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Abstract

The primary advantage of using 3D-FPGA over
2D-FPGA is that the vertical stacking of active layers re-
duce the Manhattan distance between the components in
3D-FPGA than when placed on 2D-FPGA. This results in
a considerable reduction in total interconnect length. Re-
duced wire length eventually leads to reduction in delay and
hence improved performance and speed. Design of an effi-
cient placement and routing algorithm for 3D-FPGA that
fully exploits the above mentioned advantage is a prob-
lem of deep research and commercial interest. In this
paper, an efficient placement and routing algorithm is pro-
posed for 3D-FPGAs which yields better results in terms
of total interconnect length and channel-width. The pro-
posed algorithm employs two important techniques,
namely, Reinforcement Learning (RL) and Support Vec-
tor Machines (SVMs), to perform the placement. The
proposed algorithm is implemented and tested on stan-
dard benchmark circuits and the results obtained are
encouraging. This is one of the very few instances where re-
inforcement learning is used for solving a problem in the
area of VLSI.

Keywords: Three-Dimensional FPGA, Placement and
Routing, Reinforcement Learning (RL), Two-opt algo-
rithm, Support Vector Machines (SVMs).

1. Introduction

The astonishing accuracy with which Moore’s law [28] has
been adhered to all these years has been the pride of the
semiconductor field. Studies have shown that in the near
future, there possibly exists a saturation of Moore’s law.
The only possible solution to this could be a paradigm

shift in the fabrication process, which also warrants ma-
jor changes at the architectural level of VLSI chips. With
the advent of 3D-VLSI, Moore’s law would still continue
to hold good by providing solutions to the challenges of
increased speed and decreased power consumption. Three-
Dimensional Field Programmable Gate Arrays (3D-FPGA)
are one of the most interconnect dominated devices and can
benefit the most by 3D integration. The reason being, the av-
erage Manhattan distance between any two elements in 3D-
FPGA is less when compared to that in 2D-FPGA, due to
the vertical stacking of the silicon layers [1, 2, 14, 25]. Some
of the fabrication techniques to realize these 3D-VLSI cir-
cuits are discussed in [23, 24, 6].

Conceptually, a 3D-FPGA architecture is realized from

2D-FPGA by replicating several layers of 2D-FPGA
stacked one over the other and replacing the 2D-switch
blocks in every layer by the 3D-switch block. The in-
crease in the number of nearest neighbours increases
the number of paths/resources for routing hence lead-
ing to a considerable reduction in wire-length and conges-
tion in 3D-FPGA.
Definition 1 (Placement and Routing Problem on
FPGA): Given a synthesized net-list of a circuit which con-
sists of the logical elements and the interconnections be-
tween them, compute

1. a mapping of the different logical elements in the net-
list on to the configurable logic blocks of the FPGA
(Placement); and,

2. a mapping of the interconnects in the net-list on to the
routing resources of the FPGA such that, the connec-
tivity between various logical elements as specified in
the net-list is maintained (Routing);

such that, the total interconnect length and the channel
width (maximum number of interconnects incident on ev-
ery side/face of a switch block in the FPGA) are minimized.



The reason for using RL and SVMs for VLSI Placement
and Routing is as follows: The Placement and Routing prob-
lem on FPGAs is NP-complete and to search for a best so-
lution in the solution-space is very hard. The above is an
instance of a combinatorial optimization problem that fits
very well into the framework of local search based solu-
tion techniques [9]. Reinforcement Learning [19] (RL) has
been successfully employed to improve the performance
of various local search algorithms [4, 10, 21, 27]. A RL
based method for enhancing the local search is presented
in [21]. As RL has been proved effective in solving local
search based methods, it can also be applied to the VLSI
placement and routing problem. Support Vector Machines
(SVMs) captures the essential details of the problem in-
stance even with sparse sample data and proved to be ef-
fective for high dimensional input space. In this article, we
extend the work of [21] and use SVM with RL to enhance
the outcome of two-opt, a well-known local search heuris-
tic. The salient features of our work are:

1. The proposed solution is one of the very few instances,
wherein, RL is used for solving a problem in the area
of VLSI.

2. The learning process models the common features
among the different instances of the placement and
routing problem on FPGA and hence is instance in-
dependent. In other words, learning done on one set of
representative benchmark circuits is used to place and
route the remaining benchmark circuits effectively.

3. This is one of the first applications to use SVM in con-
junction with a batch RL algorithm [7].

Next section explores the previous work done in 3D-FPGA
and RL. Basic concepts of RL and SVM are given in sec-
tion 3. Section 4 describes the proposed algorithm, gives the
details of two-opt algorithm, features that are used to cap-
ture the essential characteristics of a placement, and three
phases of the approach adopted. Experimental Results are
presented in section 5. Section 6 concludes the paper and
gives some open issues to be explored further.

2. Related Work

Two-dimensional FPGA architectures are well stud-
ied and reported in the literature [12]. There are many
algorithms available for Placement and Routing for
2D-FPGA [16, 17, 15, 26]. On the other hand, though
roots of 3D-FPGA started way back in 1996, not much
has been achieved in practical aspects. Design and de-
velopment of tools and analysis of 3D circuits com-
plete a major step towards realization and commer-
cialization of this technology [24]. Details of Rothko, a
three-dimensional architecture, is discussed in [25]. Univer-
sal switch blocks for three-dimensional FPGA design are

presented in [8]. Shamik Das et al. have explored the per-
formance and wiring requirement for three-dimensional In-
tegration of Field-Programmable Gate Arrays in [6, 18].
A physical layout of 3D-FPGA and a Spiffy Tool for si-
multaneous placement and routing is given in [1, 2, 14]. A
solution to the channel-routing problem using Reinforce-
ment Learning methods is presented in [10]. To the best of
our knowledge, [10] is the only instance reported in the lit-
erature, where, RL is used to solve a problem in the area of
VLSI.

3. Reinforcement Learning and Support Vec-
tor Machines

Reinforcement Learning (RL) refers to a collection
of learning algorithms that seek to approximate solu-
tions to stochastic sequential decision tasks with scalar
evaluative feedback. RL algorithms are designed to oper-
ate online and in close interaction with the environment
in which the agent is operating. [19] is a good intro-
duction to RL. The formalism usually adopted in RL is
that of Markov decision processes, defining the interac-
tion between agent and environment in terms of states,
actions, stochastic dynamics, and scalar evaluations or re-
wards. The goal of an RL agent is to learn a mapping
from states to actions, known as a policy, so as to maxi-
mize some long term measure of performance.

The concepts of value and value functions are the key fea-
tures of the reinforcement learning methods. The value of a
state under a particular policy is the expected long-term re-
ward an agent will receive, given that the agent starts
in that state and follows the given policy. The pol-
icy that gives the maximum possible value for each and
every state is known as an optimal policy and the corre-
sponding value function is known as the optimal value
function. Hence the goal of the agent is to learn an opti-
mal policy.

An RL agent maintains an estimate of the value function
that it updates over time. Given some trajectory experienced
while following a policy , we use a first-visit Monte Carlo
[19] method to update the value function, V. The value
function is updated as follows:

V(St) — V(St) + (I(Rt — V(St)) (1)

where, s; is the state at time t, « is a constant step size pa-
rameter, and R; is the cumulative scalar evaluation, or re-
turn, received after time ¢, while following 7. This formu-
lation assumes that every trajectory encountered terminates
eventually.

Representing this estimate of the value function in case of
large problems requires the use of some form of function ap-



proximation mechanism. In this work, we choose to employ
regression with support vector machines (SVMs). SVMs
are a popular tool for solving non-linear classification and
regression problems. They work on the principle that if a
non-linear classification/regression problem is transformed
to a high dimensional space, then it is more likely to be
linear in that space. In practice SVMs have been shown
to work very well with sparse training data and on very
high dimensional input spaces. Since we anticipated that
we might not be able to generate too many training sam-
ples, we decided to go in for an SVMs based function ap-
proximator. For a comprehensive introduction to SVMs see
[22].

We use a Gaussian kernel based SVM for the training. The
value function for hill climbing is determined as follows:

V(f)= Z ai x K(f, f;)

where, n is the number of support vectors, f is the input fea-
ture vector, £, is the it® support vector, a; is the weight cor-
responds to the it* support vector and K is the Gaussian ker-
nel function given by the following equation.
r T \2

k(7.7 = e (U210
where, o is the standard deviation whose value can be cho-
sen depending on the accuracy desired in the curve fitting
process.
We use SVM Torch [20], an open-source implementation,
for training the SVMs in our experimentations. The training
phase requires us to supply a set of input vectors and corre-
sponding target values. Thus, we generate a set of states and
their corresponding returns from each trajectory and train
the SVM only after a batch of trajectories are completed.
This approach is similar to the first approach described in

[71.

4. Methodology for
Routing

Instance |ndependent

Our approach in this paper is based on earlier work by Moll
et al. [21] on applying RL to combinatorial problems. The
main idea is to employ RL to improve the performance of
local search algorithms. Local search algorithms start with
some initial random solution to the problem and progres-
sively improve on this solution by searching in the neigh-
borhood of the current solution for a better solution. The
quality of the final solution found depends on the initial so-
lution. Typically the local search algorithm is run multiple
times and the best among the different solutions produced is
retained. We improve upon the performance of a given lo-
cal search algorithm by employing RL to learn a good start-
ing point for the local search process, one that leads to a

good final solution. Hence, finding a state with high value
function would lead to a good final solution.

We employed shortest path routing, since we wanted to use
a fixed low cost routing algorithm. Hence the solution space
is characterized by the placement alone. The “goodness” of
a solution, or placement, is given by the quality of the rout-
ing produced by the routing algorithm for this placement.
Quality or cost of a solution is measured in terms of the in-
terconnect length and channel width and is given by:

(WireLength + (ax C’hannelWidth))
Numberoflinks

cost =

where, a link is a connection between two logic blocks in
a net. The wire-length is the total interconnect length of
the circuit i.e. all the links in all nets put together and « is
the channel-width weight. Numerically, the channel-width
is negligible compared to the interconnect length. Hence,
to give weightage to channel-width the alpha value is used.
After some experimentation, we found that setting « to 5
provides a good trade off between wire length and chan-
nel width.

4.1. Features

A complete description of a placement leads to an in-
tractably large state space. In addition, the value func-
tion we learn on one problem will not transfer from
one to another. Hence we represent each placement
by a set of features, which have been suitably normal-
ized to make them instance independent, i.e., the range of
values taken by the features is fairly invariant across prob-
lems of different sizes and complexity. After some initial
experimentation, we have chosen a few features which cap-
ture the salient characteristics of the placement and routing
for a circuit. Each feature is explained further below. How-
ever, it is worth mentioning here that there is an upper limit
placed on the channel-width of a switch block for every cir-
cuit. This does not curb the placement and routing algo-
rithms. If a switch block has a higher channel-width than
the prescribed limit after routing then it is said to be a con-
flict.

Description of Features of a Placement:

1. LengthFit:
The maximum possible interconnect length depends
on the size of the FPGA. Given a 3D-FPGA of size,
x X y X z, assuming every switch block reaches its up-
per limit on channel-width, the maximum total length
of all interconnect wires between the switch blocks is

((w(y +1) 4+ @+ Dy z+(@+1)(y+1)(z - 1))W



where, W is the upper limit on the channel-width.
Length fit is the ratio of the actual total interconnect
wire length after routing to the maximum wire length
estimated as given above. Thus the lower the actual to-
tal wire length, the lower the LengthFit value.

. Switch Block Congestion:

This feature is chosen to maintain uniform load across
the channels of the switch blocks in the FPGA. This
however, does not directly take the numerical value of
the channel width into account but it aims at distribut-
ing the channel-width equally through out the FPGA.

All the switch blocks are sorted in the increasing or-
der of their channel-widths. The channel-widths for
the first half of the sorted list of switch blocks is
summed up and this forms the lower sum. Similarly,
the channel-widths of the second half of the sorted list
of the switch blocks is also summed up to give the
upper sum. The fractional increase is used as the fea-
ture. The lower value of this feature keeps the load dis-
tributed throughout the FPGA.

. Conflict Ratio:

It gives an estimate of the number of switch blocks
whose channel-width exceeds the upper limit placed
(as defined above). The fraction of switch blocks
where the conflict occurs is taken as a feature.

. Features corresponding to the link length:

Unit link length for a net is computed as the ratio of the
link length to the number of links in that net. The maxi-
mum and the minimum of the unit link length over the
entire circuit, the mean of the first, second and third
maxima of the unit link lengths, and the mean of the
first, second, and third minima of the unit link lengths
are all used as features.

. Cube net ratio

This feature accounts for the characteristics of the ac-
tual placement. First the size of the smallest cube that
can enclose a net is calculated for every net. For this,
the number of distinct logic blocks contained in the
net is to be evaluated. The maximum diameter of the
smallest cuboid that can actually enclose the net is cal-
culated. The ratio of this diameter to the size of the
smallest cube needed to encompass the net is com-
puted for every net. These ratios are summed up for
the first quarter of the nets and this forms the feature.

. Maximum of average link length

The maximum of the average link length for all nets is
yet another feature. Similarly the minimum of the av-
erage link length for all nets is also a feature.

4.2. Two-Opt

The local search algorithm that we adopt for 3D-FPGA
placement is the Two-Opt algorithm [9]. The state of
the system is given by the current placement. Swap-
ping a pair of logic blocks transitions the system to a
new neighboring state. The set of all the states, result-
ing from a single swap forms the two-opt neighborhood
of the original state. We consider all possible swaps be-
tween any two logic blocks. The swap which gives the
best cost improvement is retained. This process is re-
peated until there are no further cost improvements. The
two-opt algorithm is applied in solving various prob-
lems such as traveling salesman problems [9] and the
Dial-A-Ride problem [21]. Variants of the two-opt algo-
rithm are also used in placement and routing of 3D-FPGAS
[2]. The two-opt algorithm for placement is given be-
low.

function Two-Opt
input: Initial random placement
output: Better placement that yields a reduced two-opt cost

1. Start with an initial random placement.

2. Search the two-opt neighborhood for the best swap
3. Perform the swap and move to the next state
4

. Repeat steps 2 and 3 till no further improvement is pos-
sible.

endfunction

4.3. Learning

In order to demonstrate the instance independent nature of
our approach, we use only two benchmark circuits during
learning, while we test the performance of our approach on
a suite of benchmarks from [1]. The benchmarks we chose
for learning are term1 and 2large. During learning, we op-
erate in two phases. In the first phase, we start with some
initial random placement of the given circuit. We consider
the two-opt neighborhood of this placement and perform a
modified hill-climbing on the estimated value function in
a first-improvement fashion. In other words, we order the
neighbors randomly and pick the first one that yields an im-
provement of at least e in value over the current placement.
The current placement then receives an evaluation of —e.
This small penalty is to ensure that the search trajectories
do not become too long.

If no such neighbors leads to an improvement, we termi-
nate the trajectory and run two-opt starting from the final
solution. The evaluation for this final solution is the nega-
tive of the cost of the two-opt solution. Thus for any place-
ment on a trajectory of length n, the return is given by:



—(n —1i—1)e — costO fTwoOpt

We store the features and the return corresponding to each
placement seen along the trajectory. After we accumulate
several such trajectories we go to the second phase, where
we use all the data collected so far to train an SVM to im-
prove our value function estimate. An input vector to the
SVMs is given by the features corresponding to a place-
ment and the target is the corresponding return.

If necessary we can repeat phases 1 and 2 multiple times
to improve the value function estimate. In each repetition
we retain the data accumulated in the previous executions
of phase 1. In our experiments we used 50 trajectories for
each benchmark and repeated each phase twice. It should
be mentioned that the memory required during initializa-
tion and training the SVMs is not high (478k), and the out-
put generated by the SVM tool stores the support vectors
requires very less space (1.2Kb). Training the SVM multi-
ple times does not need much time.

4.4, Initialization

Since we used a batch mode to train our SVMs, we need to
initialize it to some reasonable value estimates before start-
ing the learning process. In order to do this, we decided to
use the cost of the two-opt solution generated by starting
from some random initial placement. Thus the SVM was
trained with input vectors describing initial random place-
ments and targets given by the corresponding two-opt solu-
tion costs. We used 100 initial placements for each bench-
mark. When we performed the SVM training in phase 2
for the first time, we retained these initial placements in the
training set, while for the subsequent iterations we ignored
these.

4.5. Application

While employing the learned value function, we just per-
form phase 1 of the learning procedure. We start with some
initial random placement of the circuit, then hill climb on
the estimated value function in a first improvement fashion
using the two-opt neighborhood. When the trajectory ter-
minates, we run two-opt from the final placement. The re-
sulting placement is taken as the output of the algorithm.
If necessary this process maybe repeated for multiple start-
ing points and the best solution obtained is retained.

5. Experimental Results

The above proposed algorithm is implemented in C++ and
the results obtained are given in this section. We have tested
our proposed algorithm for four layers. In tables 1 and 2,

Circuit InterconnectLength ChannelWidth
Mo. RL A | Mo. | RL A
9symm1 583 | 428 | 26.58 6 5 | 16.67
2large 1412 | 1101 | 22.02 6 6 0
alu2 1282 | 1089 | 15.05 6 6 0
apex7 713 | 500 | 29.87 7 4 | 42.85
example2 | 1265 | 857 | 32.25 6 5 | 16.67
terml 452 | 251 | 44.46 6 3| 50.00

Table 1. Comparison of Mondrian algorithm
with RL based placement and routing

Circuit Minimum cost || Average cost Cost

2-opt RL || 2-opt RL A

9symm 1.352 | 1.340 || 1.585 | 1.562 0.87

2large 1.675 | 1.604 || 1.923 | 1.867 4.23

apex’ 1.232 | 1.159 || 1.495 | 1.506 5.90
terml 1.041 | 0.917 || 1.243 | 1.196 || 11.92
example2 || 1.359 | 1.313 || 1.602 | 1.616 3.32
alu2 1.696 | 1.687 || 1.976 | 1.990 0.45

Table 2. Comparison of cost measure

Mo. denotes the Mondrian algorithm and A denotes per-
centage improvement obtained using the proposed approach
over the Mondrian approach. Table 1 compares the results
with the algorithm proposed in [2]. From Table 1 it can
be observed that the wire-length is reduced for all the cir-
cuits when compared to the Mondrian approach. The chan-
nel width remains same or reduced for all the circuits. This
clearly demonstrates the superiority of the proposed RL
based approach for the placement and routing problem on
3D-FPGA over the existing algorithms. Table 2 compares
the cost of the same initial placement before applying RL
(only Two-opt) and after applying RL for different bench-
mark circuits.

6. Conclusion

In this paper we propose Reinforcement Learning based ap-
proach using Support Vector Machines for the Placement
and Routing problem on 3D-FPGA. Our experimental re-
sults on standard benchmark circuits indicate that our ap-
proach produces effective routing, with less interconnect
length and channel width. Even with a few training trajec-
tories, RL combined with SVMs gives a surprisingly good
performance. This indicates that by providing more training
examples our method can achieve better performance. The
approach presented in this paper is instance independent by
virtue of the chosen set of features. Further effort can be di-
rected towards the design of better feature set leading to



greater improvement in performance. In this work, fixed
routing algorithm is assumed. We can also use RL tech-
niques to improve on the existing routing algorithm. An-
other interesting direction of research is to do power anal-
ysis and incorporate thermal and fabrication issues in our
cost function leading to power aware placement and rout-

ing.
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