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ABSTRACT

KEYWORDS: Spectral risk measures, Value-at-Risk, Conditional Value-at-Risk,

Estimation technique, Concentration bounds, Bounded distributions,

Gaussian distribution, Exponential distribution.

Traditional approach to sequential decision-making under uncertainity is an optimization

problem to minimize the expected value of the accumulated loss L: minx Ey[L(x, y)],

where x is a vector of decision variables, and y is a random variable drawn from a

loss distribution. However, decision-makers are often risk-averse as they would rather

minimize the chance of having a very low reward than focus purely on the average.

This is a rational behavior when failure can have large consequences. For instance, if

a corporation suffers a disastrous loss, they may go out of business. Or in many cases,

low performance entails safety issues. Hence, it is natural to move beyond average-case

analysis and optimize a risk-aware objective function.

Various risk measures have been proposed in the literature, e.g., mean-variance

tradeoff (Markowitz, 1952), value-at-risk (VaR) and conditional value-at-risk (CVaR)

(Rockafellar et al., 2000; Nski, 2010; Shen et al., 2013), spectral risk measures (SRM)

(Acerbi, 2002), prospect theory (Tversky and Kahneman, 1979) and its later enhancement,

cumulative prospect theory (CPT) (Tversky and Kahneman, 1992).

In this thesis, we consider the problem of estimating SRM from independent and

identically distributed (i.i.d.) samples, and propose a novel method that is based on

numerical integration. We show that our SRM estimate concentrates exponentially, when

the underlying distribution has bounded support. Further, we also consider the case when

the underlying distribution is either Gaussian or exponential, and derive a concentration

bound for our estimation scheme. Further, we specialize our results to handle CVaR,

which is a popular risk measure in finance.

We solve a SRM-sensitive multi-armed bandit (MAB) problem using the best arm

identification (BAI) paradigm. BAI is suitable because of simulation optimization, and
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also the fact that SRM relates to rare events, making samples hard to obtain in real-world

settings. Further, we practically validate our algorithm using SUMO, a state-of-the-art

traffic simulator in a vehicular traffic routing application. Also, we consider a portfolio

optimization application with CVaR-based criteria, and perform simulation experiments

that show the efficacy of the CVaR estimator.
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CHAPTER 1

INTRODUCTION

In the context of risk-sensitive optimization, Conditional Value-at-Risk (CVaR) is a

popular risk measure. CVaR is a conditional expectation of a random variable (r.v.)

that usually models the losses in an application (e.g., finance), where the conditioning

is based on Value-at-Risk (VaR). The latter denotes the maximum loss that could be

incurred, with high probability. CVaR is an appealing risk measure because it is coherent

(Artzner et al., 1999), while VaR is not, as it violates the sub-additivity assumption

required for coherency.

CVaR is a special instance of the class of spectral risk measures (SRM). The ad-

vantage of employing SRM, instead of CVaR in a risk-sensitive optimization setting is

that, in addition to being coherent, SRM allows for better risk-aversion. This is because

in CVaR all the tail-losses recieve the same weight, whereas SRM has a risk-aversion

function, which can ensure that higher losses receive a higher weight, or at least, the

same weight as lower losses.

In practical applications, the behaviour of the underlying distribution is unknown.

However, one can obtain samples from the distribution, either directly in a real-world

application, or through a simulator. We focus on SRM estimation from i.i.d. samples.

First, we propose an estimator for SRM using the trapezoidal rule. Next, we derive

concentration bounds for this estimator, when the underlying distribution has either

bounded support, or is unbounded, but is either Gaussian or exponential.

As a practical application, we consider the vehicular traffic routing application. Here,

there are a fixed number of routes, and each route has a delay distribution. The objective

is to find a route that has the lowest SRM delay. To perform this experiment, we use

SUMO, a vehicular traffic simulator, because it is hard to obtain samples in real-world

settings. This vehicular traffic routing application falls under the realm of multi-armed

bandits (MAB) (Slivkins et al., 2019), which is the setting for sequential decision-making

under uncertainty.



The rest of this chapter is organised as follows: In Section 1.1, we provide background

material on risk measures. In Section 1.2, we describe SRM. In Section 1.3, we outline

the contributions of this thesis. In Section 1.4, we survey related work, and finally, in

Section 1.5, we provide an outline of the remaining chapters.

1.1 Background

This section provides background on risk measures and different types of frameworks

to measure the risk. First, we discuss the mean-variance framework along with its

functionality and limitations. Subsequently, we describe risk measures VaR and CVaR.

We start with an example to motivate the need for incorporating a risk measure in

decision making. Suppose a person has a meeting at his office in 90 minutes. He/She

has two routes to choose from. The first route, say A, has a mean delay of 50 minutes

and a worst-case delay of 5 hours, whereas the second say B, route has a mean delay of

60 minutes and a worst-case delay of 80 minutes. If the person chooses a route based on

minimum expected delay, i.e., route A, then there is a chance that he/she is very late for

the meeting, owing to the large worst-case delay of route A. To address the needs of a

risk-averse decision maker, we need a risk measure that considers worst-case delay, and

maps the loss distribution to a real number.

Next, we will discuss some of the risk measures present in the literature with their

properties and limitations.

1.1.1 Mean-Variance risk measure (MVRM)

Mean-variance risk measure (Markowitz, 1952) is a traditional approach of measuring

risk, where risk is formulated in terms of mean and variance of the loss distribution. We

assume that the underlying loss distribution follows a normal distribution. A r.v. X is

normally distributed with mean µ and variance σ2, if its probability density function

(PDF) has the form:

f(x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
where x ∈ (−∞,+∞).
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A PDF gives the idea about possible outcomes and how likely these outcomes are.

The normal distribution PDF is the bell-like curve, which implies that outcomes are

likely to occur close to the mean µ, and the spread around the mean depends on the

standard deviation σ. In the mean-variance framework, the standard deviation is used as

a measure of risk.

To explain how the mean-variance method works, suppose we wish to choose a

particular route from a set of routes. We are only concerned about the expected delay on

the route and the variance of its delays. Using the interpretation from [(Dowd, 2005),

Section 2.1], the various possibilities of routes with their expected delay and variance of

delay are shown by the efficient frontier curve in Figure 1.1. Since the user regards a

lower expected delay as ’best’ and higher variance of delays (i.e higher risk) as ’worst’,

the user wants to achieve the lowest possible expected delay for any given level of risk;

or equivalently, wants to achieve the lowest possible level of risk for any given expected

delay. A user who is more risk-averse will choose a point on the efficient curve with low

risk or lower variance route, while a less risk-averse user will choose a point with higher

risk, which might end up choosing a route with lower delay.

Standard deviation of delays

Ex
pe

ct
ed

 d
el

ay
s

Efficient frontier

Figure 1.1: The mean-variance efficient frontier curve.
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However, the variance is not an adequate risk measure when underlying loss distribu-

tion is not Gaussian cf. [(Dowd, 2005), Section 2.1]. For example, in Figure 1.2, we have

two distributions with the same mean and variance. The mean-variance method results

in the same risk for both the distributions. Nevertheless, the heavy-tailed distribution has

a longer tail, having more likely outcomes in the extreme tail region.

         Loss

Pr
ob

ab
ili

ty
 d

en
si

ty

Heavy tailed
distribution Normal distribution

Figure 1.2: Normal distribution and heavy tailed distribution

1.1.2 Value-at-Risk (VaR)

For a given confidence level β ∈ (0, 1) VaR at level β denotes the maximum loss that

can occur with (β × 100)% confidence, and it is defined below:

Definition 1.1.1 (Value-at-Risk). For a r.v. X , VaR Vβ(X) at level β, β ∈ (0, 1), is

defined as follows:

Vβ(X) := inf{c : P(X ≤ c) ≥ β}.

Note that, if X has a continuous and strictly increasing cumulative distribution function
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(CDF) F , then Vβ(X) is a solution to the following:

P[X ≤ ξ] = β, i.e., Vβ(X) = F−1(β).

Estimation of VaR

Let Xi, i = 1, . . . , n denote i.i.d. samples from the distribution of X . Then, the estimate

of Vβ(X), denoted by V̂n,β , is formed as follows (Serfling, 2009):

V̂n,β = F̂−1n (β) = inf{x : F̂n(x) ≥ β}, (1.1)

where F̂n(x) = 1
n

∑n
i=1 I[Xi ≤ x] is the EDF of X . Letting X(1), . . . , X(n) denote the

order statistics, i.e., X(1) ≤ X(2) ≤ · · · ≤ X(n), we have V̂n,β = X(dnβe).

Derivative of VaR

We recall a result from (Dufour, 1995) below.

Lemma 1.1.2. Let F and f are respectively CDF and PDF of continuous r.v. X . Suppose,

the density f is positive in a neighborhood of Vβ(X) (denoted Vβ for notational

convenience), where 0 < β < 1, then we have

V
′

β =
1

f (Vβ)
, V

′′

β = − f
′
(Vβ)

f (Vβ)3

Proof. Notice that F (F−1(β)) = β, which implies

F ′(F−1(β))F−1
′
(β) = 1, and (1.2)

F
′′
(F−1(β))(F−1

′
(β))2 + F

′
(F−1(β))F−1

′′
(β) = 0 (1.3)

From (1.2) and (1.3), we have

V
′

β = F−1
′
(β) =

1

F ′(F−1(β))
=

1

f(F−1(β))
=

1

f (Vβ)
, and

V
′′

β = F−1
′′
(β) = −F

′′
(F−1(β))(F−1

′
(β))2

F ′(F−1(β))
= −f

′
(F−1(β))(F−1

′
(β))

2

f(F−1(β))

= −f ′(F−1(β))(F−1
′
(β))3 = − f

′
(F−1 (β))

f (F−1 (β))3
= − f

′
(Vβ)

f (Vβ)3
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Limitations of VaR

VaR at level β does not provide information about the tail loss that occur with probability

(1-β). Moreover, if the tail event occurs, the loss incurred is more than the VaR, and this

can lead to undesirable outcomes. For example, some route has a low expected delay but

also involves the possibility of higher delays, and a VaR risk measure based decision

might lead to adopting this route, regardless of the size of higher delay outcomes.

1.1.3 Coherent risk measure

In (Artzner et al., 1999) the authors postulated a set of four axioms that need to be true

in order to qualify a risk measure as coherent. For any two loss r.v.s X and Y , a risk

measure R(.) is said to be coherent if it satisfies the following conditions:

1. Monotonicity: X ≤ Y =⇒ R(X) ≤ R(Y ) for all X, Y.

2. Sub-additivity: R(X + Y ) ≤ R(X) + R(Y ) for all X, Y.

3. Positive homogeneity: R(λX) = λR(X) for all X,λ ≥ 0.

4. Translational invariance: R(X + c) = R(X) + c for all X, c.

VaR is not a coherent risk measure as it violates the sub-additivity condition. CVaR,

unlike VaR, is a coherent risk measure, which can be used to model worst-case losses.

We introduce this risk measure next.

1.1.4 Conditional Value-at-Risk (CVaR)

Definition 1.1.3. For a r.v. X , CVaR Cβ(X) at the level β, β ∈ (0, 1), is defined as

follows:

Cβ(X) := Vβ(X) +
1

1− β
E[X − Vβ(X)]+, (1.4)

where [x]+ = max(0, x) for a real number x, and Vβ(X) is the VaR at level β of a r.v.

X .

6



Let X be a continuous r.v. representing loss. Then, CVaR Cβ(X) can be interpreted

as the expected loss, conditional on the event that the loss exceeds Vβ(X), i.e., Cβ(X) =

E[X|X ≥ Vβ(X)]. As illustrated in Figure 1.3, unlike VaR, CVaR gives an idea about

how adverse can be outcomes on an average after VaR. CVaR is a sub-additive risk

measure, and it also satisfies other conditions of coherence given in Section 1.1.3.

Fr
eq
ue
nc
y

Loss

VaR

Probability

CVaR

Maximum       
loss

1- β

Figure 1.3: VaR and CVaR at level β of a r.v. X representing loss.

Acerbi’s formula (Acerbi and Tasche, 2002), an alternative form for Cα(X), is as

follows:

Cα(X) =
1

1− α

∫ 1

α

Vβ(X) dβ. (1.5)

From the expression above, Cα(X) can be interpreted as the average of Vβ(X) for

β ∈ [α, 1).

7



Estimation of CVaR

LetXi, i = 1, . . . , n denote i.i.d. samples from the distribution ofX . Then, the estimates

of Cα(X), denoted by ĈVaRn,α, is formed as follows (Serfling, 2009):

ĈVaRn,α = V̂n,α +
1

n(1− α)

n∑
i=1

[
Xi − V̂n,α

]+
, (1.6)

where V̂n,α is the VaR estimator given in (1.1).

1.2 Spectral risk measure (SRM)

A spectral risk measure S(X) of a r.v X is defined as follows:

S(X) =

∫ 1

0

ϕ(β)Vβ(X) dβ, (1.7)

where ϕ(·) is a risk-aversion function, and Vβ(X) is the VaR at level β of the r.v. X .

SRM can be seen as a weighted average of the VaR of the underlying distribution.

Moreover, CVaR can be recovered by setting:

ϕ(β) =

 0 β < α

1/(1− α) β ≥ α
(1.8)

The latter choice translates to an equal weight for all tail-loss VaR values.

The risk aversion function ϕ(·) can be chosen to ensure that SRM is a coherent risk

measure (Acerbi, 2002). In particular, the following properties ensure coherence.

• Postivity: ϕ(β) ≥ 0 for all β ∈ (0, 1);

• Increasingness: ϕ′(β) ≥ 0 for all β ∈ (0, 1); and

• Normalization:
∫ 1

0
ϕ(β)dβ = 1.

SRM can model a user’s risk-aversion better, since the function ϕ(.) can be chosen

such that higher losses receive a higher weight, or at least, the same weight as lower

losses (Dowd and Blake, 2006). In contrast, CVaR assigns the same weight to all tail

8



losses as evident in (1.8). An example of a risk-aversion function is the exponential

utility function, defined by

ϕ(β) =
ke−k(1−β)

1− e−k
, (1.9)

where β ∈ (0, 1), and k ∈ (0,∞) reflects the user’s degree of risk-aversion.

                          Probability β

φ
(β

)

Less risk-averse  
k = 5

More risk-averse  
k = 25

Figure 1.4: An example of risk-aversion function using (1.9).

In Figure 1.4, an exponential utility function is illustrated. As illustrated in Figure 1.4,

larger values of k ensure higher risk-aversion.

1.3 Contributions of the thesis

In this work, we consider the problem of estimating SRM of a r.v., given i.i.d samples

from the underlying distribution. In this context, our contributions are as follows:

First, we provide a natural estimation scheme for SRM that uses the empirical

distribution function (EDF) to estimate VaR, together with a trapezoidal rule-based

approximation.
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Second, we provide a two-sided concentration bound for our proposed SRM esti-

mate, for the case when the underlying distribution either has a bounded support, or

is unbounded, but either Gaussian or exponential. Our tail bounds are of the order

O (c1 exp (−c2nε2)), where n is the number of samples, ε is the accuracy parameter, and

c1, c2 are universal constants.

Third, we consider the CVaR risk measure, a special case of SRM. For CVaR, we

specialize the SRM estimator, and provide concentration bounds for distributions that

have bounded support, or an unbounded, but Gaussian or exponential.

Fourth, we perform simulation experiments to show the efficacy of our proposed SRM

estimation scheme. In particular, we consider a synthetic setup and show that our scheme

provides accurate estimates of SRM. Next, we incorporate our SRM estimation scheme

in the inner loop of the successive rejects (SR) algorithm (Audibert et al., 2010), which

is a popular algorithm in the best arm identification framework for multi-armed bandits.

We test the resulting SR algorithm variant in a vehicular traffic routing application using

the Simulation of Urban Mobility (SUMO) traffic simulator (Behrisch et al., 2011). The

application is motivated by the fact that, in practice, human road users may not always

prefer the route with the lowest mean delay. Instead, a route that minimized worst-case

delay, while doing reasonably well on the average, is preferable, and such a preference

can be encoded into the risk aversion function ϕ(·) in (1.7). Further, we consider a

portfolio optimization application with CVaR-based criteria, and perform simulation

experiments that show the efficacy of the CVaR estimator.

1.4 Related work

Concentration bounds for empirical SRM have been derived recently in (Bhat and

Prashanth, 2019). In comparison to (Bhat and Prashanth, 2019), our bounds, using a

different estimator, exhibits a similar rate of exponential convergence around true SRM,

for distributions with bounded support and special case of Gaussian distribution. And,

our bound exhibits exponential concentration for special case of exponential distribution,

while the corresponding bound in (Bhat and Prashanth, 2019) shows a polynomial decay

for accuracy parameter ε > 1.

The bounds that we derive for SRM estimation could be specialized to the case of

10



CVaR. In (Brown, 2007; Wang and Gao, 2010) concentration bounds for the classic

CVaR estimator are derived. Our bound matches the rate obtained in (Brown, 2007; Wang

and Gao, 2010) for distributions with bounded support. For the case of distributions with

unbounded support, concentration bounds for empirical CVaR have been derived recently

in (Thomas and Learned-Miller, 2019; Kolla et al., 2019; Prashanth et al., 2019; Bhat

and Prashanth, 2019). In (Thomas and Learned-Miller, 2019; Kolla et al., 2019) (resp.

(Prashanth et al., 2019; Bhat and Prashanth, 2019)), the authors derive an one-sided

concentration bound (resp. two-sided bounds), when the underlying distributions are

either sub-Gaussian or sub-exponential (Wainwright, 2019). In comparison to (Thomas

and Learned-Miller, 2019; Kolla et al., 2019), we derive two-sided concentration bounds

for the special case of Gaussian and exponential distributions. Also, the results in

(Thomas and Learned-Miller, 2019) does not allow a bandit application. Moreover, in

(Prashanth et al., 2019) concentration bounds for the classic CVaR estimator are derived

for heavy-tailed and light-tailed distributions. Our bound matches the rate obtained in

(Prashanth et al., 2019) for the special case of Gaussian and exponential distributions.

Finally, in comparison to a recent result in (Bhat and Prashanth, 2019), for the special

case of exponential distribution, our bound exhibits exponential concentration, while

the corresponding bound in (Bhat and Prashanth, 2019) shows a polynomial decay for

accuracy parameter ε > 1.

1.5 Outline of chapters

The rest of the thesis is organized as follows:

Chapter 2 first presents a novel method for SRM estimation. Second, it presents

concentration bounds for SRM estimation with their convergence proofs, for the case

when the underlying distribution has bounded support, or unbounded, but is either

Gaussian or exponential. And third, it provides concentration bounds for the case of

CVaR estimation.

Chapter 3 first presents the applications of SRM and CVaR using simulation experi-

ments. Second, it presents a vehicular traffic routing application using SUMO vehicular

traffic simulator.

Finally, Chapter 4 concludes the thesis, and discusses a few interesting directions for

11



future research.
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CHAPTER 2

SRM ESTIMATION AND CONCENTRATION

BOUNDS

This chapter first presents a novel method for SRM estimation. Second, it presents

concentration bounds for SRM estimation with their convergence proofs, for the case

when the underlying distribution has bounded support, or unbounded, but is either

Gaussian or exponential. And third, it provides the CVaR specific results.

2.1 SRM Estimation scheme: Bounded case

We estimate S(X), given i.i.d. samples X1, . . . , Xn from the distribution of X , by

approximating the integral in SRM definition (1.7). Notice that the integrand Vβ(X) in

(1.7) has to be estimated using the samples. Recall that V̂n,β is the estimate of Vβ(X),

given by (1.1). We use the weighted VaR estimate to form a discrete sum to approximate

the integral, an idea motivated by the trapezoidal rule (Cruz-Uribe and Neugebauer,

2003). The estimate Ŝn,m of S(X) is formed as follows:

Ŝn,m =
m∑
k=1

ϕ(βk−1)V̂n,βk−1
+ ϕ(βk)V̂n,βk

2
∆β. (2.1)

In the equation above, {βk}mk=0 is a partition of [0, 1] such that β0 = 0 and βk =

βk−1 + ∆β, where ∆β = 1/m is the length of each sub-interval.

2.2 SRM Estimation scheme: Unbounded case

For the case of unbounded distributions, we use a truncation-based estimator, which is

described below.

LetX1, . . . , Xn denote i.i.d. samples from the distribution ofX . We form a truncated



set of samples as follows:

X̄i = XiI {Xi ≤ Bn} ,

where Bn is a truncation threshold that depends on the underlying distribution. For the

case of Gaussian distribution with mean zero and variance σ2, we setBn =
√

2σ2 log (n),

and for the case of exponential distribution with mean 1/λ, we set Bn = log(n)
λ

.

We form an SRM estimate along the lines of (2.1), except that the samples used are

truncated samples, i.e.,

S̃n,m =
m∑
k=1

ϕ(βk−1)Ṽn,βk−1
+ ϕ(βk)Ṽn,βk

2
∆β, (2.2)

where, Ṽn,β = F̃−1n (β), with F̃n(x) = 1
n

∑n
i=1 I[X̄i ≤ x].

2.3 Concentration bounds

This section presents concentration bounds for the case when the underlying distribution

has bounded support, or unbounded, but is either Gaussian or exponential.

The motivation behind choosing Gaussian distribution is that many continuous data

in nature and psychology display this bell-shaped curve when compiled and graphed. For

example, if we randomly sampled 100 individuals, we would expect to see a Gaussian

distribution frequency curve for many continuous variables, such as IQ, height, weight,

and blood pressure. Similarly, the exponential distribution is also essential as it is often

concerned with the amount of time until some specific event occurs. For example, the

amount of time until an earthquake occurs and the amount of time, in months, a car

battery lasts have an exponential distribution.

2.3.1 Distributions with bounded support

For notational convenience, we shall use Vβ and S to denote Vβ(X) and S(X), for any

β ∈ (0, 1).

For all the results presented below, we let Ŝn,m denote the SRM estimate formed

14



from n i.i.d. samples of X and with m sub-intervals, using (2.1). Let F and f denote the

distribution and density of X , respectively.

For the sake of analysis, we make one of the following assumptions:

(A1) Let ϕ(β) be a risk-aversion function such that |ϕ(β)| ≤ C1 and |ϕ′(β)| ≤

C2, ∀β ∈ [0, 1].

(A1′) The conditions of (A1) hold. In addition, |ϕ′′(β)| ≤ C3, ∀β ∈ [0, 1].

Theorem 2.3.1 (SRM concentration: bounded case). Let the r.v. X be continuous

and X ≤ B a.s. Fix ε > 0.

(i) Assume (A1) holds and f(x) ≥ 1/δ1 > 0, x ≤ B. If | B C2 + δ1C1 |≤ K1, and

m ≥ K1

2ε
, then

P
(∣∣∣S− Ŝn,m

∣∣∣ > ε
)
≤ 2K1

ε
exp

(
−n c ε2

2C2
1

)
, (2.3)

where c = min{c0, c1, . . . , cm} and ck, k ∈ {0, . . . ,m}, is a constant that depends on

the value of the density f of the r.v. X in a neighborhood of Vβk , with βk as in (2.1).

(ii) Assume (A1′) holds and

∣∣∣f ′ (x)∣∣∣
f(x)3

≤ δ2, x ≤ B. If | B C3 + 2 δ1C2 + δ2C1 |≤ K2, and

m ≥
√

K2

6ε
, then

P
(∣∣∣S− Ŝn,m

∣∣∣ > ε
)
≤
√

8K2

3ε
exp

(
−n c ε2

2C2
1

)
, (2.4)

where c is as in the case above.

Proof. See Section 2.4.1.

For small values of ε, the bound in (2.4) is better than that in (2.3). However, the

bound in (2.3) is derived under weaker assumptions on the r.v. X and the risk-aversion

function ϕ, as compared to the bound in (2.4).

In part (i) of the theorem above, we assumed that the density f of X is bounded

below by 1
δ1
> 0. This implies that the derivative of VaR is bounded above. The latter

condition is required for the trapezoidal rule to provide a good approx to the integral

in (1.7). Moreover, the assumption that the first derivative of VaR w.r.t. the confidence

level β is bounded implies that the underlying r.v. X is bounded. This claim can be

15



made precise as follows: For any β ∈ (0, 1), it can be shown that (see Lemma 1.1.2 for

a proof)

V
′

β =
1

f (Vβ)
, and V

′′

β = − f
′
(Vβ)

f (Vβ)3
. (2.5)

Notice that the first derivative of VaR involves a 1/f term, and if the r.v. is unbounded,

then for every ε > 0, there is an x such that 0 < f(x) < ε. This implies 1/f cannot be

bounded above uniformly w.r.t x, and hence the derivative of VaR cannot be bounded

either.

The stronger condition | f ′(x) | /f(x)3 ≤ δ2 used in part (ii) of Theorem 2.3.1, in

conjunction with (2.5), implies that the second derivative of VaR is bounded. Now, as

before, a bounded second derivative implies that the underlying r.v. X is bounded. To

see this, the expression for the second derivative of VaR involves a f ′

f3
term, and if the r.v.

X is unbounded, then a uniform bound on f ′

f3
would mean that, as x → ∞, f decays

too slowly to integrate to something finite, leading to a contradiction. More precisely,

the differential inequality |f
′|

f3
< K can be “solved” to get f(x) > C√

a+bx
for large x and

suitable constants a, b, and C. However, the expression on the RHS integrates to infinity,

and hence, no density f with unbounded support can have f ′

f3
bounded.

2.3.2 Gaussian and exponential distributions

Here, we present concentration bounds for our SRM estimator assuming that the samples

are either from a Gaussian distribution with mean zero and variance σ2, or from the

exponential distribution with mean 1/λ. Note that the estimation scheme is not provided

this information about the underlying distribution. Instead S̃n,m is formed from n i.i.d.

samples and with m sub-intervals, using the truncation-based scheme in (2.2).

Theorem 2.3.2 (SRM concentration: Gaussian case). Assume (A1). Suppose that

the r.v. X is Gaussian with mean zero and variance σ2, with σ ≤ σmax. If m ≥
1
5

√
σmax
ε

exp
(
ncε2

4C2
1

)
and ε > 2σmax C1√

n
, then

P
[∣∣∣S− S̃n,m

∣∣∣ > ε
]
≤

2σ
(√

2 log (n)C2 +
√

2πnC1

)
(
ε− 2σC1√

n

) exp

−nc
(
ε− 2σC1√

n

)2
2C2

1

,
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where c is as in Theorem 2.3.1 (i).

Proof. See Section 2.4.2.

Theorem 2.3.3 (SRM concentration: Exponential case). Assume (A1). Suppose that

the r.v. X is exponentially distribution with parameter λ, and 0 < λmin ≤ λ. If

m ≥ 1
8

√
1

λminε
exp

(
ncε2

4C2
1

)
and ε > C1(n+1)

λmin n
, then

P
[∣∣∣S− S̃n,m

∣∣∣ > ε
]
≤

2
(
log(n)C2

λ
+ nC1

)
(
ε− C1(n+1)

λn

) exp

−nc
(
ε− C1(n+1)

λn

)2
2C2

1

,
where c is as in Theorem 2.3.1 (i).

Proof. See Section 2.4.3.

Remark 1. Note that concentration bounds for CVaR estimation can be derived using a

completely parallel argument to that of the proof of the theorems above, together with

following choice for risk aversion function ϕ(β) = 1/(1 − α)I {β > α} , α ∈ (0, 1).

The CVaR-specific results are provided in Section 2.5.

2.4 Convergence proofs

2.4.1 Proof of Theorem 2.3.1

For establishing the bound in Theorem 2.3.1, we require a result concerning the error of

a trapezoidal-rule-based approximation, and a concentration bound for the VaR estimate

in (1.1). We state these results below, and subsequently provide a proof of Theorem

2.3.1.

Lemma 2.4.1. Let 0 < a ≤ b < 1, and {βk}mk=0 be a partition of [a, b] such that β0 = a

and βk = βk−1 + ∆β, ∆β = (b−a)
m

is length of each sub-interval.

(i) If
∣∣(ϕ(β)Vβ)′

∣∣ ≤ K1 for β ∈ [a, b], then

∣∣∣∣∣∣
b∫

a

ϕ(β)Vβ dβ −
m∑
k=1

ϕ(βk−1)Vβk−1
+ ϕ(βk)Vβk

2
∆β

∣∣∣∣∣∣ ≤ K1(b− a)2

4m
.
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(2.6)

(ii) If
∣∣(ϕ(β)Vβ)′′

∣∣ ≤ K2 for β ∈ [a, b], then

∣∣∣∣∣∣
b∫

a

ϕ(β)Vβ dβ −
m∑
k=1

ϕ(βk−1)Vβk−1
+ ϕ(βk)Vβk

2
∆β

∣∣∣∣∣∣ ≤ K2(b− a)3

12m2
.

(2.7)

Proof. See Appendix A.

Lemma 2.4.2 (VaR concentration). Let the r.v. X be continuous. Fix ε > 0, then we

have

P
[∣∣∣Vβ − V̂n,β

∣∣∣ ≥ ε
]
≤ 2 exp

(
−2nc̄ε2

)
where c̄ is a constant that depends on the value of the density f of the r.v. X in a

neighborhood of Vβ .

Proof: See Proposition 2 in (Kolla et al., 2019).

Proof of Theorem 2.3.1. First, we prove the claim in part (i). Notice that

P
[∣∣∣S− Ŝn,m

∣∣∣ > ε
]

= P

[∣∣∣∣∣
∫ 1

0

ϕ(β)Vβ dβ −
m∑
k=1

ϕ(βk−1)V̂n,βk−1
+ ϕ(βk)V̂n,βk

2
∆β

∣∣∣∣∣ > ε

]

= P

[∣∣∣∣∣
∫ 1

0

ϕ(β)Vβ dβ −
m∑
k=1

ϕ(βk−1)Vβk−1
+ ϕ(βk)Vβk

2
∆β

+
m∑
k=1

ϕ(βk−1)Vβk−1
+ ϕ(βk)Vβk

2
∆β

−
m∑
k=1

ϕ(βk−1)V̂n,βk−1
+ ϕ(βk)V̂n,βk

2
∆β

∣∣∣∣∣ > ε

]

≤ P

[∣∣∣∣∣
m∑
k=1

ϕ(βk−1)Vβk−1
+ ϕ(βk)Vβk

2
∆β

−
m∑
k=1

ϕ(βk−1)V̂n,βk−1
+ ϕ(βk)V̂n,βk

2
∆β

∣∣∣∣∣ > ε

2

]
,

where the final inequality follows by using Lemma 2.4.1(i) to infer that for m ≥ K1

2ε
, we
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have
∣∣∣∫ 1

0
ϕ(β)Vβ dβ −

∑m
k=1

ϕ(βk−1)Vβk−1
+ϕ(βk)Vβk

2
∆β
∣∣∣ < ε

2
. Now, we have

P
[∣∣∣S− Ŝn,m

∣∣∣ > ε
]
≤ P

[∣∣∣∣∣
m∑
k=1

ϕ(βk−1)Vβk−1
+ ϕ(βk)Vβk

2
∆β

−
m∑
k=1

ϕ(βk−1)V̂n,βk−1
+ ϕ(βk)V̂n,βk

2
∆β

∣∣∣∣∣ > ε

2

]

= P

[∣∣∣∣∣
m∑
k=1

((ϕ(βk−1)Vβk−1
+ ϕ(βk)Vβk)

− (ϕ(βk−1)V̂n,βk−1
+ ϕ(βk)V̂n,βk))

∣∣∣ > ε

∆β

]
= P

[∣∣∣ϕ(β0)Vβ0 − ϕ(β0)V̂n,β0 + 2(ϕ(β1)Vβ1 − ϕ(β1)V̂n,β1)

+ · · ·+ 2(ϕ(βm−1)Vβm−1 − ϕ(βm−1)V̂n,βm−1)

+ϕ(βm)Vβm − ϕ(βm)V̂n,βm

∣∣∣ > ε

∆β

]
≤ P

[∣∣∣ϕ(β0)Vβ0 − ϕ(β0)V̂n,β0

∣∣∣ > ε

2m∆β

]
+ 2P

[∣∣∣ϕ(β1)Vβ1 − ϕ(β1)V̂n,β1

∣∣∣ > ε

2m∆β

]
+ · · ·+

2P
[∣∣∣ϕ(βm−1)Vβm−1 − ϕ(βm−1)V̂n,βm−1

∣∣∣ > ε

2m∆β

]
+ P

[∣∣∣ϕ(βm)Vβm − ϕ(βm)V̂n,βm

∣∣∣ > ε

2m∆β

]

We now apply Lemma 2.4.2 to bound each of the terms on the RHS above, to obtain

P
[∣∣∣S− Ŝn,m

∣∣∣ > ε
]
≤ 2 exp

(
−2nc0

(
ε

2mϕ(β0)∆β

)2
)

+ 4 exp

(
−2nc1

(
ε

2mϕ(β1)∆β

)2
)

+ · · ·+ 4 exp

(
−2ncm−1

(
ε

2mϕ(βm−1)∆β

)2
)

+ 2 exp

(
−2ncm

(
ε

2mϕ(βm)∆β

)2
)
,

where ci is a constant that depends on the value of the density f in the neighborhood of

Vβi , for i = 0 . . .m. Thus,

P
[∣∣∣S− Ŝn,m

∣∣∣ > ε
]
≤ 4m exp

(
−2nc

(
ε

2mC1∆β

)2
)

(2.8)
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= 4m exp

(
−n c ε

2

2C2
1

)
=

2K1

ε
exp

(
−n c ε

2

2C2
1

)
.

Note that c = min{c0, c1, . . . , cm} in (2.8). The claim in part (i) follows.

The proof of the result in part (ii) follows in a similar manner. In particular, using

part (ii) in Lemma 2.4.1, with m ≥
√

K2

6ε
, we obtain

P
[∣∣∣S− Ŝn,m

∣∣∣ > ε
]
≤ 4m exp

(
−n c ε

2

2C2
1

)
=

√
8K2

3ε
. exp

(
−n c ε

2

2C2
1

)

2.4.2 Proof of Theorem 2.3.2

Proof. Recall that the truncation threshold Bn =
√

2σ2 log (n). Letting η = F (Bn),

we have

P
[
S− S̃n,m > ε

]
≤ P

[∫ 1

0

ϕ(β)Vβ dβ −
m∑
k=1

ϕ(βk−1)Ṽn,βk−1
+ ϕ(βk)Ṽn,βk

2
∆β > ε

]

= P

[∫ η

0

ϕ(β)Vβ dβ −
m∑
k=1

ϕ(βk−1)Ṽn,βk−1
+ ϕ(βk)Ṽn,βk

2
∆β

+

∫ 1

η

ϕ(β)Vβ dβ > ε

]
= P [I1 + I2 > ε] , (2.9)

where I1 =
∫ η
0
ϕ(β)Vβ dβ−

∑m
k=1

ϕ(βk−1)Ṽn,βk−1
+ϕ(βk)Ṽn,βk

2
∆β, and I2 =

∫ 1

η
ϕ(β)Vβ dβ.

We bound I2 as follows:

1− β = P (X > Vβ) ≤ exp

(
−Vβ

2

2σ2

)
, (2.10)

since X is Gaussian with mean zero, and variance σ2. Using log x ≤ x
e
∀x > 0, we

obtain

Vβ ≤

√
2σ2 log

(
1

1− β

)
≤

√
2σ2

e(1− β)
,

20



leading to

∫ 1

η

Vβ dβ ≤
√

2σ2

e

∫ 1

η

dβ√
1− β

= 2

√
2σ2

e

√
1− η

≤ 2

√
2σ2

e
exp

(
−Vη

2

4σ2

)
(using (2.10))

= 2

√
2σ2

e
exp

(
−Bn

2

4σ2

)
(since Vη = Bn)

Hence,

I2 =

∫ 1

η

ϕ(β)Vβ dβ ≤ C1

∫ 1

η

Vβ dβ ≤
2σC1√
n
. (2.11)

Applying the bound in the Theorem 2.3.1 to the truncated r.v. Z = XI {X ≤ Bn}, we

bound I1 as follows:

P [I1 > ε] ≤ K1

ε
exp

(
−ncε

2

2C2
1

)
. (2.12)

Hence,

P [I1 + I2 > ε] ≤ K1(
ε− 2σC1√

n

) exp

−nc
(
ε− 2σC1√

n

)2
2C2

1

 (using (2.11) and (2.12))

=
(BnC2 + δ1C1)(

ε− 2σC1√
n

) exp

−nc
(
ε− 2σC1√

n

)2
2C2

1


≤

√
2σ
[√

log (n)C2 +
√
πnC1

]
(
ε− 2σC1√

n

) exp

−nc
[
ε− 2σC1√

n

]2
2C2

1

,
where the final inequality follows from the fact that δ1 =

√
2πσ2 exp

(
B2
n

2σ2

)
=
√

2πσ2n,

which holds since the underlying Gaussian distribution is truncated at Bn.

By using a parallel argument, a concentration result for bounding the lower semi-

deviations can be derived, and we omit the details.
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2.4.3 Proof of Theorem 2.3.3

Proof. The proof for the exponential case follows in a similar manner as that of the

proof of Theorem 2.3.2. In particular, the proof up to (2.12) holds for the exponential

case, with a different bound on I2.

We derive the bound on I2 =
∫ 1

η
ϕ(β)Vβ dβ. Using arguments similar to that in the

Gaussian case, we obtain

∫ 1

η

Vβ dβ ≤
1

λ

∫ 1

η

log

(
1

1− β

)
dβ

=
(1− η)

λ

(
1 + log

(
1

1− η

))
≤ (1− η)

λ

(
1 +

1

(1− η)e

)
=

exp (−λVη)

λ
(1 + exp (λVη − 1))

=
exp (−λBn)

λ
+

1

λe
.

The final inequality hold since Vη = Bn.

Also, we have

∫ 1

η

ϕ(β)Vβ dβ ≤ C1

∫ 1

η

Vβ dβ.

Choosing Bn = log(n)
λ

, we obtain

I2 =

∫ 1

η

ϕ(β)Vβ dβ ≤
C1(n+ 1)

λn
(2.13)

Now, as in the proof of Theorem 2.3.2, we have

P [I1 > ε] ≤ K1

ε
exp

(
−ncε

2

2C2
1

)
. (2.14)

Thus,

P [I1 + I2 > ε] ≤ K1(
ε− C1(n+1)

λn

) exp

−nc
(
ε− C1(n+1)

λn

)2
2C2

1


(using (2.13) and (2.14))
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=
(BnC2 + δ1C1)(
ε− C1(n+1)

λn

) exp

−nc
(
ε− C1(n+1)

λn

)2
2C2

1


≤

(
log(n)C2

λ
+ nC1

)
(
ε− C1(n+1)

λn

) exp

−nc
(
ε− C1(n+1)

λn

)2
2C2

1

,
where the final inequality follows from the fact that δ1 = exp(λBn) = n, which holds

since the underlying exponential distribution is truncated at Bn.

By using a parallel argument, a concentration result for bounding the lower semi-

deviations can be derived, and we omit the details.

2.5 CVaR results

This section includes CVaR related results. CVaR is a specific case of SRM, and it can

be recovered by setting risk-aversion function ϕ(β) as in (1.8). In particular, we discuss

the estimation technique for CVaR defined in (1.5), together with concentration bounds

and their convergence proofs for both the cases when the underlying distribution has

bounded support, and unbounded support of either Gaussian or exponential.

2.5.1 CVaR Estimation scheme: Bounded case

Here, we propose to estimate Cα(X), given n i.i.d. samples X1, . . . , Xn from the

distribution of X , by approximating the integral in Acerbi’s formula. Notice that the

integrand Vβ in (1.5) has to be estimated using the samples. Let V̂n,β denote the estimate

of Vβ(X), as given in (1.1). We use the VaR estimates to form a discrete sum to

approximate the integral in Acerbi’s formula, an idea motivated by the trapezoidal rule

(Cruz-Uribe and Neugebauer, 2003). More precisely, the estimate Ĉn,m,α of Cα(X) is

formed as follows:

Ĉn,m,α =
1

1− α

m∑
k=1

V̂n,βk−1
+ V̂n,βk

2
∆β. (2.15)

In the above, {βk}mk=0 is a partition of [α, 1] such that β0 = α and βk = βk−1 + ∆β,

where ∆β = (1− α)/m is the length of each sub-interval.
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2.5.2 CVaR Estimation scheme: Unbounded case

Let X1, . . . , Xn denote i.i.d. samples from the distribution of X . We form a truncated

set of samples as follows:

X̄i = XiI {Xi ≤ Bn} ,

where Bn is a truncation threshold that depends on the underlying distribution. For the

case of Gaussian distribution with mean zero and variance σ2, Bn =
√

2σ2 log (n), and

for the case of exponential distribution with mean 1/λ, Bn = log(n)
λ

.

We form a CVaR estimate along the lines of (2.15), except that the samples used are

truncated samples, i.e.,

C̃n,m,α =
1

1− α

m∑
k=1

Ṽn,βk−1
+ Ṽn,βk

2
∆β. (2.16)

In the above, Ṽn,β = F̃−1n (β), with F̃n(x) = 1
n

∑n
i=1 I[X̄i ≤ x].

2.5.3 Concentration bounds

In this section, we present the concentration bounds for CVaR estimator in Corollaries

2.5.1 to 2.5.3, which are obtained similarly as SRM concentration bounds in Theorems

2.3.1 to 2.3.3, respectively.

For notational convenience, we shall use Vα and Cα to denote Vα(X) and Cα(X),

for any α ∈ (0, 1).

Distributions with bounded support

For all the results presented below, we take CVaR estimate as Ĉn,m,α, α ∈ [0, 1] be

formed from n i.i.d. samples of X using (2.15). Let F and f denote the distribution and

density of X , respectively.

Corollary 2.5.1 (CVaR concentration: bounded case). Let the r.v. X be continuous

and X ≤ B a.s. Fix ε > 0.
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(i) If f(x) ≥ 1
δ1
> 0, ∀x ∈ [F−1(α), B], and m ≥ K1 (1−α)

2ε
, then

P[| Cα − Ĉn,m,α |> ε] ≤ 2K1(1− α)

ε
exp

(
−n c ε2

2

)
,

where c = min{c0, c1, . . . , cm} and ck, k = {0, . . . ,m} is a constant that depends on

the value of the density f of the r.v. X in a neighborhood of Vβk , with βk as in (2.15).

(ii) If

∣∣∣f ′ (x)∣∣∣
f(x)3

≤ 1
δ2

, ∀x ∈ [F−1(α), B] and m ≥
√

K2 (1−α)2
6ε

, then

P[| Cα − Ĉn,m,α |> ε] ≤
√

8K2(1− α)2

3ε
exp

(
−n c ε2

2

)
,

where c is as in the case above.

Proof. See Appendix B.1.

Gaussian and exponential distributions

Here, we present concentration bounds for our CVaR estimator assuming that the samples

are either from a Gaussian distribution with mean zero and variance σ2, or from the

exponential distribution with mean 1/λ. Note that the estimation scheme is not provided

this information about the underlying distribution. Instead C̃n,m,α is formed from n i.i.d.

samples and with m sub-intervals, using (2.16).

Corollary 2.5.2 (CVaR concentration: Gaussian case). Suppose that the r.v. X is

Gaussian with mean zero and variance σ2 > 0, with σ ≤ σmax. Fix ε > 0. If m ≥
1
5

√
σmax(1−α)

ε
exp

(
ncε2

4

)
, then

P
[∣∣∣C− C̃n,m,α

∣∣∣ > ε
]
≤ 2(1− α)σ

√
2πn(

ε− 2σ
(1−α)

√
n

) exp

−nc
(
ε− 2σ

(1−α)
√
n

)2
2

,
for ε >

2σmax

(1− α)
√
n
.

In the above, c is as in Theorem 2.5.1 (i).

Proof. See Appendix B.2.
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Corollary 2.5.3 (CVaR concentration: Exponential case). Assume r.v. X ∼ Exp (λ)

and 0 < λmin ≤ λ. Fix ε > 0. If m ≥ 1
8

√
(1−α)
λminε

exp
(
ncε2

4

)
, then we have

P
[∣∣∣C− C̃n,m,α

∣∣∣ > ε
]
≤ 2(1− α)n(

ε− (n+1)
(1−α)λn

) exp

−nc
(
ε− (n+1)

(1−α)λn

)2
2

,
for ε >

(n+ 1)

(1− α)λmin n
.

In the above, c is as in Theorem 2.5.1 (i).

Proof. See Appendix B.3.

2.6 Summary

In this chapter, we proposed a novel SRM estimation method. We provided a two-sided

concentration bound to support our estimation method, for the case when the underlying

distribution either has a bounded support, or is unbounded, but either Gaussian or

exponential. Our tail bounds are of the orderO (c1 exp (−c2nε2)), where n is the number

of samples, ε is the accuracy parameter, and c1, c2 are universal constants. Further, we

found the same tail bounds for the CVaR estimator also.

In the next chapter, we will see experiments and applications based on our proposed

SRM and CVaR estimator.
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CHAPTER 3

SIMULATION EXPERIMENTS

In this chapter, we present the simulation experiments for SRM and CVAR. In particular,

we first present the synthetic experiments, after that, we present the applications of

vehicular traffic routing using SUMO and portfolio optimization problem. The online

supplementary material (link) contains the data and the code for the experiments that

will allow the reader to reproduce our experimental results.

3.1 SRM experiments

In this section, we demonstrate the efficacy of our proposed method for SRM estimation

(2.1), which we shall refer to as SRM-Trapz. In our experiments, we set the risk aversion

function as follows: ϕ(β) = 5 e−5(1−β)

1−e−5 , β ∈ [0, 1]. In the following sub-section, we

consider a synthetic experimental setting to compare the accuracy of SRM estimators.

Subsequently, we use SRM-Trapz as a subroutine in a vehicular traffic routing application

(see Section 3.1.2).

3.1.1 Synthetic setup

Figure 3.1 presents the estimation error as a function of the sample size for SRM-Trapz.

The algorithm is run with two different sub-divisions. The samples are generated using

a Gaussian distribution with mean 0.5 and variance 25. We observe that SRM-Trapz

with 500 subdivisions performs on par with SRM-Trapz with 150 subdivisions for every

sample size. Further, as expected, increasing sample size leads to lower estimation error,

while also increasing the confidence (demonstrated by the shrinkage in standard error).

Table 3.1 presents the results obtained by SRM-Trapz with 1000 subdivisions, for

four different input distributions. We observe that SRM-Trapz is comparable to SRM-

True (calculated using definition 1.7) under each input distribution.

https://github.com/ajay532/Estimation-of-SRM-supplemental
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Figure 3.1: Error in SRM estimation (|True SRM - Empirical SRM|) on different sample
size. True SRM is calculated using definition 1.7. Empirical SRM is calcu-
lated by two methods, (i) SRM-Trapz method with m = 150 subdivisions
(SRM-Trapz 150), and (ii) SRM-Trapz method with m = 500 subdivisions
(SRM-Trapz 500). In both methods, SRM is estimated using (2.1). The
underlying distribution considered for this simulation is X ∼ N (0.5, 52).
The bars in the plot shows standard error averaged over 103 iterations.

Table 3.1: The results for SRM estimation, on four distributions, using two methods.
Distributions are (a) Exponential distribution with mean 1/0.2 (Exp(0.2)), (b)
Normal distribution with mean zero and variance 102 (N (0, 102)), (c) Expo-
nential distribution with mean 1/0.01 (Exp(0.01)), (d) Uniform distribution
with range −103 to 103 (U(−103, 103)). Methods are (i) Calculation of SRM
(SRM-True) using definition 1.7, (ii) SRM-Trapz method with m = 1000
subdivisions (SRM-Trapz 1000) using (2.1). In method (ii), 104 i.i.d. samples
are used for estimating SRM on each distribution, and the standard error is
averaged over 103 iterations.

Distribution SRM-True SRM 1000

Exp(0.2) 10.99 11.02±1.21
N(0, 102) 107.36 107.80±1.32
Exp(0.01) 221.30 221.39±2.47
U(−103, 103) 612.47 612.65±4.91
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3.1.2 Vehicular traffic routing

In the vehicular routing application, the traditional objective is to find a route with the

lowest expected delay. However, such an objective ignores risk factors. An alternative

is to consider the weighted-sum delay of each route, and we use SRM to quantify this

objective. Thus, given a set of routes, the aim is to find the route (by adaptive sampling)

with the lowest SRM of the delay. Simulation of Urban MObility (SUMO) (Behrisch

et al., 2011) is an open source, highly portable, microscopic road traffic simulation

package designed to handle large road networks. Traffic Control Interface (TraCI)

(Wegener et al., 2008) is a library, providing extensive commands to control the behavior

of the simulation online, including vehicle state, road configuration, and traffic lights.

We implement our routing algorithm using SUMO and TRACI.

Figure 3.2: Area of an urban city map, used for SUMO network.
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Algorithm 1 SRM-SR-Trapz
Input: number of rounds n, number of routes K, number of subdivisions m.

Let A1 = {1, . . . , K}, log(K) = 1
2

+
∑K

i=2
1
i
, n0 = 0 and for k ∈ {1, . . . , K −

1}, nk =
[

1
log(K)

n−K
K+1−k

]
For each phase k = 1, 2, . . . , K − 1 :
(1) For each i ∈ Ak, select route i for nk − nk−1 rounds.
(2) Let Ak+1 = Ak\ arg maxi∈Ak Ŝnk,m,i (we only remove one element from Ak if
there is a tie, select randomly the route to dismiss among the worst routes).

Output: Let i∗ be the unique element of AK .

Ŝnk,m,i is SRM estimate for ith route, using (2.1) with nk samples, and m subdivisions.

For the experiments, we use the street map of the area around IIT Madras, Chennai,

India (see Figure 3.2) obtained from OpenStreetMap (OSM) (Haklay and Weber, 2008),

and then used Netconvert tool to load the map in SUMO. The network has 426 junctions

and a total edge length of 123 km. We ran SUMO on this network for 30, 000 time-steps,

in which 7000 cars, 500 buses, 2000 bikes, 1000 cycles, and 1000 pedestrians were

added at different time-steps and in different lanes uniformly. We choose K = 5 routes

between two fixed points, marked as S and D in Figure 3.2. On these selected routes, we

add n = 1000 cars and track them. In Table 3.2, X̂n,i is the estimated average delay of

the ith route, and Ŝn,m,i is the SRM estimate for the ith route, i = 1, . . . , K, using (2.1),

and with n samples. We set the number of subdivisions m = 100.

Table 3.2: Results for the estimated average delay (X̂n,i) and estimated SRM (Ŝn,m,i),
for ith route, where i = 1, . . . , K.

ROUTE1 ROUTE2 ROUTE3 ROUTE4 ROUTE5

X̂n,i 283.81 287.15 306.80 266.85 325.86
Ŝ n,m,i 431.28 361.81 455.83 378.68 390.95

From Table 3.2 it is apparent that ROUTE4 has the lowest expected delay, and

ROUTE2 has the lowest SRM. We consider a best-arm identification (BAI) bandit

framework (Audibert et al., 2010), where an algorithm is given a fixed budget. Here, the

budget refers to the total number of samples across routes. After the sampling budget,

the algorithm is expected to recommend a route, and is judged by the probability that

the recommended route is correct (i.e. the best route). We ran successive rejects (SR)

(Audibert et al., 2010), which is a popular BAI algorithm, except that SR is modified to
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find the route with lowest SRM. Note that the regular SR algorithm finds the route with

the lowest expected delay. Algorithm 1 presents the pseudocode for the SRM-SR-Trapz

algorithm, with SRM-Trapz used to form SRM estimates for each route. The setting of

SUMO is as noted above. We set the budget n = 1000, number of routes K = 5, and

m = 100 subdivisions for SRM-Trapz. We observed that SR algorithm picks ROUTE2

with probability 0.91.

Further, we tested algorithm 1 on a bigger network 3.3. The setting of SUMO are:

number of rounds n = 5000„ number of routes K = 25, and m = 300 subdivisions for

SRM-Trapz. After running the simulation, we found that the yellow route is having the

lowest expected delay, but does not lowest SRM delay. Moreover, the SR algorithm

picks the green route with a probability of 0.87 as the best route with the lowest SRM

delay. It is with the fact that the green route is less risky as compared to the yellow route.

S

D

Figure 3.3: Grid network for SUMO.
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3.2 CVaR experiments

In this Section, we demonstrate the efficacy of our proposed method for CVaR estima-

tion (2.15), which we shall refer to as CVaR-Trapz. In the following sub-section, we

consider a synthetic experimental setting to compare the accuracy of CVaR estimators.

Subsequently, we use CVaR-Trapz in a portfolio optimization problem (see Section

3.2.2).

3.2.1 Synthetic setup
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Figure 3.4: Error in CVaR estimation (|True CvaR - Empirical CVaR|) at confidence
level α = 0.95 on different sample size. True CVaR is calculated using
definition 1.4. Empirical CVaR is calculated by three methods, (i) Histor-
ical simulated method (CVaR-HS) which estimate CVaR using (1.6), (ii)
CVaR-Trapz method with m = 10 subdivisions (CVaR-Trapz 10), and (iii)
CVaR-Trapz method with m = 100 subdivisions (CVaR-Trapz 100). In
methods (ii) and (iii), CVaR is estimated using (2.15). The underlying dis-
tribution considered for this simulation is X ∼ N (0.5, 52). The bars in the
plot shows standard error averaged over 5× 103 iterations.

We compare the performance of CVaR-Trapz with CVaR-HS, which employs the
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classic estimator given in (1.6). Figure 3.4 presents the estimation error as a function

of the sample size for CVaR-HS and CVaR-Trapz. The latter algorithm is run with two

different sub-divisions. The samples are generated using a Gaussian distribution with

mean 0.5 and variance 25. We observe that CVaR-Trapz with 100 subdivisions performs

on par with CVaR-HS for every sample size. Further, as expected, increasing sample

size leads to lower estimation error, while also increasing the confidence (demonstrated

by the shrink in confidence intervals).

Table 3.3: The results for CVaR estimation at confidence level α = 0.95, on four distribu-
tions, using three methods. Distributions are (a) Exponential distribution with
mean 1/0.2 (Exp(0.2)), (b) Normal distribution with mean zero and variance
102 (N (0, 102)), (c) Exponential distribution with mean 1/0.01 (Exp(0.01)),
(d) Uniform distribution with range −103 to 103 (U(−103, 103)). Methods
are (i) Calculation of CVaR (CVaR-True) using definition 1.4, (ii) Histori-
cal simulated method (CVaR-HS) using (1.6), (iii) CVaR-Trapz method with
m = 500 subdivisions (CVaR-Trapz 500) using (2.15). In methods (ii) and
(iii), 104 i.i.d. samples are used for estimating CVaR on each distribution, and
the standard error is averaged over 103 iterations.

DISTRIBUTION CVAR-TRUE CVAR-HS CVAR-TRAPZ 500

EXP(0.2) 19.97 20.03±1.12 20.01±1.12
N(0, 102) 206.27 206.67±2.64 206.45±2.62
EXP(0.01) 399.57 400.39±6.46 399.72±6.38
U(−103, 103) 950.00 950.97±2.65 950.87±2.65

Table 3.3 presents the results obtained by CVaR-HS and CVaR-Trapz with 500 sub-

divisions, for four different input distributions. We observe that CVaR-Trapz performs

marginally better than CVaR-HS, under each input distribution.

3.2.2 Portfolio optimization

The typical goal in a portfolio optimization problem is to find an investment strategy that

maximizes the expected return. In this experiment, we consider a risk-sensitive strategy

that is based a CVaR-based objective. In particular, the aim is to find an investment

strategy that minimizes the worst-case loss, while guaranteeing a minimum expected

return, a problem considered earlier in (Rockafellar et al., 2000).

In this problem, the investor can invest in d different assets, and his investment

decision vector is denoted by x, and the decision region is X ⊂ Rd. The returns of all
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assets are random, and losses are expressed by a random vector y ∈ Rd. The loss that an

investor can experience for a decision vector x is a r.v. denoted by f(x,y) = xTy. We

consider the following portfolio optimization problem (Rockafellar et al., 2000):

minx∈X Cα

(
xTy

)
s.t. −xTE (y) ≥ R,

(3.1)

Solving the problem formulated above requires knowledge of the distribution of loss y,

and this information is often unavailable in practice. Our solution approach is to obtain

i.i.d. samples of the underlying losses, and approximately solve (3.1) by substituting an

estimate of CVaR that is based on CVaR-Trapz in the objective of (3.1). The details are

as follows. Given i.i.d. loss vector samples y1, . . . ,yn from distribution of y, assume

loss for a portfolio x is li = xTyi, i ∈ {1, . . . , n}. Let l(1), . . . , l(n) denote the order

statistics for losses, and V̂n,βk = l(dnβke) denotes estimate of Vβk . Also, to ensure a

minimum expected return R for the investor, we add a constraint -xT û ≥ R, where û

denote estimate of E[y]. Then, we can write COP (3.2) as:

minx∈X
1

(1−α)
∑m

k=1

(
V̂n,βk−1

+V̂n,βk
2

)
∆β

s.t. −xT û ≥ R,

(3.2)

where α is the specified confidence level and m is the number of subdivisions used in

CVaR-Trapz.

We considered weekly negative returns of three assets IBM, MSFT and WMT of

S&P500 stocks during Nov 2004 - Apr 2016, taken from the real stock market data set of

(Bruni et al., 2016). Table 3.4 and Table 3.5 presents the mean loss and covariance matrix,

obtained as an average over 595 negative return (loss) values of three assets. Table 3.6

presents the weights of three assets, while minimizing CVaR using (3.2), with CVaR-

Trapz for CVaR estimation. For obtaining these results, n = 20, 000 i.i.d. loss vector

samples were used. The underlying distribution for sampling is set to multivariate normal

with mean as given in Table 3.4 and covariance matrix as in Table 3.5. For solving the

problem (3.2), candidate vectors (x1, x2, x3)
T ∈ R3 satisfying xi >= 0, i ∈ {1, 2, 3}

and
∑3

i=1 xi = 1, were uniformly generated. We set the confidence parameter α = 0.95,

and number of subdivisions m = 1000.

Further, to see how the portfolio risk (CVaR) changes for different expected returns,
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we solved (3.2) approximately with parameters are mentioned above, for different values

of expected minimum return R, and calculated the resulting portfolio risk. Figure 3.5

presents the plot of risk vs. return. The bars in the plot shows standard error averaged

over 100 replications. We observe that CVaR-Trapz is comparable to CVaR-HS, which

employs the classic estimator given in (1.6).

Table 3.4: Mean asset losses of three assets, S&P500 stocks

ASSET MEAN LOSS

IBM -0.0068772
MSFT -0.0018255
WMT -0.0013223

Table 3.5: Covariance matrix of three assets, S&P500 stocks

IBM MSFT WMT

IBM 0.0024851 0.0007456 0.0006083
MSFT 0.0007456 0.0012761 0.0004629
WMT 0.0006083 0.0004629 0.0008997

Table 3.6: Portfolio configuration: assets’ weights (%) in the optimal portfolio with
minimum CVaR at confidence level 0.95 for different required returns.

REQUIRED

RETURN 0.002 0.003 0.005

IBM 12.33% 30.06% 65.72%
MSFT 31.52% 27.32% 17.33%
WMT 56.15% 42.61% 16.94%
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Figure 3.5: Efficient frontier (optimization with minimum CVaR constraint).
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CHAPTER 4

CONCLUSIONS

We proposed a novel SRM estimation scheme that is based on numerical integration,

and derived concentration bounds for our SRM estimator for the case of distributions

with bounded support, as well as Gaussian and exponential distributions. We conducted

simulation experiments to validate the theoretical findings. In particular, we studied a

bandit application in vehicular traffic routing, and a financial application in portfolio

optimization.

As future work, it would be interesting to generalize the bounds for Gaussian/

exponential distributions to the class of sub-Gaussian/sub-exponential distributions. An

orthogonal direction for future work is to derive a lower bound for SRM estimation and

close the gap (if any) w.r.t. the upper bound that we have derived.

Further, one can explore the application of this study in areas like clinical trials

(which drug to prescribe), crowdsourcing (which task to allocate which worker, and at

what price), logistic management (effective movement and storage of goods and services

from origin to destination), and recommendation systems (news article, advertisement,

and product).



APPENDIX A

PROOF OF LEMMA 2.4.1

Proof. The proof follows in a similar fashion as a result in Cruz-Uribe and Neuge-

bauer (2003), and we provide the details below for the sake of completeness. Let

h = ∆β = b−a
m

and βk = a+ kh. We look at a single interval and operate integrate by

parts twice:

∫ βk+1

βk

ϕ(β)Vβ dβ =

∫ h

0

ϕ(t+ βk)V(t+βk) dt

=
[
(t+ A)ϕ(t+ βk)V(t+βk)

]h
0
−
∫ h

0

(t+ A)
(
ϕ(t+ βk)V(t+βk)

)′
dt

(A.1)

=
[
(t+ A)ϕ(t+ βk)V(t+βk)

]h
0

−
[(

(t+ A)2

2
+B

)(
ϕ(t+ βk)V(t+βk)

)′]h
0

+

∫ h

0

(
(t+ A)2

2
+B

)(
ϕ(t+ βk)V(t+βk)

)′′
dt. (A.2)

Setting A = −h/2 and B = −h2/8 in the RHS above, we obtain

∫ βk+1

βk

ϕ(β)Vβ dβ =
h
(
ϕ(βk)Vβk + ϕ(βk+1)Vβk+1

)
2

+

∫ h

0

(
(t− h/2)2

2
− h2

8

)(
ϕ(t+ βk)V(t+βk)

)′′
dt

Let ET (k) denote the difference between the integral above and the corresponding

trapezoid. Then, the error in the trapezoidal rule approximation can be simplified as

follows:

ET = ET (0) + ET (1) + · · ·+ ET (m− 1)

=

∫ h

0

(
(t− h/2)2

2
− h2/8

)(
ϕ(t+ β0)V(t+β0)

)′′
dt+ · · ·+∫ h

0

(
(t− h/2)2

2
− h2/8

)(
ϕ(t+ βm−1)V(t+βm−1)

)′′
dt



=

∫ h

0

(
(t− h/2)2

2
− h2/8

)((
ϕ(t+ β0)V(t+β0)

)′′
+ · · ·+(

ϕ(t+ βm−1)V(t+βm−1)

)′′)
dt

As in the text, we suppose that
∣∣(ϕ(β)Vβ)′′

∣∣ ≤ K2 for 0 ≤ β ≤ 1. Then,

|ET | =

∣∣∣∣∣
∫ h

0

(
(t− h/2)2

2
− h2/8

)((
ϕ(t+ β0)V(t+β0)

)′′
+ · · ·+

(
ϕ(t+ βm−1)V(t+βm−1)

)′′)
dt
∣∣∣

≤
∫ h

0

∣∣∣∣((t− h/2)2

2
− h2/8

)((
ϕ(t+ β0)V(t+β0)

)′′
+ · · ·+(

ϕ(t+ βm−1)V(t+βm−1)

)′′)∣∣∣ dt
=

∫ h

0

∣∣∣∣∣(t− h/2)2

2
− h2/8

∣∣∣∣∣ ∣∣∣(ϕ(t+ β0)V(t+β0)

)′′
+ · · ·+

(
ϕ(t+ βm−1)V(t+βm−1)

)′′∣∣∣ dt
≤
∫ h

0

∣∣∣∣(t− h/2)2

2
− h2/8

∣∣∣∣ (∣∣∣(ϕ(t+ β0)V(t+β0)

)′′∣∣∣+ · · ·+∣∣∣(ϕ(t+ βm−1)V(t+βm−1)

)′′∣∣∣) dt
≤ mK2

∫ h

0

∣∣∣∣(t− h/2)2

2
− h2

8

∣∣∣∣ dt.
The function (t−h/2)2

2
− h2

8
is a parabola opening upward that is zero at t = 0 and t = h/2.

Thus, it is negative for 0 < t < h/2 and positive elsewhere. Using this fact, we have

∫ h

0

∣∣∣∣(t− h/2)2

2
− h2

8

∣∣∣∣ dt ≤ ∫ h/2

0

∣∣∣∣((t− h/2)2

2
− h2

8

)∣∣∣∣ dt
+

∫ h

h/2

∣∣∣∣((t− h/2)2

2
− h2

8

)∣∣∣∣ dt
=

[∣∣∣∣(t− h/2)3

6
− h2t

8

∣∣∣∣]h/2
0

+

[∣∣∣∣(t− h/2)3

6
− h2t

8

∣∣∣∣]h
h/2

=
h3

24
+
h3

24
=
h3

12
.

Putting this all together and using h = b−a
m

gives us the following error bound:

|ET | ≤
mK2h

3

12
=
K2(b− a)3

12m2
. (A.3)
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In the case when the second derivative of VaR is not bounded and instead, we have

| (ϕ(β)Vβ)′ |≤ K1 for β ∈ [a, b], one can employ an argument similar to that used

above in arriving at (A.3). In particular, starting with equation (A.1), and constant of

integration A = h/2, we obtain

|ET | ≤ mK1

∫ h

0

|t− h/2| dt.

The integral of function |t− h/2| is h2/4. Putting it all together, and using h = b−a
m

leads to the following error bound:

|ET | ≤
mK1h

2

4
=
K1(b− a)2

4m
.
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APPENDIX B

PROOFS FOR CVAR ESTIMATION

B.1 Proof of Corollary 2.5.1

Proof. First, we prove the claim in part (i). Notice that

P[| Cα − Ĉn,m,α |> ε] = P

[∣∣∣∣∣ 1

1− α

∫ 1

α

Vβ dβ −
1

1− α

m∑
k=1

V̂n,βk−1
+ V̂n,βk

2
∆β

∣∣∣∣∣ > ε

]

= P

[∣∣∣∣∣
∫ 1

α

Vβ dβ −
m∑
k=1

V̂n,βk−1
+ V̂n,βk

2
∆β

∣∣∣∣∣ > ε(1− α)

]

= P

[∣∣∣∣∣
∫ 1

α

Vβ dβ −
m∑
k=1

Vβk−1
+ Vβk

2
∆β

+
m∑
k=1

Vβk−1
+ Vβk

2
∆β

−
m∑
k=1

V̂n,βk−1
+ V̂n,βk

2
∆β

∣∣∣∣∣ > ε(1− α)

]

≤ P

[∣∣∣∣∣
m∑
k=1

Vβk−1
+ Vβk

2
∆β

−
m∑
k=1

V̂n,βk−1
+ V̂n,βk

2
∆β

∣∣∣∣∣ > ε(1− α)

2

]
, (B.1)

where the final inequality follows by using Lemma 2.4.1(i) to infer that for m ≥ K1(1−α)
2ε

,

we have
∣∣∣∫ 1

α
Vβ dβ −

∑m
k=1

Vβk−1
+Vβk
2

∆β
∣∣∣ < ε(1−α)

2
. Now, we have

P[| Cα − Ĉn,m,α |> ε] ≤ P

[∣∣∣∣∣
m∑
k=1

Vβk−1
+ Vβk

2
∆β

−
m∑
k=1

V̂n,βk−1
+ V̂n,βk

2
∆β

∣∣∣∣∣ > ε(1− α)

2

]

= P

[∣∣∣∣∣
m∑
k=1

((Vβk−1
+ Vβk)− (V̂n,βk−1

+ V̂n,βk))

∣∣∣∣∣ > ε(1− α)

∆β

]
= P

[∣∣∣Vβ0 − V̂n,β0 + 2(Vβ1 − V̂n,β1)



+ · · ·+ 2(Vβm−1 − V̂n,βm−1) + Vβm − V̂n,βm

∣∣∣ > ε(1− α)

∆β

]
≤ P

[∣∣∣Vβ0 − V̂n,β0

∣∣∣ > ε(1− α)

2m∆β

]
+ 2P

[∣∣∣Vβ1 − V̂n,β1

∣∣∣ > ε(1− α)

2m∆β

]
+ · · ·+ 2P

[∣∣∣Vβm−1 − V̂n,βm−1

∣∣∣ > ε(1− α)

2m∆β

]
+ P

[∣∣∣Vβm − V̂n,βm

∣∣∣ > ε(1− α)

2m∆β

]
≤ 2 exp

(
−2nc0

(
ε(1− α)

2m∆β

)2
)

+ 4 exp

(
−2nc1

(
ε(1− α)

2m∆β

)2
)

+ · · ·+ 4 exp

(
−2ncm−1

(
ε(1− α)

2m∆β

)2
)

+ 2 exp

(
−2ncm

(
ε(1− α)

2m∆β

)2
)

≤ 4m exp

(
−2nc

(
ε(1− α)

2m∆β

)2
)

(B.2)

= 4m exp

(
−n c ε

2

2

)
= 2K1(1− α)/ε . exp

(
−n c ε2/2

)
.

where we have applied Lemma 2.4.2 to arrive at the inequality in (B.2), with c =

min{c0, c1, . . . , cm}. The claim follows for the case when the first derivative of VaR is

bounded.

The proof of the result in part (ii) follows in a similar manner. In particular, using

part (ii) in Lemma 2.4.1, with m ≥
√

K2(1−α)2
6ε

, we obtain

P
[∣∣∣C− Ĉn,m,α

∣∣∣ > ε
]
≤ 4m exp

(
−n c ε

2

2

)

=

√
8K2(1− α)2

3ε
. exp

(
−n c ε

2

2

)
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B.2 Proof of Corollary 2.5.2

Proof. Recall that the truncation threshold Bn =
√

2σ2 log (n). Letting η = F (Bn),

we have

P
[
C− C̃n,m,α > ε

]
≤ P

[
1

1− α

∫ 1

0

Vβ dβ −
1

1− α

m∑
k=1

Ṽn,βk−1
+ Ṽn,βk

2
∆β > ε

]

= P

[
1

1− α

∫ η

0

Vβ dβ −
1

1− α

m∑
k=1

Ṽn,βk−1
+ Ṽn,βk

2
∆β

+
1

1− α

∫ 1

η

Vβ dβ > ε

]
= P [I1 + I2 > ε] , (B.3)

where I1 = 1
1−α

∫ η
0

Vβ dβ − 1
1−α

∑m
k=1

Ṽn,βk−1
+Ṽn,βk
2

∆β, and I2 = 1
1−α

∫ 1

η
Vβ dβ.

We bound I2 as follows:

1− β = P (X > Vβ) ≤ exp

(
−Vβ

2

2σ2

)
, (B.4)

since X is Gaussian with mean zero, and variance σ2. Using log x ≤ x
e
∀x > 0, we

obtain

Vβ ≤

√
2σ2 log

(
1

1− β

)
≤

√
2σ2

e(1− β)
,

leading to

∫ 1

η

Vβ dβ ≤
√

2σ2

e

∫ 1

η

dβ√
1− β

= 2

√
2σ2

e

√
1− η

≤ 2

√
2σ2

e
exp

(
−Vη

2

4σ2

)
(using (B.4))

= 2

√
2σ2

e
exp

(
−Bn

2

4σ2

)
(since Vη = Bn)

Hence,

I2 =
1

1− α

∫ 1

η

Vβ dβ ≤
2σ

(1− α)
√
n
. (B.5)
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Applying the bound in the Theorem 2.5.1 to the truncated r.v. Z = XI {X ≤ Bn}, we

bound I1 as follows:

P [I1 > ε] ≤ K1(1− α)

ε
exp

(
−n c ε2

2

)
. (B.6)

Hence,

P [I1 + I2 > ε] ≤ K1(1− α)(
ε− 2σ

(1−α)
√
n

) exp

−nc
(
ε− 2σ

(1−α)
√
n

)2
2


(using (B.5) and (B.6))

≤
√

2πσn(1− α)(
ε− 2σ

(1−α)
√
n

) exp

−nc
[
ε− 2σ

(1−α)
√
n

]2
2

,
where the final inequality follows from the fact that δ1 =

√
2πσ exp

(
B2
n

2σ2

)
=
√

2πσn,

which holds since the underlying Gaussian distribution is truncated at Bn.

By using a parallel argument, a concentration result for bounding the lower semi-

deviations can be derived, and we omit the details.

B.3 Proof of Corollary 2.5.3

Proof. The proof for the exponential case follows in a similar manner as that of the

proof of Theorem 2.5.2. In particular, the proof up to (B.6) holds for the exponential

case, with a different bound on I2.

We derive the bound on I2 = 1
1−α

∫ 1

η
Vβ dβ. Using arguments similar to that in the

Gaussian case, we obtain

∫ 1

η

Vβ dβ ≤
1

λ

∫ 1

η

log

(
1

1− β

)
dβ

=
(1− η)

λ

(
1 + log

(
1

1− η

))
≤ (1− η)

λ

(
1 +

1

(1− η)e

)
=

exp (−λVη)

λ
(1 + exp (λVη − 1))
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=
exp (−λBn)

λ
+

1

λe
. (since Vη = Bn)

Choosing Bn = log(n)
λ

, we have

I2 =
1

1− α

∫ 1

η

Vβ dβ ≤
(n+ 1)

λn(1− α)
(B.7)

Now, as in the proof of Theorem 2.5.2, we have

P [I1 > ε] ≤ K1(1− α)

ε
exp

(
−ncε

2

2

)
. (B.8)

Thus,

P [I1 + I2 > ε] ≤ K1(1− α)(
ε− (n+1)

λn(1−α)

) exp

−nc
(
ε− (n+1)

λn(1−α)

)2
2

 (using (B.7) and (B.8))

≤ n(1− α)(
ε− (n+1)

λn(1−α)

) exp

−nc
(
ε− (n+1)

λn(1−α)

)2
2

.
where the final inequality follows from the fact that δ1 = exp(λBn) = n, which holds

since the underlying exponential distribution is truncated at Bn.

By using a parallel argument, a concentration result for bounding the lower semi-

deviations can be derived, and we omit the details.
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