DESIGN OF AN SMS LEXICON FOR AN INDIAN
LANGUAGE

A Project Report

submitted by

RAHUL CS

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

under the guidance of

PROF. HEMA A MURTHY

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2010



THESIS CERTIFICATE

This is to certify that, the thesis titleDesign of an SMS Lexicon for an Indian
Language’, submitted byRahul CS, to the Indian Institute of Technology Madras, for
the award of the degree daster of Technology, is a bona fide record of the research
work done by her under my supervision. The contents of th@sifh in full or in parts,
have not been submitted to any other Institute or Univefsityhe award of any degree

or diploma.

Place: Chennai-36
Date:

Prof. Hema A Murthy
Project Guide

Professor

Dept. of CS and Engineering
[IT Madras, 600 036



ABSTRACT

Mobiles are leading the list of commonly used devices. Thetroost effective service

provided by the device isms People are always in search for better service, and the

service providers will obviously compete for providing teetresults. The objective of
this project is to come up with a better approach for deplggims lexiconfor Indian

Languages. Once implemented, it could be ported to any Egeyplatform, easily.

The objective is to improve user convenience in dealing sitis service, in the
sense of reducing the number of key presses to type a mesBagesample language

we deal with is Hindi.

The fact that it is being deployed for Indian Language, makésss comparable
to other implementation techniques liK® [1]. To work out a solution, you will be

provided with a sample lexicon.

The problem has been formalized as a task of coming up witbegus from data
structures, and algorithms that achieve the primary olgeiong with satisfying the
time and space constraints. We have started withe [2] and optimized it as far as
possible. We could keep on doing this, until some milestagiadbachieved, or some

threshold is known to be reached.

The target platform is Symbian Operating System which isaaneng the best Mo-
bile OS'. It provides good developer support too. So the wak focused on applying
nice concepts and utilizing whatever tools available, todyeffect. Once ported to the

target platform, this tool could be used to send sms in Hindi.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF TABLES

LIST OF FIGURES

ABBREVIATIONS

1

Introduction

1.1 Overview . . . . . . e

1.2 Motivation. . . . . . . ..

1.3 Problem Definition - An SMS Lexicon for Indian Languages .. .
1.3.1 AnOperationalModel . . ... ...............
1.3.2 ATargetPlatform. . . . . .. .. ... ... ... ...,

1.4 OrganizationoftheThesis . .. ... .. ... ... ........

Background Knowledge and Related Works

2.1 Dictionary Data Structures . . . . . . . . ... ... L.
211 Trie ..o
2.1.2 PatternsbasedTrie . . ... . ... ... ... .......

2.2 APointerlessBDD Package . . .. ... ... ... .. .....

2.3 Program Developmenton Mobile Devices . . . . ... .. ... ..
2.3.1 Mobile Operating System . . . . . ... ... ... ....
2.3.2 Mobile Emulators and Mobile ApplicationIDEs . . . . ..

Proposed System

3.1 Problem . . .. . . ...

Vil

viii

11

12
12



3.1.1 DesignChallenges . . .. ... ... ... ... ......
3.2 Approachingthe TaskinHand . . .. ... ... ..........
3.2.1 DeployingtheLexicon . . . . ... ... ..........
3.22 LookUpTable . ... ... ... ... .. .........
3.2.3 A Storage Structure for Lexicon . . . . .. .. .. ... ..
3.3 DealingwithFrontEnd . . . . ... ... .. .. ... .......

3.4 Conclusion . . . . . . e

Low Level System Design

41 LookUpTable ... ... ... .. .. ... ... .. .. ...

4.2 A Storage Structure forthe Lexicon . . . .. ... .. ... .. ..
4.3 Optimizing the Data Structure . . . . . . ... .. ... ......
4.4 RecoveringUnusedMemory . . .. ... ... ... ... .. ...

High Level System Architecture

5.1 System Architecture. . . . . . .. ... .. L Lo
5.1.1 PreprocessingStep . . . . . . ... .. o0
5.1.2 ParsingModule . . . . .. ... oo
5.1.3 The Scroll throughModule . . . . .. ... ... ......

5.2 KeypadDesign . .. ... .. . ... ..

5.3 KeypadEventHandling . . . . ... ... ... .. ... .....

Implementation and Results

6.1 Overview . . . . . . . . e
6.2 Input. . . . . . ..
6.3 Fixing Backend Parameters . . . .. ... ... .. ........
6.4 Environment. . . . . . . .. ...
6.5 Frontend . . ... ... . ...
6.6 Results. . ... ... .. ... ...

Conclusion, Limitations and Future Work
7.1 OVEIVIEW . . . . o o e e e e e

7.2 Dealing withthe Problem . . . . . . ... ... ... ... .....

39
39

39
39
40
41



7.3 Benefits

7.4 Limitations . . . . . . . .

7.5 FutureWork . . . . . . .



LIST OF TABLES

4.1 Execution sequence of the procedure GeneratePattern. . .... .

6.1 Space consumption characteristics of the data steictur

Vil



2.1
2.2

4.1
4.2
4.3
4.4

5.1
5.2
5.3

LIST OF FIGURES

A trie representing a sample lexicon . . . ... .. ... ... ...

Patterns based Trie - An extended version of normal trie . . . .

Asimple patterntrie . . . . .. ... .. . Lo
model of nodes inthe structure . . . . . . .. ... ... ... ...
Way to final storage structure represention . . . . . . .. . ..

Nodelist represention and sparseremoval . . . .. ... .. ..

System Architecture . . . . . . . ... L
PreprocessingPhase. . . . . . ... ... .. ... ... ...,

Keypaddesign. . . . . . .. . . .. . . .. . .. ..

viii

22
23
26
30

33
36
38



GUI
IDE
SDK
ul
LUT
KB
(ON)
RAM

ABBREVIATIONS

Gaphical User Interface

Integrated Development Environment
Software Development Kit

User Interface

Look Up Table

Kilo Byte

Operating Systems

Random Access Memory



CHAPTER 1

Introduction

1.1 Overview

In the contemporary world, mobile phones play a vital roleun life. About 60.6 per-

centage of the total population of the world are mobile udertndia its about 49.6 per-
centage [3]. The device provides a wide variety of servidesvoice communication,

entertainment like games, scheduler, calendar and cedculRecent developments in
this industry, like addition of internet facility makes thepowerful enough to replace
even PCs. Nowadays they support almost all the desktopcapipins. Added benefits
like portability and compactness force us to replace lane phones and other wired

voice communication services with this one.

Among the services provided by this device, the most apatediservice is obvi-
ously the Short Message Service(SMS). Statistics show®than average, an Indian
sends 29 SMS per month [4]. Not just for communication, nayadhey provide many
Value Added Services(VAS) like bill payments, train stawmjuiry and live cricket
scores. The service providers are competing so hard to waprestomer satisfaction

and hence business.

Once the customer becomes satisfied with the services, éheaddon metric from
his point of view will be the usability of the service, in tuthe usability of device.
So the service provider has to keep focus on that too. If youige diverse services
and if they are inconvenient to use for common people, thay showing reluctance
to the Industry. Handling the device should be as simple airdewith a calculator.
Whenever possible, it should be hiding the complexity frowva tiser. We could define

this objective aPevice Transparency



1.2 Motivation

The section above describes how conscious the servicedam\are about the customer
needs, in order to hold on in the market. They always keep kingdeedback about
their technologies and they keep on updating the servicesdoan the feedback. Most
focused service will be the most appreciated one. In thageseghey have to put more
focus on improving the Short Message Service(SMS), singgnggsynonym for SMS)

is the widely used one among common people.

The process of sending a short message starts with the stemlas message cre-
ation. This involves creating the message using symbois thee alphabet of that par-
ticular target language. As the size of alphabet increasbscomes hard to map the
alphabet symbols to the number keys on the keypad, sinceothaid of mapping is a
constant figure. Whenever the alphabet size goes beyoneéypad size, we have to go
for a many to one mapping. This makes the message creatptoste a cumbersome
task, since the number of clicks made per character goes\leywe. As the alphabet
size increases, the number of clicks to be made keeps orasingeby a factor of key-
pad size. Customers will always tend to reduce their loaeyMill be keen to reduce

the number of clicks whenever possible.

This requirement introduces the concept of SMS lexicon. S&&&on together
with word prediction fulfills the requirement of achievirgguction in button clicks and
hence speeding up the process of message creation. Oneshboblbgy which comes
up with this facility for English language is known as Tekt on 9 keyspredictive
text technology. Since late 90s, most of the mobile devekpave come up with this

facility embedded in their devices.

In a developing country like India, people will prefer to comnicate in their na-
tive language over English. In English, there exists an SM&lvwprediction scheme,
which comes up with predictions about the words a user tertgp® next, while he
prepares a message. The system will be associated withcatgset of words from the
vocabulary of a languagewhich the system refers to, in order to make its predigion
about the SMS words. So, it will be nice if we can come up withnething similar to

T9, for Indian languages too. The goal of this project is toiewe the above objective.



Nowadays, there is support for native languages in mosteafrtbbile phones. Some of
them have support for typing SMS in native languages. THeisa® develop a module

similar to T9, targeted for Indian languages.

1.3 Problem Definition - An SMS Lexicon for Indian

Languages

Being motivated from the requirement mentioned above, vilmeléhe problem as de-
veloping a word prediction scheme for supporting Indiargleage SMS. We have to
come up with a framework which satisfies all the constraimtsl then deploy that on a

selected mobile platform. The target language operated igadindi.

1.3.1 An Operational Model

The framework will be having two components.
e SMS lexicon— Composed of selected legitimate Hindi words.

e Word prediction scheme Come up with predictions about user intention based

on his/her hints.

SMS Lexicon

A lexicon is a subset of a language’s word set. The size ofakiedn the number of
words in the lexicopdepends on its domain of operation. Since the domain ofbioer
under consideration is texting, the lexicon is limited ipesiWe are provided with a list
of most frequently used SMS Hindi words, selected based ¢attigtical analysis. The
objective is to come up with an appropriate data structudefsoy the lexicon so that it
is compact and serves quick retrievability. In other woedtsADT (Abstact Data Type)

with operation defined to be looking up a valid word.

3



The compactness of lexicon, in terms of technical terms|dcba defined as the
extent to which we can reduce the total memory usage for gep@at of the lexicon.
Since mobiles are low power and hence resource constragaced, we are forced to
ensure that the memory utilized is the bare minimum. In ord@chieve this, we have
to make the maximum use of the redundancy associated witlexttemn. The scheme

should be focusing on eliminating redundancy.

Word Prediction

The user wants to reduce the number of button clicks as muystisasble. But he should
be making some clicks so that the system could come up witle gedictions which
meets the user needs. The user clicks are actually the Ihiots his/her intended word.
These hints will be fed as input to the prediction system. 3ystem has to use these
hints to look up(operation defined on the ADT) the lexicon(BDThe process should
avoid taking too much time, in order to achieve the user parencyfnaking sure that
the user is not aware about the presence of complex undgngachanism Although
the response time of the system depends on the operatiorddr@ platform, we
should try to minimize the number of computational stepssstoanake it compatible

with the low end mobiles whenever possible.

1.3.2 A Target Platform

Once you are ready with a framework, it has to be deployed s, in order to
test it and to make a final decision about whether it suitsHergurpose or not. Here
the platform has been fixed to be Nokia S60 model mobile phamesng on Symbian

Operating System, which is well known for its specializatio smart phone technology.

1.4 Organization of the Thesis

The remaining part of the thesis has been organized as ®llow



Chapter 2 briefly tells about the background study in this area andedlaork.
Chapter 3 talks about solution formulation.

Chapter 4 deals with issues related to to level design.

Chapter 5 explains the front end design and integration.

Chapter 6 explains implementation details.

Chapter 7 covers conclusions, limitations and future work.



CHAPTER 2

Background Knowledge and Related Works

This chapter covers the fundamental concepts that shoulthterstood in order to
deal with the problems at hand. This one also covers thesgklabrks and the findings

which led to an admissible solution.

2.1 Dictionary Data Structures

There are a wide variety data structures to be selected froongler to deploy a dictio-
nary. Few of the candidates are BTrees,Hash Tables etce 8ircsituation demands
efficient space utilization along with sound retrievalgjlion choice narrows down to
Triesdata structure. Among them, we go for the one specializethfepurpose, which

is Trie.

2.1.1 Trie

A Trie [2] is an n-ary tree, where n is called the arity of the treeityAis the upper
threshold on the number of children any node in the trie cae hahere each child in
turn may be another trisgb trie. An edge in the trie is an identifier which uniquely
identifies one of the bindings between parents and childréing trie. At the top, there
will be a single node without ancestors which is being knowith& root of the trie. If
we label an edge joining a parent and a child using a symbal sayset of size n (from
which alpha being drawn) will be enough to recognize acrbsshindings between
any parent and one its children. This labeling scheme in, tunmjuely identifies a
path from root to one of its leaves as a sequence of symbotespmnding to those
edges in the path. Suppose this set represents alphabéagsnicular language, then
these paths represents possible words in that languagéhdnwords, any word in the

language can be represented by a unique path in the trie asitbation of words can



be represented by a unique trie. This is how trie happens todmeind candidate data

structure for representing lexicon of a language.

Figure 4.3 shows trie representation of the lexicon of a lagg whose alphabet
setis{«, 3,7,d}.

Fig. 2.1: A trie representing a sample lexicon

The set of words covered by this trie are:

® 07

* 0y

® Hyaf

In this representation, it could be noted that common prefaxe being replaced by
single occurrences. This is how it achieves reduction iragi® space and the amount

achieved is directly proportional to the common prefix qugrdssociated with the

word set.

2.1.2 Patterns based Trie

In simple trie, the property that the domain space for selgdiranch names could be

an Alphabet of a language, makes it a suitable representtdiothe lexicon of that

7



particular language. This property will be retained evewefevolve the alphabet set
by adding some more elements to it. If the newly added elesramat combinations of
symbols already there, then they may also take up the jobpoésenting sub patterns
in the trie, as the Alphabet symbols do. The benefit achiewwsdse of these sub
patterns depends on the frequency of their occurrencee itatget word set. Thus the
domain space for branch names also depends on the targesetordther than just on
the language alphabet set as in a simple trie. So the new fbine thas an associated
look up table. Trie structure will be edge labeled with numbers which sédrve as

indexes in to the look up table(See figure 2.2). The seledtiaandidates for look up

table plays a big role in the efficiency of these Tries.

0] ap

1 &y

2 (o8 I
I =

3 B |

4 Y

5 e}

Fig. 2.2: Patterns based Trie - An extended version of notneal

2.2 A Pointerless BDD Package

Binary Decision DiagramgBDD) play a vital role in modern digital circuit design.
There are BDD packages which are supposed to facilitate #mepulation of BDDs.
Binary Decision diagrams are basically tries which repnéesa binary language word
set. As the applications demand, BDD packages should beiasssbwith functionality
that let the BDD to grow dynamically. Basically this requirent brings the pointer

based implementation in to picture.



But a new design of BDDs [5] in which they fulfill the requirentdor pointers with
statically allocated memory, as long the upper bound onitteecd the BDD is known.
There will be a fixed amount of statically allocated memoryhailever an application
requests for memory, a portion this static memory will betédid for it. If it is pointer
in dynamic allocation, this scenario uses array index agdference parameter. This
provides faster access(random access) and possibly stepage saving along with

garbage collection and other pointer based services.

The prerequisite is the knowledge about the maximum staspgee requirement.
For applications like trie based lexicon implementatioheve we could get a clear idea
about maximum storage requirement, we could borrow thistpdess concept to tries,

and could make maximum use of it.

2.3 Program Development on Mobile Devices

Mobile devices are very similar to PCs in Architecture. Tladso do have computa-
tional elements and memory elements. They are also govesneperating systems as
is the case with PCs. This makes dealing with the device refsisomeone who are
familiar with PCs. The class of people dealing with the devdould be mainly divided

in to mobile users and mobile application developers. Wihieemobile users enjoys
mobile applications, developers focus on providing imgwmobile applications and
hence promote mobile users. The process of mobile apmicdivelopment does not

vary much from PC application development.

2.3.1 Mobile Operating System

As Linux or Windows operates on a desktop PC or laptop,a Matylerating system
interfaces users(user applications) to hardware mobileeg. Since the target devices
are resource conscious, the designers of mobile OS focusabnao, rather than just
targeting ultimate output to the user. There are many md@b8e but one of the most
prominent one among them is Symbian OS. It holds 50.3% ofdta mobile market

[6] and is being widely accepted. Now it is open source to@rdvides almost all the



operating system services as a normal Operating Systenfaloe&C.

Keeping the target platform in mind the designers of Symi&s has followed

principles like,
e Resources associated with the target platform are scarce.

e User time is precious.

The Symbian Operating System

Symbian is a multitasking multithreaded operating systéensures efficient memory
utilization by the use of what are called Dynamic Link Libes(DLLSs). DLLs ensures
on demand loading of kernel services, and at a time only ostamce of a service will
be residing in memory. Also this is an event based operatistem. Any change in
device’s state could be identified by generation of an evmn its about handling that
event representing that change. Kernel will be ready to leamdst of the events by use
of some default handlers. User applications may or may nadleghem depending on
whether they are prioritized enough to do it or not. Sevdedses of events are there
with different levels of access permissions. Once a deeglgpt access to one of the
levels, he can decide upon handling all the events that comasr that particular level

and everything below that.

Development could be done in object oriented programinguage called Sym-
bian c++ [7], which is being well tuned to match the platformhe operating sys-
tem and application software follow an object oriented giestalled Model-View-
Controller(MVC). Development in Symbian OS ApplicatiomsSymbian will be hav-

ing three components.

e Model - This component is defined in the form of document clalsieh is avail-
able as part of symbian API. This has to deal with allocatenms deallocation of

memory.

10



e View - This one deals with GUI and hence it decide upon how tsent the

application to the user.

e Control - This is the component which decides the behavidhefpplication. It
contains the definition of all the event handlers that thdiegon wants to deal

with.

2.3.2 Mobile Emulators and Mobile Application IDEs

Most of the industrial giants have come up with emulatorg #raulates the target
device on a PC in order to experiment with mobile applicatiomhey also provides
IDEs, that facilitates mobile application developer’s.jdbe IDEs generate executables
for both emulator and mobile device. Even it is possible tdquen on device(mobile)
debugging. Itis also being ensured that the mobile appdicatevelopment languages
do not vary much from programming languages so as to ensatét thon't be hectic

for someone coming from the world of PC to the mobile develepnenvironment.

11



CHAPTER 3

Proposed System

This chapter explains how we approach the problem. Firstook &t the task to be
dealt with, as a whole. Then the break down the job to be doremdlé individual

modules separately, built them up and integrate them toym®the target system.

3.1 Problem

The objective is to develop an SMS lexicon for Indian LangsgagWe are provided
with the target platform specification, and word set. Thegeaaplatform is a mobile
device. The experimental word set is in Hindi. What we havddas to develop an
application that resides in the device along with the inpatdvset. Whenever user
wants to send a message in Hindi, this tool should play a stipgaole such that it
comes up with predictions about the word intended by the. ussrsoon as the user
starts typing, it should capture the patterns and accessdhe set for predicting the
word it has to come up with. Since the keypad to alphabet showis a one to many
mapping, a combination of key press will result in multiplespible combinations of
alphabet symbols that the tool has to deal with. With the veatdn back of the mind,
it has to classify the list of patterns to, those which arédvalefixes and those that are
not. Then it has to come up with a mechanism that lets the ossglect one among

those valid patterns.

3.1.1 Design Challenges

Since the target platform is a mobile device, the tool shea@dlemanding only a few
resources. The resource set can be classified into memorgoamputational require-
ments. The performance could be measured as differenceedetihe time user per-

forms an action (like a key press) and the time the user gets@onse from the tool



(some state change in display). Here we are provided withpgeribound on the ex-
pected response time of the tool. So it is just about brinthegomputation time down

to within this bound rather than focusing on optimizing it.

The real matter of worry is memory. The memory componenta®target device
are power sensitive in nature. We are forced to reduce theameusage as much as
possible. So we have to keep on optimizing this parametenexer possible. The
memory occupied includes both code memory and data memdrg. d€sign should
come up with a representation of the lexicon that occupiesmim amount of memory
and the parser module should also be well optimized to ocecopymum memory,

along with satisfying the response time constraint, meiibas above.

3.2 Approaching the Task in Hand

One of the most widely used strategies to solve a probleny illating it to solved
problems already there around us. We also follow the samié idiere are a number
of lexicon based problems around, only differ in the domdiapplication. If we look
a bit deep in to those, it could be noted that most of them useatr such, or some

variation of the same, which suits their purpose.

It does not seem to be a bad idea to start working out the tasbitkg trie as the

base data structure. Later we could go on evolving, wherm&sible and effectively.

3.2.1 Deploying the Lexicon

In a trie, each node is an alphabet, contributing somehowedmverall construction
of the lexicon. Making the nodes to be made of combinatioredmfabets rather than
single ones, so that a possible sequence of nodes could laeedy a single node.
This will introduce a need for defining a neset of domain construdgsort of book

keeping) from which, the node values for the data structulidoes drawn.

13



3.2.2 Look Up Table

In order to deploy the lexicon in an effective manner, we finsidify the language
Alphabet itself, so as to make the word to be made of biggestcocts and hence lesser
number of constructs. Now if we use these constructs to septex word in some data
structure, then the count of data structure units used tesept these constructs should
also come down. Now its about storing this modified set of tacss somewhere and
referring to this book keeping information from the storagecture. Each entry in the

data structure will be referring to the table.

3.2.3 A Storage Structure for Lexicon

We make use of the look up table by storing the lexicon as &cmdiin of references
from the trie to the table as shown in figure 2.2. The path inttleerepresents a
sequence of references into the look up table, which in tarresponds to a word. The
data structure used here is a modified form of trie. As alreadwptioned, the initial
modification we make is replacing the basic alphabet set antimproved collection
of constructs drawn from the, well built look up table. Nex twy altering the trie in
a peculiar way which intuitively seems to be effective for purpose, as explained in

sections 4.2to 4.4

3.3 Dealing with Front End

Once the lexicon is guaranteed to meet the criteria, it isabeing it to meet user
requirements. The user will be producing input in the fornk@yf presses. The system
has to read it and process it based on the reference datd stdtes form of lexicon,

that has been provided as part of the requirements(theolexic

Identifying the valid alphabet combination correspondim@ key combination in-
volves parsing the data book (the stored form of lexiconhwibssible candidate al-
phabet sequences, and identifying whether they succeeatsing the lexicon to prove

their validity.

14



So the front end should be able to,

Ensure availability of the lexicon

Provide a module to mapping from valid button combinatiopdssible alphabet

combinations.

Filter out the valid patterns based on the dictionary

Reflect the output back to the user, with provision to selewbrag different al-

phabet sequences.

3.4 Conclusion

The whole task is broken down in to,

e Setting up an efficient foundation for the tool to facilitdbe way it deals with

the user.

e Deciding upon how the tool should be made to respond dyndimicethe user

events, relying on the foundation already built.

The next two chapters cover the suggested solution in detail

15



CHAPTER 4

Low Level System Design

This chapter explains the underlying concepts in detail. d&elop a mechanism on
which the actual system rely heavily for its smooth operatféirst of all we convert the
lexicon in to a form which conforms to the requirement of éasiccessibility and re-
duction in storage space. Then this module could be usedadyaht end for satisfying

user needs at a higher level.

4.1 Look Up Table

Words in a language are made of symbols from its alphabeksek up table is where

the modified alphabet set for the language resides. It will baper set of the original
alphabet set for the language. The additional elements@gedntly combinations of
symbols from the actual alphabet set, so that they couldsssed for the construction
of words. The added patterns play a big role in the overafioperance of the system.
The selection of patterns for the look up table should be $hahthe total number

of look ups we perform to construct the lexicon is minimumsTéould be achieved

by, populating the look up table with possibly lengthy fregtly used patterns and
increasing the number of patterns. Both strategies willlt&s increase in look up table
size. But we can't let the table to grow without control sitices is again consumption

of memory.
So the task in hand is,

¢ to fix the look up table size.

e select the patterns to populate the look up table.

Both have to be dealt with extreme care.



In order to fix the look up table size, it should be noted thatdkerall size of the
table is the product of the number of entries and the sizeeofattyest pattern. Now the
job is being broken down to fixing the maximum pattern sizel fixing the look up

table size.

Patterns are the construction units of each word in a word Bet constructing
words, we either use the entire pattern or is not used at a@Jlit & fair to assume that
the pattern length should be decided based on the length rofsvpsesent in the word
set. First we calculate the average length of a wardi(om the word set. Calculate
standard deviation{). The differenceu — o is fixed to be the rough estimate of the
minimum length of word present in the word set. We fix this pagter as the maximum
pattern length. i.e this will be the length of the longestigrat present in the look up
table.

Next is to fix the number of entries present in the look up tafilee system will
be using a sort of indirect addressing to refer to the taldmehts. Because of this, it
is being preferred to fix the number of entries such that tlteesd of reference(in this
context the address is index to the table) will be in byte lolauies. We confine to this
to make sure that the storage and retrieval of referenceeasiels becomes simple and
effective. Therefore we have fixed the number of entries & a5 the original word

set itself does not exceed 7000 words.

Populating the look up table

Once the table size got fixed, we have to fix the candidaterpatfer the table. This

selection should satisfy two criteria
e It should be possible to construct each word in the lexicangupatterns in the

look up table.

e On average, the number of reference made to the table forutp®ge of con-

structing the word should be minimal.

The first criteria could be satisfied just by making sure that table covers the

alphabet set for the language. Next, we definebireefit factor for a pattern as,

17



benefit factorlength of pattern< frequency of occurrence

The benefit availed is the space that can be saved by storigthkeand frequently
used patterns. We will set, a minimum threshold that the fitefaetor should cross,
as the criteria for the pattern to satisfy to get in to the lopktable. The threshold
should be fixed such that the number of patterns satisfyisgttieria is just enough to
fit the table. We start the algorithm by fixing this factor toeasonable value based on

intuitions. Later we tune this, till all the criteria are met

For setting up the look up table, we use Algorithm 1. The eienusequence is

explained with a sample lexicon of three words.
{incarnation,caption,vision.}

Let the maximum pattern length parameter be 3. Let the lootable size be 15.

Let the minimum benefit factor be 2.

The main procedure identifies the most beneficial patterh thi¢ help ofSelect-
Pattern() (refer function SelectPattern() in Algorithm 1)functiofhe function selects

a pattern that produce the maximum benefit.

For example, in the given list of words, the pattern that poedmaximum benefit
during the first call to functioselectPattern()is, ion. In this pattern, the pattern length
is 3. The frequency of occurrence of this pattern in total ,i9o8ce in each word.
Now the benefit achieved of this pattern is (351)3. This benefit factor 6, crosses
the minimum threshold and will get selected. Look up tabl# ke updated with the
newly selected pattern. Later call tiRegenerateDictionary() function in order to
chop off all the occurrences of that pattern from the diciy(stored as an array of
words). This is to imply that a new candidate pattern has dded to the look up
table in order to cover all the chopped off instances in tlti@hary. After a call to
RegenerateDictionary()the lexicon becomes, { incarnat,capt,vis }. We thus repeat
SelectPattern()and RegenerateDictionary()in each iteration till, either the lexicon

becomes empty or look up table get fully populated.

18



Algorithm 1 Generating appropriate patterns to set up the look up table.

1: procedure GeneratePatterns
Require: Original Dictionary file
Ensure: LookUpTable.

2: LookUpTable < alphabetset

3: patterncount < 0

4: currentPatternLength < 0

5. currentPattern < null

6: maxBene fit < initmax

7: maxPatternLength «— init M ax PatternLength

8: patternPresentFlag «— 1

9: for i =maxPatternLengtto 1 step1 do

10:  while patternPresentFlag = 1 do

11: patternLength «— i

12: if patternLength = 1 then

13: maxBenefit «— 1

14: patternBenefit «— 1

15: else

patternBenefit < patternLength — 1
16: end if
17: if dictionary = empty then
return

18: end if
19: currentPattern «— Select Pattern(patternLength, maxBenefit)
20: if currentPattern # null then
21: patternPresentFlag < 1
22: RegenerateDictionary(current Pattern)
23: LookUpTable|patternCount] « current Pattern
24: patternCount «— paternCount + 1
25: else
26: patternPresentFlag < 0
27: end if
28: end while
29: end for

30: end procedure

19



1
2:
3:
4.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

5
6
7.
8
9

function SelectPattern(patternLength,maxBenefit)
currentMaxBenefit «<— maxBenefit
for ¢+ =1 to wordCountstep 1 do

tempWord «— Dictionaryli]
for ;7 =1to length(tempWord)-patternLengsttep 1 do
pattern «— tempPatternlj...j + patternLength]
frequency «— CountFrequencylnDictionary(pattern)
benefit «— (length(pattern) — 1) x frequency
end for
if benefit> currentMaxBenefithen
if pattern notin LookUpTableghen
current Pattern <« pattern
return
end if
end if
end for
end function

function CountFrequencylnDictionary(pattern)
freq —0
tempPattern «— null
for + =1 to wordCountstep do
load dictionary
tempWord < Dictionaryli]
for ;7 =1to length(tempWord)-length(pattersjep 1 do
tempPattern «— tempWord[j...j + length(tempW ord)]
if pattern =tempPatterthen
freq — freq+1
end if
end for
end for
returnfreq
end function

20



1: function RegenerateDictionary(pattern)
2: load dictionary
3: for i = 1to WordCountstep 1 do

for ;7 = 1to (length(tempWord)-length(patteradep 1 do

if pattern[l...length(pattern)] = pattern[j...(j + length(pattern))] then
tempPart «— tempWord[previndex...(j — 1)]

write back tempPart to Original Dictionary File

4 previndexr «— 1;

5. tempWord < Dictionaryli]
6

7

8

9

10: J <« j+ length(pattern) — 1
11: previndex «— j

12: end if

13:  end for

14: end for

15: returnfreq
16: end function

The changes happens to the data at each iteration is expiaittee table 6.1.

Iterations Look up table Dictionary of patterns Benefit of current patters
0 {} {incarnation,caption,vision} -
1 {ion} {incarnat,capt,vis} 6
2 {ion,ca} {in,rnat,pt,vis} 2
3 {ion,ca,i} {n,rnat,pt,v,s} 1
4 {ion,ca,i,n} {r,at,pt,v,s} 1
5 {ion,ca,i,n,t} {r,a,p,v,s} 1
6 {ion,ca,i,n,t,r} {a,p,v,s} 1
7 {ion,ca,i,n,t,r,a} {p,v,s} 1
8 {ion,ca,i,n,t,r,a,p} {v,s} 1
9 {ion,ca,i,n,t,r,a,p,v} {s} 1
10 {ion,ca,i,n,t,r,a,p,v,sH {} 1

Table 4.1: Execution sequence of the procedure Generteairat

4.2 A Storage Structure for the Lexicon

As already mentioned, we start the work with a trie, and a fredialphabet set(LUT).

We use the same strategy of inserting the word to the simpleWe identify the right

construct(pattern) from the look up table. For that we laokhie LUT for the pattern

that is the longest prefix of the word under considerationce&me found it, we have

21



to add the index of that pattern at the right position in tieg trepresenting the position
of that pattern in the word. The insertion of pattern indjcart from root. We check
for an edge leaving the root, labeled with this particulatex under consideration.
If it is not there, we add it. That edge lead us to a new node.s Tikiv node and
the remaining suffix of that word to be added to the trie, fohm hew input for the
procedure. Consider the node as root of a trie, and part oivtd left, as a word to
be inserted. Repeat the above step we did with actual rooaetuél word, for this
new input. As we progress, the length of word in hand will EluWe repeat till the
whole word get added to the trie. Now the whole procedure & trepeated for all

the words in the lexicon.

The following example (Figure 4.1)shows a list of Hindi weydts LUT and the

corresponding trie.

Pattern Trie

Word List Look Up Table
o TRIAT
AT | wen
CINS] 2 "

Fig. 4.1: A simple pattern trie

This is the algorithm designed for trie construction. Eastienin the trie(Figure 4.2)

has three fields.
e Pattern Index
e Side Index

e Down Index

22



¢ validFlag

Pattern Index 0/1

Down Index Side Index

Fig. 4.2: model of nodes in the structure

Also we use the strategy of replacing the pointers with ieglito statically allocated
memory. We declare the amount of static memory allocatechagpper bound on the
total need. Once we perform a test run, will get the exact ashotimemory needed.

Then we could fix the memory as per our need.

Among the node fields defined abol@kUpTablelndex points to the entry in the
LookupTable to which the current node boundsaePointerfield holds the index of
the slot allotted to the node next to the current node in tineeslevel. downPointer
contains the index of the slot allotted to the first child af turrent node. ThealidFlag
bit identifies whether a prefix of a valid itself is valid or noA variablenodeCount
points to the next free slot, initialized to 1. Zeroth sloagsumed to be occupied by the
root of the trie. The statically allocated memory is addeessith the namenodeList.

patternCount represents number of patterns present in the look up table.

At the end of the process, each unique paths in the trie, eliesent one of the

target target words.

4.3 Optimizing the Data Structure

In a normal trie, we eliminate redundant prefixes. It will balty effective, if we could

eliminate redundant suffixes too. For that we traverse flee find out the replicated

23



Algorithm 2 Constructing the pattern based Trie

1:

procedure CreateTrie

Require: Original Dictionary file, LookUpTable
Ensure: PatternBasedTrie

2:
3.

e N ar

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44

for i =1to wordCountstepl do
tempWord «— Dictionaryli]
tempPointer < nodeList[0]
for j =1to length(tempWord$tep 1 do

patternIndex <« FindPrefix(tempWord, j, length(tempW ord))

pattern «— LookUpT able|patternindezx]
patternLength «— length(pattern)

tempPtr «— nodeList[tempPointer|down)]]

presentFlag < 0
if tempPtr # null then
while tempPtr[side] # end do

if tempPtr[lookUpTablleIndex] = index then

presentFlag < 1
break the loop.
end if
tempPtr <« nodeList[tempPtr|side]]
end while
end if
if presentFlag # 1 then
nodeCount < nodeCount + 1
newN ode < node ListnodeCount]
newNode[lookUpT ableIndex] < index
if tempPtr = null then
tempPointer|down] < nodeCount
else
tempPtr[side] < nodeCount
end if
tempPtr «— nodeList[nodeCount]
end if
tempPointer < tempPtr
end for
end for
end procedure
function FindPrefix(word,index,length)
for ¢ = indexto lengthstep1 do
for i = jto patternCountstep1 do
pattern «— LookupTablelj]
if word]i...(i 4+ length)] = pattern then
return(j)
end if
end for
end for
end function

24



tails,eliminate one of them and adjust one of the parentsadd tails, to make it point

to the common tail(shown later in section).

In order to locate the common tails, we exploit the propeligt these tails are
suffixes of some words, and whenever there is a common suffia fmair of words,
their reversed form will be having a common prefix. Based asmahalogy, we reverse
all the words in the lexicon and form a new reversed trie frbis teversed set of words.
Now, it is easy to locate the words with common prefix in the fesmned list since we
just have to perform a traversal in the corresponding trfewd perform an inorder
traversal on the reversed trie, and list the words in the esacpithey got visited, two
adjacent ones in the sequence represents the possibihgvaig a suffix in common,
in the original trie. Once we get a pair like this, we go backh® actual trie, in order
to look for the common suffix. Then we traverse down, the pagnesenting both the

words, in order to merge their suffix in common.

First, create the reversed list of words, in terms of pagtérom the look up table.
Then the algorithm 2 mentioned above, with input as the nstydould be applied to
create the reversed trie. The example below in Figure 4.&show the optimization

applicable to the trie given above can be performed.

Now the Algorithm 3 performs inorder traversal on the new ini conjunction with
applying suffix factoring on the original trie. The algonthuses anodeStacKwhere
nodes will be held temporarily) to perform inorder travérséhe list of nodes for the

reversed trie is given bsevNodeList.

4.4 Recovering Unused Memory

Now eliminated redundant tails cause holes in the stayiedlibtted memory. For that
we do some compaction. This is being done by moving the nawes the end of
the list to fill the holes in between, so that at the end of tlegss, all the holes get
accumulated at the end of the nodeList. We could write theesgce of valid nodes to
a file. Now we know the amount of static memory required eyaétllocate that much

static memory and load the trie back from the file. This withyide the lexicon loaded

25



T —>» Common suffix
Pattern Trie

Reverse Trie

—_—

Look Up Table

3
OW

] ; a
Suffix Compressed Trie 3 Pattern Trie

Merging

UTTet

Fig. 4.3: Way to final storage structure represention

26



Algorithm 3 Algorithm for parsing and suffix compression

1:

procedure CreateSuffixTrie

Require: Reversed Dictionary file, LookUpTable, Original trie
Ensure: PatternBasedTrie

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:

end «— 0
null <+ 0
buf f BackUp «— null
buf f «— null
PUSH (revNodeList[0])
while nodeStack # empty do

temp «— POP()

while temp # null do

if IsWordBoundary(temp) then
if buf f BackUp # null then
commonPre fixzLength «— FindCommonPrefizLength(buf f BackUp,buf f)

if commonPrefixLength # 0then
TryCompress(buf f,buf f BackUp, commonPrefixLength)
else
buf f BackUp «— null
end if
end if
buf f BackUp <« buf f
end if
tempDown « revNodeList[temp|down)]
if AlreadyVisited(temp) # false then
tempDown «— tempDown|side]
if tempDown|[side] = null then
tempDown «— null
else
tempDown «— revNodeList[tempDown|sidel]
tempDown « revNodeList[tempDown[down]]
end if
end if
update(buf f, tempDown[lookUpT ableIndex])
PUSH (tempDown)
end while
end while
end procedure
function FindCommonPrefixLength(word1,word?2)
revWordl « reverse(wordl)
revWord2 «— reverse(word2)
length < prefizLength(revWordl, revWord2)
return(length)
end function

27



e N u

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:

function TryCompress(word1,word2,commonPrefixLength)
revWordl « reversed(wordl)
revWord2 «— reversed(word2)

length «— FindCommonTail Length(revWordl, revWord2, commonPre fixLength)

MoveDownAndConnect(revWordl, revWord2, length)
end function

function FindCommonTailLength(revWord1,revWord2,prefixLength)

downl « length(resWordl) — prefizLength

down2 « length(resWord2) — prefizLength

common < prefixLength

templ < nodeList[0]

temp2 < nodeList[0]

downl «— downl — 1

down2 «— down2 — 1

templ «— MoveDownTheTree(templ, downl, revWordl)

temp2 — MoveDownTheTree(temp2, down2, revW ord2)

matched «— false

while matched = false do
templ «— MoveDownTheTree(templ, 1, reviWordl)
temp2 «— MoveDownTheTree(temp2, 1, revWord2)
downl «— downl + 1
down2 «— down2 + 1
common < common — 1
matched «— Compare(templ, temp2)

end while

return(common)

end function

function Compare(nodel,node2)

sidel < nodel[down)]

side2 «— node2[down)

nodel < nodeList|[sidel]

node2 «— nodeList|[side2]

while nodel[lookUpT ableIndex] = node2[lookUpT ableIndex| do
nodel < nodeList|[sidel]
node2 «— nodeList|[side2]

end while

if ((sidel = null)(side2 = null)) then
return(true)

else
return(false)

end if

end function

28



in the most efficient format.

1: function MoveDownTheTree(node,length,word)
2: for i = 1to lengthstep1 do

3:  while nodellookUpIndex] # word|[i] do

4 node < nodeList[node[sidel]

5. end while

6: node <« nodeList[node|down)|]

7: end for

8: end function

9: function MoveDownAndConnect(wordl,word2,commonLength)
10: length « length(wordl)

11: for i = 1to length — commonLengthstep1 do
12:  while nodel[lookUpIndex] # wordl[i] do
13: nodel < nodeList[nodel[sidel]

14:  end while

15:  nodel <« nodeList[nodel[down]]

16: end for

17: length « length(word2)

18: for i = 1to length — commonLengthstep1 do
19:  while node2[lookUpIndex| # word2[i] do
20: node2 «— nodeList[node2[sidel]

21:  end while

22:  node2 « nodeList[node2[down]]

23: end for

24: nodel «— nodeList[nodel[down]]

25: node2[down| < nodel

26: end function

Algorithm 4 explains how the compaction is being done. ltitds in two steps. In
the first step, mark the nodes in a data structure cédiadard[] ,indicating which are
all nodes have to be moved for the purpose of filling holes. M@ary node can look
in to this data structure to know whether their pointer fiedds going to be changed.
If so, they can modify their pointers as mentioned in the fmdvdata structure.In the
second phase, we move the nodes safely without loosing tbhamation associated
with the nodes. The example in Figure 4.4 explains the praeedpplied in the node

list representation of trie given above.

Once we have the optimized trie, a memory image of this siradibgether with
look up table could be written to a file from which it could batted and used by the

front end.

29



nodeList

B

1 2%

===

255 25

-

25 25

[=] [=]

-

[-]

25 25

nodeList

B

1 25

N )\

(-]

25 25

30

forward
Table

=

=~
= O | O | O | O] DD |

Fig. 4.4: Nodelist represention and sparse removal

nodeLlist

255

[=] [=]

25 25

-

2% 2%

(-] (=]

-




Algorithm 4 Algorithm for sparse removal

1

. procedure RemoveSparse()

Require: nodelList
Ensure: nodelList with all the sparse moved to the end of the list

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

©CeNO R

MarkForward()
Forward()
end procedure
function MarkForward()
holeIndex «+ FindNextHole()
for i = nodeCountto 1step1 do
if valid(nodeCountl[i]) = true then
forward]i] < holeIndex
holeIndex < FindNextHole()
end if
end for
end function
function FindNextHole()
for i = (currentHoleIndex + 1)to nodeCountstep1 do
if valid(nodeCountli]) = false then
return(i)
end if
end for
end function

e e =
AR O

©CoNa R wDdNR

function Forward()
for i = 1to nodeCountstep1 do
node «— nodeList]i
if node[side] # null then
node[side] <« forward|node[sidel]
end if
if node[down] # null then
node[down| < forward[node|down]]|
end if
if forward|i] # 0then
exchange(nodeList| forward]i]], nodeList|i])
end if
: end for
: end function

31



CHAPTER 5

High Level System Architecture

5.1 System Architecture

This section gives an overall idea about the system(showigure 5.1) by explaining

the architectural components and their interrelatiorship

Once the user generates a request to open the applicateosyskem starts with
performing some preprocessing steps. Then an editor wihben to the user in which
the user can type his message. User provides input to thensysting the keypad. The
system processes the input, and updates the display solasndie output back to the

user.

During the SMS creation phase, user perform key press, majthéhe intention of
inputting a new character, or to select one among multipi®og provided to him(these
may be valid patterns corresponding to previous key prepsesee). If the input is a
space, that indicates end of current word under proceskirtigat case, the tool does n't
have to do anything. Input alphabets are mapped to buttan8.1Hach button provides
a one to many mapping from button to alphabet sub set. For @egpnessing button
5 means a mapping from key press event of button 5, to a setpfabdet symbols
mapped to button 5. Once the user selects one of these huttensystem has to
identify the alphabets that is mapped to this button, ant sbds the situation. To
resolve an f# button press, the system uses the results from the previdulsutton
presses and alphabets that are matched to current buttbohaoks for a combination
that matches any of the patterns in the SMS lexicon. If itegthieé will be displayed to
the user. So formed pattern will be part of the input to theesysto resolve the next

key press.

In order to parse for a valid pattern, the system keeps tréektewo dimensional

matrix indicating the alphabet combinations correspogdma sequence of input key



( start )

4

preprocessing step

Y

Display Editor \ o

to user

Perform Key Press

y

check scancode

l set modified text
to the editor
A
function key Identify whether input key input key
f tpr ke 7 modify message text
untion key ¢ with parsedPattern
A
Y
Identify button number
. ) key to Alphabet N & .
Send option Switch to message Mapping Table 7| update KeyindexMatrix KeylndexMatrix
selected ? send module
Dictionary Data
Y Structure

parse for a valid pattern

Patterns Look up
Table

scroll through

. KeyIndexMatrix
valid patterns

A

update parsedPattern

(——( parsedPattern (

[

Fig. 5.1: System Architecture

33




presses. Now the parser module considers the alphabet catiais one by one. Once
it finds a valid combination, that will be displayed to the udeter, it repeats the same
process on demand by the user through a function key, whilgs iee user to rotate
through the valid combinations. Parsing the alphabet sesgutor the valid check, in

the lexicon representation, is a complex procedure showigarithm 5.

Function key initiates a module calledtate through This module plays a sup-
porting role for the tool for ensuring user convenience. Wt estance of time, parser
may have generated more than one pattern all of which renadich for that particular
combination of key presses. Now the user saroll throughthosevalid patterns seso

as to select the intended one among them, using the funatyn k

Once the message is ready, we first transfer the messagegtandhie control, to
native message send module. Now we could use the messaguhgarservices to

perform the processes ahead.

5.1.1 Preprocessing Step

The preprocessing step shown in Figure 5.2 is performed Wieeaditor is started.

This phase mainly involves two steps.First, we set up thk lgotable. Then we

should have the lexicon ready in the form of a trie.

As part of the core design process, we develop an efficieméseptation of both,
look up table and the trie (as already discussed) which aredtn a file during prepro-
cessing. Later both data structures are loaded to a sedtalotbted memory. This will
be used by the front end, so that it don’'t have to regeneraigsiin. \We are following
this strategy just because, look up table and trie reganarftbm the original lexicon
file, are very much time consuming tasks,which cannot be diomi@g preprocessing.
Now whenever needed, the front end just loads it and usestith@ing aware about

where it comes from.

34



Algorithm 5 Algorithm for parsing the valid pattern in Lexicon

1:

procedure parseForPattern()

Require: keylndexlist:sequence of key presses to be analyzed
Ensure: parsePattern:One of the successfully parsed patterns.

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:

38
39

©oNaRr®

state «— InitParse(1)
if state = true then
display(parsePattern)
end if
end function
function InitParse(level)
for ¢ = 1to in finitystep1 do
if checkInLexicon(level) then
if level = patternLength then
return(true)
else
InitParse(level + 1)
return(true)
end if
end if
next(buttonIndex[level — 1])
end for
end function
function CheckinLexicon(level)
for i = 1to patternLengthstep1 do
parsePattern[i] «— Key[KeyIndexList|i]|[buttonIndex]i]]
ModifyMathrasParsePatternl]i]
end for
parsedFlag «— 1
node «— nodeList|0]
downTemp «— node|down)]
while (downTemp # null)and(parsedFlag = 1) do
index < FindPrefiz(parsePattern, i, patternLength)
downPtr < downTemp
while down Ptr[lookupTableIndex| # index do
downPtr «— downPtr[side]
end while
if downllookUpT ableindex] = index then
parsedFlag « 1
downPtr «— downPtr|down]
end if
end while
end function

35



Dictionary Data . ' .
Stuctue Load Dictionary Dictionary fl ‘

Patterns Look u .
Tl : Populate LookUpTable Patterns fle ‘

Initialize messege to null

End Preprocessing

Fig. 5.2: Preprocessing Phase

5.1.2 Parsing Module

This module (shown in Algorithm 5) uses LookUpTable datactire and lexicon data
structure(in the form of nodeList) for the purpose of peariorg validity check for a
possible pattern. Other than that the following book kegpmiormation will be used

by the algorithm.

e KeyN[1...C] - Represents C alphabets corresponding to Key N

e Mathra[l...count][0...1] - Mathra[currentCount][0] m&sents the symbol used
when they occur as first alphabet in a word and Mathra[cu@emnt][1] rep-

resents the symbol used, when they occur in between.
e keylndexList[i] - Button Index corresponding to i th key pse

¢ buttonindex[i] - Index of alphabet under consideratiom fotton " pressed but-

ton.

36



e patternLength - Length of input key sequence.

1: procedure parseForPattern()

2: function FindPrefix(word,index,length)
3: for i = indexto lengthstep1 do

4:  for i = jto patternCountstep1 do

5: pattern «— LookupTablelj]

6 if word|i...(i 4+ length)] = pattern then
7 return(y)

8 end if

9: end for

10: end for

11: end function

5.1.3 The Scroll through Module

As already mentioned, the rotate through module shown irotdgm 6 does the job
of facilitating user’s task of selecting one among seveatibvpatterns.It also uses the

book keeping information as in ParseForPattern() algorith

Algorithm 6 Algorithm for scrolling through the list of valid patterns
1: procedure Scroll
2: function ScrollThrough(level)
3: for i = 1to in finitystep1 do

4: if checkInLexicon(level) then
5: if level = patternLength then
6: return(true)

7: else

8: ScrollThrough(level + 1)
9 return(true)

10: end if

11:  endif

12:  next(buttonIndex|level — 1])
13: end for

14: end function

5.2 Keypad Design

We were provided with an efficient button to keypad mappingfmdi. The design of

such keypads would have been focused on reducing conflicissaalphabets mapped

37



to same key.

+
T
]
=4

=
=
=
2]
X
e}

ally

Fig. 5.3: Keypad design

5.3 Keypad Event Handling

We override the Key Event handler and capture the keys inrdodmake the system
respond in the way we want. During a pr@ssut method key evehtis been generated,
which we simply override. We capture tirelease key evenprocess it and pass the

modified value to our system according to the keypad desigrtioreed above.

This design differs from the keypad design available initralal mobiles. In tradi-
tional mobiles, with the dictionary feature disabled, if want to press't alphabet on
the " button, we have to press the button j, i times within a shoretperiod. Because
of this timing difficulty, our design demands user to geregbutton click sequence |
i if he want to type i* character on the jth button. If the dictionary feature eadbbur

keypad works like a normal keypad.

38



CHAPTER 6

Implementation and Results

6.1 Overview

In this section we cover the translation of designed aspettsimplementation.On the

way to final product we had to face a lot of dilemmas.

6.2 Input

A set of 7739 Hindi words and an optimized key pad design.

6.3 Fixing Back end Parameters

The look up table size fixed to be 256. Maximum pattern sizests.b/Ne fix the benefit
factor in pattern generation to be 44. We started with a valuand tuned it till the

value reached 44 where we got the best fit of look up table \wighriput patterns.

6.4 Environment

The target platform was defined as part of requirement. We asked to develop the
tool for S60 modeimobile phones, which h&&ymbianas the mobile operating system.
The task application development was well supported bystpalvided by Nokia. This

set includes,
e Carbide .C++ IDE version 2.3 -This is the IDE on which we depgbrograms in

Symbian C++.



Nokia N97 emulator version 1.0 - emulator for testing thepgrovorking of code

without using the actual device.

Active Perl version 5.10.1 - Supporting tool for program elepment. Bridges

the gap between IDE and Emulator.

Qt for Symbian version 4.6.2- Extension to the current IDEwa very useful

collection of APIs.

target device - Nokia n97 mini.

The whole kit of packages got installed on the Windows platfovhere we per-

formed the front end development.

We implemented the core feature, which is storing the lexicoa well contained
data structure which meets our needs. The data structurlakdp table are written
to afile in the form primary memory image. This works because&la/not use pointers.
Now the code developed in Symbian C++, with Qt support [8] andbws platform,
generates executable which uses this file to meet user esg@nt of performing word
prediction. We had to convert the file in big endian formattttelendian format because
of the platform difference. Further compression was doné&erlJTF-8 codes of the

alphabet for better memory optimization.

6.5 Frontend

We developed the editor using the QTextEdit class objectti@®ile class deals with
file operations. It has functions like, open(), close()d¢&tc. QTextedit class is asso-
ciated with an Event handler which we had to override to immaet the editing task.
We read the scan code associated with the key event to igéntifiquely. Events other
than key events will be bypassed. The QString class mad®khegaling with strings
easier. In the installed emulator, we put the lexicon file bruk up table file into a
folder so as to simulate the file to be residing in mobile.Thesfare in the form of a

collection of hex codes corresponding to the alphabets fodiHanguage.

40



There were 53 alphabet symbols mapped to 9 keys from 1 to % Xeant for

space character.

6.6 Results

The following table 6.1 discusses space consumption cteistics of the data struc-

ture.

Field Value
Number of entries in LUT 256
Maximum pattern length 5
LUT size 845 bytes
Size of a node in the data structure 5 bytes
Number of nodes 8374
Total data memory 42KB

Table 6.1: Space consumption characteristics of the datetste

41



CHAPTER 7

Conclusion, Limitations and Future Work

7.1 Overview

This chapter concludes the presentation and covers th&tionis associated with the

system.

7.2 Dealing with the Problem

We started approaching the problem by looking into similarky where on most of
the occasions, tries were the data structures, taking uphbsewhich are so close to
what we want. So we decided to start with this standard datiatste. As the work
progressed, the data structure kept on evolving. New featgot added to the base

structure.
The data structures we develop consist of,

e Look Up Table

e A specialized version of trie

Once the data structures got deployed, then it was abouhgatrso as to make the

job done completely.

The front end tasks were done on a windows platform, wheresthelator was
installed. The Qt tool made the task of handling GUI easieevén provided event
handling APIs which we easily modified to meet our purposethénend, it was not a

tough job to have a nice application running on a nice platfor



7.3 Benefits

e A tool which supports sending of Hindi text SMS.
¢ Small memory requirement makes it possible to be instalfeldw end mobiles.

e Designis possible to be reused for development of SMS Lexitany language.

7.4 Limitations

The tool does not have maintainability. We can’t add new wdadit. There are dic-
tionary data structures that let you to do both addition @amdaval of words [9]. Both
are possible by extending this design.Input lexicon cowadehbeen optimized based
on user’s frequency of usage of words. Another limitationusnbers and additional

symbols can not be part of the input message.

7.5 Future Work

The above mentioned short comings should be overcome inutheef Instead of pat-
tern prediction, we could target word prediction, and tkatven could be based on its
position in the target sentence. We could extend the apitao to make it a target
language independent word predictor. It just has to be @gaipvith code tables and
key pad mappings for all languages. So that later, it coulddeged and unloaded with

word sets for various supported target language, deperdinige need.

43



[1]
[2]

[3]

[4]

REFERENCES

http://en.w ki pedia.org/wki/T9 (predictive_text).

R.L.R. Thomas H Cormen, Charles E Leiserdotroduction to Algorithms2001.

http://ww.introtoal gorithnms.com

http://ww. pcwor | d. conf busi nesscenter/articl e/ 195025/
i ndi a_adds_record% 20 m | lion_nobil e subscribers in_
mar ch. ht m .

htt p: / / ww. pl uggd. i n/ i ndi a- nobi | e- mar ket /

report-sns- as- a- vas- servi ce- 297.

[5] G.Janssen, “Design of a pointerles bdd package,” latgynal Workshop on Logic

[6]

[7]

[8]

Synthesis (IWLS), 2001.

R. Bloor, “Essential s60 developers’ guide.” Symbian ftware lim-
ited. http://ww. f orum noki a. conl i nf o/ sw. noki a. com' i d/
80dc01f a- 2260- 49ca- 8ee3- f Da414adb78a/ Essenti al _S60 __
Devel opers_Cui de. pdf . ht m .

R. Harrison, “Symbian os c++ for mobile phones.” Symbsoftware limited,
2003. http://ww.forum noki a. con i nf o/ sw. noki a. com' i d/
80dc01f a- 2260- 49ca- 8ee3- f 0a414adb78a/ Essenti al _S60
Devel opers_Qui de. pdf . ht i .

http://synbi anresources. com tutorial s/ qt. php.

[9] S. Ristov, “Lz trie and dictionary compression,” 2002. htt p:// www.

i ntrotoal gorithns.com

44



