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Abstract with discrete-event systems. The work we describe dif-
Fundamental to reinforcement learning, as well as to the fers from most other hlerarchlcal approaches in that we do
theory of systems and control, is the problem of represent- NOt lump states together into larger states. We keep the
ing knowledge about the environment and about possible original state representation and instead alter the temporal
courses of action hierarchically, at a multiplicity of inte- aspects of the actions.
lated temporal scales. For example, a human traveler must In this paper we survey our recent and ongoing work in

decide which cities to go to, whether to fly, drive, or walk, . . .
and the individual muscle contractions involved in each temporal abstraction and hierarchical control of Markov

step. In this paper we survey a new approach to reinforce- decision processes (Precup, Sutton & Singh 1998a,b, in
ment learning in which each of these decisions is treated prep.). This work is part of a larger trend toward focus-
uniformly. Each low-level action and high-level course of ing on these issues by many researchers in reinforcement
action is represented as aption a (sub)controller and learning (e.g. Singh, 1992a,b; Kaelbling, 1993; Lin, 1993;
a termination condition. The theory of options is based ; PN T ! R '
on the theories of Markov and semi-Markov decision pro- D&yan & Hinton, 1993; Thrun & Schwartz, 1995; Huber
cesses, but extends these in significant ways. Options can& Grupen, 1997; Dietterich, 1998; Parr & Russell, 1998).

be used in place of actions in all the planning and learn-
ing methods conventionally used in reinforcement learning K . .
Options and models of options can be learned for a wide Markov Decision Processes

variety of different subtasks, and then rapidly combined to |n this section we briefly describe the conventional re-
solve new tasks. Options enable planning and leaming si- jnforcement learning framework of discrete-time, finite
mul_taneou_sly at a wide variety of times spales, a_nd toward Markov decision processesr MDPs which forms the

a wide variety of subtasks, substantially increasing the ef . .

ficiency and abilities of reinforcement learning systems. ~ basis for our extensions to temporally extended courses
of action. In this framework, a learninggentinteracts
with an environmentat some discrete, lowest-level time
scalet = 0,1,2,.... On each time step the agent per-
The field of reinforcement learning is entering a neweives the state of the environmest, € S, and on that
phase, in which it considers learning at multiple levelspasis chooses a primitive action, € A. In response to
and at multiple temporal and spatial scales. Such hieragach actiong,, the environment produces one step later
chical approaches are advantageous in very large proble@sumerical reward;..;, and a next states, ;. The en-
because they provide a principled way of forming approxgironment’s transition dynamics are modeled by one-step
imate solutions. They also allow much greater flexibilitystate-transition probabilities,

and richness imvhatis learned. In particular, we can con-

sider not just one task, but a whole range of tasks, solve Py = Pr{sey1 =" | st = s,ar = a},

them independently, and yet be able to combine their in-

dividual solutions quickly to solve new overall tasks. We2Nd one-step expected rewards,

also allow the learner to work not just with primitive ac-
tions, but with higher-level, temporally-extended actions,
calledoptions In effect, the learner can choose amongyy g 5, s' € S anda € A. These two sets of quantities
subcontrollers rather than just low-level actions. This new,gether constitute thene-step modeif the environment.
direction is also consonant with reinforcement learing's The agent's objective is to learn aptimal Markov pol-
roots in artificial intelligence, which has long focused oncy, a mapping from states to probabilities of taking each
planning and knowledge representation at higher levels. lyajlable primitive actiong : S x A — [0, 1], that max-
this paper we survey our work in recent years forming pafizes the expected discounted future reward from each

I ntroduction

re = E{rit1 | st = s,a¢ = a},

of this trend. _ _ . states:
From the point of view of classical control, our
new work constitutes a hierarchical approach to solving’™(s) = E{rt+1 + i1 + YT o ‘ 5t = s,ﬂ'}

Markov decision problems (MDPs), and in this paper we
present it in that way. In particular, our methods arevherey € [0, 1] is adiscount-rateparameter.V ™ (s) is
closely related to semi-Markov methods commonly usedalled thevalueof states under policyr, andV ™ is called



the state-value functioffior 7. The uniqueoptimalstate- which option is being taken at the time, not just on the
value functionV*(s) = max, V™(s),Vs € S, gives the state. We define the value of a statender a general flat
value of a state under an optimal policy. Any policy thatpolicy = as the expected return if the policy is started:in
achieved/* is by definition an optimal policy. There are

also action value function§™ : S x A — R andQ* : v (s) X E{rt+1 FIVATI ‘ S(W,s,t)},

S x A — R, that give the value of a state given that a

particular action is initially taken in it, and a given policy \whereg (r, s, t) denotes the event afbeing initiated ins

is followed afterwards. at timet. The value of a state under a general policy (i.e.,

Options a policy over options): can then be defined as the value
. def

We use the terroptionsfor our generalization of primitive Offt(r)g state under the corresponding flat poligy(s) =
actions to include temporally extended courses of actioX (5)-
Formally, an option consists of three components: an input MDP + Options= SMDP
setZ C S, apolicynr : S x A — [0,1], and a termination
conditions : S — [0, 1]. An option(Z, , 3) is available
in states if and only if s € Z. If the option is taken, then

Options are closely related to the actions in a special kind
of decision problem known as semi-Markov decision
i . ' ; - process or SMDP (e.g., see Puterman, 1994). In fact,
actions are selected accordingrtaintil the option termi- a fixed set of options defines a new discrete-time SMDP
nates stochastically accordingfo In particular, the next v y4ad within the original MDP, as suggested by Fig-
actiona, is selected according to the probability distribu-ure 1. The top panel shows the state trajectory over dis-
tion 7(s¢,-). The environment then makes a transition tQ..ota time of an MDP, the middle panel shows the larger
Sta.t.est“' where the option _either terminaf[e_s, with IorOb'state changes over continuous time of an SMDP, and the
ab'“t.y Blsii1), or else continues, de_termmmgH ac  |ast panel shows how these two levels of analysis can be
F:ordmg tor(8¢41, -), Possibly terminating I8, > a}ccord— superimposed through the use of options. In this case the
ing t05(s+2), and so on. When the option terminates, th‘?mderlying base system is an MDP, with regular, single-
agent has the opportunlty to _select ar_1c_)ther optlon._ step transitions, while the options define larger transitions,
The input set and termination condition of an option Oyje those of an SMDP, that last for a number of discrete
gether restrict its range of application in a potentially US€stens. All the usual SMDP theory applies to the super-
ful way. In particular, they limit the range over which theimposed SMDP defined by the options but, in addition,

option’s policy needs to be defined. For example, a hange have an explicit interpretation of them in terms of the
crafted policyr for a mobile robot to dock with its battery underlying MDP. We will now outline the way in which

charger mightbe defined only for staes which the bat- - g5 e of the SMDP results can be interpreted and used in
tery charger is within sight. The termination conditin e context of MDPs and options.

would be defined to beoutside ofZ and when the robotis
successfully docked. It is natural to assume that all states Time ——»
where an option might continue are also states where the

option might be taken (i.e., thdts : 3(s) < 1} C 7). MDP /\/\\/ IState
In this casesr needs to be defined only ovérather than
over all of S. SMDP /\/\f
The definition of options is crafted to make them as .
much like actions as possible, except temporally extended. ovgrp,t\;ﬁ;‘; %ﬁ

Because options terminate in a well defined way, we can

COT?SIdeI’ policies that Sele.ct ODtIOnS mSt.ead of prlmltlV(Ia'—'igure 1:The state trajectory of an MDP is made up of small,
actions. Let the set of options available in statee de-  jiscrete-time transitions, whereas that of an SMDP corepris
notedOs, the set of all options is denot&d = | J,.s Os.  larger, continuous-time transitions. Options enable arPMia-
When initiated in a state;, the Markov policy over op- jectory to be analyzed at either level.

tionsy : S x O — [0, 1] selects an option € O;, ac-

cording to probability distributiop(s;, -). The optiorp is Planning with options requires a model of their conse-
then taken irs;, determining actions until it terminates in quences. Fortunately, the appropriate form of model for
se+k, at which point a new option is selected, according t@ptions, analogous to the andp?,, defined earlier for
u(st+x, -), and so on. In this way a policy over optiops, actions, is known from existing SMDP theory. For each
determines a policy over actions, ftat policy, 7 = f(u).  state in which an option may be started, this kind of model
Henceforth we use the unqualified tepwmlicy for Markov ~ predicts the state in which the option will terminate and
policies over options, which include Markov flat policiesthe total reward received along the way. These quantities
as a special case. Note, however, tligt) is typically are discounted in a particular way. For any optigret

not Markov because the action taken in a state depends 6(v, s, t) denote the event af being initiated in state at



time ¢. Then the reward part of the model offor state
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Figure 2: The rooms example is a gridworld environment with
= E{y"6ys,,. | E(0,5,1)}, (2) stochastic cell-to-cell actions and room-to-room hallway
tions. Two of the hallway options are suggested by the arrows

for all s € S, under the same conditions, whétg is an labeledo; andos. The labelG indicates a location used as goal.
identity indicator, equal to 1 if = s’, and equal to 0 oth-
erwise. Thusp?,, is a combination of the likelihood that
s’ is the state in whicle terminates together with a mea-
sure of how delayed that outcome is relativeytoNe call
this kind of model anulti-time mode(Precup and Sutton,
1998) because it describes the outcome of an option
at a single time, but at potentially many different times
appropriately combined.

To complete the specification of the planning problem
we designate one state as a goal, say the state laielsd
providing a reward of +1 on arrival there. Figure 3 shows

tt}e results of applying synchronous value iteration (SVI)
not., . . ) )
to this problem with and without options. The upper part
of the figure shows the value function after the first two
iterations of SVI using just primitive actions. The region

Using multi-time models we can write Bellman equa-
. - . . f accurately valued states moved out by one cell on each
tions for general policies and options. For instance, Ie?

us denote a restricted set of optionsyand the set of all iteration, but after two iterations most states still had their

policies selecting only from options i@ by TI(0). Then initial arbitrary value of zero. Iq the lower part. of the fig-
. . . ure are shown the corresponding value functions for SVI
the optimal value function given that we can select onl

. With the hallway options. In the first iteration all states
fromQis . g
in the rooms adjacent to the goal state became accurately
valued, and in the second iteration all the states became
accurately valued. Rather than planning step-by-step, the

Va(s) = max
00 hallway options enable the planning to proceed at a higher

oY P V()
SI

A correspondingptimal policy denotedug,, is any pol-
icy that achieved’j;, i.e., for whichV#o(s) = V3(s)  with cell-to-cell primitive actions
in all statess € S. If V5 and models of the options are
known, therug, can be formed by choosing in any propor-
tion among the maximizing options in the equation above
It is straightforward to extend MDP planning methods
to SMDPs. The policies found using temporally abstrac
options are approximate in the sense that they achieve on

Vé, WhICh iS typlcally Iess tham/'*. Iteration #0 Iteration #1 Iteration #2
with room-to-room options

The Rooms Example

As a simple illustration of planning with options, con-
sider therooms examplea gridworld environment of four
rooms shown in Figure 2. The cells of the grid corre-
spond to the states of the environment. From any state t
agent can perform one of four actiongy, down, | ef t Iteration #0 Iteration #1 Iteration #2

orri ght. These actions usually move the agent in the

corresponding direction, but with 1/3 probability they in-Figure 3: Value functions formed over iterations of planning
stead move the agent in another, random direction. In eaEﬁ synchronous value iteration with primitive actions anithw

. . . allway options. The hallway options enable planning to- pro
of the four rooms, the system is also provided with WQeeq room-by-room rather than cell-by-cell. The area ofitkke

built-in hallway optionghat take the agent from anywherein each cell is proportional to the estimated value of théesta
within the room to one of the hallway cells leading out ofwhere a disk that just fills a cell represents a value of 1.0u¥ée
the room. discounting withy = 1 for this task.

o]




Trajectories through e ~S ut i
N V [
Space of Landmarks © v

., < ~ |

Termination-mproved ,~ |, g6 N

Solution (474 Steps) / A N /V\
g S N s

1 [ < o

\ S I

0 1 2
SMDP Solution Termination-Improved Solution

Figure 4: Termination improvement in navigating with landmark-diexl controllers. The task (left) is to navigate from S to G
in minimum time using options based on controllers that racheto one of seven landmarks (the black dots). The circles sh
the region around each landmark within which the contrsltgrerate. The thin line shows the optimal behavior that asbsthese
controllers run to termination, and the thick line showsabeesponding termination improved behavior, which caésdorners. The
right panels show the state-value functions for the SMD#ggd and termination-improved policies. Note that thédais greater

level, room-by-room, and thus be much faster. troller then defines an option: the circular region around
the controller’s landmark is the option’s input set, the con-
Termination | mprovement troller itself is the policy, and arrival at the target land-

_ mark is the termination condition. We denote the set of
So far we have assumed that an option, once started, My4g{en Jandmark options . Any action within 0.01 of
be followed until it terminates. This assumption is necesne goal location transitions to the terminal states 1

sary to apply the theoretical machinery of SMDPs. On thg the reward is-1 on all transitions, which makes this
other hand, the whole point of the options framework i$; minimum-time task.

that one also has an interpretation in terms of the under- o ) o
lying MDP. This enables us to consider interrupting op- ©One€ of the landmarks coincides with the goal, so it is
tions before they would terminate normally. For examPOSSible to reach the goal while picking only frafh The
ple, suppose we have determined the option-value fun@ptimal policy withinO runs from landmark to landmark,

tion Q“(s, 0) for some policyu and for all state—options &S Shown by the thin line in Figure 4. This is the opti-
pairs s, o that could be encountered while following mal solution to the SMDP defined iy and is indeed the

This function tells us how well we do while following Pest that one can do while picking only from these op-
1 and committing irrevocably to each option, but it carfions. But of course one can do better if the OptIQnS are
also be used to re-evaluate our commitment on each sté}?t followed all the way to each landmark. The trajectory

Suppose at timewe are in the midst of executing option shown by the thick line in Figure 4 cuts the corners and
o. If o is Markov in s, then we can compare the valuelS shorter. This is the termination-improved policy with

of continuing witho, which is Q*(s,, 0), to the value of respect to the SMDP—optimaI policy. The termination im-
terminatingo and selecting a new option accordingizp  Provementpolicy takes 474 steps from start to goal which,
which is V¥ (s) = 3, u(s,0')Q (s, 0). If the latter is while not as good as the optimal pollcy_n_w primitive actions
more highly valued, then why not terminateand allow (425 steps_), is mugh bette_r, for no additional cost, than the
the switch? Indeed, we have shown that this new wayMDPP-optimal policy, which takes 600 steps. The state-
of behaving is guaranteed to be better. We characteriy@ue functions}o and# for the two policies are also
this as an improvementin the termination condition of th&"own on the rightin Figure 4.
original option, i.e., as germination improvement Another illustration of termination improvement in a
Figure 4 shows a simple example of termination immore complex task is shown in Figure 5. The task here
provement. Here the task is to navigate from a stars to fly a reconnaissance plane from base, to observe as
location to a goal location within a continuous two-many sites as possible, from a given set of sites, and return
dimensional state space. The actions are movementstofbase without running out of fuel. The local weather at
0.01 in any direction from the current state. Rather thaeach site flips between cloudy and clear according to in-
working with these low-level actions, infinite in number,dependent Poisson processes. If the sky at a given site is
we introduce seven landmark locations. For each lana@loudy when the plane gets there, no observation is made
mark we define a controller that takes us to the landand the reward i§. If the sky is clear, the plane gets a
mark in a direct path. Each controller is only applicableeward, according to the importance of the site. The plane
within a limited range of states, in this case within a cerhas a limited amount of fuel, and it consumes one unit
tain distance of the corresponding landmark. Each comf fuel during each time tick. If the fuel runs out before



reaching the base, the plane crashes and receives a rewRtssell (1998), Mahadevan et al. (1997), and McGov-

of —100. ern, Sutton & Fagg (1997)), which treat complete option
executions just as primitive actions are treated in conven-
747?5’/,/ 15 (reward) tional reinforcement learning methods. One drawback to
“ '/;90 25 (mean time bﬁtween) these methods is that they need to execute an option to ter-
weather changes, . . . .
options o mination before they can learn about it. Because of this,
decision % they can _only be applied to one option at a time—'the op-
steps x 50 tion that is executing at that time. More interesting and
5 potentially more powerful methods are possible by taking
100 Lo advantage of the structure inside each option. In particu-
o 50 lar, if the options are Markov and we are willing to look
Base insidethem, then we can use special temporal-difference
Termination methods to learn usefully about an option before the op-
60 Improvement tion terminates. This is the main idea behintta-option
Expected SMDP methods .
Reward Planner
per 88 2 i PPV OB VP
Mission Absolute error in option 22 I A e

£

Static 3
Re-planner

\  values averaged over 24
. options 26

SMDP Q-learning

Macro Q-learning

40/

High Fuel Low Fuel ‘- ;
-\-.‘. f Intra-option value learning
. . . . 15 K
Figure 5: The mission planning task and the performance of
policies constructed by SMDP methods, termination improve *
ment of the SMDP policy, and an optimal static re-plannet tha °° I
. . . - ntra’
does not take into account possible changes in weather-condi °c— o o 0 v mn e o
tions. Episodes Episodes

.. SMDP Q-learning aa4li

R S 38 Average on-line reward

The primitive actions are tiny movements in any direcfigure 6: Comparison of SMDP, intra-option and Macro Q-
tion (there is no inertia). The state of the system is dé@amlng. Intra-option methods converge faster to cowalttes.
scribed by several variables: the current position of the
plane, the fuel level, the sites that have been observedFigure 6 shows anillustration of the advantages of intra-
so far, and the current weather at each of the remainifgption learning in the rooms example. In this case small
sites. This state-action space has approximai¢lpil- negative rewards were introduced at all the states, and the
lion elements (assuming 100 discretization levels of thgoal was located a¥. We experimented with two SMDP
continuous variables), making the problem intractable bipethods: one-step SMDP Q-learning (Bradtke & Duff,
normal dynamic programming methods. We introduced995) and a hierarchical form of Q-learning calMecro
options that can take the plane to each of the sites (inclu€-learning(McGovern, Sutton & Fagg, 1997). Although
ing the base), from any position in the input space. Th#ie SMDP methods can be used here, they were much
resulting SMDP has only 874,800 elements and it is feasslower than the intra-option method.
ble to determind’j;(s') exactly for all sitess’. From this . .
solution and the model of the options, we can determine Analyzing the Effects of Options
QRH(s,0) =rI+3 . v,V (s') forany optioro and any  Adding options can either accelerate or retard learning de-
states in the whole space. pending on their appropriateness to the particular task. In

The data in figure 5 compares the SMDP and termianother aspect of our work, we are trying to break down
nation improvement policies found for the problem withthe effect of options into components that can be measured
the performance of a static planner, which exhaustivel§ind studied independently. The two components that we
searches for the best tour assuming the weather does hat/e studied so far are: the effect of options on initial ex-
change, and then re-plans whenever the weather doggisratory behavior, independent of learning, and the ef-
change. The policy obtained by the termination imfect of learning with options on the speed at which cor-
provement approach performs significantly better than thect value information is propagated, independent of the
SMDP policy, which in turn is significantly better than thebehavior. We have found that both of these effects are sig-
static planner. nificant.

. . We have measured these effects in gridworld tasks and
Intra-Option Learning in the larger, simulated robotics task shown on the left in
Optimal value functions can be determined by learningigure 7. This is a foraging task in a two-dimensional
as well as by planning. One natural approach is to uspace. The circular robot inhabits a world with two rooms,
SMDP learning methods (Bradtke & Duff (1995), Parr &one door connecting them, and one food object. The robot



Simulated Environment Without Options With Options

~

sonars

»

food sensing food
radius

Figure 7:The simulated robotic foraging task. The picture on of thérenment shows the five sonars, the doorway sensors, and
the food sensor. The graphs on the right hand side reprdsepbsition of the robot during a random walk.

has simulated sonars to sense the distance to the neardsittterich, T. G. 1998. The MAXQ method for hierarchical
wall in each of five fixed directions and simple inertial reinforcement learning. IRroc. of the 15th Intl. Conf. on Ma-
dynamics, with friction and inelastic collisions with the C€hine Learning Morgan Kaufmann.

walls. We provide two options, one which orients the Huber, M., and Grupen, R. A. 1997. A feedback control struc-
robot towards the door, and the other which drives theture for on-line learning tasksRobotics and Autonomous Sys-
robot forward until it encounters a wall. Because the statetem522(3'4):303_315'

space is continuous and large, we used a tile-coding func@elbling, L. P. 1993. Hierarchical learning in stochaslae
tion approximators is necessary. mains: Preliminary results. IRroc. of the 10th Intl. Conf. on

. . Machine Learning167—-173. Morgan Kaufmann.
To assess the effect of options, we examined the be- ¢ g

havior for 100,000 steps when the actions were selected™ L--J- 1993 Reinforcement Learning for Robots Using Neu-
’ . . ral Networks Ph.D. Dissertation, Carnegie Mellon University.

randomly from the primitive actions only and from both i

the primitive actions and the options. The two right pan- Mahadevan, S.; Marchallek, N.; Das, T. K.; and Gosavi, A.

h . - . 1997. Self-improving factory simulation using continusime
els in Figure 7 show a projection of one such traJeCtoryaverage-rewarr)d reir?forcem):ant learning. F!rgc. of the 14th

onto the two spatial dimensions. The options have & 1arggnti. Conf. on Machine Learnin®02-210. Morgan Kaufmann.
influence on this exploratory behavior. With options, the McGovern, A.; Sutton, R. S.: and Fagg, A. H. 1997. Roles of

robot crosses more often between the two rooms and travimacro-actions in accelerating reinforcement learningsriace

els more often with high velocity. In preliminary results Hopper Celebration of Women in Computidg—17.
we have also been able to show faster learning of efficienpa R and Russell, S. 1998. Reinforcement learning with

foraging strategies through the use of options. hierarchies of machines. lAdvances in Neural Information
Processing Systems.1MIT Press.
Clos ng Precup, D.; Sutton, R. S.; and Singh, S. 1998a. Multi-time

In this paper we have briefly surveyed a number of Waysm;)dels f_ortemporall_y abstract planning.Advances in Neural
in which temporal abstraction can contribute to the hierar-In ormation Processing Systems. _MIT Press. _
chical control of MDPs. We have presented some of thePrecup, D.; Sutton, R. S.; and Singh, S. 1998b. Theoretical

. . sults on reinforcement learning with temporally abstoge
basic thepry and 'several Sgggestlve gxamples, but many (ﬁfons. InMachine Learning: ECI\/?L98. 10th FI)Europi/ean Clgﬁfer-
the most mterestlng questlons remain open.

ence on Machine Learning. Proceedin882—-393. Springer.
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