorem 14. (ZRSG with the oracle (O2))

Assume (A1) and (A5). With the oracle (O2), suppose that the ZRSG algorithm is run

with the stepsize γk, perturbation constant ηk and mini-batch size mk set as follows:

γk = min

{
1

L
,

1

(d2N)2/3

}
, ηk =

1

(d5N)1/6
, and mk = N, ∀k ≥ 1.

(4.9)

Then, for any N ≥ 1, we have

E [f (xR)]− f(x∗) ≤ LD2

N
+
K2

N1/3
,

whereK2 = D2d4/3+4
√
dD
(
c1
d5/3 + c3d

5/6
)
+

c21
d11/3N

+ 2c1c3
d7/6N

+
d4/3c23
N

+d1/3c2, constants

c1, c2 and c3 are as defined in (O2), and D as defined in (A5).

Proof. See Section 4.6.3.

In the next section, we study a zeroth-order stochastic gradient descent (ZSGD)

method, to derive non-asymptotic bound on the optimization error for the last iterate,

i.e., E[f(xN)]−f(x∗). This is unlike the bounds in Theorem 13 and 14 for ZRSG, which

was for a random iterate. In practice, the last iterate is usually preferred. Moreover, the

analysis in ZSGD is superior to that of ZRSG, because it does not require smoothness

in the analysis.
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0 N1 N2 N3 Nl+1 = N

Figure 4.2: Spliting of the horizon into phases

4.4.2 Zeroth-order stochastic gradient descent (ZSGD)

The pseudocode for the ZSGD algorithm, which is designed to minimize f , given biased

gradient measurements, through the oracle (O1) or (O2) is given below.

Algorithm 5 Zeroth-order Stochastic Gradient Descent (ZSGD)
Input: Initial point x1 ∈ W , iteration limit N , stepsizes γk, perturbation parameter
ηk, mini-batch size mk (for the oracle (O2) with estimation error) and projection
operator ΠW .
for k = 1, . . . , N do

Call the oracle (O1) with xk and ηk, or call the oracle (O2) with xk, ηk and mk,
to obtain the gradient estimate gk.

Perform the following stochastic gradient update:

xk+1 ← ΠW (xk − γkgk) , (4.10)

where ΠW is a operator that projects on to the closed convex setW ⊂ Rd and gk is
as defined in (4.3).
end for
Return xN .

We follow the approach from (Jain et al., 2019), i.e., we assume the knowledge of

N , which is the total number of iterations of ZSGD, and split the horizonN into l phases

as shown in Figure 4.2. The choice of phase lengths, and the step-size decay in each

phase is performed along the lines of (Jain et al., 2019). However, unlike their work that

assumed unbiased gradient information, we operate in a setting where biased gradient

information is available through oracle (O1), and this induces significant deviations in

the proof. Morever, our setting features a perturbation constant parameter, which has to

be chosen in a phase-dependent manner as well. We make the choice of phases precise

below.

Let l := inf{i : N · 2−i ≤ 1},

Ni :=N − dN · 2−ie, 0 ≤ i ≤ l, and Nl+1 := N. (4.11)

From the phase definitions above, it can be seen that Ni is an increasing sequence.

Further, N1 ≈ N
2
, N2 ≈ N

2
+ N

4
, and so on. In the theorem below, we provide a non-

asymptotic bound on the optimization error, i.e., E[f(xN)]− f(x∗) for the ZSGD with
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the oracle (O1) and (O2).

Theorem 15. (ZSGD with the oracle (O1))

Assume (A4) and (A5). With the oracle (O1), suppose that the ZSGD algorithm is run

with the stepsize γk and perturbation constant ηk set as follows:

γk =
C · 2−i√
dN2/3

, and ηk =
2−i/4√
dN1/6

, (4.12)

when Ni < k ≤ Ni+1, 0 ≤ i ≤ l, where C > 0 and Ni, l is as defined in (4.11). Then,

for any N ≥ 4, we have

E[f(xN)]− f(x∗) ≤ K3

N1/3
,

where K3 = 4
√
dD2

C
+ 11CG2
√
dN1/3 + 39c1D

d
+ 20Cc1G√

dN2/3 +
10Cc21
d3/2N

+ 18
√
dCc2, and constants

c1, c2 are as defined in (O1).

Proof. See Section 4.6.4.

The overall rate, from the bound above, is O
(
N−1/3

)
, and as discussed in Theo-

rem 9, this is not surprising since the perturbation parameter η relates to bias-variance

tradeoff. Moreover, a lower bound in (Hu et al., 2016) shows that, with a biased gradi-

ent oracle (such as (O1)), the optimization error (E[f(xN)]− f(x∗)) is Ω
(
N−1/3

)
in a

minimax (or information-theoretic) sense for the case of a convex objective f .

Unlike (Hu et al., 2016), we derive a matching upper bound, albeit with a regular

SGD algorithm, with the added advantage that the stepsize we employ does not require

knowledge of the underlying smoothness parameter.

The theorem below provides a bound for the case when ZSGD algorithm is run with

the oracle (O2), which contains an estimation error component.

Theorem 16. (ZSGD with the oracle (O2))

Assume (A4) and (A5). With the oracle (O2), suppose that the ZSGD algorithm is run

with the stepsize γk, perturbation constant ηk and mini-batch size mk set as follows:

γk =
C · 2−i√
dN2/3

, ηk =
2−i/4√
dN1/6

, and mk = 2iN, (4.13)

when Ni < k ≤ Ni+1, 0 ≤ i ≤ l, where C > 0 and Ni, l is as defined in (4.11). Then,
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for any N ≥ 4, we have

E[f(xN)]− f(x∗) ≤ K4

N1/3
,

where K4 = 4
√
dD2

C
+ 11CG2
√
dN1/3 + D(39c1d

−1 + 67
√
dc3) + 20Cc1G(d−1/2+dc3)

N2/3 +

10C(c1d−1/2+dc3)2
√
dN

+ 18
√
dCc2, and constants c1, c2, c3 are as defined in (O2).

Proof. See Section 4.6.4.

Interestingly, the bound above matches the one obtained for ZSGD with (O1), and

this is because of an increasing mini-batch size mk, which is also phase-dependent.

The analysis used in arriving at the bounds in Theorems 15 and 16 cannot be ex-

tended to the non-convex case. This is because the analysis takes a dual viewpoint and

approaches the minima of the objective from below, and in this process, convexity is

strictly necessary. Intuitively, it may be challenging to provide bounds for the last iter-

ate sans averaging in a non-convex optimization setting, while it is possible to provide

bounds for the averaged iterates (or the random iterate of ZRSG, which is an average in

expectation) in the non-convex case.

4.5 Gaussian Smoothing

In this section, we define variants of the oracles (O1) and (O2), and derive non-

asymptotic bounds that are parallel to those in Theorems 10, 14 and 15.

4.5.1 Zeroth-order optimization oracles

The biased gradient oracle variant is defined below.

(O1’) Biased gradient oracle - variant

Input: x ∈ Rd and smoothing parameter η > 0.

Output: a gradient estimate g(x, ξ) ∈ Rd that satisfies

(a) Eξ [g (x, ξ)] ≤ ∇f (x) + c1η1d×1,

(b) Eξ
[
‖g (x, ξ)− Eξ [g (x, ξ)]‖2] ≤ c2η

2 + c̃2,

for some constants c1, c2, c̃2 > 0.
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The oracle defined above can be constructed using the Gaussian smoothing approach,

proposed in (Katkovnik and Kulchitsky, 1972), and studied later in a convex optimiza-

tion setting in (Nesterov and Spokoiny, 2017). In particular, the reader is referred to

Lemma 3 in (Nesterov and Spokoiny, 2017) and Lemma B.1 in (Balasubramanian and

Ghadimi, 2018) for constructing a gradient estimate that satisfies conditions (a) and (b),

respectively.

Next, we define a variant of (O2), motivated by the GS approach.

(O2’) Biased gradient oracle with estimation error - variant

Input: x ∈ Rd, smoothing parameter η > 0 and mini-batch size m > 0.

Output: a gradient estimate g(x, ξ,m) ∈ Rd, such that the following hold:

(a) Eξ [g (x, ξ,m)] ≤ ∇f (x) + c1η1d×1 + c3
η
√
m
1d×1,

(b) Eξ
[
‖g (x, ξ,m)− Eξ [g (x, ξ,m)]‖2] ≤ c2η

2 + c̃2,

for some positive constants c1, c2, c̃2 and c3.

For the two oracles defined above, using the GS approach leads to the following con-

stants (Balasubramanian and Ghadimi, 2018): c1 = L(d+3)
3
2

2
, c2 = L2(d+3)3

2
, c̃2 =

2(d+ 5)(B2 + σ2), where σ2 is the bound on variance of estimator F (x, ξ) of f(x).

4.5.2 Non-asymptotic bounds

We provide below a non-asymptotic bound for the ZRSG algorithm with the oracle

(O2’) and non-convex objective.

Theorem 17. (ZRSG with the oracle (O2’))

Assume (A1) and (A2). With the oracle (O2’), suppose that the ZRSG algorithm is run

with the stepsize γk, smoothing parameter ηk and mini-batch size mk set as follows:

γk = min

{
1

L
,

1√
dN

}
, ηk =

1

d
√
N
, and mk = dN2, ∀k ≥ 1. (4.14)

Then, for any N ≥ 1, we have

E ‖∇f (xR)‖2 ≤ 2LDf

N
+
Z5√
N
,

whereZ5 = 2
√
dDf +4BK3+L

(√
dK2

3

N
+ c2

Nd5/2 + c̃2√
d

)
,K3 = c1d

−1+
√
dc3, constants
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c1, c2, c̃2 and c3 are as defined in (O2’), B is as defined in (A2), and Df is as defined in

(4.5).

Proof. See Section 4.6.5.

From the bound in Theorem 17, it is easy to see that the total number of iterations

required for finding an ε-stationary point is at most O( d
ε2

). In comparison to the bound

for the SP method, the O
(
N−1/2

)
is better, and we believe that this improvement is

because the variance of the gradient estimate in this oracle does not increase at the cost

of bias.

Remark 5. In comparison to the bound obtained for biased gradient without estima-

tion error oracle (O1’) in Corollary 3.3 of (Ghadimi and Lan, 2013), we remark that

our above bound matches their order, except that there are additional factors owing to

estimation error.

We now provide a non-asymptotic bound for the ZRSG and ZSGD algorithm for

the convex objective.

Theorem 18. (ZRSG with the oracle (O2’))

Assume (A1) and (A5). With the oracle (O2’), suppose that the ZRSG algorithm is run

with the stepsize γk, smoothing parameter ηk and mini-batch size mk set as follows:

γk = min

{
1

L
,

1√
dN

}
, ηk =

1

d
√
N
, and mk = d2N2, ∀k ≥ 1. (4.15)

Then, for any N ≥ 1, we have

E [f (xR)]− f(x∗) ≤ LD2

N
+
K5√
N

where K5 =
√
dD2 + 4

√
dD
(
c1
d

+ c3

)
+

c21
d3/2N

+ 2c1c3√
dN

+
√
dc23
N

+ c2
d5/2N

+ c̃2√
d
, constants

c1, c2, c̃2 and c3 are as defined in (O2’), and D as defined in (A5).

Proof. See Section 4.6.5.

From the bound in Theorem 18, it is easy to see that the total number of iterations

required for finding an ε-optimal solution is at mostO( d
ε2

). Similar to the previous case
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with non-convex objective, we get a better bound of O(N−1/2) for the GS method with

convex objective.

The non-asymptotic bounds similar to those in Theorems 9 and 13 for the Gaussian

smoothing case with oracle (O1’) are derived in (Ghadimi and Lan, 2013).

Theorem 19. (ZSGD with the oracle (O1’))

Assume (A4) and (A5). With the oracle (O1’), suppose that the ZSGD algorithm is run

with the stepsize γk and perturbation constant ηk set as follows:

γk =
C · 2−i√
dN

and ηk =
2−i√
dN

, (4.16)

when Ni < k ≤ Ni+1, 0 ≤ i ≤ l, where C > 0 and Ni, l is as defined in (4.11). Then,

for any N ≥ 4, we have

E[f(xN)]− f(x∗) ≤ K6√
N
,

where K6 = 4D2
√
d

C
+ 11CG2

√
d

+ 24c1D√
N

+ 20Cc1G√
dN

+
10C(dc21+c2)

d3/2N2 + 10Cc̃2√
d

, and constants c1,

c2, c̃2 are as in (O1’).

Proof. See Section 4.6.5.

From the bound in Theorem 19, it is easy to see that the total number of iterations

required for finding an ε-optimal solution is at most O( d
ε2

). Further, it is interesting to

note that the overall rate of O(N−1/2) obtained for the zeroth order case, with biased

gradients estimated using GS method, matches with the case when unbiased gradient

information is available (Jain et al., 2019). Unlike (Ghadimi and Lan, 2013) where

the authors provide a O(N−1/2) bound for a random iterate using the ZRSG algorithm,

we provide bound for the last iterate of ZSGD. Apart from a practical preferance for

using the last iterate, an advantage with our approach is that for setting the step size

γk and smoothing parameter ηk (4.16), we do not require the knowledge of Lipschitz

constant L (see (A1)) and DX := ‖x1−x∗‖. The latter quantity is typically unavailable

in practice, as it relates to the initial error. A similar observation holds true for the

non-convex case as well (see Theorem 17).

Remark 6. Recent work in (Yousefian et al., 2017) analyzed a regularized quasi-Newton

algorithm for stochastic convex optimization. Specializing their non-asymptotic bound

to a regularized stochastic gradient algorithm would lead to a bound of the order
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O
(
N−1/3

)
on the optimization error E[f(xN)]−f(x∗). In contrast, we obtain a bound

of the order O
(
N−1/2

)
using Theorem 19.

Non-asymptotic bound similar to those in Theorems 11, 12 and 16 for the Gaussian

smoothing case, can be derived by using a parallel argument to the proof of simultane-

ous perturbation method, and we omit the details.

4.6 Convergence proofs

This section is organized as follows: In Section 4.6.1, we prove the bounds for the

ZRSG algorithm with oracles (O1) and (O2). Recall that ZRSG is a gradient-based

method for solving stochastic non-convex optimization problems, while (O1) (resp.

(O2)) is a simultaneous perturbation-based optimization oracle that provides biased

gradient information (resp. with estimation error). In Section 4.6.2, we prove the

bounds for the ZRSQN algorithm with oracles (O3) and (O4). Recall that ZRSQN is

a gradient/Hessian-based method for solving stochastic non-convex optimization prob-

lems, while (O3) (resp. (O4)) is a simultaneous perturbation-based optimization oracle

that provides biased gradient/Hessian information (resp. with estimation error). In Sec-

tion 4.6.3 (resp. 4.6.4), we prove the bounds for solving stochastic convex optimization

problems using the ZRSG (resp. ZSGD) algorithm with oracles (O1) and (O2). In Sec-

tion 4.6.5, we prove the bound for the ZRSG and ZSGD algorithm with oracle (O1’)

and for the ZRSG algorithm with oracle (O2’). Recall that (O1’) (resp. (O2’)) is a

Gaussian smoothing-based optimization oracle that provides biased gradient informa-

tion (resp. with estimation error).

For the proofs, we follow the technique from (Ghadimi and Lan, 2013) for the

case of stochastic non-convex optimization and from (Jain et al., 2019) for the case of

stochastic convex optimization. However, there are significant deviations in our proofs

since we employ a biased gradient model, with/without estimation error. In particular,

the analysis includes additional terms owing to the gradient bias and estimation error,

in turn leading to a variation in the optimal choice for stepsizes γk and perturbation

constant ηk, as compared to previous works. Further, the model with estimation errors

has an additional batch size mk parameter that needs to be optimized as well.
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4.6.1 Proofs for Stochastic Non-Convex Optimization: ZRSG

We prove Theorem 10 first, and Theorem 9 would follow through a simple modification

to the proof of Theorem 10.

Proof of Theorem 10

In the proposition below, we state and prove a general result that holds for any choice of

non-increasing stepsize sequence, perturbation constants and batch sizes. Subsequently,

we specialize the result for the choice of parameters suggested in Theorem 10, to prove

the same.

Proposition 1. Assume (A1) and (A2). With the oracle (O2), suppose that the ZRSG al-

gorithm is run with a non-increasing stepsize sequence satisfying 0 < γk ≤ 1/L,∀k ≥

1 and with the probability mass function PR(·)

PR(k) := Prob{R = k} =
γk∑N
i=1 γi

, k = 1, . . . , N, (4.17)

then, for any N ≥ 1, we have

E
[
‖∇f (xR)‖2] ≤ 1∑N

k=1 γk

[
2Df

(2− Lγ1)
+ 2B

N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)(
γk + Lγ2

k

2− Lγk

)

+L
N∑
k=1

γ2
k

(2− Lγk)

[
dc2

1η
4
k + 2dc1c3

ηk√
mk

+
dc2

3

η2
kmk

+
c2

η2
k

]]
,

(4.18)

where c1, c2 and c3 are as defined in (O2), B is as defined in (A2), and Df as defined in

(4.5).

Proof. We use the technique from (Ghadimi and Lan, 2013). However, our proof

involves significant deviations owing to the fact that the simultaneous perturbation

method has a variance in gradient estimates that scales inversely with perturbation con-

stant ηk, and this is unlike the Gaussian smoothing approach, where such an inverse

scaling is absent (instead, the variance scales directly with ηk). Further, the model with

estimation errors has an additional batch size mk parameter that needs to be optimized

as well.
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First, notice that

‖xk+1 − xk‖ = ‖ΠW (xk − γkg(xk, ξk,mk))− xk‖

≤ ‖xk − γkg (xk, ξk,mk)− xk‖ (4.19)

= −γk‖g (xk, ξk,mk) ‖.

The inequality in (4.19) holds because xk is already in the convex setW and ΠW is a

non-expansive projection operator. Further notice that

Eξ[k]
[g (xk, ξk,mk)] = Eξk

[
g (xk, ξk,mk) |ξ[k−1]

]
= Eξk [g (xk, ξk,mk) |xk]

≤ ∇f (xk) + c1η
2
k1d×1 +

c3

ηk
√
mk

1d×1, (4.20)

and

Eξ[k]

[
‖g (xk, ξk,mk)‖2] ≤ ∥∥∥Eξ[k]

[g (xk, ξk,mk)]
∥∥∥2

+ c2/η
2
k. (4.21)

Now, under assumption (A1), we have

f (xk+1) ≤ f (xk) + 〈∇f (xk) , xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

= f (xk)− γk 〈∇f (xk) , g (xk, ξk,mk)〉+
L

2
γ2
k ‖g (xk, ξk,mk)‖2 . (4.22)

Taking expectations with respect to ξ[k] on both sides of (4.22) and using (4.20) and

(4.21), we obtain

Eξ[k]
[f (xk+1)]

≤ Eξ[k]
[f (xk)]− γk

〈
∇f (xk) ,∇f (xk) + c1η

2
k1d×1 +

c3

ηk
√
mk

1d×1

〉
+
L

2
γ2
k

[∥∥∥Eξ[k]
[g (xk, ξk,mk)]

∥∥∥2

+
c2

η2
k

]
≤ f (xk)− γk ‖∇f (xk)‖2 +

(
c1η

2
k +

c3

ηk
√
mk

)
γkEξ[k]

‖∇f (xk) ‖1

+
L

2
γ2
k

[
‖∇f (xk)‖2 + 2

(
c1η

2
k +

c3

ηk
√
mk

)
Eξ[k]
‖∇f (xk) ‖1

+

(
√
dc1η

2
k +

√
dc3

ηk
√
mk

)2

+
c2

η2
k

]
(4.23)
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≤ f (xk)−
(
γk −

L

2
γ2
k

)
‖∇f (xk)‖2 +

(
c1η

2
k +

c3

ηk
√
mk

)(
γk + Lγ2

k

)
B

+
L

2
γ2
k

(√dc1η
2
k +

√
dc3

ηk
√
mk

)2

+
c2

η2
k

 ,
where we have used the fact that −‖X‖1 ≤

∑d
i=1 xi for any vector X in arriving at the

inequality (4.23) and the last inequality follows from the fact that ‖∇f (xk) ‖1 ≤ B.

Re-arranging the terms, we obtain

(
γk −

L

2
γ2
k

)
‖∇f (xk)‖2 = f (xk)− Eξkf (xk+1)

+

(
c1η

2
k +

c3

ηk
√
mk

)(
γk + Lγ2

k

)
B

+
L

2
γ2
k

(√dc1η
2
k +

√
dc3

ηk
√
mk

)2

+
c2

η2
k


γk ‖∇f (xk)‖2 =

2

(2− Lγk)

[
f (xk)− Eξkf (xk+1)

+

(
c1η

2
k +

c3

ηk
√
mk

)(
γk + Lγ2

k

)
B

]
+

Lγ2
k

(2− Lγk)

[
dc2

1η
4
k + 2dc1c3

ηk√
mk

+
dc2

3

η2
kmk

+
c2

η2
k

]
.

Now, summing up the inequality above over k = 1 to N , and taking expectations, we

obtain

N∑
k=1

γkEξ[N ]
‖∇f (xk)‖2

≤ 2
N∑
k=1

(
Eξ[N ]

f (xk)− Eξ[N ]
f (xk+1)

)
(2− Lγk)

+ 2
N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)(
γk + Lγ2

k

2− Lγk

)
B

+ L

N∑
k=1

γ2
k

(2− Lγk)

[
dc2

1η
4
k + 2dc1c3

ηk√
mk

+
dc2

3

η2
kmk

+
c2

η2
k

]

= 2

[
f (x1)

(2− Lγ1)
−

N∑
k=2

(
1

(2− Lγk−1)
− 1

(2− Lγk)

)
Eξ[N ]

f (xk)−
Eξ[N ]

f (xN+1)

(2− LγN)

]

+ 2
N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)(
γk + Lγ2

k

2− Lγk

)
B
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+ L

N∑
k=1

γ2
k

(2− Lγk)

[
dc2

1η
4
k + 2dc1c3

ηk√
mk

+
dc2

3

η2
kmk

+
c2

η2
k

]
.

Noting that Eξ[N ]
[f (xk)] ≥ f(x∗), we obtain

N∑
k=1

γkEξ[N ]
‖∇f (xk)‖2

≤ 2

[
f(x1)

(2− Lγ1)
− f(x∗)

N∑
k=2

(
1

(2− Lγk−1)
− 1

(2− Lγk)

)
− f(x∗)

(2− LγN)

]

+ 2
N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)(
γk + Lγ2

k

2− Lγk

)
B

+ L

N∑
k=1

γ2
k

(2− Lγk)

[
dc2

1η
4
k + 2dc1c3

ηk√
mk

+
dc2

3

η2
kmk

+
c2

η2
k

]

≤ 2 (f(x1)− f(x∗))

(2− Lγ1)
+ 2

N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)(
γk + Lγ2

k

2− Lγk

)
B

+ L
N∑
k=1

γ2
k

(2− Lγk)

[
dc2

1η
4
k + 2dc1c3

ηk√
mk

+
dc2

3

η2
kmk

+
c2

η2
k

]
.

The last inequality follows from the fact that
(

1
(2−Lγk−1)

− 1
(2−Lγk)

)
≥ 0. The bound in

(4.18) follows by using the distribution of R (specified in (4.17)) in the RHS above.

We now specialize the result obtained in the proposition above, to derive a non-

asymptotic bound for ZRSG with gradients estimated by the SP method with function

estimation error.

Proof. (Theorem 10 (i))

Recall that the stepsize γk, perturbation constant ηk and mini-batch size mk are defined

as follows:

γk = min

{
1

L
,

1

(d2N)2/3

}
, ηk =

1

(d5N)1/6
, and mk = N, ∀k ≥ 1.

(4.24)

Combining (4.17) with (4.18), we obtain

E
[
‖∇f (xR)‖2]
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≤ 1∑N
k=1 γk

[
2 (f(x1)− f(x∗))

(2− Lγ1)
+ 2B

N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)(
γk + Lγ2

k

2− Lγk

)

+L
N∑
k=1

γ2
k

(2− Lγk)

[
dc2

1η
4
k + 2dc1c3

ηk√
mk

+
dc2

3

η2
kmk

+
c2

η2
k

]]

=
1

Nγ

[
2 (f(x1)− f(x∗))

(2− Lγ)
+ 2BN

(
c1η

2 +
c3

η
√
m

)(
γ + Lγ2

2− Lγ

)
+

LNγ2

(2− Lγ)

[
dc2

1η
4 + 2dc1c3

η√
m

+
dc2

3

η2m
+
c2

η2

]]
≤ 1

Nγ

[
2 (f(x1)− f(x∗)) + 4NγB

(
c1η

2 +
c3

η
√
m

)
+LNγ2

[
dc2

1η
4 + 2dc1c3

η√
m

+
dc2

3

η2m
+
c2

η2

]]
(4.25)

=
2 (f(x1)− f(x∗))

Nγ
+ 4B

(
c1η

2 +
c3

η
√
m

)
+ Lγ

[
dc2

1η
4 + 2dc1c3

η√
m

+
dc2

3

η2m
+
c2

η2

]
≤ 2 (f(x1)− f(x∗))

N
max

{
L, (d2N)2/3

}
+ 4B

(
c1

(d5N)1/3
+
c3d

5/6

N1/3

)
+ L

[
dc2

1

(d5N)2/3
+ 2dc1c3

1

d5/6N2/3
+
dd5/6c2

3

N2/3
+
d5/3c2

N−1/3

]
1

(d2N)2/3
(4.26)

=
2L (f(x1)− f(x∗))

N
+

2d4/3 (f(x1)− f(x∗))

N1/3
+ 4B

(
c1

(d5N)1/3
+
c3d

5/6

N1/3

)
+ L

[
c2

1

d7/3N2/3
+ 2c1c3

d1/6

N2/3
+
d11/6c2

3

N2/3
+
d5/3c2

N−1/3

]
1

(d2N)2/3

=
2L (f(x1)− f(x∗))

N
+

1

N1/3

[
2d4/3 (f(x1)− f(x∗)) + 4B

( c1

d5/3
+ c3d

5/6
)

+
Lc2

1

d11/3N
+ 2Lc1c3

1

d7/6N
+
Lc2

3d
1/2

N
+ Lc2d

1/3

]
.

In the above, inequality (4.25) follows by using the fact that γ ≤ 1/L, and the inequality

(4.26) follows by using the definition of γ, η and m.

Now, we specialize the result in (4.18) for increasing batch size i.e., mk = kβ for

some constant β > 0.

Proof. (Theorem 10 (ii))

Recall the stepsize γk and perturbation constant ηk from equation (4.24). Combining

(4.17) with (4.18), we obtain

E
[
‖∇f (xR)‖2]
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≤ 1∑N
k=1 γk

[
2 (f(x1)− f(x∗))

(2− Lγ1)
+ 2B

N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)(
γk + Lγ2

k

2− Lγk

)

+L
N∑
k=1

γ2
k

(2− Lγk)

[
dc2

1η
4
k + 2dc1c3

ηk√
mk

+
dc2

3

η2
kmk

+
c2

η2
k

]]

=
1

Nγ

[
2 (f(x1)− f(x∗))

(2− Lγ)
+ 2B

N∑
k=1

(
c1η

2 +
c3

η
√
kβ

)(
γ + Lγ2

2− Lγ

)

+L
N∑
k=1

γ2

(2− Lγ)

[
dc2

1η
4 + 2dc1c3

η√
kβ

+
dc2

3

η2kβ
+
c2

η2

]]

≤ 1

Nγ

[
2 (f(x1)− f(x∗)) + 4NγBc1η

2 +
4γBc3

η

N∑
k=1

k−
β
2 + LNγ2

[
dc2

1η
4 +

c2

η2

]

+2Ldγ2c1c3η
N∑
k=1

k−
β
2 +

Ldγ2c2
3

η2

N∑
k=1

k−β

]
(4.27)

≤ 2 (f(x1)− f(x∗))

Nγ
+ 4Bc1η

2 +
4Bc3

Nη

∫ N

0

x−
β
2 dx+ Lγ

[
dc2

1η
4 +

c2

η2

]
+

2Ldγc1c3η

N

∫ N

0

x−
β
2 dx+

Ldγc2
3

Nη2

∫ N

0

x−βdx

=
2 (f(x1)− f(x∗))

Nγ
+ 4Bc1η

2 +
4Bc3

Nη

(
N−

β
2

+1

−β
2

+ 1

)
+ Lγ

[
dc2

1η
4 +

c2

η2

]

+
2Ldγc1c3η

N

(
N−

β
2

+1

−β
2

+ 1

)
+
Ldγc2

3

Nη2

(
N−β+1

−β + 1

)

=
2 (f(x1)− f(x∗))

Nγ
+ 4Bc1η

2 +
4Bc3N

−β
2

η
(
−β

2
+ 1
) + Lγ

[
dc2

1η
4 +

c2

η2

]
+

2Ldγc1c3ηN
−β

2(
−β

2
+ 1
) +

Ldγc2
3N
−β

η2 (−β + 1)

≤ 2 (f(x1)− f(x∗))

N
max

{
L, (d2N)2/3

}
+

4Bc1

(d5N)1/3
+

4Bc3N
−β

2 (d5N)1/6(
−β

2
+ 1
)

+
L

(d2N)2/3

[
dc2

1

(d5N)2/3
+ c2(d5N)1/3 +

2dc1c3

(d5N)1/6N
β
2

(
−β

2
+ 1
) +

dc2
3(d5N)1/3

Nβ (−β + 1)

]
(4.28)

=
2L (f(x1)− f(x∗))

N
+

2d4/3 (f(x1)− f(x∗))

N1/3
+

4Bc1

(d5N)1/3
+

4Bc3d
5/6

N
3β−1

6

(
−β

2
+ 1
)

+
L

(d2N)2/3

[
c2

1

N2/3d7/3
+ c2(d5N)1/3 +

2c1c3d
1/6

N
3β+1

6

(
−β

2
+ 1
) +

c2
3d

8/3

N
3β−1

3 (−β + 1)

]

=
2L (f(x1)− f(x∗))

N
+

1

N1/3

[
2d4/3 (f(x1)− f(x∗)) +

4Bc1

d5/3
+

4Bc3d
5/6

N
3β−1

6

(
−β

2
+ 1
)

+
Lc2

1

Nd11/3
+ Lc2d

1/3 +
2Lc1c3

d7/6N
3β+5

6

(
−β

2
+ 1
) +

Lc2
3d

4/3

N
3β+1

3 (−β + 1)

]
.
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In the above, inequality (4.27) follows by using the fact that γ ≤ 1/L, and the inequality

(4.28) follows by using the definition of γ, η and m.

Proof of Theorem 9

Proof. (Theorem 9)

Proof follows in a similar manner as that of Theorem 10(i) in Section 4.6.1 after setting

mk =∞,∀k ≥ 1 or c3 = 0.

4.6.2 Proofs for Stochastic Non-Convex Optimization: ZRSQN

We prove Theorem 12 first, and Theorem 11 would follow through a simple modifica-

tion to the proof of Theorem 12.

Proof of Theorem 12

In the proposition below, we state and prove a general result that holds for any choice of

non-increasing stepsize sequence, perturbation constants and batch sizes. Subsequently,

we specialize the result for the choice of parameters suggested in Theorem 12, to prove

the same.

(Wang et al., 2017) has a result in Theorem 2.4 for an unbiased gradient/Hessian

oracle, however, our proof involves significant deviations owing to the fact that we

employ biased gradient/Hessian oracle. Further, the simultaneous perturbation method

has a variance in gradient estimates that scales inversely with perturbation constant ηk.

Proposition 2. Assume (A2) and (A3). With the oracle (O4), suppose that the

ZRSQN algorithm is run with a non-increasing stepsize sequence satisfying 0 < γk ≤
2Cl−1
ΛC2

u
,∀k ≥ 1 and with the probability mass function PR(·) as defined in (4.17), then,

for any N ≥ 1, we have

E
[
‖∇f (xR)‖2]
≤ 1∑N

k=1 γk

[
2Df

(2Cl − Λγ1C2
u)
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+2B
N∑
k=1

γk

[
Bc
′
1η

2
k + Bc3

ηk
√
mk

+
(
c1η

2
k + c3

ηk
√
mk

)(
Cl + dc

′
1η

2
k + dc3

ηk
√
mk

+ ΛC2
uγk

)]
(2Cl − ΛγkC2

u)

+
N∑
k=1

ΛC2
uγ

2
k

(2Cl − ΛγkC2
u)

[
d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]]
, (4.29)

where constants c1, c
′
1, c2 and c3 are as defined in (O4), Λ, Cl, Cu is as defined in (A3),

B is as defined in (A2), and Df as defined in (4.5).

Proof. First, notice that

‖xk+1 − xk‖ = ‖ΠW (xk − γkH (xk, ξk,mk) g(xk, ξk,mk))− xk‖

≤ ‖xk − γkH (xk, ξk,mk) g (xk, ξk,mk)− xk‖ (4.30)

= −γk‖H (xk, ξk,mk) g (xk, ξk,mk) ‖.

The inequality in (4.30) holds because xk is already in the convex setW and ΠW is a

non-expansive projection operator. Now, under assumption (A3), we have

f (xk+1)

≤ f (xk) + 〈∇f (xk) , xk+1 − xk〉+
1

2
〈(xk+1 − xk),∇2f(xk)(xk+1 − xk)〉

≤ f (xk) + 〈∇f (xk) , xk+1 − xk〉+
Λ

2
‖xk+1 − xk‖2

= f (xk)− γk 〈∇f (xk) , H(xk, ξk,mk)g(xk, ξk,mk)〉

+
Λ

2
γ2
k ‖H(xk, ξk,mk)g(xk, ξk,mk)‖2

≤ f (xk)− γk 〈∇f (xk) , H(xk, ξk,mk)g(xk, ξk,mk)〉+
Λ

2
γ2
kC

2
u ‖g(xk, ξk,mk)‖2 .

(4.31)

Taking expectations with respect to ξ[k] on both sides of (4.31) and using (4.20) and

(4.21), we obtain

Eξ[k]
[f (xk+1)]

≤ Eξ[k]
[f (xk)]− γk

〈
Eξ[k]

[∇f (xk)],Eξ[k]
[H(xk, ξk,mk)g(xk, ξk,mk)]

〉
+

Λ

2
C2
uγ

2
k

[∥∥∥Eξ[k]
[g (xk, ξk,mk)]

∥∥∥2

+
c2

η2
k

]
≤ Eξ[k]

[f (xk)]− γk
〈
Eξ[k]

[∇f (xk)],Eξ[k]
[H(xk, ξk,mk)g(xk, ξk,mk)]

〉
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+
Λ

2
C2
uγ

2
k

[
‖∇f (xk)‖2 + 2

(
c1η

2
k +

c3

ηk
√
mk

)
Eξ[k]
‖∇f (xk) ‖1

+ d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]
.

Noting that we make calls to the oracle (O4), to obtain

H(xk, ξk,mk) and g(xk, ξk,mk), and assuming independence be-

tween them, we have Eξk [H(xk, ξk,mk)g(xk, ξk,mk)|ξ[k−1]] =

Eξk [H(xk, ξk,mk)|ξ[k−1]]Eξk [g(xk, ξk,mk)|ξ[k−1]] ≤ (H(xk) + c
′
1η

2
k1d×d +

c3
ηk
√
mk

1d×d)(∇f(xk) + c1η
2
k1d×1 + c3

ηk
√
mk

1d×1) = (H(xk) + c
′
1η

2
k1d×d +

c3
ηk
√
mk

1d×d)∇f(xk) + (H(xk) + c
′
1η

2
k1d×d + c3

ηk
√
mk

1d×d)(c1η
2
k1d×1 + c3

ηk
√
mk

1d×1).

Plugging this equality in the equation above and noting (A3), we obtain

Eξ[k]
[f (xk+1)]

≤ Eξ[k]
[f (xk)]− γkClEξ[k]

‖∇f (xk)‖2 +

(
c
′

1η
2
k +

c3

ηk
√
mk

)
γkEξ[k]

[
‖∇f (xk) ‖2

1

]
+

(
c1η

2
k +

c3

ηk
√
mk

)(
Cl + dc

′

1η
2
k +

dc3

ηk
√
mk

)
γkEξ[k]

[‖∇f (xk) ‖1]

+
Λ

2
C2
uγ

2
k

[
‖∇f (xk)‖2 + 2

(
c1η

2
k +

c3

ηk
√
mk

)
Eξ[k]
‖∇f (xk) ‖1

+ d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]
,

where we have used the fact that −‖X‖1 ≤
∑d

i=1 xi for any vector X . Let ∆Hk =

c
′
1η

2
k + c3

ηk
√
mk

and ∆gk = c1η
2
k + c3

ηk
√
mk

, then using the fact that ‖∇f (xk) ‖1 ≤ B, we

have

Eξ[k]
[f (xk+1)]

≤ Eξ[k]
[f (xk)]− γkClEξ[k]

∥∥∇f (x[k]

)∥∥2
+ ∆HkγkB

2 + ∆gk (Cl + d∆Hk) γkB

+
Λ

2
C2
uγ

2
k

[
‖∇f (xk)‖2 + 2∆gkB + d∆g2

k +
c2

η2
k

]
= f (xk)−

(
γkCl −

ΛC2
uγ

2
k

2

)
‖∇f (xk)‖2

+ γkB
(
∆HkB + ∆gk(Cl + d∆Hk + ΛC2

uγk)
)

+
Λ

2
C2
uγ

2
k

[
d∆g2

k +
c2

η2
k

]
.

Re-arranging the terms, we obtain

(
γkCl −

ΛC2
u

2
γ2
k

)
‖∇f (xk)‖2
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≤ f (xk)− Eξk [f (xk+1)] + γkB
(
∆HkB + ∆gk(Cl + d∆Hk + ΛC2

uγk)
)

+
Λ

2
C2
uγ

2
k

[
d∆g2

k +
c2

η2
k

]
γk ‖∇f (xk)‖2

≤ 2

(2Cl − ΛγkC2
u)

[f (xk)− Eξk [f (xk+1)]]

+
2γkB (∆HkB + ∆gk(Cl + d∆Hk + ΛC2

uγk))

(2Cl − ΛγkC2
u)

+
ΛC2

uγ
2
k

(2Cl − ΛγkC2
u)

[
d∆g2

k +
c2

η2
k

]
.

Now, summing up the inequality above over k = 1 to N , and taking expectations, we

obtain

N∑
k=1

γkEξ[N ]
‖∇f (xk)‖2

≤ 2
N∑
k=1

(
Eξ[N ]

[f (xk)]− Eξ[N ]
[f (xk+1)]

)
(2Cl − ΛγkC2

u)

+
N∑
k=1

2γkB (∆HkB + ∆gk(Cl + d∆Hk + ΛC2
uγk))

(2Cl − ΛγkC2
u)

+
N∑
k=1

ΛC2
uγ

2
k

(2Cl − ΛγkC2
u)

[
d∆g2

k +
c2

η2
k

]

= 2

[
f (x1)

(2Cl − Λγ1C2
u)
−

N∑
k=2

( Eξ[N ]
f (xk)

(2Cl − Λγk−1C2
u)
−

Eξ[N ]
f (xk)

(2Cl − ΛγkC2
u)

)

−
Eξ[N ]

[f (xN+1)]

(2Cl − ΛγNC2
u)

]
+

N∑
k=1

2γkB (∆HkB + ∆gk(Cl + d∆Hk + ΛC2
uγk))

(2Cl − ΛγkC2
u)

+
N∑
k=1

ΛC2
uγ

2
k

(2Cl − ΛγkC2
u)

[
d∆g2

k +
c2

η2
k

]
.

Note that , and Eξ[N ]
[f (xk)] ≥ f(x∗). Using these facts, we obtain

N∑
k=1

γkEξ[N ]
‖∇f (xk)‖2

≤ 2

[
f (x1)

(2Cl − Λγ1C2
u)
− f(x∗)

N∑
k=2

(
1

(2Cl − Λγk−1C2
u)
− 1

(2Cl − ΛγkC2
u)

)

− f(x∗)

(2Cl − ΛγNC2
u)

]
+

N∑
k=1

2γkB (∆HkB + ∆gk(Cl + d∆Hk + ΛC2
uγk))

(2Cl − ΛγkC2
u)

+
N∑
k=1

ΛC2
uγ

2
k

(2Cl − ΛγkC2
u)

[
d∆g2

k +
c2

η2
k

]
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=
2 (f(x1)− f(x∗))

(2Cl − Λγ1C2
u)

+
N∑
k=1

2γkB (∆HkB + ∆gk(Cl + d∆Hk + ΛC2
uγk))

(2Cl − ΛγkC2
u)

+
N∑
k=1

ΛC2
uγ

2
k

(2Cl − ΛγkC2
u)

[
d∆g2

k +
c2

η2
k

]
.

The last inequality follows from the fact that
(

1
(2Cl−Λγk−1C2

u)
− 1

(2Cl−ΛγkC2
u)

)
≥ 0. The

bound in (4.29) follows by using the distribution of R (specified in (4.17)), and plugging

∆Hk and ∆gk in the RHS above.

We now specialize the result obtained in the proposition above, to derive a non-

asymptotic bound for ZRSQN with gradients and Hessian estimates provided by (O4).

Proof. (Theorem 12)

Recall that the stepsize γk, perturbation constant ηk and mini-batch size mk are defined

as follows:

γk = min

{
2Cl − 1

ΛC2
u

,
1

(d2N)2/3

}
, ηk =

1

(d5N)1/6
, and mk = N, ∀k ≥ 1.

(4.32)

Combining (4.17) with (4.29), we obtain

E
[
‖∇f (xR)‖2]
≤ 1∑N

k=1 γk

[
2Df

(2Cl − Λγ1C2
u)

+2B
N∑
k=1

γk

[
Bc
′
1η

2
k + Bc3

ηk
√
mk

+
(
c1η

2
k + c3

ηk
√
mk

)(
Cl + dc

′
1η

2
k + dc3

ηk
√
mk

+ ΛC2
uγk

)]
(2Cl − ΛγkC2

u)

+
N∑
k=1

ΛC2
uγ

2
k

(2Cl − ΛγkC2
u)

[
d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]]

=
1

Nγ

[
2Df

(2Cl − ΛγC2
u)

+2NBγ

[
Bc
′
1η

2 + Bc3
η
√
m

+
(
c1η

2
k + c3

η
√
m

)(
Cl + dc

′
1η

2 + dc3
η
√
m

+ ΛC2
uγ
)]

(2Cl − ΛγC2
u)

+
ΛNC2

uγ
2

(2Cl − ΛγC2
u)

[
d

(
c1η

2 +
c3

η
√
m

)2

+
c2

η2

]]

≤ 1

Nγ

[
2Df + ΛNC2

uγ
2

[
d

(
c1η

2 +
c3

η
√
m

)2

+
c2

η2

]
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+ 2NBγ

[
Bc
′

1η
2 +

Bc3

η
√
m

+

(
c1η

2
k +

c3

η
√
m

)(
Cl + dc

′

1η
2 +

dc3

η
√
m

+ ΛC2
uγ

)]]
(4.33)

=
2Df

Nγ
+ ΛC2

uγ

[
dc2

1η
4 + 2c1c3

η√
m

+
dc2

3

η2m
+
c2

η2

]
+ 2B

(
Bc
′

1η
2 +

Bc3

η
√
m

+ 3Clc1η
2 + dc1c

′

1η
4 +

dc1c3η√
m

+
3C1c3

η
√
m

+
dc
′
1c3η√
m

+
dc2

3

η2m

)
≤ 2Df

N
max

{
ΛC2

u

2Cl − 1
, (d2N)2/3

}
+ ΛC2

u

[
dc2

1

(d5N)2/3
+

2dc1c3

d5/6N2/3
+
dd5/3c2

3

N2/3
+ c2d

5/3N1/3

]
1

(d2N)2/3

+ 2B

(
Bc
′
1

(d5N)1/3
+
Bc3d

5/6

N1/3
+

3Clc1

(d5N)1/3
+

dc1c
′
1

(d5N)2/3
+

dc1c3

d5/6N2/3

+
3C1c3d

5/6

N1/3
+

dc
′
1c3

d5/6N2/3
+
dd5/3c2

3

N2/3

)
(4.34)

≤ 2ΛC2
uDf

2NCl −N
+

2Dfd
4/3

N1/3

+ ΛC2
u

[
c2

1

d11/3N4/3
+

2c1c3

d7/6N4/3
+
d4/3c2

3

N4/3
+
c2d

1/3

N1/3

]
+ 2B

(
Bc
′
1

(d5N)1/3
+
Bc3d

5/6

N1/3
+

3Clc1

(d5N)1/3
+

c1c
′
1

d7/3N2/3
+
d1/6c1c3

N2/3

+
3C1c3d

5/6

N1/3
+
d1/6c

′
1c3

N2/3
+
d8/3c2

3

N2/3

)
=

2ΛC2
uDf

2NCl −N
+

1

N1/3

[
2Dfd

4/3 + ΛC2
u

(
c2

1

d11/3N
+

2c1c3

d7/6N
+
d4/3c2

3

N
+ c2d

1/3

)
+2B

(
Bc
′
1

d5/3
+Bc3d

5/6 +
3Clc1

d5/3
+

c1c
′
1

d7/3N1/3
+
d1/6c1c3

N1/3

+3C1c3d
5/6 +

d1/6c
′
1c3

N1/3
+
d8/3c2

3

N1/3

)]
.

In the above, inequality (4.33) follows by using the fact that γ ≤ 1/L, and the inequality

(4.34) follows by using the definition of γ, η and m.

Proof of Theorem 11

Proof. (Theorem 11)

Proof follows in a similar manner as that of Theorem 12 in Section 4.6.2 after setting

mk =∞,∀k ≥ 1 or c3 = 0.
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4.6.3 Proofs for Stochastic Convex Optimization: ZRSG

We prove Theorem 14 first, and Theorem 13 would follow through a simple modifica-

tion to the proof of Theorem 14.

Proof of Theorem 14

In the proposition below, we state and prove a general result that holds for any choice of

non-increasing stepsize sequence, perturbation constants and batch sizes. Subsequently,

we specialize the result for the choice of parameters suggested in Theorem 14 and 18,

to prove the same.

Proposition 3. Assume (A1) and (A5). With the oracle (O2), suppose that the ZRSG al-

gorithm is run with a non-increasing stepsize sequence satisfying 0 < γk ≤ 1/L,∀k ≥

1 and with the probability mass function PR(·) as defined in (4.17), then, for anyN ≥ 1,

we have

E [f (xR)]− f(x∗)

≤ 1∑N
k=1 γk

[
D2

(2− Lγ1)
+ 2
√
dD

N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)
(γk + Lγ2

k)

(2− Lγk)

+
N∑
k=1

γ2
k

(2− Lγk)

(
d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

)]
, (4.35)

where constants c1, c2 and c3 are as defined in (O2), and D as defined in (A5).

Proof. Let ωk = ‖xk − x∗‖ for any xk ∈ W . Then for any k = 1, . . . , N , we have,

ω2
k+1 = ‖xk+1 − x∗‖2

= ‖ΠW (xk − γkg(xk, ξk,mk))− x∗‖2

≤ ‖xk − γkg (xk, ξk,mk)− x∗‖2 (4.36)

= ω2
k − 2γk 〈g (xk, ξk,mk) , xk − x∗〉+ γ2

k ‖g (xk, ξk,mk)‖2 . (4.37)

The inequality in (4.36) holds because x∗ is already in the convex set W

and ΠW is a non-expansive projection operator. Taking expectations with re-

spect to ξ[k] on both sides of (4.37), and using (i) Eξ[k]
[g (xk, ξk,mk)] =
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Eξk
[
g (xk, ξk,mk) |ξ[k−1]

]
= Eξk [g (xk, ξk,mk) |xk] ≤ ∇f (xk) + c1η

2
k1d×1 +

c3
ηk
√
mk

1d×1, and (ii) Eξ[k]

[
‖g (xk, ξk,mk)‖2] ≤ ∥∥∥Eξ[k]

[g (xk, ξk,mk)]
∥∥∥2

+ c2/η
2
k, we

obtain

E[ω2
k+1] ≤ E[ω2

k]− 2γk

〈
∇f (xk) + c1η

2
k1d×1 +

c3

ηk
√
mk

1d×1, xk − x∗
〉

+ γ2
k

[ ∥∥∥Eξ[k]
[g (xk, ξk,mk)]

∥∥∥2

+
c2

η2
k

]
≤ E[ω2

k]− 2γk

〈
∇f (xk) + c1η

2
k1d×1 +

c3

ηk
√
mk

1d×1, xk − x∗
〉

+ γ2
k

[
‖∇f (xk) ‖2 + 2

√
d

(
c1η

2
k +

c3

ηk
√
mk

)
‖∇f (xk) ‖

+ d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]
.

Using the fact that f(·) is convex, we have ‖∇f (xk)‖2 ≤ L 〈∇f (xk) , xk − x∗〉, further

from (A1) and (A5), we have ‖∇f(xk)‖ ≤ L‖xk − x∗‖ ≤ LD. Plugging it in equation

above, we obtain,

E[ω2
k+1]

≤ E[ω2
k]− 2γk

〈
∇f (xk) + c1η

2
k1d×1 +

c3

ηk
√
mk

1d×1, xk − x∗
〉

+ γ2
k

[
L 〈∇f (xk) , xk − x∗〉+ 2

√
dLD

(
c1η

2
k +

c3

ηk
√
mk

)
+ d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]
≤ E[ω2

k]− (2γk − Lγ2
k) 〈∇f (xk) , xk − x∗〉+ 2γk

(
c1η

2
k +

c3

ηk
√
mk

)
‖xk − xk0‖1

+ γ2
k

[
2
√
dLD

(
c1η

2
k +

c3

ηk
√
mk

)
+ d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]
≤ E[ω2

k]− (2γk − Lγ2
k) [f (xk)− f(x∗)] + 2

√
dD(γk + Lγ2

k)

(
c1η

2
k +

c3

ηk
√
mk

)
+ γ2

k

[
d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]
,

where the second inequality follows from the fact that −
∑d

i=1 xi ≤ ‖X‖1 for any

vector X , and the last inequality follows from the fact that f(·) is convex along with

‖X‖1 ≤
√
d‖X‖ for any vector X . Re-arranging the terms, we obtain

γk [f (xk)− f(x∗)] ≤ 1

(2− Lγk)

[
ω2
k − E[ω2

k+1] + 2
√
dD(γk + Lγ2

k)

(
c1η

2
k +

c3

ηk
√
mk

)
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+ γ2
k

(
d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

)]
.

Now summing up the inequality above from k = 1 to N and taking expectation on both

sides of above equation, we obtain

N∑
k=1

γkEξ[N ]
[f (xk)− f(x∗)]

≤
N∑
k=1

Eξ[N ]
[ω2
k]− Eξ[N ]

[ω2
k+1]

(2− Lγk)
+ 2
√
dD

N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)
(γk + Lγ2

k)

(2− Lγk)

+
N∑
k=1

γ2
k

(2− Lγk)

(
d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

)
.

Using the fact that Eξ[N ]
[ωk] ≥ 0 and Lγk ≤ 1 for all k ≥ 1, we obtain

N∑
k=1

γkEξ[N ]
[f (xk)− f(x∗)]

=

[
ω2

1

(2− Lγ1)
−

N∑
k=2

(
1

(2− Lγk−1)
− 1

(2− Lγk)

)
Eξ[N ]

[
ω2
k

]
−

Eξ[N ]

[
ω2
N+1

]
(2− LγN)

]

+ 2
√
dD

N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)
(γk + Lγ2

k)

(2− Lγk)

+
N∑
k=1

γ2
k

(2− Lγk)

(
d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

)

≤ ω2
1

(2− Lγ1)
+ 2
√
dD

N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)
(γk + Lγ2

k)

(2− Lγk)

+
N∑
k=1

γ2
k

(2− Lγk)

(
d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

)

We conclude by combining the above result with (4.17).

Proof. (Theorem 14)

Recall that the stepsize γk, perturbation constant ηk and mini-batch size mk are defined

as follows:

γk = min

{
1

L
,

1

(d2N)2/3

}
, ηk =

1

(d5N)1/6
, and mk = N, ∀k ≥ 1.

(4.38)
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Combining (4.17) with (4.35), we obtain

E [f (xR)]− f(x∗)

≤ 1∑N
k=1 γk

[
D2

(2− Lγ1)
+ 2
√
dD

N∑
k=1

(
c1η

2
k +

c3

ηk
√
mk

)
(γk + Lγ2

k)

(2− Lγk)

+
N∑
k=1

γ2
k

(2− Lγk)

(
d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

)]

≤ 1

Nγ

[
D2 + 4

√
dDNγ

(
c1η

2 +
c3

η
√
m

)
+Nγ2

(
d

(
c1η

2 +
c3

η
√
m

)2

+
c2

η2

)]
(4.39)

=
D2

Nγ
+ 4
√
dD

(
c1η

2 +
c3

η
√
m

)
+ γ

[
dc2

1η
4 + 2dc1c3

η√
m

+
dc2

3

η2m
+
c2

η2

]
≤ D2

N
max

{
L, (d2N)2/3

}
+ 4
√
dD

(
c1

(d5N)1/3
+
c3d

5/6

N1/3

)
+

1

(d2N)2/3

[
dc2

1

(d5N)2/3
+

2dc1c3

d5/6N2/3
+
dd5/3c2

3

N2/3
+
c2d

5/3

N−1/3

]
(4.40)

=
LD2

N
+

1

N1/3

[
D2d4/3 + 4

√
dD
( c1

d5/3
+ c3d

5/6
)

+
c2

1

d11/3N

+
2c1c3

d7/6N
+
d4/3c2

3

N
+ d1/3c2

]
.

In the above, inequality (4.39) follows by using the fact that γ ≤ 1/L, and the inequality

(4.40) follows by using the definition of γ, η and m.

Proof of Theorem 13

Proof. Proof follows in a similar manner as that of Theorem 14 in Section 4.6.3 after

setting mk =∞,∀k ≥ 1 or c3 = 0.

4.6.4 Proofs for Stochastic Convex Optimization: ZSGD

We prove Theorem 16 first, and Theorem 15 would follow through a simple modifica-

tion to the proof of Theorem 16.
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Proof of Theorem 16

The proof proceeds through a sequence of lemmas. We follow the technique from

(Jain et al., 2019) and prove that the last iterate xN of the ZSGD algorithm has an

optimization error rate of O(N−1/3) with oracle (O2). As mentioned before, the proof

involves significant deviations owing to the fact that unbiased gradient information is

not available, leading to additional terms involving perturbation constants (arising out

of gradient bias), and mini-batch sizes (arising due to estimation errors).

Recall that Ni, l is defined as follows:

Let l := inf{i : N · 2−i ≤ 1},

Ni :=N − dN · 2−ie, 0 ≤ i ≤ l, and Nl+1 := N. (4.41)

Further, when Ni < k ≤ Ni+1, 0 ≤ i ≤ l, stepsize γk, perturbation constant ηk, and

mini-batch size mk is defined as follows:

γk =
C · 2−i√
dN2/3

, ηk =
2−i/4√
dN1/6

and mk = 2iN, (4.42)

where C > 0. Note that, unlike (Jain et al., 2019), parameters ηk and mk are local to

our setting, and due to the inverse scaling of variance in gradient estimates with ηk, the

stepsizes γk chosen is of O( 1
N2/3 ) and not O( 1√

N
).

We divide the proof into phases Ni, let x1, . . . , xN be the output of the ZSGD algo-

rithm. We start with a variant of Lemma 1 from (Jain et al., 2019). In comparison to

their result, our claim below features additional factors involving perturbation constant

ηk and mini-batch size mk owing to the zeroth-order setting we consider.

Lemma 20. Assume (A4) and (A5). With the oracle (O2), suppose that the ZSGD

algorithm is run with stepsize sequence {γk}Nk=1. Then, given any 1 < k0 < k1 ≤ N ,

we have

k1∑
k=k0

2γkE [f (xk)− f(xk0)] ≤
k1∑

k=k0

(
2
√
dγkD

(
c1η

2
k +

c3

ηk
√
mk

)
+ γ2

kG2
k

)
,

where G2
k :=

[
G2+2

√
dG
(
c1η

2
k + c3

ηk
√
mk

)
+d
(
c1η

2
k + c3

ηk
√
mk

)2

+ c2
η2
k

]
, constants c1, c2

is as defined in (O2) and D is as defined in (A5).
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Proof. Let ωk = ‖xk − xk0‖ for any xk ∈ Rd. Then for any k = 1, . . . , N , we have,

ω2
k+1 = ‖xk+1 − xk0‖2

= ‖ΠW (xk − γkg(xk, ξk,mk))− xk0‖2

≤ ‖xk − γkg (xk, ξk,mk)− xk0‖
2 (4.43)

= ω2
k − 2γk 〈g (xk, ξk,mk) , xk − xk0〉+ γ2

k ‖g (xk, ξk,mk)‖2 . (4.44)

The inequality in (4.43) holds because xk0 is already in the convex set W ,

and ΠW is a non-expansive projection operator. Taking expectations with re-

spect to ξ[k] on both sides of (4.44), and using (i) Eξ[k]
[g (xk, ξk,mk)] =

Eξk
[
g (xk, ξk,mk) |ξ[k−1]

]
= Eξk [g (xk, ξk,mk) |xk] ≤ ∇f (xk) + c1η

2
k1d×1 +

c3
ηk
√
mk

1d×1, and (ii) Eξ[k]

[
‖g (xk, ξk,mk)‖2] ≤ ∥∥∥Eξ[k]

[g (xk, ξk,mk)]
∥∥∥2

+ c2/η
2
k, we

obtain

E[ω2
k+1] ≤ E[ω2

k]− 2γk

〈
∇f (xk) + c1η

2
k1d×1 +

c3

ηk
√
mk

1d×1, xk − xk0

〉
+ γ2

k

[ ∥∥∥Eξ[k]
[g (xk, ξk,mk)]

∥∥∥2

+
c2

η2
k

]
≤ E[ω2

k]− 2γk

〈
∇f (xk) + c1η

2
k1d×1 +

c3

ηk
√
mk

1d×1, xk − xk0

〉
+ γ2

k

[
‖∇f (xk) ‖2 + 2

√
d

(
c1η

2
k +

c3

ηk
√
mk

)
‖∇f (xk) ‖

+ d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]
.

Using ‖∇f(x)‖ ≤ G from (A4), we obtain

E[ω2
k+1] ≤ E[ω2

k]− 2γk

〈
∇f (xk) + c1η

2
k1d×1 +

c3

ηk
√
mk

1d×1, xk − xk0

〉
+ γ2

k

[
G2 + 2

√
dG

(
c1η

2
k +

c3

ηk
√
mk

)
+ d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]
≤ E[ω2

k]− 2γk 〈∇f (xk) , xk − xk0〉+ 2γk

(
c1η

2
k +

c3

ηk
√
mk

)
‖xk − xk0‖1

+ γ2
k

[
G2 + 2

√
dG

(
c1η

2
k +

c3

ηk
√
mk

)
+ d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]
≤ E[ω2

k]− 2γk [f (xk)− f(xk0)] + 2
√
dγkωk

(
c1η

2
k +

c3

ηk
√
mk

)
+ γ2

k

[
G2 + 2

√
dG

(
c1η

2
k +

c3

ηk
√
mk

)
+ d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]
,
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where the second inequality follows from the fact that −
∑d

i=1 xi ≤ ‖X‖1 for any

vector X , and the last inequality follows from the fact that f(·) is convex along with

‖X‖1 ≤
√
d‖X‖ for any vector X . Re-arranging the terms, we obtain

2γk [f (xk)− f(xk0)] ≤ E[ω2
k]− E[ω2

k+1] + 2
√
dγkωk

(
c1η

2
k +

c3

ηk
√
mk

)
+ γ2

k

[
G2 + 2

√
dG

(
c1η

2
k +

c3

ηk
√
mk

)
+ d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

]
.

Summing the above over k = k0 to k1, taking expectations, and using (A5), i.e.,

‖x1 − x∗‖ ≤ D, we conclude

k1∑
k=k0

2γkE [f (xk)− f(xk0)] ≤
k1∑

k=k0

(
2
√
dγkD

(
c1η

2
k +

c3

ηk
√
mk

)
+ γ2

k

[
G2 + 2

√
dG

(
c1η

2
k +

c3

ηk
√
mk

)
+ d

(
c1η

2
k +

c3

ηk
√
mk

)2

+
c2

η2
k

])
.

Lemma 21. Under conditions of Lemma 20, with γk = γ, ηk = η,∀k ≥ 1, for any

N ≥ 1, we have

N∑
k=1

E [f (xk)− f (x∗)] ≤ D2

2γ
+ 2ND

√
d

(
c1η

2 +
c3

η
√
m

)
,

where c1 is as defined in (O2), G is as defined in (A4) and D is as defined in (A5).

Proof. Let ∆gk := g(xk, ξk,mk)−∇f(xk) and yk+1 = xk − γk (∇f(xk) + ∆gk), then

we have xk+1 = ΠX (yk+1). Using the definition of convexity, we obtain

f (xk)− f (x∗)

≤ ∇f(xk)
> (xk − x∗)

=

(
xk − yk+1

γk
−∆gk

)>
(xk − x∗)

=
1

γk
(xk − yk+1 − γk∆gk)> (xk − x∗)
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=
1

2γk

(
‖xk − x∗‖2 + ‖xk − yk+1 − γk∆gk‖2 − ‖yk+1 − x∗ + γk∆gk‖2) (4.45)

=
1

2γk

(
‖xk − x∗‖2 − ‖yk+1 − x∗ + γk∆gk‖2)+

γk
2
‖∇f(xk)‖2 ,

where we have used the identity 2a>b = ‖a‖2 + ‖b‖2 − ‖a − b‖2 in arriving at the

equality in (4.45). Using ‖∇f(xk)‖2 ≤ G2, we have

f (xk)− f (x∗)

≤ 1

2γk

(
‖xk − x∗‖2 − ‖yk+1 − x∗ + γk∆gk‖2)+

γkG
2

2

=
1

2γk

(
‖xk − x∗‖2 − ‖yk+1 − x∗‖2 − γ2

k‖∆gk‖2 − 2γk(yk+1 − x∗)T∆gk
)

+
γkG

2

2

≤ 1

2γk

(
‖xk − x∗‖2 − ‖yk+1 − x∗‖2 − 2γk(yk+1 − x∗)T∆gk

)
+
γkG

2

2
.

Taking expectations and using ‖yk+1 − x∗‖ ≥ ‖xk+1 − x∗‖ (see Lemma 3.1 in

(Bubeck, 2015)), we obtain

E[f (xk)− f (x∗)]

≤ 1

2γk

(
E[‖xk − x∗‖2]− E[‖xk+1 − x∗‖2]

− 2γkE
[
(yk+1 − x∗)T

(
c1η

2
k1d×1 +

c3

ηk
√
mk

1d×1

)])
+
γkG

2

2

≤ 1

2γk

(
E[‖xk − x∗‖2]− E[‖xk+1 − x∗‖2]

+ 2

(
c1η

2
k +

c3

ηk
√
mk

)
γkE[‖yk+1 − x∗‖1]

)
+
γkG

2

2

≤ 1

2γk

(
E[‖xk − x∗‖2]− E[‖xk+1 − x∗‖2]

+ 2

(
c1η

2
k +

c3

ηk
√
mk

)
γk
√
dE[‖xk+1 − x∗‖]

)
+
γkG

2

2
. (4.46)

In the above, the second inequality follows from the fact that −
∑d

i=1 xi ≤ ‖X‖1 for

any vector X , and the last inequality follows from the fact that ‖X‖1 ≤
√
d‖X‖ for

any vector X . Summing (4.46) over k, with γk = γ, ηk = η,∀k ≥ 1, and using

‖x1 − x∗‖ ≤ D, we conclude

N∑
k=1

E [f (xk)− f (x∗)] ≤ D2

2γ
+ 2ND

√
d

(
c1η

2 +
c3

η
√
m

)
+
γNG2

2
.
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Proof. (Theorem 16)

Recall the definition of Ni, l from equation (4.41) and let ni, 0 ≤ i ≤ l + 1 be defined

as follows:

ni = arg inf
Ni<k≤Ni+1

E[f(xk)], i ∈ [l + 1], and n0 = arg inf
dN

4
e≤k≤N1

E[f(xk)]. (4.47)

We split the horizon N into l phases, then to show that the function value for the final

iterate xN in the last phase (Nl+1 = N ) is close to optima f(x∗). Using the fact that

nl+1 = N , we have

E[f(xN)] = E[f(xnl+1
)] = E[f(xn0)] +

l∑
i=0

E[f(xni+1
)− f(xni)]. (4.48)

Now to bound E[f(xni+1
) − f(xni)], we first consider the case when i ≥ 1. Using

Lemma 20 with k0 = ni and k1 = Ni+2, we obtain

∑Ni+2

k=ni
2γkE [f(xk)− f(xni)]

Ni+2 − ni + 1

≤

∑Ni+2

k=ni

(
2
√
dγkD

(
c1η

2
k + c3

ηk
√
mk

)
+ γ2

kG2
k

)
Ni+2 − ni + 1

≤ 2
√
dγNi+1

D

(
c1η

2
Ni+1

+
c3

ηNi+1

√
mNi+1

)
+ G2

Ni+1
γ2
Ni+1

(4.49)

= 2
√
dγNi+1

D

(
c1η

2
Ni+1

+
c3

ηNi+1

√
mNi+1

)

+ γ2
Ni+1

[
G2 + 2

√
dG

(
c1η

2
Ni+1

+
c3

ηNi+1

√
mNi+1

)

+ d

(
c1η

2
Ni+1

+
c3

ηNi+1

√
mNi+1

)2

+
c2

η2
Ni+1

]
=

2c1DC2−3i/2

dN
+

2
√
dDCc32−5i/4

N
+

2−2iC2

dN4/3

[
G2 +

2c1G2−i/2√
dN1/3

+
2dc1Gc32−i/4

N1/3
+
c2

12−i

dN2/3
+

2
√
dc1c32−3i/4

N2/3
+
d2c2

32−i/2

N2/3
+
dc2N

1/3

2−i/2

]
. (4.50)

The inequality in (4.49) follows from the fact that γk and ηk are decaying in a phase-

dependent manner (see (4.42)). Note that from the definition of ni, E[f(xk)−f(xni)] ≥
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0 whenever Ni < k ≤ Ni+1. Thus, we have

∑Ni+2

k=ni
2γkE [f(xk)− f(xni)]

Ni+2 − ni + 1
≥
∑Ni+2

k=Ni+1+1 2γkE [f(xk)− f(xni)]

Ni+2 − ni + 1

≥ 2γNi+2

Ni+2 −Ni+1

Ni+2 −Ni

E
[
f(xni+1

)− f(xni)
]

≥
2γNi+2

5
E
[
f(xni+1

)− f(xni)
]

=
2−iC

5
√
dN2/3

E
[
f(xni+1

)− f(xni)
]
, (4.51)

where the second inequality follows from the assumption that E[f(xni+1
)] ≥ E[f(xni)],

and the fact that Ni+2 − Ni ≥ Ni+2 − ni + 1. The last inequality follows from the

Lemma 4 of (Jain et al., 2019). Combining (4.50) and (4.51), we obtain

E[f(xni+1
)− f(xni)]

≤ 5
√
dN2/3

2−iC

(
2c1DC2−3i/2

dN
+

2
√
dDCc32−5i/4

N
+

2−2iC2

dN4/3

[
G2 +

2c1G2−i/2√
dN1/3

+
2dc1Gc32−i/4

N1/3
+
c2

12−i

dN2/3
+

2
√
dc1c32−3i/4

N2/3
+
d2c2

32−i/2

N2/3
+
dc2N

1/3

2−i/2

])
=

10c1D2−i/2√
dN1/3

+
10dc3D2−i/4

N1/3
+

5C2−i√
dN2/3

[
G2 +

2c1G2−i/2√
dN1/3

+
2dc1Gc32−i/4

N1/3
+
c2

12−i

dN2/3
+

2
√
dc1c32−3i/4

N2/3
+
d2c2

32−i/2

N2/3
+
dc2N

1/3

2−i/2

]
. (4.52)

This completes the proof for the case when i ≥ 1. The proof for the case when i = 0

follows in a similar manner. Plugging (4.52) in (4.48), we obtain

E[f(xN)]

= E[f(xnl+1
)] = E[f(xn0)] +

l∑
i=0

E[f(xni+1
)− f(xni)]

≤ E[f(xn0)] +
10c1D√
dN1/3

+
10dc3D

N1/3
+

5C√
dN2/3

[
G2 +

2c1G√
dN1/3

+
2dc1Gc3

N1/3
+

c2
1

dN2/3
+

2
√
dc1c3

N2/3
+
d2c2

3

N2/3
+ dc2N

1/3

]
+

l∑
i=1

(
10c1D2−i/2√

dN1/3
+

10dc3D2−i/4

N1/3
+

5C2−i√
dN2/3

[
G2 +

2c1G2−i/2√
dN1/3

+
2dc1Gc32−i/4

N1/3
+
c2

12−i

dN2/3
+

2
√
dc1c32−3i/4

N2/3
+
d2c2

32−i/2

N2/3
+
dc2N

1/3

2−i/2

])
≤ E[f(xn0)] +

10c1D√
dN1/3

+
10dc3D

N1/3
+

5CG2

√
dN2/3

+
10Cc1G

dN
+

10
√
dc1CGc3

N
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+
5C(

c21
d

+ 2
√
dc1c3 + d2c2

3)
√
dN4/3

+
5
√
dCc2

N1/3
+

(
25c1D√
dN1/3

+
53dc3D

N1/3
+

5CG2

√
dN2/3

+
10Cc1G

dN
+

10
√
dc1CGc3

N
+

5C(
c21
d

+ 2
√
dc1c3 + d2c2

3)
√
dN4/3

+
12.5
√
dCc2

N1/3

)
= inf
dN

4
e≤k≤N1

E[f(xk)] +
35c1D√
dN1/3

+
63dc3D

N1/3
+

10CG2

√
dN2/3

+
20Cc1G

dN

+
20
√
dc1CGc3

N
+

10C( c1√
d

+ dc3)2

√
dN4/3

+
17.5
√
dCc2

N1/3

= inf
dN

4
e≤k≤N1

E[f(xk)] +
D(35 c1√

d
+ 63dc3)

N1/3
+

10CG2

√
dN2/3

+
20Cc1G(d−1 +

√
dc3)

N
+

10C( c1√
d

+ dc3)2

√
dN4/3

+
17.5
√
dCc2

N1/3
. (4.53)

Note that for all k ≤ N1, we have step size γk = C√
dN2/3 and perturbation parameter

ηk = 1√
dN1/6 . Let xk be the output of ZSGD algorithm, then using the fact that infimum

is smaller than any weighted average, we have

inf
dN

4
e≤k≤N1

E[f(xk)− f(x∗)] ≤ 1

N1 − dN4 e+ 1

N1∑
k=dN

4
e

E[f(xk)− f(x∗)]

≤ 2

N1

N1∑
k=1

E[f(xk)− f(x∗)] (4.54)

≤ 2

N1

[√
dD2N2/3

2C
+

CG2N1

2
√
dN2/3

+
2N1Dc1√
dN1/3

+
2N1dDc3

N1/3

]
(4.55)

=

√
dD2N2/3

CN1

+
CG2

√
dN2/3

+
4Dc1√
dN1/3

+
4dDc3

N1/3

≤ 4
√
dD2N2/3

CN
+

CG2

√
dN2/3

+ +
4Dc1√
dN1/3

+
4dDc3

N1/3

=
1

N1/3

[
4
√
dD2

C
+

CG2

√
dN1/3

+ 4D

(
c1√
d

+ dc3

)]
,

(4.56)

where the inequality in (4.54) follows from the fact that N1 ≤ 2(N1 − dN4 e + 1), the

inequality in (4.55) follows from the Lemma 21 and the final inequality follows from

the fact that N
4
≤ N1 ≤ N

2
. We conclude by plugging (4.56) in (4.53) to obtain

E[f(xN)]− f(x∗)
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≤ 1

N1/3

[
4
√
dD2

C
+

CG2

√
dN1/3

+ 4D

(
c1√
d

+ dc3

)]
+
D(35 c1√

d
+ 63dc3)

N1/3

+
10CG2

√
dN2/3

+
20Cc1G(d−1 +

√
dc3)

N
+

10C( c1√
d

+ dc3)2

√
dN4/3

+
17.5
√
dCc2

N1/3

=
1

N1/3

[
4
√
dD2

C
+

11CG2

√
dN1/3

+D(39c1d
−1 + 67

√
dc3) +

20Cc1G(d−1/2 + dc3)

N2/3

+
10C(c1d

−1/2 + dc3)2

√
dN

+ 17.5
√
dCc2

]
.

Proof of Theorem 15

Proof. (Theorem 15)

Proof follows in a similar manner as that of Theorem 16 in Section 4.6.4 after setting

mk =∞,∀k ≥ 1 or c3 = 0.

4.6.5 Proofs for Gaussian Smoothing method

Proof of Theorem 17

Proof. Following the proof in a similar manner as that of Proposition 1, we obtain

E
[
‖∇f (xR)‖2] ≤ 1∑N

k=1 γk

[
2 (f(x1)− f(x∗))

(2− Lγ1)

+2
N∑
k=1

(
c1ηk +

c3

ηk
√
mk

)(
γk + Lγ2

k

2− Lγk

)
Eξ[N ]
‖∇f (xk) ‖1

+L
N∑
k=1

γ2
k

(2− Lγk)

[
dc2

1η
2
k +

2dc1dc3√
mk

+
c2

3

η2
kmk

+ c2η
2
k + c̃2

]]
.

Then, following the proof in a similar manner as that of Theorem 10, we obtain

E
[
‖∇f (xR)‖2] ≤ 2 (f(x1)− f(x∗))

Nγ
+ 4B

(
c1η +

c3

η
√
m

)
+ Lγ

[
dc2

1η
2 +

2dc1c3√
m

+
dc2

3

η2m
+ c2η

2 + c̃2

]
.

We conclude by plugging values of γ, η, and m as defined in Theorem 17 in the above

equation.
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Proof of Theorem 18

Proof. Following the proof in a similar manner as that of Proposition 3, we obtain

E [f (xR)]− f(x∗) ≤ 1∑N
k=1 γk

[
D2

(2− Lγ1)

+2
√
dD

N∑
k=1

(
c1ηk +

c3

ηk
√
mk

)(
γk + Lγ2

k

2− Lγk

)

+
N∑
k=1

γ2
k

(2− Lγk)

[
dc2

1η
2
k +

2dc1c3√
mk

+
dc2

3

η2
kmk

+ c2η
2
k + c̃2

]]
.

Then, following the proof in a similar manner as that of Theorem 14, we obtain

E [f (xR)]− f(x∗)

≤ D2

Nγ
+ 4
√
dD

(
c1η +

c3

η
√
m

)
+ γ

[
dc2

1η
2 +

2dc1c3√
m

+
dc2

3

η2m
+ c2η

2 + c̃2

]
≤ LD2

N
+

1√
N

[√
dD2 + 4

√
dD
(c1

d
+ c3

)
+

c2
1

d3/2N
+

2c1c3√
dN

+

√
dc2

3

N
+

c2

d5/2N
+

c̃2√
d

]
.

We conclude by plugging values of γ, η andm as defined in (4.15) in the above equation.

Proof of Theorem 19

The proof proceeds through a sequence of lemmas, similar to the proof of Theorem 16

in Section 4.6.4 for the simultaneous perturbation method.

Lemma 22. Assume (A4) and (A5). With the oracle (O1’), suppose that the ZSGD

algorithm is run with stepsize sequence {γk}Nk=1. Then, given any 1 < k0 < k1 ≤ N ,

we have

k1∑
k=k0

2γkE [f (xk)− f(xk0)] ≤
k1∑

k=k0

(
2
√
dγkc1ηkD + γ2

kG2

)
,

where G2 :=

[
G2 + 2

√
dc1ηkG + dc2

1η
2
k + c2η

2
k + c̃2

]
, c1, c2 is as defined in (O1’) and

D is as defined in (A5).
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Proof. Follows by a completely parallel argument to the proof of Lemma 20, after

observing that Eξ[k]
[g (xk, ξk)] ≤ ∇f (xk) + c1ηk1d×1, and Eξ[k]

[
‖g (xk, ξk)‖2] ≤∥∥∥Eξ[k]

[g (xk, ξk)]
∥∥∥2

+ c2η
2
k + c̃2.

Lemma 23. Assume (A4) and (A5). With the oracle (O1’), suppose that the ZSGD

algorithm is run with a constant stepsize and constant perturbation parameter, i.e.,

γk = γ, ηk = η,∀k ≥ 1. Then, for any k ≥ 1, we have

N∑
k=1

E [f (xk)− f (x∗)] ≤ D2

2γ
+
γNG2

2
+ 2Nc1ηD

√
d,

where c1 is as defined in (O1), G is as defined in (A4) and D is as defined in (A5).

Proof. Proof follows in a similar manner as that of Lemma 21, with the following

modification: E[∆gk] = c1ηk1d×1.

Proof. (Theorem 19) Using a parallel argument to the initial passage in the proof of

Theorem 16 leading upto equation (4.52), we obtain

E[f(xni+1
)− f(xni)]

≤ 5
√
dN

2−iC

(
2c1DC2−2i

√
dN3/2

+
2−2iC2

dN

[
G2 +

2c1G2−i

N
+

(dc2
1 + c2)2−2i

dN2
+ c̃2

])
=

10c1D2−i

N
+

5C2−i√
dN

[
G2 +

2c1G2−i

N
+

(dc2
1 + c2)2−2i

dN2
+ c̃2

]
. (4.57)

Plugging (4.57) in (4.48), we get

E[f(xN)] = E[f(xnl+1
)] = E[f(xn0)] +

l∑
i=0

E[f(xni+1
)− f(xni)]

≤ E[f(xn0)] +
10c1D

N
+

5C√
dN

[
G2 +

2c1G

N
+

(dc2
1 + c2)

dN2
+ c̃2

]
+

l∑
i=1

(
10c1D2−i

N
+

5C2−i√
dN

[
G2 +

2c1G2−i

N
+

(dc2
1 + c2)2−2i

dN2
+ c̃2

])
≤ E[f(xn0)] +

10c1D

N
+

5CG2

√
dN

+
10Cc1G√
dN3/2

+
5C(dc2

1 + c2)

d3/2N5/2
+

5Cc̃2√
dN

+

(
10c1D

N
+

5CG2

√
dN

+
10Cc1G√
dN3/2

+
5C(dc2

1 + c2)

d3/2N5/2
+

5Cc̃2√
dN

)
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≤ inf
dN

4
e≤k≤N1

E[f(xk)] +
20c1D

N
+

10CG2

√
dN

+
20Cc1G√
dN3/2

+
10C(dc2

1 + c2)

d3/2N5/2
+

10Cc̃2√
dN

. (4.58)

As in the proof of Theorem 16, we obtain

inf
dN

4
e≤k≤N1

E[f(xk)− f(x∗)] ≤ 1

N1 − dN4 e+ 1

N1∑
k=dN

4
e

E[f(xk)− f(x∗)]

≤ 2

N1

N1∑
k=1

E[f(xk)− f(x∗)]

≤ 2

N1

[
D2
√
dN

2C
+
CG2N1

2
√
dN

+
2N1c1D

N

]

=
D2
√
dN

CN1

+
CG2

√
dN

+
4c1D

N

≤ 4D2
√
dN

CN
+
CG2

√
dN

+
4c1D

N

=
1√
N

[
4D2
√
d

C
+
CG2

√
d

+
4c1D√
N

]
, (4.59)

where the second inequality follows from the fact that N1 ≤ 2(N1 − dN4 e + 1), third

inequality follows from the Lemma 23 and the final inequality follows from the fact

that N
4
≤ N1 ≤ N

2
. We conclude by plugging (4.59) in (4.58) to obtain

E[f(xN)]− f(x∗)

≤ 1√
N

[
4D2
√
d

C
+
CG2

√
d

+
4c1D√
N

]

+
20c1D

N
+

10CG2

√
dN

+
20Cc1G√
dN3/2

+
10C(dc2

1 + c2)

d3/2N5/2
+

10Cc̃2√
dN

=
1√
N

[
4D2
√
d

C
+

11CG2

√
d

+
24c1D√

N
+

20Cc1G√
dN

+
10C(dc2

1 + c2)

d3/2N2
+

10Cc̃2√
d

]
.
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4.7 Simulation Experiments

4.7.1 Implementation2

We perform simulation experiments to evaluate the performance of the ZRSG and

ZRSQN algorithm in two different settings. In the first setting, unbiased gradi-

ent/Hessian information is available to the ZRSG/ZRSQN algorithm, while in the sec-

ond setting, only biased gradient/Hessian information (albeit with a controllable bias)

is available. We test the performance of the ZRSG/ZRSQN algorithm on two different

objective functions: (i) a support vector machine (SVM) problem that has been used

earlier to test gradient-based schemes under a non-convex objective (cf. (Mason et al.,

2000; Ghadimi and Lan, 2013)); and (ii) a multi-modal function (Miller and Shaw,

1996) that is part of the problems library of simulation optimization toolkit3.

We perform experiments using the GS and SP methods for estimating gradi-

ents/Hessian. We consider the following three estimation variants: (i) GS: This corre-

sponds to the Gaussian smoothing method proposed in (Nesterov and Spokoiny, 2017);

(ii) 1SPSA and 2SPSA: This corresponds to the first- and second-order SPSA algorithm

(Spall, 2000) with Bernoulli perturbations; and (iii) 1RDSA-AsymBer and 2RDSA-

AsymBer: This corresponds to the first- and second-order RDSA algorithm with asym-

metric Bernoulli perturbations (distribution parameter ε is set to 0.0001, see (Prashanth

et al., 2017) ); and (iv) 1RDSA-Perm-DP and 2RDSA-Perm-DP: This is the recently

proposed first- and second-order variant of RDSA, where the perturbations are non-

random, and instead use the rows of a permutation matrix (Prashanth et al., 2020).

To estimate the problem parameters, namely, L, Λ, σ2, and a bound, say α0, on the

derivative of the objective function, we use an initial i.i.d. sample of size N0 = 200.

We compute the l2-norm of the Hessian of the objective function at 200 randomly se-

lected points, by averaging over N0 samples, and then take the maximum l2-norm of

the Hessian over these points as an estimation of L, Λ. A similar procedure has been

employed in (Ghadimi and Lan, 2013). Similarly, 200 i.i.d. samples of the squared

norm of stochastic gradient of the objective, and third derivative of the objective, re-

spectively, are used to estimate σ2 and α0. For the SVM problem setting, the optima

2The implementation is available at https://github.com/niravnb/
Zeroth-Order-Stochastic-Optimization.

3 http://simopt.org/wiki/index.php?title=A_Multimodal_Function
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x∗ is unknown. However, using the fact that the objective has non-negative optimal

values, i.e., f(x∗) ≥ 0, we infer that Df ≤ f(x1). Using these estimates, we implement

the ZRSG and ZRSQN algorithm with a stepsize and perturbation parameter chosen as

mentioned in Theorem 9 and 11 for different settings.

For performance evaluation, we use the squared norm of the gradient (SNG) at xR

as the performance metric. All results are averages over 50 independent simulations.

4.7.2 (Non-convex) SVM objective function

In our first experiment, we consider the following SVM problem with a non-convex

sigmoid loss function:

min
x∈Rd

{
f(x) := Eu,v[1− tanh(v〈x, u〉)] + λ‖x‖2

}
, (4.60)

for some λ > 0. We consider synthetic data set and two real data sets, namely, heart

disease and banknote authentication data set. In this experiment, we set λ = 0.01

and use 60% of the records as training data and the remaining 40% as testing data for

performance evaluation.

Synthetic data set

Here, we assume that each data point (u, v) is drawn from the uniform distribution on

[0, 1]d × {−1, 1}, where u ∈ Rd is the feature vector and v ∈ {−1, 1} denotes the

corresponding label.

We set the initial point to x1 = 5 ∗ x̄1, where x̄1 was drawn from the uniform

distribution over [0, 1]d. We generated data set of length 10000 using the following

steps: (i) Generate a sparse vector u with 5% nonzero components following the uni-

form distribution on [0, 1]d; (ii) Set v = sign(〈x̄, u〉) for some x̄ ∈ Rd drawn from

the uniform distribution on [−1, 1]d. A similar procedure is employed in (Wang et al.,

2017; Ghadimi and Lan, 2013).

Figure 4.3 present the SNG at xR for the ZRSG and ZRSQN algorithm with unbi-

ased and biased gradients/Hessian for the nonconvex SVM problem (4.60) for d = 50.

The ZRSG/ZRSQN algorithm with unbiased gradient/Hessian outperforms the other
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Figure 4.3: Evolution of the SNG as the iteration limit is varied, for the ZRSG and
ZRSQN algorithm under the non-convex SVM problem (4.60) on synthetic
dataset for d = 50.

algorithms. Among the biased gradient/Hessian methods, 2RDSA-Perm-DP and GS

performed best. Here, also we observe that the second-order methods perform better

than their first-order counterpart. 1SPSA (resp. 2SPSA) and 1RDSA-AsymBer (resp.

2RDSA-AsymBer) exhibited similar performance. Hence, for the sake of readability,

the SNG of 1RDSA-AsymBer and 2RDSA-AsymBer is not shown in the figure.

Heart Disease and Banknote Authentication Data Sets

Heart disease data set was taken from the StatLog database available in the UCI Repos-

itory4. It contains 270 records and 13 distinct attributes belonging to two classes: the

presence or absence of heart disease. Banknote authentication data set was taken from

the UCI Repository5. It contains 1,372 observations (banknotes) and four attributes

belonging to two classes: genuine or counterfeit banknotes.

Figure 4.4a presents the SNG at xR for the ZRSG and ZRSQN algorithms with

unbiased and biased gradients/Hessian for the nonconvex SVM problem (4.60) on the

heart disease data set, while Figure 4.4b compares the same algorithms on the banknote

authentication data set. As expected, ZRSG/ZRSQN algorithms with unbiased gradi-

ent/Hessian information outperform the other algorithms. Among the algorithms using

both (biased) gradient/Hessian information, 2RDSA-Perm-DP performed best, while

4http://archive.ics.uci.edu/ml/datasets/statlog+(heart)
5https://archive.ics.uci.edu/ml/datasets/banknote+authentication
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Figure 4.4: Evolution of the SNG as the iteration limit is varied, for the ZRSG and
ZRSQN algorithm under the non-convex SVM problem.

GS outperformed other algorithm that use gradients, on both datasets. For a given es-

timation method, for instance, Perm-DP, we observe that the quasi-Newton ZRSQN

variant outperforms the gradient RSG variant.

To further evaluate algorithms’ performance, we also report average classification

accuracies on heart disease and banknote authentication datasets evaluated at obtained

classifier xR after 5000 iterations in Table 4.1. The result is consistent with the ones

shown in the above figures, i.e., the ones with the lower SNG give a higher classification

accuracy.

Table 4.1: Average classification accuracies for ZRSG and ZRSQN algorithm on heart
disease and banknote authentication dataset after 5000 iterations.

Method Heart Disease Banknote Authentication

RSG-Unbiased 56.94 58.69

RSQN-Unbiased 57.10 58.70

GS 55.94 56.69

1SPSA 55.87 56.54

2SPSA 55.87 56.61

1RDSA-Perm-DP 55.90 56.69

2RSDA-Perm-DP 56.10 56.69
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4.7.3 Multimodal Function

In our second experiment, we consider the following multimodal objective function F2

studied in (Miller and Shaw, 1996; Xu et al., 2010):

F2(xi) =
sin6(0.05πxi)

22(xi−10

80 )
2 , 0 ≤ xi ≤ 100,

and define the function F (x, ξ) as

F (x, ξ) = −
d∑
i=1

F2 (xi) + d+ ξ, (4.61)

where F (x, ξ) is the sample observation of the objective function corrupted with

zero mean noise ξ. In particular, the noise is [xT , 1]ξ, where ξ is a multivariate Gaussian

distribution with mean zero and covariance σ2I(d+1). A similar noise structure has been

used earlier in the study of SP methods (cf.(Prashanth et al., 2020; Spall, 2000)).

Figure 4.5: A plot of the Multimodal function (4.61), d = 2.

We set σ = 0.3 and use an i.i.d. sample of size T = 10000, to estimate the SNG

at xR for this experiment. The initial point x1 is set to [7, . . . , 7] and the optimal point

x∗ is [10, . . . , 10], with f(x∗) = Eξ[F (x∗, ξ)] = 0. Figure 4.5 shows a plot of the

multimodal function in two dimensions, and it is apparent that this objective has several

widely spaced local minima.

Figure 4.6 presents the SNG at xR for the ZRSG algorithm with unbiased and bi-

ased gradients for d = 5 and d = 10. As in the case of the non-convex SVM objective

function, ZRSG algorithm with unbiased gradients outperforms the other algorithms.
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Figure 4.6: Evolution of the SNG as the iteration limit is varied, for the ZRSG algorithm
under the Multimodal function (4.61) with x1 = [7, . . . , 7]T .

Among the biased gradient methods, GS performed best, and 1RDSA-Perm-DP per-

formed on par with GS, when d = 5 as well as d = 10.

4.8 Summary

We studied gradient-based algorithms for solving stochastic convex and non-convex

optimization problems when only zeroth-order information is available. In the non-

convex case, we derived non-asymptotic bounds for randomized stochastic gradient

and quasi-Newton algorithms in a setting where biased gradient information is made

available. We also proposed and studied a variant of the biased gradient oracle, where

the function measurements include estimation errors. For this oracle, we derived non-

asymptotic bounds, which exhibit rates that match the oracle without estimation errors.

In the convex case, we derived non-asymptotic bounds that hold in expectation for

the last iterate of stochastic gradient descent algorithm, when gradient estimates with

a controllable bias are provided. Our rate for the Gaussian smoothing-based oracle

matches the rate obtained with unbiased gradient information.
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CHAPTER 5

Conclusions and Future Work

In this thesis, we studied two problems in the context of zeroth-order stochastic op-

timization. In the first problem, we incorporated two novel deterministic perturba-

tion (DP) schemes into the random directions stochastic approximation (RDSA) class

of simultaneous perturbation algorithms. We proposed two new DP variants of the

first-order and second-order algorithms. We have shown that the gradient and/or

Hessian estimates are asymptotically unbiased, thus resulting in provably convergent

1RDSA/2RDSA variants. We also derived convergence rates to establish the superi-

ority of the first-order and second-order algorithms, for the special case of a convex

and a quadratic optimization problem, respectively. Finally, we performed numerical

experiments to validate the theoretical findings.

In the second problem, we studied gradient-based algorithms for solving stochas-

tic convex and non-convex optimization problems when given access to a stochastic

zeroth-order oracle, via two techniques: simultaneous perturbation (SP), and Gaussian

smoothing (GS). We also proposed an optimization oracle to capture a setting where the

function measurements have an estimation error that can be controlled. We derived non-

asymptotic bounds for the randomized stochastic gradient and quasi-Newton algorithms

in the non-convex setting and for the last iterate of stochastic gradient descent algorithm

in the convex setting, when gradient/Hessian estimates with a controllable bias are pro-

vided. In both convex and non-convex optimization setting, our bound matches the

state-of-the-art complexity bounds in the literature, further, we provide a guideline for

choosing the batch size for estimation, so that the overall bound matches with the one

obtained when there is no estimation error. Our rate for the GS-based oracle matches

the rate obtained with unbiased gradient information. Finally, we performed simula-

tion experiments on synthetic as well as real-world datasets, and the empirical results

validate the theoretical findings.

As future work, it would be interesting to derive non-asymptotic bounds for the ran-

domized stochastic quasi-Newton algorithm with a GS-based biased gradient/Hessian



oracle. An orthogonal direction of future work is to perform an empirical investiga-

tion of stochastic gradient/Hessian schemes, with parameters chosen according to the

bounds we derived in Chapter 4, on a reinforcement learning benchmark. A related

empirical task is to try the deterministic perturbation variants of RDSA in sophisticated

real-world applications, e.g., in transportation, networks, and service systems.
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