
DESIGN OF AN SMS LEXICON FOR AN INDIAN

LANGUAGE

A Project Report

submitted by

RAHUL CS

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

under the guidance of

PROF. HEMA A MURTHY

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2010

THESIS CERTIFICATE

This is to certify that, the thesis titled‘Design of an SMS Lexicon for an Indian

Language’, submitted byRahul CS, to the Indian Institute of Technology Madras, for

the award of the degree ofMaster of Technology, is a bona fide record of the research

work done by her under my supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or Universityfor the award of any degree

or diploma.

Place: Chennai-36

Date:

Prof. Hema A Murthy
Project Guide
Professor
Dept. of CS and Engineering
IIT Madras, 600 036

ABSTRACT

Mobiles are leading the list of commonly used devices. The most cost effective service

provided by the device issms. People are always in search for better service, and the

service providers will obviously compete for providing better results. The objective of

this project is to come up with a better approach for deploying sms lexiconfor Indian

Languages. Once implemented, it could be ported to any language platform, easily.

The objective is to improve user convenience in dealing withsmsservice, in the

sense of reducing the number of key presses to type a message.The sample language

we deal with is Hindi.

The fact that it is being deployed for Indian Language, makesit less comparable

to other implementation techniques likeT9 [1]. To work out a solution, you will be

provided with a sample lexicon.

The problem has been formalized as a task of coming up with concepts from data

structures, and algorithms that achieve the primary objective along with satisfying the

time and space constraints. We have started with aTrie [2] and optimized it as far as

possible. We could keep on doing this, until some milestone being achieved, or some

threshold is known to be reached.

The target platform is Symbian Operating System which is oneamong the best Mo-

bile OS’. It provides good developer support too. So the workhas focused on applying

nice concepts and utilizing whatever tools available, to good effect. Once ported to the

target platform, this tool could be used to send sms in Hindi.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES vii

LIST OF FIGURES viii

ABBREVIATIONS ix

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Problem Definition - An SMS Lexicon for Indian Languages 3

1.3.1 An Operational Model . 3

1.3.2 A Target Platform . 4

1.4 Organization of the Thesis . 4

2 Background Knowledge and Related Works 6

2.1 Dictionary Data Structures . 6

2.1.1 Trie . 6

2.1.2 Patterns based Trie . 7

2.2 A Pointerless BDD Package . 8

2.3 Program Development on Mobile Devices 9

2.3.1 Mobile Operating System 9

2.3.2 Mobile Emulators and Mobile Application IDEs 11

3 Proposed System 12

3.1 Problem . 12

iv

3.1.1 Design Challenges . 12

3.2 Approaching the Task in Hand . 13

3.2.1 Deploying the Lexicon . 13

3.2.2 Look Up Table . 14

3.2.3 A Storage Structure for Lexicon 14

3.3 Dealing with Front End . 14

3.4 Conclusion . 15

4 Low Level System Design 16

4.1 Look Up Table . 16

4.2 A Storage Structure for the Lexicon 21

4.3 Optimizing the Data Structure . 23

4.4 Recovering Unused Memory . 25

5 High Level System Architecture 32

5.1 System Architecture . 32

5.1.1 Preprocessing Step . 34

5.1.2 Parsing Module . 36

5.1.3 The Scroll through Module 37

5.2 Keypad Design . 37

5.3 Keypad Event Handling . 38

6 Implementation and Results 39

6.1 Overview . 39

6.2 Input . 39

6.3 Fixing Back end Parameters . 39

6.4 Environment . 39

6.5 Front end . 40

6.6 Results . 41

7 Conclusion, Limitations and Future Work 42

7.1 Overview . 42

7.2 Dealing with the Problem . 42

v

7.3 Benefits . 43

7.4 Limitations . 43

7.5 Future Work . 43

LIST OF TABLES

4.1 Execution sequence of the procedure GeneratePattern 21

6.1 Space consumption characteristics of the data structure 41

vii

LIST OF FIGURES

2.1 A trie representing a sample lexicon 7

2.2 Patterns based Trie - An extended version of normal trie 8

4.1 A simple pattern trie . 22

4.2 model of nodes in the structure . 23

4.3 Way to final storage structure represention 26

4.4 Nodelist represention and sparse removal 30

5.1 System Architecture . 33

5.2 Preprocessing Phase . 36

5.3 Keypad design . 38

viii

ABBREVIATIONS

GUI Gaphical User Interface

IDE Integrated Development Environment

SDK Software Development Kit

UI User Interface

LUT Look Up Table

KB Kilo Byte

OS Operating Systems

RAM Random Access Memory

ix

CHAPTER 1

Introduction

1.1 Overview

In the contemporary world, mobile phones play a vital role inour life. About 60.6 per-

centage of the total population of the world are mobile users. In India its about 49.6 per-

centage [3]. The device provides a wide variety of services like voice communication,

entertainment like games, scheduler, calendar and calculator. Recent developments in

this industry, like addition of internet facility makes them powerful enough to replace

even PCs. Nowadays they support almost all the desktop applications. Added benefits

like portability and compactness force us to replace land line phones and other wired

voice communication services with this one.

Among the services provided by this device, the most appreciated service is obvi-

ously the Short Message Service(SMS). Statistics shows that on an average, an Indian

sends 29 SMS per month [4]. Not just for communication, nowadays they provide many

Value Added Services(VAS) like bill payments, train statusenquiry and live cricket

scores. The service providers are competing so hard to improve customer satisfaction

and hence business.

Once the customer becomes satisfied with the services, the evaluation metric from

his point of view will be the usability of the service, in turnthe usability of device.

So the service provider has to keep focus on that too. If you provide diverse services

and if they are inconvenient to use for common people, they start showing reluctance

to the Industry. Handling the device should be as simple as dealing with a calculator.

Whenever possible, it should be hiding the complexity from the user. We could define

this objective asDevice Transparency.

1.2 Motivation

The section above describes how conscious the service providers are about the customer

needs, in order to hold on in the market. They always keep on taking feedback about

their technologies and they keep on updating the services based on the feedback. Most

focused service will be the most appreciated one. In that sense, they have to put more

focus on improving the Short Message Service(SMS), since Texting(synonym for SMS)

is the widely used one among common people.

The process of sending a short message starts with the step known as message cre-

ation. This involves creating the message using symbols from the alphabet of that par-

ticular target language. As the size of alphabet increases,it becomes hard to map the

alphabet symbols to the number keys on the keypad, since the domain of mapping is a

constant figure. Whenever the alphabet size goes beyond the keypad size, we have to go

for a many to one mapping. This makes the message creation step to be a cumbersome

task, since the number of clicks made per character goes beyond one. As the alphabet

size increases, the number of clicks to be made keeps on increasing by a factor of key-

pad size. Customers will always tend to reduce their load. They will be keen to reduce

the number of clicks whenever possible.

This requirement introduces the concept of SMS lexicon. SMSlexicon together

with word prediction fulfills the requirement of achieving reduction in button clicks and

hence speeding up the process of message creation. One such technology which comes

up with this facility for English language is known as T9(Text on 9 keys) predictive

text technology. Since late 90s, most of the mobile developers have come up with this

facility embedded in their devices.

In a developing country like India, people will prefer to communicate in their na-

tive language over English. In English, there exists an SMS word prediction scheme,

which comes up with predictions about the words a user tend totype next, while he

prepares a message. The system will be associated with a lexicon(set of words from the

vocabulary of a language), which the system refers to, in order to make its predictions

about the SMS words. So, it will be nice if we can come up with something similar to

T9, for Indian languages too. The goal of this project is to achieve the above objective.

2

Nowadays, there is support for native languages in most of the mobile phones. Some of

them have support for typing SMS in native languages. The task is to develop a module

similar to T9, targeted for Indian languages.

1.3 Problem Definition - An SMS Lexicon for Indian

Languages

Being motivated from the requirement mentioned above, we define the problem as de-

veloping a word prediction scheme for supporting Indian language SMS. We have to

come up with a framework which satisfies all the constraints,and then deploy that on a

selected mobile platform. The target language operated upon is Hindi.

1.3.1 An Operational Model

The framework will be having two components.

• SMS lexicon− Composed of selected legitimate Hindi words.

• Word prediction scheme− Come up with predictions about user intention based

on his/her hints.

SMS Lexicon

A lexicon is a subset of a language’s word set. The size of the lexicon (the number of

words in the lexicon) depends on its domain of operation. Since the domain of operation

under consideration is texting, the lexicon is limited in size. We are provided with a list

of most frequently used SMS Hindi words, selected based on a statistical analysis. The

objective is to come up with an appropriate data structure todeploy the lexicon so that it

is compact and serves quick retrievability. In other words,an ADT (Abstact Data Type)

with operation defined to be looking up a valid word.

3

The compactness of lexicon, in terms of technical terms, could be defined as the

extent to which we can reduce the total memory usage for deployment of the lexicon.

Since mobiles are low power and hence resource constrained devices, we are forced to

ensure that the memory utilized is the bare minimum. In orderto achieve this, we have

to make the maximum use of the redundancy associated with thelexicon. The scheme

should be focusing on eliminating redundancy.

Word Prediction

The user wants to reduce the number of button clicks as much aspossible. But he should

be making some clicks so that the system could come up with some predictions which

meets the user needs. The user clicks are actually the hints about his/her intended word.

These hints will be fed as input to the prediction system. Thesystem has to use these

hints to look up(operation defined on the ADT) the lexicon(ADT). The process should

avoid taking too much time, in order to achieve the user transparency(making sure that

the user is not aware about the presence of complex underlying mechanism). Although

the response time of the system depends on the operational hardware platform, we

should try to minimize the number of computational steps so as to make it compatible

with the low end mobiles whenever possible.

1.3.2 A Target Platform

Once you are ready with a framework, it has to be deployed somewhere, in order to

test it and to make a final decision about whether it suits for the purpose or not. Here

the platform has been fixed to be Nokia S60 model mobile phonesrunning on Symbian

Operating System, which is well known for its specialization in smart phone technology.

1.4 Organization of the Thesis

The remaining part of the thesis has been organized as follows.

4

Chapter 2 briefly tells about the background study in this area and related work.

Chapter 3 talks about solution formulation.

Chapter 4 deals with issues related to to level design.

Chapter 5 explains the front end design and integration.

Chapter 6 explains implementation details.

Chapter 7 covers conclusions, limitations and future work.

5

CHAPTER 2

Background Knowledge and Related Works

This chapter covers the fundamental concepts that should beunderstood in order to

deal with the problems at hand. This one also covers the related works and the findings

which led to an admissible solution.

2.1 Dictionary Data Structures

There are a wide variety data structures to be selected from,in order to deploy a dictio-

nary. Few of the candidates are BTrees,Hash Tables etc. Since the situation demands

efficient space utilization along with sound retrievability, on choice narrows down to

Triesdata structure. Among them, we go for the one specialized forthis purpose, which

is Trie.

2.1.1 Trie

A Trie [2] is an n-ary tree, where n is called the arity of the tree. Arity is the upper

threshold on the number of children any node in the trie can have, where each child in

turn may be another trie(sub trie). An edge in the trie is an identifier which uniquely

identifies one of the bindings between parents and children in the trie. At the top, there

will be a single node without ancestors which is being known as the root of the trie. If

we label an edge joining a parent and a child using a symbol sayα , a set of size n (from

which alpha being drawn) will be enough to recognize across the bindings between

any parent and one its children. This labeling scheme in turn, uniquely identifies a

path from root to one of its leaves as a sequence of symbols corresponding to those

edges in the path. Suppose this set represents alphabet set of a particular language, then

these paths represents possible words in that language. In other words, any word in the

language can be represented by a unique path in the trie and a collection of words can

be represented by a unique trie. This is how trie happens to bea sound candidate data

structure for representing lexicon of a language.

Figure 4.3 shows trie representation of the lexicon of a language whose alphabet

set is{α, β, γ, δ} .

Fig. 2.1: A trie representing a sample lexicon

The set of words covered by this trie are:

• α

• δγ

• δγγ

• δγαβ

In this representation, it could be noted that common prefixes are being replaced by

single occurrences. This is how it achieves reduction in storage space and the amount

achieved is directly proportional to the common prefix quantity associated with the

word set.

2.1.2 Patterns based Trie

In simple trie, the property that the domain space for selecting branch names could be

an Alphabet of a language, makes it a suitable representation for the lexicon of that

7

particular language. This property will be retained even ifwe evolve the alphabet set

by adding some more elements to it. If the newly added elements are combinations of

symbols already there, then they may also take up the job of representing sub patterns

in the trie, as the Alphabet symbols do. The benefit achieved because of these sub

patterns depends on the frequency of their occurrences in the target word set. Thus the

domain space for branch names also depends on the target wordset, rather than just on

the language alphabet set as in a simple trie. So the new form of trie has an associated

look up table. Trie structure will be edge labeled with numbers which willserve as

indexes in to the look up table(See figure 2.2). The selectionof candidates for look up

table plays a big role in the efficiency of these Tries.

Fig. 2.2: Patterns based Trie - An extended version of normaltrie

2.2 A Pointerless BDD Package

Binary Decision Diagrams(BDD) play a vital role in modern digital circuit design.

There are BDD packages which are supposed to facilitate the manipulation of BDDs.

Binary Decision diagrams are basically tries which represents a binary language word

set. As the applications demand, BDD packages should be associated with functionality

that let the BDD to grow dynamically. Basically this requirement brings the pointer

based implementation in to picture.

8

But a new design of BDDs [5] in which they fulfill the requirement for pointers with

statically allocated memory, as long the upper bound on the size of the BDD is known.

There will be a fixed amount of statically allocated memory. Whenever an application

requests for memory, a portion this static memory will be allotted for it. If it is pointer

in dynamic allocation, this scenario uses array index as thereference parameter. This

provides faster access(random access) and possibly storage space saving along with

garbage collection and other pointer based services.

The prerequisite is the knowledge about the maximum storagespace requirement.

For applications like trie based lexicon implementation, where we could get a clear idea

about maximum storage requirement, we could borrow this pointerless concept to tries,

and could make maximum use of it.

2.3 Program Development on Mobile Devices

Mobile devices are very similar to PCs in Architecture. Theyalso do have computa-

tional elements and memory elements. They are also governedby operating systems as

is the case with PCs. This makes dealing with the device easier for someone who are

familiar with PCs. The class of people dealing with the device could be mainly divided

in to mobile users and mobile application developers. Whilethe mobile users enjoys

mobile applications, developers focus on providing improved mobile applications and

hence promote mobile users. The process of mobile application development does not

vary much from PC application development.

2.3.1 Mobile Operating System

As Linux or Windows operates on a desktop PC or laptop,a Mobile operating system

interfaces users(user applications) to hardware mobile devices. Since the target devices

are resource conscious, the designers of mobile OS focus on that too, rather than just

targeting ultimate output to the user. There are many mobileOS, but one of the most

prominent one among them is Symbian OS. It holds 50.3% of the total mobile market

[6] and is being widely accepted. Now it is open source too. Itprovides almost all the

9

operating system services as a normal Operating System doesfor a PC.

Keeping the target platform in mind the designers of SymbianOS has followed

principles like,

• Resources associated with the target platform are scarce.

• User time is precious.

The Symbian Operating System

Symbian is a multitasking multithreaded operating system.It ensures efficient memory

utilization by the use of what are called Dynamic Link Libraries(DLLs). DLLs ensures

on demand loading of kernel services, and at a time only one instance of a service will

be residing in memory. Also this is an event based operating system. Any change in

device’s state could be identified by generation of an event.Then its about handling that

event representing that change. Kernel will be ready to handle most of the events by use

of some default handlers. User applications may or may not handle them depending on

whether they are prioritized enough to do it or not. Several classes of events are there

with different levels of access permissions. Once a developer get access to one of the

levels, he can decide upon handling all the events that comesunder that particular level

and everything below that.

Development could be done in object oriented programing language called Sym-

bian c++ [7], which is being well tuned to match the platform.The operating sys-

tem and application software follow an object oriented design called Model-View-

Controller(MVC). Development in Symbian OS Applications in Symbian will be hav-

ing three components.

• Model - This component is defined in the form of document classwhich is avail-

able as part of symbian API. This has to deal with allocationsand deallocation of

memory.

10

• View - This one deals with GUI and hence it decide upon how to present the

application to the user.

• Control - This is the component which decides the behavior ofthe application. It

contains the definition of all the event handlers that the application wants to deal

with.

2.3.2 Mobile Emulators and Mobile Application IDEs

Most of the industrial giants have come up with emulators that emulates the target

device on a PC in order to experiment with mobile applications. They also provides

IDEs, that facilitates mobile application developer’s job. The IDEs generate executables

for both emulator and mobile device. Even it is possible to perform on device(mobile)

debugging. It is also being ensured that the mobile application development languages

do not vary much from programming languages so as to ensure that it won’t be hectic

for someone coming from the world of PC to the mobile development environment.

11

CHAPTER 3

Proposed System

This chapter explains how we approach the problem. First we look at the task to be

dealt with, as a whole. Then the break down the job to be done. Handle individual

modules separately, built them up and integrate them to produce the target system.

3.1 Problem

The objective is to develop an SMS lexicon for Indian Languages. We are provided

with the target platform specification, and word set. The target platform is a mobile

device. The experimental word set is in Hindi. What we have todo is to develop an

application that resides in the device along with the input word set. Whenever user

wants to send a message in Hindi, this tool should play a supporting role such that it

comes up with predictions about the word intended by the user. As soon as the user

starts typing, it should capture the patterns and access theword set for predicting the

word it has to come up with. Since the keypad to alphabet set, follows a one to many

mapping, a combination of key press will result in multiple possible combinations of

alphabet symbols that the tool has to deal with. With the wordset in back of the mind,

it has to classify the list of patterns to, those which are valid prefixes and those that are

not. Then it has to come up with a mechanism that lets the user to select one among

those valid patterns.

3.1.1 Design Challenges

Since the target platform is a mobile device, the tool shouldbe demanding only a few

resources. The resource set can be classified into memory andcomputational require-

ments. The performance could be measured as difference between the time user per-

forms an action (like a key press) and the time the user gets a response from the tool

(some state change in display). Here we are provided with an upper bound on the ex-

pected response time of the tool. So it is just about bringingthe computation time down

to within this bound rather than focusing on optimizing it.

The real matter of worry is memory. The memory components of the target device

are power sensitive in nature. We are forced to reduce the memory usage as much as

possible. So we have to keep on optimizing this parameter whenever possible. The

memory occupied includes both code memory and data memory. The design should

come up with a representation of the lexicon that occupies minimum amount of memory

and the parser module should also be well optimized to occupyminimum memory,

along with satisfying the response time constraint, mentioned as above.

3.2 Approaching the Task in Hand

One of the most widely used strategies to solve a problem, is by relating it to solved

problems already there around us. We also follow the same habit. There are a number

of lexicon based problems around, only differ in the domain of application. If we look

a bit deep in to those, it could be noted that most of them use trie as such, or some

variation of the same, which suits their purpose.

It does not seem to be a bad idea to start working out the task keeping trie as the

base data structure. Later we could go on evolving, wheneverpossible and effectively.

3.2.1 Deploying the Lexicon

In a trie, each node is an alphabet, contributing somehow to the overall construction

of the lexicon. Making the nodes to be made of combinations ofalphabets rather than

single ones, so that a possible sequence of nodes could be replaced by a single node.

This will introduce a need for defining a newset of domain constructs(sort of book

keeping) from which, the node values for the data structure will be drawn.

13

3.2.2 Look Up Table

In order to deploy the lexicon in an effective manner, we firstmodify the language

Alphabet itself, so as to make the word to be made of bigger constructs and hence lesser

number of constructs. Now if we use these constructs to represent a word in some data

structure, then the count of data structure units used to represent these constructs should

also come down. Now its about storing this modified set of constructs somewhere and

referring to this book keeping information from the storagestructure. Each entry in the

data structure will be referring to the table.

3.2.3 A Storage Structure for Lexicon

We make use of the look up table by storing the lexicon as a collection of references

from the trie to the table as shown in figure 2.2. The path in thetrie represents a

sequence of references into the look up table, which in turn corresponds to a word. The

data structure used here is a modified form of trie. As alreadymentioned, the initial

modification we make is replacing the basic alphabet set withan improved collection

of constructs drawn from the, well built look up table. Next we try altering the trie in

a peculiar way which intuitively seems to be effective for our purpose, as explained in

sections 4.2 to 4.4

3.3 Dealing with Front End

Once the lexicon is guaranteed to meet the criteria, it is about using it to meet user

requirements. The user will be producing input in the form ofkey presses. The system

has to read it and process it based on the reference data stored in the form of lexicon,

that has been provided as part of the requirements(the lexicon).

Identifying the valid alphabet combination correspondingto a key combination in-

volves parsing the data book (the stored form of lexicon) with possible candidate al-

phabet sequences, and identifying whether they succeed in parsing the lexicon to prove

their validity.

14

So the front end should be able to,

• Ensure availability of the lexicon

• Provide a module to mapping from valid button combination topossible alphabet

combinations.

• Filter out the valid patterns based on the dictionary

• Reflect the output back to the user, with provision to select among different al-

phabet sequences.

3.4 Conclusion

The whole task is broken down in to,

• Setting up an efficient foundation for the tool to facilitatethe way it deals with

the user.

• Deciding upon how the tool should be made to respond dynamically to the user

events, relying on the foundation already built.

The next two chapters cover the suggested solution in detail.

15

CHAPTER 4

Low Level System Design

This chapter explains the underlying concepts in detail. Wedevelop a mechanism on

which the actual system rely heavily for its smooth operation. First of all we convert the

lexicon in to a form which conforms to the requirement of faster accessibility and re-

duction in storage space. Then this module could be used by the front end for satisfying

user needs at a higher level.

4.1 Look Up Table

Words in a language are made of symbols from its alphabet set.Look up table is where

the modified alphabet set for the language resides. It will bea super set of the original

alphabet set for the language. The additional elements are frequently combinations of

symbols from the actual alphabet set, so that they could alsobe used for the construction

of words. The added patterns play a big role in the overall performance of the system.

The selection of patterns for the look up table should be suchthat the total number

of look ups we perform to construct the lexicon is minimum.This could be achieved

by, populating the look up table with possibly lengthy frequently used patterns and

increasing the number of patterns. Both strategies will result in increase in look up table

size. But we can’t let the table to grow without control sincethis is again consumption

of memory.

So the task in hand is,

• to fix the look up table size.

• select the patterns to populate the look up table.

Both have to be dealt with extreme care.

In order to fix the look up table size, it should be noted that the overall size of the

table is the product of the number of entries and the size of the largest pattern. Now the

job is being broken down to fixing the maximum pattern size, and fixing the look up

table size.

Patterns are the construction units of each word in a word set. For constructing

words, we either use the entire pattern or is not used at all. So, it is fair to assume that

the pattern length should be decided based on the length of words present in the word

set. First we calculate the average length of a word(µ) from the word set. Calculate

standard deviation(σ). The differenceµ − σ is fixed to be the rough estimate of the

minimum length of word present in the word set. We fix this parameter as the maximum

pattern length. i.e this will be the length of the longest pattern present in the look up

table.

Next is to fix the number of entries present in the look up table. The system will

be using a sort of indirect addressing to refer to the table elements. Because of this, it

is being preferred to fix the number of entries such that the address of reference(in this

context the address is index to the table) will be in byte boundaries. We confine to this

to make sure that the storage and retrieval of reference addresses becomes simple and

effective. Therefore we have fixed the number of entries as 256, as the original word

set itself does not exceed 7000 words.

Populating the look up table

Once the table size got fixed, we have to fix the candidate patterns for the table. This

selection should satisfy two criteria

• It should be possible to construct each word in the lexicon using patterns in the

look up table.

• On average, the number of reference made to the table for the purpose of con-

structing the word should be minimal.

The first criteria could be satisfied just by making sure that the table covers the

alphabet set for the language. Next, we define thebenefit factor for a pattern as,

17

benefit factor=length of pattern× frequency of occurrence

The benefit availed is the space that can be saved by storing lengthy and frequently

used patterns. We will set, a minimum threshold that the benefit factor should cross,

as the criteria for the pattern to satisfy to get in to the lookup table. The threshold

should be fixed such that the number of patterns satisfying this criteria is just enough to

fit the table. We start the algorithm by fixing this factor to a reasonable value based on

intuitions. Later we tune this, till all the criteria are met.

For setting up the look up table, we use Algorithm 1. The execution sequence is

explained with a sample lexicon of three words.

{incarnation,caption,vision.}

Let the maximum pattern length parameter be 3. Let the look uptable size be 15.

Let the minimum benefit factor be 2.

The main procedure identifies the most beneficial pattern with the help ofSelect-

Pattern() (refer function SelectPattern() in Algorithm 1)function.The function selects

a pattern that produce the maximum benefit.

For example, in the given list of words, the pattern that produce maximum benefit

during the first call to functionSelectPattern()is, ion. In this pattern, the pattern length

is 3. The frequency of occurrence of this pattern in total is 3, once in each word.

Now the benefit achieved of this pattern is (3-1)× 3. This benefit factor 6, crosses

the minimum threshold and will get selected. Look up table will be updated with the

newly selected pattern. Later call theRegenerateDictionary() function in order to

chop off all the occurrences of that pattern from the dictionary(stored as an array of

words). This is to imply that a new candidate pattern has got added to the look up

table in order to cover all the chopped off instances in the dictionary. After a call to

RegenerateDictionary() the lexicon becomes, { incarnat,capt,vis }. We thus repeat

SelectPattern()andRegenerateDictionary() in each iteration till, either the lexicon

becomes empty or look up table get fully populated.

18

Algorithm 1 Generating appropriate patterns to set up the look up table.
1: procedure GeneratePatterns

Require: Original Dictionary file
Ensure: LookUpTable.

2: LookUpTable← alphabetset

3: patterncount← 0
4: currentPatternLength← 0
5: currentPattern← null

6: maxBenefit← initmax

7: maxPatternLength← initMaxPatternLength

8: patternPresentF lag ← 1

9: for i =maxPatternLengthto 1 step1 do
10: while patternPresentF lag = 1 do
11: patternLength← i

12: if patternLength = 1 then
13: maxBenefit← 1
14: patternBenefit← 1
15: else

patternBenefit← patternLength− 1
16: end if
17: if dictionary = empty then

return

18: end if
19: currentPattern← SelectPattern(patternLength, maxBenefit)
20: if currentPattern 6= null then
21: patternPresentF lag ← 1
22: RegenerateDictionary(currentPattern)
23: LookUpTable[patternCount] ← currentPattern

24: patternCount← paternCount + 1
25: else
26: patternPresentF lag ← 0
27: end if
28: end while
29: end for
30: end procedure

19

1: function SelectPattern(patternLength,maxBenefit)
2: currentMaxBenefit← maxBenefit

3: for i =1 to wordCountstep1 do
4: tempWord← Dictionary[i]
5: for j =1 to length(tempWord)-patternLengthstep1 do
6: pattern← tempPattern[j...j + patternLength]
7: frequency ← CountFrequencyInDictionary(pattern)
8: benefit← (length(pattern)− 1)× frequency

9: end for
10: if benefit> currentMaxBenefitthen
11: if pattern not in LookUpTablethen
12: currentPattern← pattern

13: return

14: end if
15: end if
16: end for
17: end function
18: function CountFrequencyInDictionary(pattern)
19: freq ← 0
20: tempPattern← null

21: for i =1 to wordCountstep do
22: load dictionary
23: tempWord← Dictionary[i]
24: for j =1 to length(tempWord)-length(pattern)step1 do
25: tempPattern← tempWord[j...j + length(tempWord)]
26: if pattern =tempPatternthen
27: freq ← freq + 1
28: end if
29: end for
30: end for
31: returnfreq

32: end function

20

1: function RegenerateDictionary(pattern)
2: load dictionary
3: for i = 1 to WordCountstep1 do
4: prevIndex← 1;
5: tempWord← Dictionary[i]
6: for j = 1 to (length(tempWord)-length(pattern)step1 do
7: if pattern[1...length(pattern)] = pattern[j...(j + length(pattern))] then
8: tempPart← tempWord[prevIndex...(j − 1)]
9: write back tempPart to Original Dictionary File

10: j ← j + length(pattern)− 1
11: prevIndex← j

12: end if
13: end for
14: end for
15: returnfreq

16: end function

The changes happens to the data at each iteration is explained in the table 6.1.

Iterations Look up table Dictionary of patterns Benefit of current pattern
0 {} {incarnation,caption,vision} -
1 {ion} {incarnat,capt,vis} 6
2 {ion,ca} {in,rnat,pt,vis} 2
3 {ion,ca,i} {n,rnat,pt,v,s} 1
4 {ion,ca,i,n} {r,at,pt,v,s} 1
5 {ion,ca,i,n,t} {r,a,p,v,s} 1
6 {ion,ca,i,n,t,r} {a,p,v,s} 1
7 {ion,ca,i,n,t,r,a} {p,v,s} 1
8 {ion,ca,i,n,t,r,a,p} {v,s} 1
9 {ion,ca,i,n,t,r,a,p,v} {s} 1
10 {ion,ca,i,n,t,r,a,p,v,s} {} 1

Table 4.1: Execution sequence of the procedure GeneratePattern

4.2 A Storage Structure for the Lexicon

As already mentioned, we start the work with a trie, and a modified alphabet set(LUT).

We use the same strategy of inserting the word to the simple trie. We identify the right

construct(pattern) from the look up table. For that we look in the LUT for the pattern

that is the longest prefix of the word under consideration. Once we found it, we have

21

to add the index of that pattern at the right position in the trie, representing the position

of that pattern in the word. The insertion of pattern indices, start from root. We check

for an edge leaving the root, labeled with this particular index under consideration.

If it is not there, we add it. That edge lead us to a new node. This new node and

the remaining suffix of that word to be added to the trie, form the new input for the

procedure. Consider the node as root of a trie, and part of theword left, as a word to

be inserted. Repeat the above step we did with actual root andactual word, for this

new input. As we progress, the length of word in hand will reduce. We repeat till the

whole word get added to the trie. Now the whole procedure has to be repeated for all

the words in the lexicon.

The following example (Figure 4.1)shows a list of Hindi words, its LUT and the

corresponding trie.

Fig. 4.1: A simple pattern trie

This is the algorithm designed for trie construction. Each node in the trie(Figure 4.2)

has three fields.

• Pattern Index

• Side Index

• Down Index

22

• validFlag

Fig. 4.2: model of nodes in the structure

Also we use the strategy of replacing the pointers with indices to statically allocated

memory. We declare the amount of static memory allocated as an upper bound on the

total need. Once we perform a test run, will get the exact amount of memory needed.

Then we could fix the memory as per our need.

Among the node fields defined above,lookUpTableIndex points to the entry in the

LookupTable to which the current node bound to.sidePointerfield holds the index of

the slot allotted to the node next to the current node in the same level. downPointer

contains the index of the slot allotted to the first child of the current node. ThevalidFlag

bit identifies whether a prefix of a valid itself is valid or not. A variablenodeCount

points to the next free slot, initialized to 1. Zeroth slot isassumed to be occupied by the

root of the trie. The statically allocated memory is addressed with the name,nodeList.

patternCount represents number of patterns present in the look up table.

At the end of the process, each unique paths in the trie, will represent one of the

target target words.

4.3 Optimizing the Data Structure

In a normal trie, we eliminate redundant prefixes. It will be really effective, if we could

eliminate redundant suffixes too. For that we traverse the trie, find out the replicated

23

Algorithm 2 Constructing the pattern based Trie
1: procedure CreateTrie

Require: Original Dictionary file, LookUpTable
Ensure: PatternBasedTrie

2: for i =1 to wordCountstep1 do
3: tempWord← Dictionary[i]
4: tempPointer ← nodeList[0]
5: for j =1 to length(tempWord)step1 do
6: patternIndex← FindPrefix(tempWord, j, length(tempWord))
7: pattern← LookUpTable[patternIndex]
8: patternLength← length(pattern)
9: tempPtr ← nodeList[tempPointer[down]]

10: presentF lag ← 0
11: if tempPtr 6= null then
12: while tempPtr[side] 6= end do
13: if tempPtr[lookUpTablleIndex] = index then
14: presentF lag ← 1
15: break the loop.
16: end if
17: tempPtr ← nodeList[tempPtr[side]]
18: end while
19: end if
20: if presentF lag 6= 1 then
21: nodeCount← nodeCount + 1
22: newNode← nodeList[nodeCount]
23: newNode[lookUpTableIndex] ← index

24: if tempPtr = null then
25: tempPointer[down]← nodeCount

26: else
27: tempPtr[side]← nodeCount

28: end if
29: tempPtr ← nodeList[nodeCount]
30: end if
31: tempPointer ← tempPtr

32: end for
33: end for
34: end procedure
35: function FindPrefix(word,index,length)
36: for i = indexto lengthstep1 do
37: for i = jto patternCountstep1 do
38: pattern← LookupTable[j]
39: if word[i...(i + length)] = pattern then
40: return(j)
41: end if
42: end for
43: end for
44: end function

24

tails,eliminate one of them and adjust one of the parents of those tails, to make it point

to the common tail(shown later in section).

In order to locate the common tails, we exploit the property that these tails are

suffixes of some words, and whenever there is a common suffix for a pair of words,

their reversed form will be having a common prefix. Based on this analogy, we reverse

all the words in the lexicon and form a new reversed trie from this reversed set of words.

Now, it is easy to locate the words with common prefix in the newformed list since we

just have to perform a traversal in the corresponding trie. If we perform an inorder

traversal on the reversed trie, and list the words in the sequence they got visited, two

adjacent ones in the sequence represents the possibility ofhaving a suffix in common,

in the original trie. Once we get a pair like this, we go back tothe actual trie, in order

to look for the common suffix. Then we traverse down, the path representing both the

words, in order to merge their suffix in common.

First, create the reversed list of words, in terms of patterns from the look up table.

Then the algorithm 2 mentioned above, with input as the new list, could be applied to

create the reversed trie. The example below in Figure 4.3 shows how the optimization

applicable to the trie given above can be performed.

Now the Algorithm 3 performs inorder traversal on the new trie in conjunction with

applying suffix factoring on the original trie. The algorithm uses anodeStack(where

nodes will be held temporarily) to perform inorder traversal. The list of nodes for the

reversed trie is given byrevNodeList.

4.4 Recovering Unused Memory

Now eliminated redundant tails cause holes in the statically allotted memory. For that

we do some compaction. This is being done by moving the nodes from the end of

the list to fill the holes in between, so that at the end of the process, all the holes get

accumulated at the end of the nodeList. We could write the sequence of valid nodes to

a file. Now we know the amount of static memory required exactly. Allocate that much

static memory and load the trie back from the file. This will provide the lexicon loaded

25

Fig. 4.3: Way to final storage structure represention

26

Algorithm 3 Algorithm for parsing and suffix compression
1: procedure CreateSuffixTrie

Require: Reversed Dictionary file, LookUpTable, Original trie
Ensure: PatternBasedTrie

2: end← 0
3: null ← 0
4: buffBackUp← null

5: buff ← null

6: PUSH(revNodeList[0])
7: while nodeStack 6= empty do
8: temp← POP ()
9: while temp 6= null do

10: if IsWordBoundary(temp) then
11: if buffBackUp 6= null then
12: commonPrefixLength← FindCommonPrefixLength(buffBackUp, buff)

13: if commonPrefixLength 6= 0 then
14: TryCompress(buff, buffBackUp, commonPrefixLength)
15: else
16: buffBackUp← null

17: end if
18: end if
19: buffBackUp← buff

20: end if
21: tempDown← revNodeList[temp[down]]
22: if AlreadyV isited(temp) 6= false then
23: tempDown← tempDown[side]
24: if tempDown[side] = null then
25: tempDown← null

26: else
27: tempDown← revNodeList[tempDown[side]]
28: tempDown← revNodeList[tempDown[down]]
29: end if
30: end if
31: update(buff, tempDown[lookUpTableIndex])
32: PUSH(tempDown)
33: end while
34: end while
35: end procedure
36: function FindCommonPrefixLength(word1,word2)
37: revWord1← reverse(word1)
38: revWord2← reverse(word2)
39: length← prefixLength(revWord1, revWord2)
40: return(length)
41: end function

27

1: function TryCompress(word1,word2,commonPrefixLength)
2: revWord1← reversed(word1)
3: revWord2← reversed(word2)
4: length← FindCommonTailLength(revWord1, revWord2, commonPrefixLength)

5: MoveDownAndConnect(revWord1, revWord2, length)
6: end function
7: function FindCommonTailLength(revWord1,revWord2,prefixLength)
8: down1← length(resWord1)− prefixLength

9: down2← length(resWord2)− prefixLength

10: common← prefixLength

11: temp1← nodeList[0]
12: temp2← nodeList[0]
13: down1← down1− 1
14: down2← down2− 1
15: temp1←MoveDownTheTree(temp1, down1, revWord1)
16: temp2←MoveDownTheTree(temp2, down2, revWord2)
17: matched← false

18: while matched = false do
19: temp1←MoveDownTheTree(temp1, 1, revWord1)
20: temp2←MoveDownTheTree(temp2, 1, revWord2)
21: down1← down1 + 1
22: down2← down2 + 1
23: common← common− 1
24: matched← Compare(temp1, temp2)
25: end while
26: return(common)
27: end function
28: function Compare(node1,node2)
29: side1← node1[down]
30: side2← node2[down]
31: node1← nodeList[side1]
32: node2← nodeList[side2]
33: while node1[lookUpTableIndex] = node2[lookUpTableIndex] do
34: node1← nodeList[side1]
35: node2← nodeList[side2]
36: end while
37: if ((side1 = null)(side2 = null)) then
38: return(true)
39: else
40: return(false)
41: end if
42: end function

28

in the most efficient format.

1: function MoveDownTheTree(node,length,word)
2: for i = 1to lengthstep1 do
3: while node[lookUpIndex] 6= word[i] do
4: node← nodeList[node[side]]
5: end while
6: node← nodeList[node[down]]
7: end for
8: end function
9: function MoveDownAndConnect(word1,word2,commonLength)

10: length← length(word1)
11: for i = 1to length− commonLengthstep1 do
12: while node1[lookUpIndex] 6= word1[i] do
13: node1← nodeList[node1[side]]
14: end while
15: node1← nodeList[node1[down]]
16: end for
17: length← length(word2)
18: for i = 1to length− commonLengthstep1 do
19: while node2[lookUpIndex] 6= word2[i] do
20: node2← nodeList[node2[side]]
21: end while
22: node2← nodeList[node2[down]]
23: end for
24: node1← nodeList[node1[down]]
25: node2[down]← node1
26: end function

Algorithm 4 explains how the compaction is being done. It does this in two steps. In

the first step, mark the nodes in a data structure calledforward[] ,indicating which are

all nodes have to be moved for the purpose of filling holes. Nowevery node can look

in to this data structure to know whether their pointer fieldsare going to be changed.

If so, they can modify their pointers as mentioned in the forward data structure.In the

second phase, we move the nodes safely without loosing the information associated

with the nodes. The example in Figure 4.4 explains the procedure applied in the node

list representation of trie given above.

Once we have the optimized trie, a memory image of this structure together with

look up table could be written to a file from which it could be loaded and used by the

front end.

29

Fig. 4.4: Nodelist represention and sparse removal

30

Algorithm 4 Algorithm for sparse removal
1: procedure RemoveSparse()

Require: nodeList
Ensure: nodeList with all the sparse moved to the end of the list

2: MarkForward()
3: Forward()
4: end procedure
5: function MarkForward()
6: holeIndex← FindNextHole()
7: for i = nodeCountto 1step1 do
8: if valid(nodeCount[i]) = true then
9: forward[i]← holeIndex

10: holeIndex← FindNextHole()
11: end if
12: end for
13: end function
14: function FindNextHole()
15: for i = (currentHoleIndex + 1)to nodeCountstep1 do
16: if valid(nodeCount[i]) = false then
17: return(i)
18: end if
19: end for
20: end function

1: function Forward()
2: for i = 1to nodeCountstep1 do
3: node← nodeList[i]
4: if node[side] 6= null then
5: node[side]← forward[node[side]]
6: end if
7: if node[down] 6= null then
8: node[down]← forward[node[down]]
9: end if

10: if forward[i] 6= 0 then
11: exchange(nodeList[forward[i]], nodeList[i])
12: end if
13: end for
14: end function

31

CHAPTER 5

High Level System Architecture

5.1 System Architecture

This section gives an overall idea about the system(shown inFigure 5.1) by explaining

the architectural components and their interrelationships.

Once the user generates a request to open the application, the system starts with

performing some preprocessing steps. Then an editor will beshown to the user in which

the user can type his message. User provides input to the system using the keypad. The

system processes the input, and updates the display so as to show the output back to the

user.

During the SMS creation phase, user perform key press, may bewith the intention of

inputting a new character, or to select one among multiple options provided to him(these

may be valid patterns corresponding to previous key press sequence). If the input is a

space, that indicates end of current word under processing.In that case, the tool does n’t

have to do anything. Input alphabets are mapped to buttons 1 to 9. Each button provides

a one to many mapping from button to alphabet sub set. For example pressing button

5 means a mapping from key press event of button 5, to a set of Alphabet symbols

mapped to button 5. Once the user selects one of these buttons, the system has to

identify the alphabets that is mapped to this button, and that suits the situation. To

resolve an nth button press, the system uses the results from the previous n-1 button

presses and alphabets that are matched to current button, and checks for a combination

that matches any of the patterns in the SMS lexicon. If its there, it will be displayed to

the user. So formed pattern will be part of the input to the system to resolve the next

key press.

In order to parse for a valid pattern, the system keeps track of a two dimensional

matrix indicating the alphabet combinations corresponding to a sequence of input key

Fig. 5.1: System Architecture

33

presses. Now the parser module considers the alphabet combinations one by one. Once

it finds a valid combination, that will be displayed to the user. Later, it repeats the same

process on demand by the user through a function key, which helps the user to rotate

through the valid combinations. Parsing the alphabet sequence for the valid check, in

the lexicon representation, is a complex procedure shown inAlgorithm 5.

Function key initiates a module calledrotate through. This module plays a sup-

porting role for the tool for ensuring user convenience. At any instance of time, parser

may have generated more than one pattern all of which remain valid for that particular

combination of key presses. Now the user canscroll throughthosevalid patterns setso

as to select the intended one among them, using the function key.

Once the message is ready, we first transfer the message, and later the control, to

native message send module. Now we could use the messaging module services to

perform the processes ahead.

5.1.1 Preprocessing Step

The preprocessing step shown in Figure 5.2 is performed whenthe editor is started.

This phase mainly involves two steps.First, we set up the look up table. Then we

should have the lexicon ready in the form of a trie.

As part of the core design process, we develop an efficient representation of both,

look up table and the trie (as already discussed) which are stored in a file during prepro-

cessing. Later both data structures are loaded to a section of allotted memory. This will

be used by the front end, so that it don’t have to regenerate itagain. We are following

this strategy just because, look up table and trie regeneration from the original lexicon

file, are very much time consuming tasks,which cannot be doneduring preprocessing.

Now whenever needed, the front end just loads it and uses it, not being aware about

where it comes from.

34

Algorithm 5 Algorithm for parsing the valid pattern in Lexicon
1: procedure parseForPattern()

Require: keyIndexlist:sequence of key presses to be analyzed
Ensure: parsePattern:One of the successfully parsed patterns.

2: state← InitParse(1)
3: if state = true then
4: display(parsePattern)
5: end if
6: end function
7: function InitParse(level)
8: for i = 1to infinitystep1 do
9: if checkInLexicon(level) then

10: if level = patternLength then
11: return(true)
12: else
13: InitParse(level + 1)
14: return(true)
15: end if
16: end if
17: next(buttonIndex[level − 1])
18: end for
19: end function
20: function CheckInLexicon(level)
21: for i = 1to patternLengthstep1 do
22: parsePattern[i]← Key[KeyIndexList[i]][buttonIndex[i]]
23: ModifyMathrasParsePattern[i]
24: end for
25: parsedF lag ← 1
26: node← nodeList[0]
27: downTemp← node[down]
28: while (downTemp 6= null)and(parsedF lag = 1) do
29: index← FindPrefix(parsePattern, i, patternLength)
30: downPtr← downTemp

31: while downPtr[lookupTableIndex] 6= index do
32: downPtr ← downPtr[side]
33: end while
34: if down[lookUpTableindex] = index then
35: parsedF lag ← 1
36: downPtr ← downPtr[down]
37: end if
38: end while
39: end function

35

Fig. 5.2: Preprocessing Phase

5.1.2 Parsing Module

This module (shown in Algorithm 5) uses LookUpTable data structure and lexicon data

structure(in the form of nodeList) for the purpose of performing validity check for a

possible pattern. Other than that the following book keeping information will be used

by the algorithm.

• KeyN[1...C] - Represents C alphabets corresponding to Key N.

• Mathra[1...count][0...1] - Mathra[currentCount][0] represents the symbol used

when they occur as first alphabet in a word and Mathra[currentCount][1] rep-

resents the symbol used, when they occur in between.

• keyIndexList[i] - Button Index corresponding to i th key press.

• buttonIndex[i] - Index of alphabet under consideration, for button ith pressed but-

ton.

36

• patternLength - Length of input key sequence.

1: procedure parseForPattern()
2: function FindPrefix(word,index,length)
3: for i = indexto lengthstep1 do
4: for i = jto patternCountstep1 do
5: pattern← LookupTable[j]
6: if word[i...(i + length)] = pattern then
7: return(j)
8: end if
9: end for

10: end for
11: end function

5.1.3 The Scroll through Module

As already mentioned, the rotate through module shown in Algorithm 6 does the job

of facilitating user’s task of selecting one among several valid patterns.It also uses the

book keeping information as in ParseForPattern() algorithm.

Algorithm 6 Algorithm for scrolling through the list of valid patterns
1: procedure Scroll
2: function ScrollThrough(level)
3: for i = 1to infinitystep1 do
4: if checkInLexicon(level) then
5: if level = patternLength then
6: return(true)
7: else
8: ScrollThrough(level + 1)
9: return(true)

10: end if
11: end if
12: next(buttonIndex[level − 1])
13: end for
14: end function

5.2 Keypad Design

We were provided with an efficient button to keypad mapping for Hindi. The design of

such keypads would have been focused on reducing conflicts across alphabets mapped

37

to same key.

Fig. 5.3: Keypad design

5.3 Keypad Event Handling

We override the Key Event handler and capture the keys in order to make the system

respond in the way we want. During a press,input method key eventhas been generated,

which we simply override. We capture therelease key event, process it and pass the

modified value to our system according to the keypad design mentioned above.

This design differs from the keypad design available in traditional mobiles. In tradi-

tional mobiles, with the dictionary feature disabled, if wewant to press ith alphabet on

the jth button, we have to press the button j, i times within a short time period. Because

of this timing difficulty, our design demands user to generate a button click sequence j

i if he want to type ith character on the jth button. If the dictionary feature enabled, our

keypad works like a normal keypad.

38

CHAPTER 6

Implementation and Results

6.1 Overview

In this section we cover the translation of designed aspectsin to implementation.On the

way to final product we had to face a lot of dilemmas.

6.2 Input

A set of 7739 Hindi words and an optimized key pad design.

6.3 Fixing Back end Parameters

The look up table size fixed to be 256. Maximum pattern size to be 5. We fix the benefit

factor in pattern generation to be 44. We started with a value50 and tuned it till the

value reached 44 where we got the best fit of look up table with the input patterns.

6.4 Environment

The target platform was defined as part of requirement. We were asked to develop the

tool for S60 modelmobile phones, which hasSymbianas the mobile operating system.

The task application development was well supported by tools provided by Nokia. This

set includes,

• Carbide .C++ IDE version 2.3 -This is the IDE on which we develop programs in

Symbian C++.

• Nokia N97 emulator version 1.0 - emulator for testing the proper working of code

without using the actual device.

• Active Perl version 5.10.1 - Supporting tool for program development. Bridges

the gap between IDE and Emulator.

• Qt for Symbian version 4.6.2- Extension to the current IDE with a very useful

collection of APIs.

• target device - Nokia n97 mini.

The whole kit of packages got installed on the Windows platform, where we per-

formed the front end development.

We implemented the core feature, which is storing the lexicon in a well contained

data structure which meets our needs. The data structure andlook up table are written

to a file in the form primary memory image. This works because we do not use pointers.

Now the code developed in Symbian C++, with Qt support [8] on Windows platform,

generates executable which uses this file to meet user requirement of performing word

prediction. We had to convert the file in big endian format to little endian format because

of the platform difference. Further compression was done onthe UTF-8 codes of the

alphabet for better memory optimization.

6.5 Front end

We developed the editor using the QTextEdit class object in Qt. QFile class deals with

file operations. It has functions like, open(), close(),read() etc. QTextedit class is asso-

ciated with an Event handler which we had to override to implement the editing task.

We read the scan code associated with the key event to identify it uniquely. Events other

than key events will be bypassed. The QString class made the job dealing with strings

easier. In the installed emulator, we put the lexicon file andlook up table file into a

folder so as to simulate the file to be residing in mobile.The files are in the form of a

collection of hex codes corresponding to the alphabets for Hindi language.

40

There were 53 alphabet symbols mapped to 9 keys from 1 to 9. Zero meant for

space character.

6.6 Results

The following table 6.1 discusses space consumption characteristics of the data struc-

ture.

Field Value
Number of entries in LUT 256
Maximum pattern length 5

LUT size 845 bytes
Size of a node in the data structure 5 bytes

Number of nodes 8374
Total data memory 42KB

Table 6.1: Space consumption characteristics of the data structure

41

CHAPTER 7

Conclusion, Limitations and Future Work

7.1 Overview

This chapter concludes the presentation and covers the limitations associated with the

system.

7.2 Dealing with the Problem

We started approaching the problem by looking into similar work, where on most of

the occasions, tries were the data structures, taking up thejobs which are so close to

what we want. So we decided to start with this standard data structure. As the work

progressed, the data structure kept on evolving. New features got added to the base

structure.

The data structures we develop consist of,

• Look Up Table

• A specialized version of trie

Once the data structures got deployed, then it was about porting it so as to make the

job done completely.

The front end tasks were done on a windows platform, where theemulator was

installed. The Qt tool made the task of handling GUI easier. It even provided event

handling APIs which we easily modified to meet our purpose. Inthe end, it was not a

tough job to have a nice application running on a nice platform.

7.3 Benefits

• A tool which supports sending of Hindi text SMS.

• Small memory requirement makes it possible to be installed on low end mobiles.

• Design is possible to be reused for development of SMS Lexicon in any language.

7.4 Limitations

The tool does not have maintainability. We can’t add new words to it. There are dic-

tionary data structures that let you to do both addition and removal of words [9]. Both

are possible by extending this design.Input lexicon could have been optimized based

on user’s frequency of usage of words. Another limitation isnumbers and additional

symbols can not be part of the input message.

7.5 Future Work

The above mentioned short comings should be overcome in the future. Instead of pat-

tern prediction, we could target word prediction, and that is even could be based on its

position in the target sentence. We could extend the application so to make it a target

language independent word predictor. It just has to be equipped with code tables and

key pad mappings for all languages. So that later, it could beloaded and unloaded with

word sets for various supported target language, dependingon the need.

43

REFERENCES

[1] http://en.wikipedia.org/wiki/T9_(predictive_text).

[2] R. L. R. Thomas H Cormen, Charles E Leiserson,Introduction to Algorithms. 2001.

http://www.introtoalgorithms.com.

[3] http://www.pcworld.com/businesscenter/article/195025/

india_adds_record%_20_million_mobile_subscribers_in_

march.html.

[4] http://www.pluggd.in/india-mobile-market/

report-sms-as-a-vas-service-297.

[5] G. Janssen, “Design of a pointerles bdd package,” International Workshop on Logic

Synthesis (IWLS), 2001.

[6] R. Bloor, “Essential s60 developers’ guide.” Symbian software lim-

ited. http://www.forum.nokia.com/info/sw.nokia.com/id/

80dc01fa-2260-49ca-8ee3-f0a414adb78a/Essential_S60_

Developers_Guide.pdf.html.

[7] R. Harrison, “Symbian os c++ for mobile phones.” Symbiansoftware limited,

2003. http://www.forum.nokia.com/info/sw.nokia.com/id/

80dc01fa-2260-49ca-8ee3-f0a414adb78a/Essential_S60_

Developers_Guide.pdf.html.

[8] http://symbianresources.com/tutorials/qt.php.

[9] S. Ristov, “Lz trie and dictionary compression,” 2002. http://www.

introtoalgorithms.com.

44

