
Interpretability using Compact Models

A Thesis

submitted by

ABHISHEK GHOSE

for the Award of the Degree

of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

September 2022

THESIS CERTIFICATE

This is to certify that the thesis titled Interpretability using Compact Models, submit-

ted by Abhishek Ghose(CS15D004), to the Indian Institute of Technology, Madras, for

the award of the degree of Doctor of Philosophy, is a bonafide record of the research

work done by him under my supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any degree

or diploma.

Balaraman Ravindran
Research Guide
Professor
Dept. of Computer Science
IIT-Madras, 600 036

Place: Chennai

Date: February 24, 2023

ACKNOWLEDGEMENTS

I have had the good fortune of being aided by multiple helping hands, or “latent vari-

ables” - as I would like to think of them, that have made the “generative process” of my

PhD fruitful. I take this opportunity to thank them.

I would like to begin by thanking my advisor Dr. Balaraman Ravindran, who not

only let me pick an uncommon problem and approach to investigate, but also was sym-

pathetic to the many failures along the way. His critical evaluation of my ideas and the

communication of them constituted significant learning for me, and his trust in me kept

me motivated.

For all challenging undertakings in my life, I have always, albeit subconsciously at

times, relied on the pillar of support that my parents and brother represent. This is true

in this case as well: their faith in me led me to consider, and later join, this part-time

PhD program, and their unwavering encouragement saw me through it.

I am indebted to Vijayalekshmi Kesavan, a good friend and then my wife, for her

support: she was partner to many thoughtful conversations, and spent hours reviewing

notes and drafts that I produced. Her motivation and support were especially crucial in

the final stretch of the program.

I am grateful for the help I received from my friend Balasanjeevi B.. He readily

took time out of his busy life to act as a sounding board for my ideas, often pointing out

relevant literature to consult. This is humbling in light of the fact that he had played a

similar role of being a friend and critique during my Masters as well!

I owe my gratitude to Dr. Shyam Rajagopalan, an ex-colleague and my friend, for

inspiring me to consider a part-time PhD. His spirit of tinkering with ideas and projects

convinced me of the feasibility of such an undertaking.

My team in [24]7.ai helped me in multiple small and large ways, but I would like to

especially mention Dr. Ravi Vijayaraghavan, Dr. Prashant Joshi, Dr. Abir Chakraborty,

i

Dr. Paul Sauer, Dr. Cosimo Spera and Dr. Mandar Mutalikdesai for their support;

it’s challenging to work on a PhD along with a day-job, but their encouragement and

support, both logistic and moral, eased the process.

Working on a program remotely often led to multiple administrative challenges; and

I would like to thank Tarun Kumar and Shreyas Shetty for helping me tide over them.

I am especially grateful to Shreyas for being available for multiple deeply technical

discussions in the early stages of the program.

ii

ABSTRACT

KEYWORDS: Machine Learning, Interpretability

The increased use of Machine Learning in various real world systems has led to

a corresponding increased need for models to be understandable, either by being in-

terpretable or explainable. We focus on interpretability in our work, noting that it is

preferred for models to be small in size for them to be considered interpretable, e.g., a

decision tree of depth 5 is easier to interpret than one of depth 50.

Smaller models also tend to have high bias. This suggests an inherent trade-off

between interpretability and accuracy. Our work addresses this by proposing techniques

to create compact models: small-sized models that minimize the difference in accuracy

relative to their larger counterparts.

We propose two model agnostic techniques to construct such models. Both of them

operate on the assumption that focusing on specific instances during model training

potentially leads to increased model accuracy. The task of identifying such instances

and their relative influence is formulated as that of learning a sampling distribution.

The distribution is represented as an infinite Beta mixture model, and its parameters are

learned using an optimization procedure that maximizes held-out accuracy.

The approaches differ in the representation of the optimization search space: in the

first case, referred to as the density tree based approach, information about proximity of

instances to class boundaries is used. This information is derived from the input space

partitioning produced by decision trees. The second technique, referred to as the oracle

based approach, utilizes the uncertainty in predictions of an oracle model.

Rigorous empirical validation of the proposed techniques is presented that uses mul-

tiple real world datasets and interpretable models with various notions of model size.

We observe statistically significant relative improvements in the F1-score - occasionally

greater than 100% - between a model of a given size trained in a standard manner, and

iii

a compacted version of the same size created by our techniques. As a corollary, we

challenge the conventional wisdom that train and test data need to be drawn from the

same distribution for optimal learning, instead showing that this is not true when model

sizes are small.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES ix

LIST OF FIGURES xiii

ABBREVIATIONS xv

NOTATION xvii

1 Introduction 1

1.1 Understandable Models . 1

1.2 Types of Understandable Models 3

1.3 Interpretability using Compact Models 6

1.4 Objectives of Thesis . 8

1.5 Contributions of Thesis . 8

1.6 Previous Work . 10

1.7 Outline of the Thesis . 13

2 Background 15

2.1 Bayesian Optimization . 15

2.1.1 Overview . 15

2.1.2 Tree-Structured Parzen Estimators 20

2.2 Dirichlet Process Mixture Models 23

2.2.1 Overview . 23

2.2.2 The Stick-Breaking Process 25

2.2.3 The Dirichlet Process . 29

2.3 Relevance . 33

v

3 Compact Models using Density Trees 35

3.1 Overview . 37

3.1.1 Intuition . 37

3.1.2 Formal Statement . 38

3.1.3 Workflow . 40

3.1.4 Terminology and Notation 40

3.2 Methodology . 42

3.2.1 A Naive Formulation . 43

3.2.2 Density Representation . 44

3.2.3 Choice of Optimizer . 47

3.2.4 Challenges . 49

3.2.5 An Efficient Approach using Decision Trees 50

3.3 Experiments . 65

3.3.1 Data . 65

3.3.2 Models . 65

3.3.3 Metrics . 68

3.3.4 Parameter Settings . 69

3.3.5 Improvements in Accuracy 71

3.3.6 Statistical Significance . 76

3.3.7 Effect of Model Capacity 77

3.3.8 Summary . 79

3.4 Discussion . 80

3.5 Conclusion . 82

4 Compact Models using Probabilistic Oracles 83

4.1 Overview . 86

4.1.1 Intuition . 86

4.1.2 Formal Statement . 89

4.1.3 Workflow . 91

4.1.4 Terminology and Notation 91

4.2 Methodology . 93

4.2.1 Measuring Uncertainty . 93

vi

4.2.2 Density Representation for Uncertainty 94

4.2.3 Learning Interpretable Models using an Oracle 97

4.2.4 Choice of Optimizer . 100

4.2.5 Smoothing the Optimization Landscape 101

4.3 Experiments . 103

4.3.1 Validation . 104

4.3.1.1 Data . 104

4.3.1.2 Models . 106

4.3.1.3 Oracles . 107

4.3.1.4 Metrics . 108

4.3.1.5 Parameter Settings 109

4.3.1.6 Improvements in Accuracy 110

4.3.1.7 Statistical Significance 113

4.3.1.8 Learned Distributions 115

4.3.1.9 Effect of Model Capacity 118

4.3.2 Comparisons . 119

4.3.2.1 Setup . 120

4.3.2.2 Metrics . 120

4.3.2.3 Observations and Analysis 122

4.3.3 Additional Applications 124

4.3.3.1 Different Feature Spaces 124

4.3.3.2 Size-Constrained Training Sample 128

4.3.3.3 Vector Model Size 129

4.3.4 Extrinsic Comparisons . 130

4.3.4.1 Explainable Clustering 130

4.3.4.2 Prototype-based Classification 132

4.3.5 Summary . 136

4.4 Discussion . 139

4.5 Conclusion . 143

5 Conclusions and Future Directions 145

5.1 Analysis of Small Improvements 145

vii

5.2 Summary of Contributions . 148

5.3 Future Directions . 150

A APPENDIX 157

A.1 Implementation Details . 159

A.2 GBM Results . 160

A.3 Harmonic Numbers . 162

A.4 Supervised Uncertainty Sampling 162

A.5 Pitfalls of Simple Uncertainty Sampling 164

A.6 Comparison of Uncertainty Distributions 166

A.7 Flattening of the Uncertainty Distribution 167

A.8 Uncertainty Distribution for DT 167

A.9 Compaction Profiles . 168

A.10 Distributions for Different Model Sizes 169

A.11 Improvements Relative to Oracle 170

A.12 Feature Selection for n-gram DT 171

A.13 Running Time for Sampling . 172

LIST OF PAPERS BASED ON THESIS 199

viii

LIST OF TABLES

3.1 List of datasets and their attributes. 66

3.2 Classification Results with DTs, showing δF1. 71

3.3 Classification Results with LPMs, showing δF1. 75

3.4 Classification Results with GBMs, showing F1new and δF1. 78

4.1 Information sources compared across density tree and oracle based ap-
proaches. 89

4.2 List of datasets and their attributes. 105

4.3 Average improvements for different combinations of models and ora-
cles. 112

4.4 LPM, DT compared to Supervised Uncertainty Sampling 123

4.5 LPM, DT compared to the Density Tree approach. 123

4.6 Summary comparison results. 138

4.7 Effect of flattening. 139

4.8 Statistical analysis of the relative difference between improved and the
oracle accuracies. 143

5.1 Average improvements, δF1, for different combinations of models and
oracles. 147

5.2 Classification Results with GBMs. 151

A.1 F1new and δF1 scores for GBM models with different values formax_depth. 161

ix

x

LIST OF FIGURES

1.1 Impact on generalization. 9

2.1 Multiple iterations of BO. 19

2.2 Comparison of explored regions between BO and GD. 20

2.3 Visualization of density as modeled by GMMs. 24

2.4 Visualization for samples from Dir(α) for different α. 25

2.5 Sample probabilities obtained using the stick-breaking process. . . . 28

2.6 The GEM(α) distribution. 29

2.7 Steps in sampling from a Dirichlet Process. 31

3.1 Impact on generalization. 36

3.2 Workflow for a practitioner. 40

3.3 Tessellation of space produced by leaves of a decision tree. 51

3.4 Curvature approximation using leaves. 51

3.5 Effect of axis parallel boundaries. 55

3.6 Effect of inverse transformation. 56

3.7 Selective generalization. 58

3.8 Depth distribution over a tree. 59

3.9 Controlled sampling from class boundaries using the depth distribution. 62

3.10 Improvement in F1 score on test with increasing size of DT. 72

3.11 Performance on binary vs multi-class data. 72

3.12 Variation of po with increasing model size. 73

3.13 Distribution over levels in density tree(s) based on the optimal sample. 74

3.14 Linear Probability Model: improvements and the distribution over depths
of the density trees. 76

3.15 Wilcoxon signed-rank test for improvements produced by density trees. 77

3.16 Improvements for different values for max_depth in GBMs. 78

4.1 A demo of our technique using a GBM as an oracle. 84

xi

4.2 Schematic showing the two distributions we learn for a density tree. 86

4.3 Comparing tessellation found by a density tree with uncertainty scores. 87

4.4 Distribution over levels in density tree(s) based on the optimal sample. 88

4.5 Workflow for a practitioner. 91

4.6 Visualizations of different uncertainty metrics. 95

4.7 Examples of curve-flattening. 102

4.8 Improvements for different combinations of models and oracles. . . 111

4.9 Compaction Profile for LPM. 113

4.10 Wilcoxon signed-rank test for changes in F1 score. 114

4.11 Effect of increasing model size on po. 115

4.12 Aggregated IBMMs plots. 116

4.13 Aggregated IBMMs, adjusted for the uncertainty distribution. 117

4.14 Adjusted IBMMs for some model sizes and datasets. 118

4.15 Effect of model capacity on improvements. 119

4.16 Different feature representations between the oracle and interpretable
models. 126

4.17 Improvements δF1 for different depths of the DT. 126

4.18 False positive distribution for the baseline and oracle based models. 128

4.19 Identifying the optimal sample for a given size. 129

4.20 Improvements in F1-macro with change in vector-valued model size. 130

4.21 Comparison of explainable clustering algorithms. 133

4.22 Comparison of prototype-based classifiers. 137

4.23 Valid mean and standard deviation values for the Beta distribution. . 140

4.24 Compaction Index . 141

4.25 Improved accuracy compared to oracle accuracy. 142

5.1 Wilcoxon signed-rank test for improvements using an oracle. 148

5.2 Use of different optimizers. 153

A.1 Adjustments to po. 159

A.2 Variation of HN with increasing N 162

A.3 Uncertainty estimates from a classifier after one iteration. 165

A.4 Examples of adjusted distributions. 166

xii

A.5 Aggregated IBMMs when using a DT as the interpretable model. . . 168

A.6 Compaction profiles for different combinations of models and oracles. 169

A.7 IBMM distributions for different model sizes. 170

A.8 Distribution of percentage relative difference of a model’s improved
score w.r.t. to the accuracy of the oracle. 170

A.9 Relationship between δF1 and top-k features. 171

A.10 Running time of sampling compared to model fit times. 173

xiii

xiv

ABBREVIATIONS

BO Bayesian Optimization

CART Classification and Regression Trees

DP Dirichlet Process

DT Decision Tree

GBM Gradient Boosting Machine

IBMM Infinite Beta Mixture Model

IGMM Infinite Gaussian Mixture Model

KDE Kernel Density Estimator

LPM Linear Probability Model

RF Random Forest

SVM Support Vector Machine

TPE Tree-structured Parzen Estimator

pdf Probability Density Function

pmf Probability Mass Function

xv

xvi

NOTATION

Common notations are listed below. Notations specific to techniques may be found

listed in respective chapters, e.g., Sections 3.1.4 and 4.1.4.

R, Z, N Sets of reals, integers and natural numbers respectively.
X ∈ RN×d Ordered collection of N d-dimensional feature vectors.
Y ∈ RN Ordered collection of N labels.
[A]pq Element at the pth row and qth column indices of a matrix A.
η Model size.
depth(T) Depth of decision tree T .
F Model family, e.g., Decision Tree.

xvii

xviii

CHAPTER 1

Introduction

1.1 Understandable Models

In recent years, Machine Learning (ML) models have become increasingly pervasive in

various real world systems. In many of these applications, such as movie and product

recommendations, it is sufficient that an ML model is accurate. However, there is a

growing emphasis on models and their predictions to be understandable as well, espe-

cially in domains where the cost of being wrong is prohibitively high, e.g., medicine

and healthcare (Caruana et al., 2015; Ustun and Rudin, 2016; Yoon et al., 2018; Alaa

and van der Schaar, 2019a), defence applications (Gunning, 2016; Zhang et al., 2020a),

law enforcement (Perry et al., 2013; Angwin et al., 2016; Larson et al., 2016; Rudin

et al., 2020), self-driving cars (Kim and Canny, 2017; Kim et al., 2018) and banking

(Alloway, 2015; Castellanos and Nash, 2018).

In general, the ability to understand a model leads to:

1. Increased trust: the user of a model can trace model decisions back to easily

understandable data artefacts, to convince themselves that the prediction rationale

is plausible and robust, i.e., not too narrowly defined.

2. Ability to audit: this is important when transparency is required. For example,

for an application rejected by a loan risk assessment system, the applicant might

want to know the specific reasons that influenced the decision.

3. Ability to debug models: it is important to ensure that a model has not learned

unintended associations within the data to produce a deceptive accuracy score. A

common example is classifiers inadvertently using metadata as features, e.g., a

text classifier using document headers (Ribeiro et al., 2016) or an image classifier

using the text in the image source tag (Lapuschkin et al., 2019). Either kind of

1

metadata - document headers or image source tags - is unlikely to be present at

the point of deployment.

Such issues may be easily rectified if the decision process of a model is open to

inspection.

4. Discovery: aside from the common objective of prediction accuracy, the goal of

a modeling exercise might be to gain insight into a phenomena. This is only

feasible if a model is understandable. An example of this is analyzing amino acid

interactions learned by protein models (Vig et al., 2021) that are based on the

Transformer (Vaswani et al., 2017) architecture. Another example is studying

pathogen exposure by analyzing implicit relationships learned by an ML model

(Fountain-Jones et al., 2019).

Recent interest in understandable models is also evidenced by the following factors:

1. Laws like the European Union’s General Data Protection Regulation (GDPR)

(Goodman and Flaxman, 2017) and France’s Digital Republic Act mandate the

“right to explanation” for a user, which necessitates some form of model trans-

parency. Newer laws are expected to emphasize this as well, e.g., Algorithmic

Accountability Act (Clarke, 2019).

2. Multiple recent tools support various forms of model analysis. Some examples

are:

(a) InterpretML from Microsoft. (Nori et al., 2019).

(b) AllenNLP Interpret, AllenNLP (Wallace et al., 2019).

(c) Language Interpretability Tool, Google (Tenney et al., 2020).

(d) AI Explainability 360, IBM (Arya et al., 2020).

Today, there exists a rich body of discourse around the specification and role of un-

derstandable models (Doshi-Velez and Kim, 2017; Lipton, 2018; Miller, 2019; Barredo

Arrieta et al., 2020; Krishnan, 2020; Molnar, 2022), along with multiple user studies

that assess how they influence human decision-making (Freitas, 2014; Lage et al., 2019;

Kaur et al., 2020; Bhatt et al., 2020; Poursabzi-Sangdeh et al., 2021).

2

In essence, the past few years has seen the construction of understandable models

establish itself as an important area of research in the ML community. Our work inves-

tigates a specific approach for building such models. Before we detail our contributions,

we first consider the broader trends in the area in the next section.

1.2 Types of Understandable Models

While today there exist multiple techniques to make models understandable, these may

be broadly categorized as either producing interpretable models or producing model

explanations1:

1. Interpretability: this area looks at building models that are inherently interpretable,

i.e., are considered easy to understand as-is2. Some examples of interpretable

models are:

(a) Rules (Quinlan, 1990; Friedman and Popescu, 2008), rule lists (Letham

et al., 2015; Angelino et al., 2017), rule sets (Wang, 2018).

(b) Decision trees (DT) (Breiman et al., 1984; Quinlan, 1993, 2004; Hu et al.,

2019), decision sets (Lakkaraju et al., 2016).

(c) Sparse linear models (Efron et al., 2004; Ustun and Rudin, 2016).

(d) Linear or generalized additive models that include pairwise interactions

(Lim and Hastie, 2015; Lou et al., 2013; Wang et al., 2021).

An interpretable model may be specific to a task as well, e.g., rules for negation

scope detection in natural language (Pröllochs et al., 2019). The size of a model

also plays a role, and is discussed in Section 1.3.

2. Explainability: this area looks at techniques that may be applied to models that

do not naturally lend themselves to convenient interpretation, i.e., “black-box

1While these categories are commonly understood as defined here, there is some variance in how
these terms are used (Lipton, 2018; Tjoa and Guan, 2020; Kaur et al., 2020; Krishnan, 2020). For
instance, what we consider to be interpretable models here may be referred to as “intrinsically/inherently
interpretable” models, while model explanations may be seen as producing “post-hoc interpretability”.

2See Barceló et al. (2020) for an interesting attempt to mathematically characterize the notion of
interpretability in terms of the computational complexity of answering post-hoc queries.

3

models”. Convolutional Neural Networks (CNN) and Random Forests (RF) are

examples of such models. These techniques approximate a trained model either

at the scale of individual predictions, or globally, by creating an understandable

approximation of the black box model. Examples of such techniques are:

(a) Locally interpretable explanations as provided by LIME and Anchors (Ribeiro

et al., 2016, 2018).

(b) Feature attribution based on Shapley values (Lundberg and Lee, 2017; An-

cona et al., 2019), mutual information approximated by variational infer-

ence (Chen et al., 2018) or visualized as Partial Dependence Plots (PDP)

(Friedman, 2001).

(c) Visual explanations for Convolutional Neural Networks such as Grad-CAM

(Selvaraju et al., 2017) and Ablation-CAM (Desai and Ramaswamy, 2020).

(d) Text rationales or short excerpts from a text document that justify its label

(Lei et al., 2016).

(e) Approximation of a black-box model with an inherently interpretable model

such as a symbolic model composed of a finite number of familiar functions

(Alaa and van der Schaar, 2019b), decision trees (Craven and Shavlik, 1995;

Di Castro and Bertini, 2019) or rules where the level of detail may be inter-

actively adjusted (Ming et al., 2019).

Each of these approaches have certain strengths and limitations. These are listed

below.

1. Interpretability:

• Strengths: The model is easily understood by inspection. As a by-product,

it is easy to infer the reasoning behind individual predictions.

• Limitations: In addition to optimizing for prediction accuracy, the model is

constrained to a specific representation, e.g., rules, decision tree. Consid-

ering the general principle that unconstrained optimization produces results

that are equivalent or better than constrained optimization, this might result

4

in relatively less accurate models. Effectively, we trade-off accuracy for

representation3.

As an example, note that the best performing NLP models today on the

GLUE (Wang et al., 2018a) and SuperGLUE (Wang et al., 2019) bench-

marks4, are black-box models.

2. Explainability:

• Strengths: The modeler enjoys the convenience of training a model for

high accuracy, irrespective of its representation. An appropriate explana-

tion technique may be identified later, among the several options available

today. Model-agnostic techniques like LIME (Ribeiro et al., 2016), SHAP

(Lundberg and Lee, 2017), L2X (Chen et al., 2018), INVASE (Yoon et al.,

2019) and SIPA (Scholbeck et al., 2020) may be applied to arbitrary mod-

els. Model-specific techniques exist for common black-box models, e.g.,

DeepLIFT (Shrikumar et al., 2017) for Neural Networks, TreeSHAP (Lund-

berg et al., 2018) and LeafInfluence (Sharchilev et al., 2018) for decision

tree ensembles, saliency maps for CNNs (Simonyan et al., 2014).

• Limitations: Being a model approximation, an explanation is a “model of a

model”; thus, care must be taken to ensure high fidelity5 with the underlying

black-box model.

As examples of approximation errors that arise in practice, consider pertur-

bation based explanations as used by LIME and SHAP: here, explanations

may be unstable: neighboring instances might generate disparate explana-

tions (Alvarez-Melis and Jaakkola, 2018), or may be inconsistent: it is pos-

sible to generate different explanations for the same prediction (Lee et al.,

2019; Slack et al., 2021), or use of potentially out-of-distribution data (gen-

erated via perturbation) might expose the explanation technique to adversar-

ial attacks (Slack et al., 2020).

For a general discussion of advantages of interpretability over model expla-

3See Bertsimas et al. (2019) and Dziugaite et al. (2020) for formalizations of this idea.
4The respective leaderboards are available at https://gluebenchmark.com/leaderboard

and https://super.gluebenchmark.com/leaderboard/.
5Yeh et al. (2019) provides some objective measures of this quantity.

5

https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard/

nations, see Rudin (2019).

It is easy to see that these approaches are complementary and are each useful in

specific contexts. Not surprisingly, research and applications in each category continue

to flourish. Our research focuses on techniques to create certain types of interpretable

models - we describe this in the next section.

1.3 Interpretability using Compact Models

In the previous section, we mentioned that interpretable models conform to represen-

tations that are considered easy to understand, e.g., rules, trees, sparse linear models.

Often, a common desirable property across such representations is a relatively small

model size. Some anecdotal examples of this are:

1. A decision tree with depth = 50 is significantly harder to understand than one

with depth = 5.

2. An ensemble of decision trees, as in a Random Forest or a Gradient Boosted

model, is harder to reason about than a single decision tree.

3. A sparse linear model with 50 non-zero coefficients is harder to understand than

one with 10 non-zero coefficients.

The relationship between interpretabiltiy and model size has been scientifically

studied as well :

• User studies indicate that small model size is one of a few important factors that

makes a model interpretable: Lage et al. (2019) show in the context of decision

sets that small model sizes aid interpretability (although its not the most important

property do so); Poursabzi-Sangdeh et al. (2021) find that smaller model sizes

aid in certain tasks that require a human subject to have understood how a model

works; Feldman (2000) notes that longer Boolean formulae are harder to learn by

humans.

6

While model size is important, Kulesza et al. (2013) caution against focusing on

size in isolation, arguing smaller model sizes can be detrimental to understanding

if they are too simplistic. Freitas (2014) highlights this aspect as well.

• This role of model size is variously acknowledged in the design and analysis of

interpretable models: Herman (2017) refers to this as low explanation complexity,

this is seen as important for simulability - ease of simulating the reasoning process

of a model by a human (Lipton, 2018; Murdoch et al., 2019) - and is often listed

as a desirable property in interpretable model representations. Some examples of

the latter are:

– Decision Trees with a small number of leaves are preferred for explaining

clusters (Moshkovitz et al., 2020; Laber et al., 2021).

– Decision Sets are preferred to be concise both in terms of number of rules

and number of predicates per rule (Lakkaraju et al., 2016)

– A low number of terms with non-zero coefficients in linear models are pre-

ferred for intelligibility. This was one of the original motivations behind

the LASSO technique (Tibshirani, 1996), and is a design constraint for local

linear models in LIME (Ribeiro et al., 2016).

– Rule learners like LIBRE (Mita et al., 2020) and Bayesian Rule Lists (Letham

et al., 2015) emphasize learning of a small number of compact rules.

Based on existing literature, we note that it is desirable for interpretable models to

be small in size. This also is the aspect of interpretability our research explores: we

provide a model-agnostic technique to improve the accuracy of a model for a given

size. This technique may be used to produce accurate models of small sizes; which are

likely to be easier to interpret than larger models within the same model family.

We term the models our techniques produce compact models, to indicate they are

as accurate as larger models of the same model family.

7

1.4 Objectives of Thesis

The key objectives of the thesis are to propose techniques that:

1. Produce compact models.

2. Are model-agnostic, i.e., the techniques may be applied to create models of an

arbitrary model family such as Decision Tree, Logistic Regression, etc.

1.5 Contributions of Thesis

The main contributions of the thesis are as follows:

1. We propose two model-agnostic techniques to create compact models. The fun-

damental approach we adopt is to learn a distribution over the training data, such

that a model trained on a sample drawn using it maximizes test accuracy. Figure

1.1 compares the generalizations learned by a model when training on the orig-

inal distribution vs the distribution produced by our technique. We observe the

latter strategy obtains a test accuracy of F1 = 0.72 compared to F1 = 0.64 of

the former.

The proposed techniques differ in their implementation of this principle:

(a) In our first technique, we partition the input space into regions based on their

proximity to class boundaries, and we propose an algorithm to efficiently

sample from these partitions. The partitioning is realized by specialized

decision trees we introduce, called density trees. We refer to this approach

as the density tree based approach. The distribution in Figure 1.1(c) was

created using this technique.

(b) As an extension, we develop a second technique where the need for density

trees is obviated by the use of a powerful probabilistic classifier, that we

refer to as the oracle. The uncertainty in the oracle’s predictions is used

to learn the sampling distribution. We refer to this technique as the oracle

based approach.

8

(b) original distribution (c) modified distribution

(d) model generalization using
original distribution

(e) model generalization using
modifed distribution

(a) dataset

Figure 1.1: Changing the input distribution can significantly affect model accuracy. (a) shows a toy
dataset. (b) shows the original distribution of the data as a Kernel Density Estimation plot
and (d) visualizes the generalization learned by a Decision Tree of depth = 5 when using
this distribution for training. (c) shows visualizes the sampling distribution learned by our
technique and (e) shows the corresponding generalization learned by a Decision Tree with
depth = 5. The latter achieves a higher accuracy of F1 = 0.72, compared to F1 = 0.64 of
the former.

2. Both techniques cast the task of identifying the optimal training distribution into

an optimization problem; however, in our formulation only a fixed number of

optimization variables6 are required irrespective of the dimensionality of the data.

3. We present the counter-intuitive result that for small models, the highest test accu-

racy is often seen with a training distribution that is different from the test distri-

bution. This challenges the conventional wisdom that train and test distributions

need to be identical for effective learning.

We also demonstrate that as model size increases, the optimal training distribution

progressively approximates the test distribution.

4. Rigorous empirical validation is provided to establish the effectiveness of our

techniques.

6Eight and seven optimization variables are required by the density tree and oracle based approaches
respectively.

9

1.6 Previous Work

While there is precedent to using different train and test distributions, such as when

there is class imbalance in the data (Japkowicz and Stephen, 2002; Chawla et al., 2002;

He et al., 2008; Santhiappan et al., 2018), we are not aware of any work that applies the

principle to learn size-constrained models. The following list compares and contrasts

various techniques that possess some similarity with ours:

1. Knowledge Distillation (KD): KD looks at using powerful “teacher” models

(similar to our oracle) to learn a smaller “student” model (Gou et al., 2021). The

key differences with KD are:

(a) Unlike KD our goal is not to approximate the oracle’s performance. Instead,

we evolve the smaller model towards a more accurate version. In fact, we

ignore the oracle’s label assignments entirely. This is in contrast to KD

methods that may use teacher-assigned labels (Bucilă et al., 2006) or dis-

tribution of label confidences (Hinton et al., 2015)7, or in general, focus on

extracting “dark knowledge” from the oracle in some form.

(b) A lot of KD research focuses on Neural Networks, e.g., FitNets (Romero

et al., 2015), DistilBERT (Sanh et al., 2019), ProfWeight (Dhurandhar et al.,

2018). In contrast, our technique is model-agnostic.

(c) Methodological differences aside, our observations suggest that the oracle

might only be required to make our algorithm computationally efficient (dis-

cussed in Chapter 5).

2. Explainable AI (XAI): Although we use an oracle model, the goal is not to

explain its predictions. Consequently, we place much weaker demands of the

information shared by the oracle than in XAI algorithms such as LIME (Ribeiro

et al., 2016), SHAP (Lundberg and Lee, 2017), TREPAN (Craven and Shavlik,

1995) or GlocalX (Setzu et al., 2021):

(a) A fundamental difference is we don’t request for the predicted labels of the

oracle.
7While we use the uncertainty in the oracle’s prediction, note that we don’t know which labels is the

oracle more or less uncertain about, i.e., we ignore label identity.

10

(b) As an extension of the previous point, we ignore fidelity to the oracle’s pre-

dictions, which is explicitly enforced and measured in XAI techniques. This

precludes any deliberate alignment between the logical process the oracle

follows to classify an instance vs that followed by the interpretable model.

(c) The information from the oracle is a one-time input to the algorithm, and is

restricted to the training instances available to the interpretable model8. This

is different from queries on synthetic instances performed by various XAI

techniques to determine the neighborhood of a data instance, e.g., perturbed

instances in case of GLocalX9, LIME, SHAP, or generated random instances

within constrained regions of the input space in TREPAN.

In short, we do not infer explanations, local or global, from the oracle. It is used

to provide a one-dimensional view of the training data, as a one-time input to our

algorithm; this is not equivalent to explaining the oracle. As mentioned earlier,

this work suggests that the oracle might be only needed to provide reasonable

computational complexity (discussed in Chapter 5).

3. Active Learning: In the case of active learning too, a predictive model maybe

learned on a distribution that is different from the test distribution. However,

some significant differences are:

(a) Active learning works in the setting where only some or none of the labels of

the training data are initially known, and there is an explicit label acquisition

cost. We work within the traditional supervised setting where labels of all

training instances are known.

(b) The goal of an active learner is to minimize the total label acquisition cost,

while being as accurate as a supervised learner that has access to complete

label information. This is very different from our goal of performing better

than a supervised learner, especially when the model size is small, assuming

complete label information.

It must be noted that the term “oracle” in the active learning literature might refer

8The oracle only sees the training data available to the interpretable model, and is required to provide
uncertainty values for these instances.

9GlocalX indirectly does this via the local learner it uses, LORE (Guidotti et al., 2019).

11

to either a model or a human labeler; in our work, it exclusively refers to a model.

4. Transfer Learning: Transfer learning informs the training process of a “target”

learner, given a “source” learner (Torrey and Shavlik, 2009; Pan and Yang, 2010;

Weiss et al., 2016). Our second technique is ostensibly similar as we have an

oracle (our source learner) informing the interpretable model (our target learner).

However, here are some key differences:

(a) The typical application of transfer learning is in settings where the source

learner has access to more data than the model it must transfer knowledge

to; here transfer learning is seen as a way to overcome the data shortage

by directly having the source learner convey knowledge, in some form, to

the target model. This is different from our setting where the same data is

available to both the oracle and the interpretable model.

(b) Transfer learning techniques usually make some assumptions about the model

family. Some examples are Boolean concepts (Thrun and Mitchell, 1994),

Markov Logic Networks (Mihalkova and Mooney, 2006) or task-specific

neural networks like BERT (Devlin et al., 2019) or ULMFiT (Howard and

Ruder, 2018) for Natural Language Processing, and VGG networks (Si-

monyan and Zisserman, 2015) for image recognition. In comparison, our

technique is model agnostic, both w.r.t. the oracle and the interpretable

model.

(c) Although instance re-weighting techniques have been investigated as a means

of transfer learning10, their objective is to perform effective learning in sit-

uations where the data distribution available in the source task/domain is

different from that in the target task/domain (Liao et al., 2005; Dai et al.,

2007; Kamishima et al., 2009). In our case, these two distributions, as pro-

vided, are identical; we choose to use a different training distribution in the

interest of improving accuracy.

5. Identifying Coresets: Coreset construction techniques (Bachem et al., 2017;

Munteanu and Schwiegelshohn, 2018) seek to create a “summary” weighted sam-

ple of a dataset, known as a coreset, with the property that a model learned on
10We specifically mention this since instance re-weighting maybe seen as a form of sampling.

12

this dataset approximates one learned on the complete dataset. Some critical dif-

ference in our objective are:

(a) We want to reduce model size, not data size. In fact, the techniques we

propose may increase training data size, as they sample with replacement

(the maximum size can be controlled by the user).

(b) The primary motivation behind identifying a coreset is to avoid training on

the entire dataset. But our goal is to allow models to make task-specific

selection of training instances. They have unrestricted access to the entire

dataset. They may train on it (or samples of similar size) possibly multiple

times, based on the optimization trajectory, which contradicts the goal of

coreset extraction.

This is not to say that the tools of analysis from the areas listed above cannot be

adapted to our objective; but they do not directly solve for it today.

1.7 Outline of the Thesis

In this chapter, we provided an overview of the general problem of model interpretabil-

ity (Sections 1.1, 1.2 and 1.3), the scope of the problem that is of interest to us (Section

1.4), the contributions of this work (Section 1.5) and how they relate to prior art (Section

1.6). The further chapters are organized thus:

• In Chapter 2, Background, we present an overview of some of the mathematical

tools that are used in our techniques: Bayesian Optimization and mixture models

based on the Dirichlet Process.

• In Chapter 3, Compact Models using Density Trees, we describe the density tree

based approach, and provide empirical validation of its effectiveness.

• Chapter 4, Compact using Probabilistic Oracles, discusses the oracle based ap-

proach, also providing rigorous empirical validation of its effectiveness. We also

compare the oracle and density tree based approaches in this chapter.

13

• Finally, Chapter 5, Conclusions and Future Work, concludes the thesis with a

summary of our contributions, discussion on applications of our techniques be-

yond interpretability, and directions for future research.

14

CHAPTER 2

Background

In this chapter, we present an overview of some of the mathematical tools we utilize in

our research. Of key relevance are the following:

1. Bayesian Optimization, discussed in Section 2.1.

2. Dirichlet Process Mixture Models in Section 2.2.

The final section in this chapter, Section 2.3, discusses the relevance of these tech-

niques to our work.

2.1 Bayesian Optimization

2.1.1 Overview

We are interested in the following optimization problem:

arg min
x∈X

f(x) (2.1)

where1:

1. The mathematical expression for f(x) is unavailable to us.

2. We are allowed to evaluate f(x) at any value x.

3. f(x) might be noisy.

4. f(x) might be expensive to evaluate.

1Of course, all discussion here applies to the analogous case of arg maxx∈X f(x)

15

Such problems frequently arise in the area of hyperparameter optimization (HO)

(Hutter et al., 2019) and Neural Architecture Search (NAS) (Elsken et al., 2019), where

the search space X represents possible hyperparameter values or network configura-

tions respectively, and f(x) is a loss metric, like the RMSE, calculated on a validation

dataset2.

Let’s briefly consider why HO is an example of the above problem. Since we want to

find the best hyperparameters for an arbitrary classifier, f is not known, but for a given

value x of the hyperparameters, we can obtain f(x) by training the classifier. Training

for different x is potentially a computationally expensive exercise. The performance of

f(x) may vary across multiple trials for the same x due to stochasticity in the learning

algorithm, e.g., local search with different starting points in the case of neural networks

or random sampling in the case of Random Forests.

The family of techniques referred to as Bayesian Optimization (BO) has emerged

as an effective tool to solve such problems (Shahriari et al., 2016; Springenberg et al.,

2016; Feurer and Hutter, 2019a; Ma et al., 2019; White et al., 2021). It circumvents

the issue of an unknown f by learning a surrogate function that approximates it, which

is constructed over multiple evaluations f(x) at different x. The optimization is then

performed over the surrogate. The two key ingredients in a BO algorithm are:

1. A surrogate function f̂ . An important property required is it should be able to

provide a distribution over various possible predictions: p(f̂(x) = y|x), ∀y ∈

range(f),∀x ∈ X . f̂ becomes a better approximation of f as the latter gets eval-

uated over multiple iterations. A popular example of f̂ is the Gaussian Process

(Shahriari et al., 2016; Hutter et al., 2019), although other representations may be

used, e.g., Kernel Density Estimation (Bergstra et al., 2011, 2013), Deep Neural

Networks (Snoek et al., 2015).

2. An acquisition function A. This proposes the next most promising point to eval-

uate f at, given the current realization of f̂ . The proposal point is given by

arg maxx∈X A(x, f̂). This choice is made based on the trade-off between the

following strategies:

2We emphasize here that X does not denote the input data space. The dataset is fixed for an HO task:
we seek the best hyperparameters given a problem or a dataset.

16

• Exploration: evaluate f at regions inX for which there doesn’t exist enough

information yet, since the minima might potentially exist in such a region.

• Exploitation: evaluate in the neighborhood of the minimum seen so far,

since it might be seen as an indicator of the global minima existing in close

proximity.

The acquisition function quantifies this trade-off. It relies on the probabilistic

nature of the surrogate function to precisely account for the current quality of

approximation. A popular example of A is the Expected Improvement (EI):

EI(x) = Ey[max(y∗ − y, 0)] (2.2)

=

∫
y

max(y∗ − y, 0)p(f̂(x) = y|x)dy (2.3)

Here y∗ denotes the minimum thus far in the iterations. EI(x) computes the ex-

pected value of the utility function max(y∗−y, 0), which measures the extent by which

the current minimum might be improved upon at a given x (negative improvements are

set to 0). Some other acquisition functions are Probability of Improvement, Upper Con-

fidence Bound, Entropy Search and Thompson Sampling (see Shahriari et al. (2016) for

a survey of common acquisition functions).

Algorithm 1 shows the execution steps for a BO algorithm, for an optimization

budget of T iterations. Here, U(X) denotes an uniform distribution over the search

space X and update(f̂t−1,H) represents the mechanism of update for the surrogate f̂t,

based on the past estimate and history of evaluations of f .

An important point to note is that finding the next best proposal point x also re-

quires an optimization problem to be solved (line 7 in Algorithm 1). For this purpose,

BO algorithms typically use an auxiliary optimizer, e.g., the CMA-ES (Hansen and Os-

termeier, 2001) optimizer is used in Wang et al. (2013), while Eric et al. (2008) use

DIRECT (Jones et al., 1993). It is important for the auxiliary optimizer to be fast (since

it is invoked per iteration) as well as accurate (the convergence of the BO depends on

the quality of proposal points). The possibility of entirely eliminating this optimization

step has also been explored (Wang et al., 2014; Merrill et al., 2021).

17

Algorithm 1: General BO framework.
Data: Function f , search space X , optimization budget T
Result: Local minimizer x∗ ∈ X

1 H ← {}
2 for t← 1 to T do
3 if t = 1 then
4 x1 ∼ U(X), y1 ← f(x1)
5 x∗ ← x1, y

∗ ← y1
6 else
7 xt ← arg maxx∈X A(x, f̂t−1)
8 yt ← f(xt)
9 if yt < y∗ then

10 x∗ ← xt, y
∗ ← yt

11 end
12 H ← H∪ {(xt, yt)}
13 f̂t ← update(f̂t−1,H)

14 end
15 return x∗

Before we conclude this section, we provide the following intuitive visualizations

to further illustrate the operation of a typical BO algorithm:

1. Figure 2.1 visualizes multiple iterations of a BO, over a univariate search space3.

The surrogate model and the acquisition function used are a Gaussian Process re-

gressor and Expected Improvement, respectively. Each subplot here corresponds

to the state of information at the end of an iteration in the loop in Algorithm 1.

Note the choice of the acquisition function at (b) and (c). At (b), it seems to ex-

ploit current information, and the new proposal point is very close to the initial

point. However, at (c), it seems to be exploring and it selects a point in a high un-

certainty region. As expected, the uncertainty decreases around regions where f

has been evaluated. Over the iterations, we observe that f̂ improves in its approx-

imation of f , especially near the minima. This is a property of BO algorithms

- the function tends to be approximated better near its minima relative to other

regions.

2. It is informative to compare BO against a gradient based algorithm like Gradient

3Library used: modAL (Danka and Horvath, 2018).

18

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y

(a) Iteration 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y

(b) Iteration 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y

(c) Iteration 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y

(d) Iteration 4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y

(e) Iteration 5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y

(f) Iteration 6

actual function, f current minimum surrogate function, f evaluation history acquired point

Figure 2.1: Multiple iterations of a BO are shown. The surrogate model’s uncertainty is shown by an
area bounded by one standard deviation of its estimate around its mean prediction. Wide
areas indicate high uncertainty. Note how over multiple iterations: (a) the model uncertainty
decreases and f̂ becomes a better fit to f , especially near the global minima, and (b) the
estimate of the minimizer (vertical green line) keeps improving.

Descent (GD)4. Figure 2.2 shows such a comparison5. Here, plots (a) and (b)

show how BO and GD, respectively, minimize a function with multiple minima6.

Only the actual function, f , is shown. The red points show where f was evalu-

ated: later iterations are indicated by both the darker shades and larger sizes of

the points. Both algorithms were provided the same starting point. The bottom

row, (c) and (d), show a Kernel Density Estimation (KDE) plot constructed over

points x for which a value of f(x) was requested by the BO and GD algorithms

respectively. This illustrates where these algorithms “focus their attention”.

We see the following patterns: (a) The BO initially explores the entire space, as

seen by the locations of the smaller/lightly-shaded points. Over time, the focus

shifts to the neighborhood of the minima. This correlates with our observation in

Figure 2.1 that the region near the minima is approximated better relative to other

regions. The KDE shows a peak at the minima, but there is a non-trivial density in

the other regions of the search space as well. (b) In contrast, the GD is narrowly

focused on the minima closest to the starting point. Consequently, we see a sharp

peak at this minima in the KDE, and no density outside of this neighborhood.

4While we use a simple batch GD here for purposes of illustration, in practice, robust versions, e.g.,
momentum-based GD, stochastic GD, multi-start GD, are typically used.

5Library used: Hyperopt (James Bergstra et al., 2013). This is used in our research as well.
6This is the one-dimensional version of the Ackley function (Ackley, 1987).

19

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

f(x
)

(a) bayes. opt., 100 iters, min: f(-2.00)=-9.81

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

kd
e

(c)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

f(x
)

(b) grad. desc., 57 iters, min: f(-0.04)=-0.10

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

kd
e

(d)

Figure 2.2: This figure shows how BO and GD differ in their strategies for finding the global minima.
Plots (a) and (c) represent BO, while (b) and (d) represent GD. They are both provided the
same initial point of x = 0.3. The minima found by the GD is strongly dependent on its
starting point, and here it is shown stuck at a local minima. BO manages to find the global
minima with exploration.

Having studied the general principles underlying BO algorithms, we now consider

a specific BO algorithm: the Tree-structured Parzen Estimator. This is what we use in

our research.

2.1.2 Tree-Structured Parzen Estimators

We briefly noted the importance of having a good auxiliary optimizer in the previ-

ous section. The Tree-structured Parzen Estimator (TPE) formulates the minimization

problem in a way that makes fast computation of EI(x) possible.

The primary difference between TPE and the standard BO approach (presented in

the previous section) is that while the latter models p(y|x) using a surrogate function7,

7We use the shorthand p(y|x) for p(f̂(x) = y|x). Also, we will assume y ∈ (−∞,∞) in this section
to simplify notation; the case of y ∈ range(f) may be seen as a special case of this.

20

TPE models p(x|y), and indirectly, p(x). It stores the following densities:

p(x|y) =

 l(x) if y < y∗

g(x) if y ≥ y∗
(2.4)

These densities are learned over the observations from various evaluations of f , i.e.

y = f(x). We see the density p(x|y) is divided up into a model of regions where the

minima is likely to exist, l(x), vs the rest, g(x). Unlike Algorithm 1, we cannot have

y∗ to be the current minimum, since then there would be no points to construct l(x).

Instead, this is set to be a fixed quantile γ of observed values, i.e., p(y < y∗) = γ where

γ ∈ (0, 1).

Let’s consider the expression for EI(x):

EI(x) =

∫ ∞
−∞

max(y∗ − y, 0)p(y|x)dy

=

∫ y∗

−∞
(y∗ − y)p(y|x)dy +

∫ ∞
y∗

0p(y|x)dy

=

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)

p(x)
dy (2.5)

Let’s consider the denominator. By construction p(y < y∗) = γ, which leads to:

p(x) =

∫ ∞
−∞

p(x|y)p(y)dy =

∫ y∗

−∞
p(x|y)p(y)dy +

∫ ∞
y∗

p(x|y)p(y)dy

=

∫ y∗

−∞
l(x)p(y)dy +

∫ ∞
y∗

g(x)p(y)dy

= l(x)

∫ y∗

−∞
p(y)dy + g(x)

∫ ∞
y∗

p(y)dy

= γl(x) + (1− γ)g(x) (2.6)

Since the denominator in Equation 2.5 doesn’t depend on y, the numerator may be

21

independently integrated:

∫ y∗

−∞
(y∗ − y)p(x|y)p(y)dy =

∫ y∗

−∞
(y∗ − y)l(x)p(y)dy

= y∗l(x)

∫ y∗

−∞
p(y)dy − l(x)

∫ y∗

−∞
yp(y)dy

= γy∗l(x)− l(x)

∫ y∗

−∞
yp(y)dy (2.7)

Substituting the expressions from Equation 2.7 and Equation 2.6 for the numerator

and denominator respectively, into EI(x) from Equation 2.5, we have:

EI(x) =
γy∗l(x)− l(x)

∫ y∗
−∞ yp(y)dy

γl(x) + (1− γ)g(x)
=
γy∗ −

∫ y∗
−∞ yp(y)dy

γ + (1− γ)g(x)
l(x)

(2.8)

Recall γ ∈ (0, 1) is a constant, and given that at an iteration, y∗ is fixed, the only

dependence of EI(x) on x comes from the denominator:

EI(x) ∝
(
γ + (1− γ)

g(x)

l(x)

)−1
(2.9)

The last expression suggests a strategy for determining the next proposal point:

1. Sample multiple x ∼ l(x).

2. Rank them by the score g(x)
l(x)

, and pick the one with the lowest score.

Thus, the challenge of optimizing the acquisition function is replaced by the compu-

tationally much cheaper alternative of sampling and scoring x. The TPE algorithm

maintains an ordered list of observed y, with the densities l(x) and g(x) being modelled

as Gaussian Kernel Density Estimators (also known as Parzen Estimators), when the

search space of x is U([a, b]). The list makes it convenient to identify x for constructing

l(x) or g(x). A side-effect of using kernel density estimation is the model update mech-

anism - update(f̂t−1,H) in Algorithm 1 - is also cheap: a new Gaussian is introduced

at x to modify either l(x) or g(x), depending on f(x) < y∗ or f(x) ≥ y∗ respectively.

For further details, such as support for other kinds of search spaces, including those

that are hierarchical, see Bergstra et al. (2011, 2013). TPE has also been extended in

22

various ways, e.g., multi-objective optimization (Ozaki et al., 2020), to be used in con-

junction with another optimizer like Hyperband (Falkner et al., 2018) and for accepting

prior information (Souza et al., 2021). The relationship in Equation 2.8, between EI

and the “density ratio” g(x)/l(x), is also utilized by the optimizer proposed in Tiao

et al. (2021). A criticism of using density ratios in the form presented here appears in

Song et al. (2022).

2.2 Dirichlet Process Mixture Models

In this section we discuss mixture models based on the Dirichlet Process (DP). This is

our preferred density representation framework in subsequent chapters. We introduce

the DP by first describing a way to intuitively represent densities, then highlight its

limitations and finally show how the DP solves for them.

2.2.1 Overview

A common problem in Machine Learning is to mathematically represent the distribution

of dataX ⊆ Rd. A quantity of interest produced by such a model is p(x), which denotes

the probability of x ∈ Rd being generated8 by the same distribution that generated

X . We consider the Gaussian Mixture Model (GMM), a popular example9 of such a

representation: this assumes the data is generated by one of K Gaussian distributions,

resulting in p(x) =
∑K

i=i ρiN (x|µi,Σi). Here, ρi is the mixing coefficient ofN (µi,Σi),

where
∑K

i=i ρi = 1. It denotes the contribution of particular Gaussian to the overall

distribution. The parameters of the model µi,Σi, ρi,∀i ∈ {1, 2, ..., K}, given data X

and an assumed value forK, are commonly learned using the Expectation Maximization

(EM) algorithm (Dempster et al., 1977). Figure 2.3 shows an example: Figure 2.3(a)

shows the data whose distribution we wish to model and Figure 2.3(b) visualizes the

likelihood function for a GMM learned on the data, under the assumption that K = 2.

8Note here that p(x) may be applied to any x ∈ Rd, although the provided dataset X is a subset of
Rd.

9The GMM is also a well-studied representation, with one of the earliest known instances being
Pearson (1894).

23

1 2 3 4 5 6 7 8
x1

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

x 2

(a) sample data

4 2 0 2 4 6 8 10 12
x1

15

10

5

0

5

10

x 2

(b) GMM with 2 components. log-likelihood contours are shown.

Figure 2.3: Generative modeling with GMMs: (a) shows sample data whose distribution we want to
model (b) under the assumption K = 2, various model parameters are learned; we show the
centers of the component Gaussians with blue crosses and contour lines for various values
of the log likelihood in the input space.

The GMM illustrates an intuitive decomposition of the distribution modelling prob-

lem:

1. Assume the distribution is a result of multiple smaller data generation sources,

e.g., the Gaussian components in the GMM.

2. The distribution is adequately described by: (a) the relative amount of data each

of these sources generate, e.g., ρi, and (b) the properties of the components, e.g.,

µi and Σi above.

While the above decomposition is fairly general, a key challenge with the GMM is

that K needs to be specified. In practice, GMMs for different values of K are learned,

and the best model is picked based on metrics like the Akaike or Bayesian Information

Criteria, or based on a task-specific metric. This still suffers from logistic challenges:

(a) it requires an appropriate search space for K to be specified (b) this might be a

computationally expensive approach depending on the size of data X and the search

space for K.

An elegant approach that does not suffer from this limitation is the Dirichlet Process

(DP)-based mixture model. The limitation of specifying K is obviated by allowing

for an infinite number of components of which only a finite number, referred to as

clusters, produce the observed data. Additionally, its a Bayesian approach: instead

24

of point estimates of model parameters, we reason about their distributions. We present

an intuitive overview of this approach, by deconstructing it into the following logical

steps:

1. Representing the probability masses of an infinite number of components using

the stick-breaking process (Section 2.2.2).

2. Adding priors to define the properties of the infinite components (Section 2.2.3).

This is the Dirichlet Process.

We elaborate these steps next.

2.2.2 The Stick-Breaking Process

Before we can express the ρk of an infinite number of components, let us consider the

case of a finite number of components K in a Bayesian setup. A common prior used

is the Dirichlet distribution, Dir(α). Here α, known as the concentration parameter,

is vector with K components, with 0 < αk,∀k ∈ {1, 2, ..., K}. A sample from the

distribution ρ ∼ Dir(α) is also a vector with K components such that 0 ≤ ρk ≤ 1

and
∑K

k=1 ρk = 1. Thus, a sample from the Dirichlet distribution may be seen as

multinomial distribution. Figure 2.4 shows samples from Dirichlet distributions with

K = 3, for different values of α.

1

0.0
0.2

0.4
0.6

0.8
1.0

2

0.0
0.2

0.4
0.6

0.8
1.0

3

0.0

0.2

0.4

0.6

0.8

1.0

(a) =(5.0,5.0,5.0)

1

0.0
0.2

0.4
0.6

0.8
1.0

2

0.0
0.2

0.4
0.6

0.8
1.0

3

0.0

0.2

0.4

0.6

0.8

1.0

(b) =(0.5,0.5,0.5)

1

0.0
0.2

0.4
0.6

0.8
1.0

2

0.0
0.2

0.4
0.6

0.8
1.0

3

0.0

0.2

0.4

0.6

0.8

1.0

(c) =(0.1,0.1,5.0)

Figure 2.4: Samples from Dir(α) for different α are shown as scatter plots. Note how the high equal
values of αi in (a) predominantly result in multinomial distributions that are close to the
uniform distribution, while low equal values, as in (b), result in multinomials where the in-
dividual probabilities may take a wide range of values. In (c), we see that setting a relatively
high α3 leads to skewed mulitnomial distributions with most of the mass being concentrated
in ρ3.

25

What makes this distribution particularly useful here is ρ1, ρ2, ..., ρK may be se-

quentially sampled. This utilizes its neutrality property:

ρ ∼ Dir(α) =⇒ ρ1 ⊥⊥ (ρ2, ρ3, ..., ρK) (2.10)

where,

ρ1 ∼ Beta(α1,

K∑
k=2

αk) (2.11)(ρ2
1− ρ1

,
ρ3

1− ρ1
, ...,

ρK
1− ρ1

)
∼ Dir(α2, α3, ..., αK) (2.12)

The above property suggests a recursive procedure to sample ρ:

1. Sample V1 ∼ Beta(α1,
∑K

k=2 αk). Let ρ1 = V1.

2. Sample V2 ∼ Beta(α2,
∑K

k=3 αk). From Equation 2.12, we know V2 = ρ2
1−V1 .

This gives us ρ2 = (1− ρ1)V2 = (1− V1)V2.

3. Sample V3 ∼ Beta(α3,
∑K

k=4 αk). Extending Equation 2.12, V3 = ρ3
(1−V1)(1−V2) ,

and therefore, ρ3 = (1− V1)(1− V2)V3.

Note that at no point in the above process do we directly sample from the Dirich-

let distribution. The above procedure may be simplified by formulating it as a stick-

breaking process. We start with a stick of unit length, successively breaking off lengths

ρk from one end, with Vk denoting the fraction of the remaining stick to be removed

(recall the standard Beta is supported on [0, 1]). For example, here are the first few

steps corresponding to the procedure above:

1. We begin with a stick of unit length, of which the fraction V1 ∼ Beta(α1,
∑K

k=2 αk)

is to be removed. But since this is unit length, ρ1 = V1, where ρ1 is the length

removed.

2. We are now left with a stick of length 1 − V1 (since ρ1 = V1). The proportion

to remove now is V2 ∼ Beta(α2,
∑K

k=3 αk). The absolute length of the stick to

remove is ρ2 = V2(1− V1).

3. The length of the stick remaining is 1 − ρ1 − ρ2, or equivalently, 1 − V1 −

(1 − V1)V2 = (1 − V1)(1 − V2). We now want to remove the fraction V3 ∼

26

Beta(α3,
∑K

k=4 αk). This is an absolute length of ρ3 = V3(1 − V1)(1 − V2) for

removal.

In general, for k 6= K,

ρk = Vk

k−1∏
i=1

(1− Vi) where Vk ∼ Beta(αk,
K∑

i=k+1

αi) (2.13)

We set VK = 1 to ensure
∑K

k=1 ρk = 1 (Ishwaran and James, 2001), since:

1−
K−1∑
k=1

ρk =
K−1∏
k=1

(1− Vk) (2.14)

=⇒
K−1∑
k=1

ρk = 1−
K−1∏
k=1

(1− Vk) (2.15)

with VK = 1, from Equation 2.13, ρK =
K−1∏
k=1

(1− Vk) (2.16)

=⇒
K−1∑
k=1

ρk + ρK = 1 (2.17)

This constructive sampling process hints at how we might treat infinite components;

we sample sequentially as many components we require. The above process itself can-

not be used since we still need to completely specify α (in Equation 2.13) and the

dimensionality of α must match the number of components, i.e., be infinite. Essen-

tially, we want the convenience of sequentially sampling ρk without having to specify

an infinite-dimensional α.

The Dirichlet stick-breaking process (Sethuraman, 1994) offers a solution10. For

the scalar parameter α, the sampling step is defined as:

ρk = Vk

k−1∏
i=1

(1− Vi) where Vk ∼ Beta(1, α) (2.18)

This step may be repeated ad infinitum and is shown to result in multinomial distribu-

tions with countably infinite number of components, i.e.,
∑∞

k=1 ρk = 1 where 0 ≤ ρk ≤
10The “stick-breaking” metaphor refers to more than one sampling process (Ishwaran and James, 2001;

Ren et al., 2011), but this version (Sethuraman, 1994) is the one typically implied in the context of the
Dirichlet Process.

27

1. Comparing to Equation 2.13, we see that the Beta parameters are fixed at 1 and α,

thus eliminating the challenges with using a vector α.

Samples ρ from this stick-breaking process are shown in Figure 2.5 for α = 0.3

and α = 3. Each row shows three samples of ρ for a given α. The x-axis shows

k ∈ {1, 2, ..., 20}, while the y-axis denotes ρk.

component
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

(a) = 0.3

component
0.0

0.2

0.4

0.6

0.8

1.0
pr

ob
ab

ilit
y

(b) = 0.3

component
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
ob

ab
ilit

y

(c) = 0.3

component
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
ob

ab
ilit

y

(d) = 3

component
0.00

0.05

0.10

0.15

0.20

pr
ob

ab
ilit

y

(e) = 3

component
0.0

0.1

0.2

0.3

0.4

pr
ob

ab
ilit

y

(f) = 3

Figure 2.5: Sample probabilities obtained using the stick-breaking process are shown. (a), (b), (c) show
sampled probabilities when α = 0.3, and (d), (e), (f) show this for α = 3. For larger values
of α, relatively larger number of components get significant mass. The effect of decaying
probabilities with components is universally observed for any α.

We notice as k increases, ρk diminishes. This is easily understood using the stick-

breaking metaphor: as the stick gets smaller, the length of the stick that may now be

removed, ρk, can only be small relative to the initial pieces removed. This probability

masses are not perfectly ordered, as Figure 2.5 shows, but they inevitably approach 0.

The rate of decline is controlled by α, where higher values result in slower decline.

Since the process is completely parameterized by α, this is often concisely denoted

as sampling from the Griffiths-Engen-McCloskey (GEM) distribution (McCloskey, 1965;

Engen, 1975; Ewens, 1990): ρ ∼ GEM(α). Figure 2.6 shows the first two components,

ρ1 and ρ2, in a scatter plot, for different values of α.

In Figure 2.6, at a relatively low α = 0.3, we observe that most points are close to

the line ρ1 + ρ2 = 1, since much of the probability mass is concentrated in the first few

28

0.0 0.2 0.4 0.6 0.8 1.0
1, probability of component 1

0.0

0.2

0.4

0.6

0.8

1.0

2,
pr

ob
ab

ilit
y

of
 c

om
po

ne
nt

 2

Probabilities of the first two components of GEM().

alpha
0.30
3.00

Figure 2.6: The probability masses, ρ1 and ρ2, of only the first two components of multiple samples ρ
from the GEM(α) distribution are shown, for different values of α. At a low α = 0.3, most
of the mass is concentrated in the first few components, hence ρ1 + ρ2 ≈ 1. At a higher
α = 3, the initial components receive lower masses, hence the points are located close to the
origin. We observe a similar pattern in Figure 2.5.

components - this is what Figure 2.5 also shows. At a higher α = 3, while ρ1 and ρ2

may take a range of values, we see them concentrated near the origin with low values -

this is also something we might expect after seeing Figure 2.5. Points cannot be located

in the region ρ1+ρ2 > 1 since these are probability masses, and therefore
∑∞

k=1 ρk = 1.

Now that we have a way to constructively determine the probability mass of an

infinite number of components, we look at describing their properties.

2.2.3 The Dirichlet Process

To completely specify the data distribution, we also need to describe the distribution

of the individual components. To take a familiar example, we might assume the com-

ponents are Gaussian distributions11, in which case we need to determine (µk,Σk) for

each component k.

This might be done in the following manner:

1. We propose a priorG0, referred to as the base measure, from which we may draw

distribution parameters θ ∼ G0 for the components.

11This is known as the Infinite Gaussian Mixture Model (Rasmussen, 1999).

29

2. For each component k ∈ GEM(α), obtained by the stick-breaking process, we

assign it the randomly drawn parameter θk ∼ G0.

This effectively produces the following distribution:

G :=
∞∑
k=1

ρkδθk (2.19)

G represents a distribution with components that have distribution parameters θk and

mixing coefficients ρk. The Dirac delta function δθk may be interpreted as a shorthand

to signify that only components with distribution parameters θk, among all possible

θ ∼ G0, are valid components, and mixing coefficients ρk are respectively associated

with these. This is the Dirichlet Process (DP) (Ferguson, 1973), and is expressed as

DP (α,G0) to indicate the dependence on α and G0.

We illustrate this process in Figure 2.7 with an univariate example: DP (3,N (0, 1)).

We assume our components are Gaussians, with fixed Σk = [0.5] and µk ∼ N (0, 1).

This makes G0 := N (0, 1) the base measure12, and it acts as the prior for the only

component distribution parameter µk.

With α = 3, a ρ ∼ GEM(α) is obtained using the stick-breaking process, and

the probability masses of the first 20 components are shown in Figure 2.7(a). We then

sample µk ∼ G0, k ∈ {1, 2, ..., 20}, and visualize ρk placed at µk in Figure 2.7(b). This

forms our G. The colors of the bars are consistent across plots (a) and (b) for easy

comparison. We then generate points xi, i ∈ {1, 2, ..., 500} by following this procedure

for each point:

1. For a given i, obtain zi ∼ Cat(ρ). For illustration, we only show cases where

zi ∈ {1, 2, ..., 20}.

2. Generate xi ∼ N (µzi , [0.5]).

The above steps are equivalent to µi ∼ G.

12Strictly speaking, (Σk, µk) should be jointly sampled from a base measure like the Normal-inverse-
Wishart distribution. Here, we fix Σk and only consider µk to be drawn from the base measure in the
interest of simplicity.

30

component
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
ob

ab
ilit

y

(a) = 3, # components shown=20

2 1 0 1 2
location as per base measure

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
ob

ab
ilit

y

(b) Dirchlet Process

2 1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity

(c) KDE on generated sample, # points=500

4 2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

(d) 50 sample distributions from the DP

Figure 2.7: Sampling from DP (3,N (0, 1)): (a) The probability masses of the first few components
are shown, obtained using the stick-breaking process. (b) These probabilities are assigned
to positions on the real line using the base measure G0 = N (0, 1); these now form a
distribution G ∼ DP (α,G0). (c) For 1 ≤ i ≤ 500, we generate µi ∼ G, and then
xi ∼ N (µi, 0.5). A KDE is fit on this data and shown; this represents the distribution
G. (d) Multiple G ∼ DP (α,H) may be formed in this manner and visualized; some are
shown here.

We fit a KDE over the instances thus generated - shown in Figure 2.7(c). This is

the distribution G models. Of course, we may repeat this whole process, starting at a

different ρ ∼ GEM(α), leading us to a different G. A collection of KDEs fit on such

multiple Gs are shown in Figure 2.7(d). Since the DP (α,G0) can generate multiple

distributions G of the form shown in Equation 2.19, for given values of α and G0, it is

considered to be a prior over distributions.

Let F (θ) describe our component distributions; in the example above, F is exem-

plified by the normal distribution N , and it’s parameter θ is the tuple (σ, µ). The steps

in sampling N points using DP (α,G0) may then be summarized as:

1. ∀i ∈ {1, 2, ..., N}, sample zi ∼ Cat(ρ), where ρ ∼ GEM(α). We only sample

as many components ρ1, ρ2, ..., ρK as is required to generate a random N in-

stances. Note that this effectively uses a single instance of ρ ∼ GEM(α), since

31

ρ1, ..., ρi−1, ρi are fixed when sampling ρi+1

2. ∀k ∈ {1, 2, ..., K}, sample θk ∼ G0. Note the lack of dependence between ρk

and θk.

3. ∀i ∈ {1, 2, ..., N}, sample xi ∼ F (θzi).

One way to accomplish Step 1 above is via inverse transform sampling: (a) ∀i ∈

{1, 2, ..., N}, generate ui ∼ U(0, 1) (b) sample ρ1, ρ2, ... until ρK such that
∑K

k=1 ρk ≥

maxNi=1{ui} (c) assign zi = k where k is the smallest value such that ui ≤
∑k

j=1 ρj .

This is a reasonable strategy (albeit approximate) since most of mass in a DP is concen-

trated in the initial components, but is computationally expensive when ui ≈ 1.

In practice, strategies that provably sample from a DP are used, e.g., the Blackwell-

MacQueen urn process (Blackwell and MacQueen, 1973), the Chinese Restaurant Pro-

cess (CRP) (Aldous, 1985). The key idea is that zi might be directly assigned a compo-

nent based on previous assignments z1, z2, ...zi−1. For example, in CRP, the probability

that zi is assigned a new component k∗ (equivalently, xi is generated by a previously

unseen component), as opposed to one of the K existing components is:

p(zi+1 = z|z1:i, α) =
1

α +N

(
αI(z = k∗) +

K∑
k=1

NkI(z = k)
)

(2.20)

Here, Nk denotes the number of instances generated by k, i.e., Nk =
∑i

j=1 I(zj = k).

Equation 2.20 leads to the following constructive sampling process:

1. Let z1 be assigned to component 1.

2. For zi>1, assign a new component with probability α
α+N

.

3. With probability 1 − α
α+N

, assign it to one of K existing components, with the

probability of being assigned to component k being ∝ Nk.

For exposition beyond this brief overview, we recommend the tutorials Teh (2010);

Broderick (2015) and the texts Murphy (2012); Gelman et al. (2021). For models other

than the DP, see Lijoi and Pruenster (2009).

32

2.3 Relevance

As mentioned in Chapter 1, the goal of our research is to construct compact models.

The mechanism we use to do so is to learn a distribution over the training data that

leads to high accuracies for a given model size.

Algorithm 2 shows the process at a high-level. Input dataset D is split into training,

validation and test sets, denoted by Dtrain, Dval, Dtest respectively. The distribution

of interest, denoted by PDtrain
(θ), is learned on the training data in T iterations. The

distribution parameter θ is learned to maximize model accuracy accval on the validation

split Dval. The algorithm is general enough to admit different scoring metrics, e.g.,

F1, AUC, Precision, Recall. However, in our experiments we exclusively use the F1

(macro) score.

Algorithm 2: An abstracted view.
Data: Dataset D (N instances, d dimensions), training algorithm f , model size

η, scoring function score, optimization budget T .

Result: θ∗, new model accuracy

1 Dtrain, Dval, Dtest ← create_splits(D)

2 H ← {}, θ∗ ← ∅, acc∗ ← 0,M∗ ← 0

3 for t← 1 to T do

4 θt ← suggest(H)

5 Ds = {(xj, yj)}Ns
j=1, where xj ∼ PDtrain

(θt)

6 Mt ← f(Ds, η)

7 acctrain ← score(Mt, Dtrain)

8 accval ← score(Mt, Dval)

9 if accval > acc∗ then

10 θ∗ ← θt, acc
∗ ← accval,M

∗ ←Mt

11 H ← H∪ {(θt, acctrain)}

12 end

13 return θ∗, score(M∗, Dtest)

In our work, the iterative learning, via the function suggest() in Algorithm 2, is

realized by a BO algorithm, while the distribution PDtrain
(θ) is a DP mixture model.

The historyH of past parameters and corresponding held-out model evaluations is used

33

to learn from; this step is denoted by suggest(H). Much of our research is concerned

with refining the algorithm to make it practically usable, investigating the conditions

under which it produces useful results and validating the results themselves.

34

CHAPTER 3

Compact Models using Density Trees

In this chapter, we present our first technique to minimize the trade-off between size

and accuracy. Our approach is model agnostic, i.e., it may be applied to arbitrary model

families. The technique learns a distribution over training data such that an interpretable

model (of a given size) trained on a sample drawn from it often achieves test accuracy

that is significantly higher than when the training data is used as-is. This is especially

true when the model size is small.

Figure 3.1 (reproduced from Chapter 1) shows the impact of our technique. A two-

label balanced classification dataset is shown in (a). Its distribution density is shown us-

ing a kernel density plot in (b), and the generalization learned by a DT with depth = 5,

trained using a sample of this data, is shown in (d). The corresponding plots, when our

technique is used, are respectively shown in (c) and (e). The improved generalization is

easily seen by comparing the class-regions learned in (d) and (e).

The key contributions from the analysis in this chapter are:

1. We propose an algorithm to find a sampling distribution over a training dataset

that is optimal1 in terms of achieving high test accuracy, for a provided model

family and model size.

2. As a corollary, we make this possibly counter-intuitive, observation: in general,

the optimal training distribution is not the same as the test distribution, espe-

cially at small model sizes. This is a “small model” effect: we are able to clearly

show that as model size increases the optimal training distribution progressively

approximates the test distribution.

3. The technique is model agnostic2 and may be applied to arbitrary learners. Its

effectiveness using different learning algorithms and datasets is demonstrated. It
1Equation 3.1 precisely states the nature of this optimality.
2We adopt the common usage of the term (Ribeiro et al., 2016; Lundberg and Lee, 2017; Chen et al.,

2018) to imply our technique is agnostic to model families.

35

(b) original distribution (c) modified distribution

(d) model generalization using
original distribution

(e) model generalization using
modifed distribution

(a) dataset

Figure 3.1: Changing the input distribution can significantly affect model accuracy. (a) shows a toy
dataset. (b) shows the original distribution of the data as a Kernel Density Estimation plot
and (d) visualizes the generalization learned by a Decision Tree of depth = 5 when using
this distribution for training. (c) shows visualizes the sampling distribution learned by our
technique and (e) shows the corresponding generalization learned by a Decision Tree with
depth = 5. The latter achieves a higher accuracy of F1 = 0.72, compared to F1 = 0.64 of
the former.

also admits a flexible notion of model size, e.g., depth of a decision tree, num-

ber of terms with non-zero coefficients in a linear model, number of trees in a

Gradient Boosted Model (GBM) model.

4. We show that learning the optimal training distribution in the d dimensions of the

data, may be decomposed into a relatively cheap preprocessing step that depends

on d, followed by a core optimization step independent of d: the optimization is

over a fixed set of eight variables. This makes our technique scalable.

We note here that our technique may be used with any model family, and not just

ones considered interpretable. But the fact that we typically see increased accuracy in

the small model size regime makes the technique useful in setups where small sized

models are preferred. Applications requiring interpretability are an example of this.

There may be others, such as model compression, which we have not explored, but

briefly mention in Section 5.3.

The rest of the chapter is organized as follows: Section 3.1 provides on overview

36

of the technique. In Section 3.2 we describe in detail two formulations of the problem

of learning the optimal density. Section 3.3 reports experiments we have conducted to

evaluate our technique. It also presents our analysis of the results. In Section 3.4 we

discuss some of the algorithm design choices, concluding with a summary in Section

3.5. A discussion of future work is deferred to Section 5.3.

3.1 Overview

This section provides an overview of various aspects of our work: we provide some in-

tuition for why we expect the ideal train distribution to differ from test, mathematically

formalize our contributions, describe where our technique fits into a model building

workflow and establish our notation and terminology.

For a discussion on previous work, see Section 1.6, where we differentiate our tech-

nique with Knowledge Distillation, Active Learning, Transfer Learning and Coreset

identification.

3.1.1 Intuition

Let’s begin by considering why we might expect a learned distribution over the training

data to result in greater accuracy.

All classification algorithms use some heuristic to make learning tractable, e.g.:

• Decision Trees - Constructing optimal binary decision trees is an NP-complete

problem (Hyafil and Rivest, 1976). Hence, heuristics like one step lookahead

are used (as an artifact of this, note in our example that the CART tree has a

significantly smaller number of leaves than the possible 25 = 32).

• Logistic Regression - local search, e.g., Stochastic Gradient Descent (SGD).

• Artificial Neural Networks (ANN) - local search, e.g., SGD, Adam.

Increasing the size allows for offsetting the shortcomings of the heuristic by adding

parameters to the model till it is satisfactorily accurate: increasing depth, terms, hid-

37

den layers or nodes per layer. Our hypothesis is, in restricting a model to a small size,

this potential gap between the representational and effective capacities becomes pro-

nounced. In such cases, modifying the data distribution guides the heuristic to focus

learning on regions of the input space that are valuable in terms of accuracy. This is

what we observe in Figure 3.1, and it is extensively validated later in this chapter.

We make a note of the fact that in recent years multiple algorithms have been pro-

posed for creating optimal decision trees, e.g., GOSDT (Lin et al., 2020), InferDT

(Avellaneda, 2020).One might argue that this line of research renders our work moot.

However, in terms of number of instances, features, feature dichotomies and tree size,

their computational complexity makes them suitable for specific datasets. As an exam-

ple, consider the GOSDT algorithm applied to the 2D dataset from Figure 3.1. Here,

both features are continuous and assume real number values that are uniformly dis-

tributed within the range [0, 10]. For 500 instances and a setting of 5 for the maximum

depth, GOSDT unsuccessfully exits its process3. Problems with the scaling of GOSDT

have also been noted in Agarwal et al. (2022) (see Section S4.2). In comparison, our

experiments use 6000 training instances to construct trees with maximum depths up to

15. This is not meant to be a criticism of such techniques - on the contrary, we believe

this is an exciting direction of research - but we do want to point out they may not be

applicable to a wide variety of classification tasks yet.

Of course, a crucial difference is our techniques are model agnostic, and in our

experiments we show it applied to DTs, linear models and GBMs.

3.1.2 Formal Statement

It is helpful to mathematically formalize the outcome we have described.

Let,

1. accuracy(M, p) be the classification accuracy of model M on data represented

by the joint distribution p(X, Y) of instances X and labels Y . We use the term

3We used the official library available at https://github.com/Jimmy-Lin/
GeneralizedOptimalSparseDecisionTrees. The process exits after having used ∼ 4
GB of swap memory on a machine with 32 GB of RAM, i7-7700HQ CPU and Ubuntu as its OS.

38

https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees
https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees

“accuracy” as a generic placeholder for a measure of model correctness. This

may specifically measure F1-score, AUC, lift, etc., as needed.

2. trainF(p, η) produce a model obtained using a specific training algorithm, e.g.,

CART (Breiman et al., 1984), for a given model family F , e.g., decision trees,

where the model size is fixed at η, e.g., trees with depth = 5. The training data is

represented by the joint distribution p(X, Y) of instances X and labels Y .

If we are interested in learning a classifier of size η for data with distribution p(X, Y),

our technique produces the optimal training distribution p∗η(X, Y) such that:

p∗η = arg max
q

accuracy(trainF(q, η), p) (3.1)

Here q(X, Y) ranges over all possible distributions over the data (X, Y).

Training a model on this optimal distribution produces a model that is at least as

good as training on the original distribution p:

accuracy(trainF(p, η), p) / accuracy(trainF(p∗η, η), p) (3.2)

The use of the “/” symbol emphasizes these relationships are validated empirically

using samples from the corresponding distributions p and q.

Furthermore, the relationship in Equation 3.2 may be separated into two regimes of

operation. A model trained on p∗η outperforms one trained on the original distribution p

up to a model size η′, with both models being comparably accurate beyond this point:

For η ≤ η′, accuracy(trainF(p, η), p) < accuracy(trainF(p∗η, η), p) (3.3)

For η > η′, accuracy(trainF(p, η), p) = accuracy(trainF(p∗η, η), p) (3.4)

39

3.1.3 Workflow

Figure 4.5 shows how our sampling technique modifies the model building workflow.

In the standard workflow, we feed the data into a learning algorithm, trainF(), to obtain

a model. In our setup, the data is presented to a system, represented by the dashed box,

that is comprised of both the learning algorithm and our sampling technique.

data
algorithm

model

data
algorithm

model
sampling
technique

Standard workflow

Our workflow

training data

validation score

Figure 3.2: Our workflow compared with the standard workflow. Arrows denote flow of information.
The key difference is the presence of a sampler, that interacts with the training algorithm
over multiple iterations to produce a model.

This system produces the final model in an iterative fashion: the sampling technique

(or sampler) produces a sample using its current distribution parameters, that is used by

the learning algorithm to produce a model. This model is evaluated on a validation

dataset and the validation score is conveyed back to the sampler. This information is

used to modify the distribution parameters and generate a new training sample for the

algorithm, and so on, till we reach a stopping criteria. The criteria we use is a specified

number of iterations - we refer to this as our budget. The best model produced within the

budget, as measured by the validation score, is our final model, and the corresponding

distribution is presented as the ideal training distribution.

3.1.4 Terminology and Notation

Let’s begin with the notion of “model size”. Even though there is no standard notion of

size across model families, or even within a model family, we assume the term infor-

mally denotes model attribute(s) with the following properties:

1. size ∝ bias−1

40

2. Smaller the size of a model, easier it is to interpret.

As mentioned earlier, only property 1 is strictly required for our technique to be appli-

cable; property 2 is needed for interpretability.

Some examples of model size are depth of decision trees, number of non-zero terms

in a linear model and number of rules in a rule set.

In practice, a model family may have multiple notions of size depending upon the

modeler, e.g., depth of a tree or the number of leaves. The size might even be determined

by multiple attributes in conjunction, e.g., maximum depth of each tree and number of

boosting rounds in the case of a gradient boosted model (GBM). It is also possible that

while users of a model might agree on a definition of size they might disagree on the

value for the size up to which the model stays interpretable. For e.g., are decision trees

interpretable up to a depth of 5 or 10? Clearly, the definition of size and its admissible

values might be subjective. Regardless, the discussion in this chapter remains valid as

long as the notion of size exhibits the properties above. With this general notion in

mind, we say that interpretable models are typically small.

Here are the notations we use:

1. The matrix X ∈ RN×d represents an ordered collection of N input feature vec-

tors, each of which has d dimensions. We assume individual feature vectors

xi ∈ Rd×1 to be column vectors, and hence the ith row of X represents xTi .

We occasionally treat X as a set and write xi ∈ X to denote the feature vector xi

is part of the collection X .

An ordered collection of N labels is represented by the vector Y ∈ RN .

We represent a dataset withN instances with the tuple (X, Y), whereX ∈ RN×d,

Y ∈ RN , and the label for xi is Yi, where 1 ≤ i ≤ N .

2. The element at the pth row and qth column indices of a matrix A is denoted by

[A]pq.

3. We refer to the joint distribution p(X, Y) from which a given dataset was sam-

pled, as the original distribution. In the context of learning a model and predicting

41

on a held-out dataset, we distinguish between the train, validation and test dis-

tributions. In this work, the train distribution may or may not be identical to the

original distribution, which would be made clear by the context, but the validation

and test distributions are always identical to the original distribution.

4. The terms pdf and pmf denote probability density function and probability mass

function respectively. The term “probability distribution” may refer to either, and

is made clear by the context. A distribution p, parameterized by θ, defined over

the variable x, is denoted by p(x; θ).

5. We use the following terms introduced before:

• accuracy(M, p) is the classification accuracy of model M on data repre-

sented by the joint distribution p(X, Y) of instances X and labels Y . We

often overload this term to use a dataset instead of distribution. In this case,

we write accuracy(M, (X, Y)) where (X, Y) is the dataset.

• trainF(p, η) produces a model obtained using a specific training algorithm

for a model family F , where the model size is fixed at η. This may also be

overloaded to use a dataset, and we write: trainF((X, Y), η).

6. We denote the depth of a tree T by the function depth(T).

7. R, Z and N denote the sets of reals, integers and natural numbers respectively.

3.2 Methodology

In this section we describe our sampling technique. We begin with a intuitive formula-

tion of the problem in Section 3.2.1 to illustrate challenges with a simple approach. This

also allows us to introduce the relevant mathematical tools. Based on our understanding

here, we propose a much more efficient approach in Section 3.2.5.

42

3.2.1 A Naive Formulation

We phrase the problem of finding the ideal density (for the learning algorithm) as an op-

timization problem. We represent the density over the input space with the pdf p(x; Ψ),

where Ψ is a parameter vector. Our optimization algorithm runs for a budget of T time

steps. Algorithm 3 lists the execution steps.

Algorithm 3: Naive formulation
Data: Learning algorithm trainF(), size of model η, data (X, Y), iterations T
Result: Optimal density Ψ∗, accuracy on test set stest

1 Create stratified subsets (Xtrain, Ytrain), (Xval, Yval), (Xtest, Ytest) from (X, Y);
2 for t← 1 to T do
3 Ψt ← suggest(st−1, ...s1,Ψt−1, ...,Ψ1) // suggest() is described

below

4 (Xt, Yt)← sample Ns points from (Xtrain, Ytrain) based on p(Xtrain; Ψt);
5 Mt ← trainF((Xt, Yt), η) ;
6 st ← accuracy(Mt, (Xval, Yval)) ;
7 end
8 t∗ ← arg maxt {s1, s2, ..., sT−1, sT};
9 Ψ∗ ← Ψt∗ ,M

∗ ←Mt∗;
10 stest ← accuracy(M∗, (Xtest, Ytest));
11 return Ψ∗, stest

In Algorithm 3:

1. suggest() is a call to the optimizer at time t, that accepts past validation scores

st−1, ...s1 and values of the density parameter Ψt−1, ...,Ψ1. These values are ran-

domly initialized for t = 1. Note that not all optimizers require this information,

but we refer to a generic form of optimization that makes use of the entire history.

2. In Line 4, a sampled dataset (Xt, Yt) comprises of instances xi ∈ Xtrain, and

their corresponding labels yi ∈ Ytrain. We may alternatively think of the sample

weight w(xi) of an instance xi where w(xi) ∝ p(xi; Ψt),∀xi ∈ Xtrain.

3. Although the training happens on a sample drawn based on Ψt, the validation

dataset (Xval, Yval) isn’t modified by the algorithm and always reflects the orig-

inal distribution. Hence, st represents the accuracy of a model on the original

distribution.

43

4. In the interest of keeping the algorithm simple to focus on the salient steps/challenges,

we defer a discussion of the sample size Ns to our improved formulation in Sec-

tion 3.2.5.

Algorithm 3 represents a general framework to discover the optimal density within

a time budget T . We refer to this as a “naive” algorithm, since within our larger philos-

ophy of discovering the optimal distribution, this is the most direct way to do so. It uses

accuracy() as both the objective and fitness function, where the score st is the fitness

value for current parameters Ψt. It is easy to see here what makes our technique model-

agnostic: the arbitrary learner trainF() helps define the fitness function but there are

no assumptions made about its form. While conceptually simple, clearly the following

key implementation aspects dictate its usefulness in practice:

1. The precise representation of the pdf p(x; Ψ).

2. The optimizer to use for suggest().

We look at these next.

3.2.2 Density Representation

The characteristics the pdf , p(x; Ψ), we are interested in are:

1. Requirement 1: It must be able to represent an arbitrary density function.

This is an obvious requirement since we want to discover the optimal density.

2. Requirement 2: It must have a fixed set of parameters. This is for convenience

of optimization, since most optimizers cannot handle the conditional parameter

spaces that some pdf representations use. A common example of the latter is

the popular Gaussian Mixture Model (GMM), where the number of parameters

increases linearly with the number of mixture components.

This algorithm design choice allows for a larger scope of being able to use dif-

ferent optimizers in Algorithm 3; there are many more optimizers that can handle

44

fixed compared to conditional parameter spaces. And an optimizer that works

with the latter, can work with a fixed parameter space as well4.

The Infinite Gaussian Mixture Model (IGMM) (Rasmussen, 1999), a non-parametric

Bayesian extension to the standard GMM, satisfies these criteria. It side-steps the prob-

lem of explicitly denoting the number of components by representing it using a Dirichlet

Process (DP). The DP is characterized by a concentration parameter α, which deter-

mines both the number of components that have at least one instance associated with

them5, and the association of a specific data point to a specific component. The param-

eters describing the Gaussian for a component are not directly learned, but are instead

themselves drawn from prior distributions; the parameters of these prior distributions

comprises our fixed set of variables (Requirement 2). We make the parameter α part

of our optimization search space, so that the appropriate number of components maybe

discovered; this makes our pdf flexible (Requirement 1). The DP is discussed in detail

in Section 2.2.

We make a few modifications to the IGMM for it to better fit our problem. This

doesn’t change its compatibility to our requirements. Our modifications are:

1. Since our data is limited to a “bounding box” within Rd (this region is easily

found by determining the min and max values across instances in the provided

dataset, for each dimension, ignoring outliers if needed), we replace the Gaussian

mixture components with a multivariate generalization of the Beta distribution.

We pick Beta since it naturally supports bounded intervals. In fact, we may treat

the data as lying within the unit hypercube [0, 1]d without loss of generality, and

with the understanding that the features of an instance are suitably scaled in the

actual implementation.

Using a bounded interval distribution provides the additional benefit that we don’t

need to worry about infeasible solution regions in our optimization.

2. Further, we assume independence across the d dimensions as a starting point.
4The optimizer we use, TPE, can handle conditional spaces. However, as mentioned, our goal is

flexibility in implementation.
5In theory, the DP has an infinite number of components, of which only a finite number are associated

with the observed data. The latter is often is referred to as clusters. Here we universally use the term
“component” and rely on the context to make the connotation clear.

45

We do this to minimize the number of parameters, similar to using a diagonal

covariance matrix in GMMs.

Thus, our d-dimensional generalization of the Beta is essentially a set of d Beta

distributions, and every component in the mixture is associated with such a set.

For k mixture components, we have k × d Beta distributions in all, as against k

d-dimensional Gaussians in an IGMM.

3. A Beta distribution uses two positive valued shape parameters. Recall that we

don’t want to learn these parameters for each of the k × d Beta distributions

(which would defeat our objective of a fixed parameter space); instead we sample

these from prior distributions. We use Beta distributions for our priors too: each

shape parameter is drawn from a corresponding prior Beta distribution.

Since we have assumed that the dimensions are independent, we have two prior

Beta for the shape parameters per dimension. We obtain the parameters {Aj, Bj}

of a Beta for dimension j, 1 ≤ j ≤ d, by drawing Aj ∼ Beta(aj, bj) and

Bj ∼ Beta(a′j, b
′
j), where {aj, bj} and {a′j, b′j} are the shape parameters of the

priors.

There are a total of 4d prior parameters, with 4 prior parameters {aj, bj, a′j, b′j}

per dimension j, 1 ≤ j ≤ d.

We refer to this mixture model as an Infinite Beta Mixture Model (IBMM)6. For d

dimensional data, we have Ψ = {α, a1, b1, a′1, b′1, ..., ad, bd, a′d, b′d}. This is a total of

4d+ 1 parameters.

Algorithm 4 shows how we sample Nt points from (X, Y) using the IBMM.

We first determine the partitioning of the number Ns, induced by the DP (line 2).

We use Blackwell-MacQueen sampling (Blackwell and MacQueen, 1973) for this step.

This gives us k components, denoted by ci, 1 ≤ i ≤ k, and the corresponding number

of points ni, 1 ≤ i ≤ k to be assigned to each component. We then sample points one

component at a time: we draw the Beta parameters per dimension - Aij, Bij - from

the priors (lines 4-6), followed by constructing sampling weights p(xl|ci),∀xl ∈ X

6We justify this name by noting that there is more than one multivariate generalization of the Beta:
the Dirichlet distribution is a popular one, but there are others, e.g., Olkin and Trikalinos (2014)

46

Algorithm 4: Sampling using IBMM
Data: number of points to sample Ns, dataset (X, Y), X ∈ RN×d, Y ∈ RN
Result: (Xt, Yt), Xt ∈ RNs×d, Yt ∈ RNs

1 Xt = [], Yt = [];
2 {(c1, n1), (c2, n2), ..., (ck, nk)} ← partition Ns using the DP// Here∑k

i=1 ni = Ns.

3 for i← 1 to k do
// Get the Beta parameters for component ci

4 for j ← 1 to d do
5 Aij ∼ Beta(aj, bj);
6 Bij ∼ Beta(a′j, b

′
j);

7 end
8 for l← 1 to N do
9 p(xl|ci)←

∏d
j=1Beta(xlj|Aij, Bij) ;

10 end
11 Xti ← sample ni points from X based on p(xl|ci);
12 Yti ← labels corresponding to Xti from Y ;

13 Xt ←
[
Xt

Xti

]
, Yt ←

[
Yt
Yti

]
;

14 end
15 return (Xt, Yt)

assuming independent dimensions (line 9).

We emphasize here that we use the IBMM purely for representational convenience.

All the 4d+1 parameters are learned by the optimizer, and we ignore the standard asso-

ciated machinery for estimation or inference. These parameters cannot be learned from

the data since our fundamental hypothesis is that the optimal distribution is different

from the original distribution.

3.2.3 Choice of Optimizer

The fact that our objective function is not only a black-box, but is also noisy, makes our

optimization problem hard to solve, especially within a budget T . The quality of the

optimizer suggest() critically influences the utility of Algorithm 3.

We list below the characteristics we need our optimizer to possess:

1. Requirement 1: it should be able to work with a black-box objective func-

tion. Our objective function is accuracy(), which depends on a model produced

47

by trainF(). The latter is an input to the algorithm and we make no assump-

tions about its form. The cost of this generality is that accuracy() is a black-

box function and our optimizer needs to work without knowing its smoothness,

amenability to gradient estimation etc.

2. Requirement 2: should be robust against noise. Results of accuracy() may be

noisy. There are multiple possible sources of noise, e.g.:

(a) The model itself is learned on a sample (Xt, yt).

(b) The classifier might use a local search method like SGD whose final value

for a given training dataset depends on various factors like initialization,

order in which the instances are presented, etc.

3. Requirement 3: minimizes calls to the objective function. The acquisition cost

of a fitness value st for a solution Ψt is high: this requires a call to accuracy(),

which in turn calls trainF(). Hence, we want the optimizer to minimize such

calls, instead shifting the burden of computation to the optimization strategy. The

number of allowed calls to accuracy() is often referred to as the fitness evaluation

budget.

Some optimization algorithms that satisfy the above properties to varying degrees

are the class of Bayesian Optimization (BO) (Brochu et al., 2010; Shahriari et al., 2016)

algorithms; evolutionary algorithms such as Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) (Hansen and Ostermeier, 2001; Hansen and Kern, 2004) and Parti-

cle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995; Parsopoulos and Vra-

hatis, 2001); heuristics based algorithms such as Simulated Annealing (Kirkpatrick

et al., 1983; Gelfand and Mitter, 1989; Gutjahr and Pflug, 1996); bandit-based algo-

rithms such as Parallel Optimistic Optimization (Grill et al., 2015) and Hyperband (Li

et al., 2017b).

We use BO here since it has enjoyed substantial success in the area of hyperparam-

eter optimization, e.g., Bergstra et al. (2011); Snoek et al. (2012); Perrone et al. (2018);

Dai et al. (2019), where the challenges are similar to ours. BO is discussed in detail in

Section 2.1.

48

We briefly consider why BO techniques meet our requirements: they build their own

model of the response surface over multiple evaluations of the objective function; this

model serves as a surrogate (whose form is known) for the actual black-box objective

function. The BO algorithm relies on the surrogate alone for optimization, bypassing

the challenges in directly working with a black-box function (Requirement 1 above).

The surrogate representation is also probabilistic; this helps in quantifying uncertainties

in evaluations, possibly arising due to noise, making for robust optimization (Require-

ment 2). Since every call to suggest() is informed by this model, the BO algorithm

methodically focuses on only the most promising regions in the search space, making

prudent use of its fitness evaluation budget (Requirement 3).

The family of BO algorithms is fairly large and continues to grow (Hutter et al.,

2011; Bergstra et al., 2011; Snoek et al., 2012; Wang et al., 2013; Gelbart et al., 2014;

Snoek et al., 2015; Hernández-Lobato et al., 2016; Rana et al., 2017; Levesque et al.,

2017; Li et al., 2017a; Letham et al., 2017; Malkomes and Garnett, 2018; Perrone et al.,

2018; Nayebi et al., 2019; Alvi et al., 2019; Dai et al., 2019). We use the Tree Structured

Parzen Estimator (TPE) algorithm (Bergstra et al., 2011) since it scales linearly with

the number of evaluations (the runtime complexity of a naive BO algorithm is cubic in

the number of evaluations - see Shahriari et al. (2016)) and has a popular and mature

library: Hyperopt (Bergstra et al., 2013). TPE is decribed in detail in Section 2.1.2.

We note here that TPE supports conditional parameter spaces, which would have

allowed us to use a finite mixture model such as GMMs, setting the number of mix-

ture components as the top level optimization variable. However, our design choice

of a fixed parameter space for p(x; Ψ) effectively makes our technique a framework:

any optimizer that satisfies the above criteria may be used. For example, any of the

BO algorithms from the black-box optimization challenge, NeurIPS2020 (Turner et al.,

2021), may be used to implement suggest() in Algorithm 9.

3.2.4 Challenges

The primary challenge with this formulation is the size of the search space. We have

successfully tried out Algorithm 3 on small toy datasets as proof-of-concept, but for

49

most real world datasets, optimizing over 4d + 1 variables leads to an impractically

high run-time even using a fast optimizer such as TPE.

One could also question the independence assumption for dimensions, but that

doesn’t address the problem of the number of variables: learning a pdf directly in d

dimensions would require at least O(d) optimization variables. In fact, a richer as-

sumption makes the problem worse with O(d2) variables to represent inter-dimension

interactions.

3.2.5 An Efficient Approach using Decision Trees

We begin by asking if we can prune the search space in some fashion. Note that we

are solving a classification problem, measured by accuracy(); however the IBMM only

indirectly achieves this goal by searching the complete space Ψ. The search presumably

goes through distributions with points from only one class, no points close to any or

most of the class boundary regions, etc; distributions that decidedly result in poor fitness

scores. Is there a way to exclude such “bad” configuration values from the search space?

One strategy would be to first determine where the class boundaries lie, and penal-

ize any density Ψt that doesn’t have at least some overlap with them. This is a common

optimization strategy used to steer the search trajectory away from bad solutions. How-

ever, implementation-wise, this leads to a new set of challenges:

1. How do we determine, and then represent, the location of class boundaries?

2. What metric do we use to appropriately capture our notion of overlap of Ψt and

these locations?

3. How do we efficiently execute the previous steps? After all, our goal is to either

(a) reduce the number of optimization variables OR (b) significantly reduce the

size of the search space for the current O(d) variables.

We offer a novel resolution to these challenges that leads to an efficient algorithm

by making the optimization “class boundary sensitive”.

50

Our key insight is an interesting property of decision trees (DT). A DT fragments

its input space into axis-parallel rectangles. Figure 3.3 shows what this looks like when

we learn a tree using CART on the dataset from Figure 3.1(a). Leaf regions are shown

with the rectangles with the black edges.

Figure 3.3: Tessellation of space produced by leaves of a decision tree.

Note how regions with relatively small areas almost always occur near boundaries.

This happens here since none of the class boundaries are axis-parallel, and the DT, in

being constrained in representation to axis-parallel rectangles, must use multiple small

rectangles to approximate the curvature of the boundary. This is essentially piecewise

linear approximation in high dimensions, with the additional constraint that the “linear

pieces” be axis-parallel. Figure 3.4 shows a magnified view of the interaction of leaf

edges with a curved boundary. The first panel shows how hypothetical trapezoid leaves

might closely approximate boundary curvature. However, since the DT may only use

axis-parallel rectangles, we are led to multiple small rectangles as an approximation, as

shown in the second panel.

boundary boundary

Figure 3.4: We see leaves of small areas because DTs are forced to approximate curvature with them.

We exploit this geometrical property; in general, leaf regions with relatively small

areas (volumes, in higher dimensions) produced by a DT, represent regions close to the

51

boundary7. Instead of directly determining an optimal pdf on the input space, we now

do the following:

1. Learn a DT, with no size restrictions, on the data (Xtrain, Ytrain). Assume the

tree produces m leaves, where the region encompassed by a leaf is denoted by

Ri, 1 ≤ i ≤ m.

2. Define a pmf over the leaves, that assigns mass to a leaf in inverse proportion to

its volume. Let L ∈ {1, 2, ...,m} be a random variable denoting a leaf. Our pmf

is PL(i) = P (L = i) = f(Ri), where f(Ri) ∝ vol(Ri)
−1.

The probability of sampling outside any Ri is set to 0.

3. To sample a point, sample a leaf first, based on the above pmf, and then sample a

point from within this leaf assuming a uniform distribution:

(a) Sample a leaf, i ∼ PL.

(b) Sample a point within this leaf, x ∼ U(Ri).

(c) Since leaves are characterized by low entropy of the label distribution, we

assign the majority label of leaf i, denoted by label(i), to the sampled point

x.

Assuming we have k unique labels, label(i) is calculated as follows:

Let Si = {yj : yj ∈ Ytrain, xj ∈ Xtrain, xj ∈ Ri}. Then,

label(i) = arg max
k

p̂ik (3.5)

where, p̂ik =
1

|Si|
∑
Si

I(yj = k) (3.6)

Note here that because of using U(Ri) we may generate points x /∈ Xtrain. Also,

since a point x ∈ Ri ∩Xtrain gets assigned label(i), the conditional distribution

7While DTs have been often used to group similar instances into neighborhoods - such as for density
estimation (Ram and Gray, 2011), anomaly detection (Liu et al., 2008), local model construction (Blo-
niarz et al., 2016), construction of local interpretable models (Plumb et al., 2018), our work is the first
we are aware of that utilizes DTs to identify regions adjacent to class boundaries.

52

of labels approximately equals the original distribution:

p(Yt|Xt) ≈ p(Ytrain|Xtrain) (3.7)

We call such a DT a density tree8 which we formally define as follows.

Definition 3.2.1. We refer to a DT as a density tree if (a) it is learned on (Xtrain, Ytrain)

with no size restrictions (b) there is a pmf defined over its leaves s.t. PL(i) = P (L =

i) = f(Ri), where f(Ri) ∝ vol(Ri)
−1.

Referring back to our desiderata, it should be clear how we address some of the

challenges:

1. The location of class boundaries are naturally produced by DTs, in the form of

(typically) low-volume leaf regions.

2. Instead of penalizing the lack of overlap with such boundary regions, we sample

points in way that favors points close to class boundaries.

Note that in relation to Equation 3.3 (reproduced below), q no longer ranges over

all possible distributions; but over a restricted set relevant to the problem:

p∗η = arg max
q

accuracy(trainF(q, η), p) (3.8)

We visit the issue of efficiency towards the end of this section.

This simple scheme represents our approach at a high-level. However, this in itself

is not sufficient to build a robust and efficient algorithm. We consider the following

refinements to our approach:

1. pmf at the leaf level. What function f must we use to construct our pmf ? One

could just use f(Ri) = c · vol(Ri)
−1 where c is the normalization constant

c = 1/
∑m

i=1 vol(Ri)
−1. However, this quantity changes rapidly with volume.

8We use this term since this helps us define a pdf over the input space Rd. We don’t abbreviate this
term to avoid confusion with “DT”. DT always refers to a decision tree in the thesis, and the term “density
tree” is used as-is.

53

Consider a hypercube with edge-length a in d dimensions; the ratio of the (non-

normalized) mass between this and another hypercube with edge-length a/2 is 2d.

Not only is this change drastic, but it also has potential for numeric underflow.

An alternative is to use a function that changes more slowly like the inverse of the

length of the diagonal, f(Ri) = c · diag(Ri)
−1 where c = 1/

∑m
i=1 diag(Ri)

−1.

Since DT leaves are axis-parallel hyperrectangles, diag(Ri) is always well de-

fined. In our hypercube example, the probability masses are ∝ 1/(a
√
d) and

∝ 1/(a
√
d/2) when the edge-lengths are a and a/2 respectively. The ratio of the

non-normalized masses between the two cubes is now 2.

This begs the question: is there yet another pmf we can use, that is optimal in

some sense? Instead of looking for such an optimal pmf, we adopt the more

pragmatic approach of starting with a “base” pmf - we use the inverse of the

diagonal length - and then allowing the algorithm to modify it, via smoothing, to

adapt it to the data.

2. Smoothing. Our algorithm may perform smoothing over the base pmf as part of

the optimization. We use Laplace smoothing (Jurafsky and Martin, 2019, Sec-

tion 3.4), with λ as the smoothing coefficient. This modifies our pmf thus:

f ′(Ri) = c
(
f(Ri) +

λ

m

)
(3.9)

Here, c is the normalization constant. The optimizer discovers the ideal value for

λ.

We pick Laplace smoothing because it is fast. Our framework, however, is general

enough to admit a wide variety of options (discussed in Section 5.3).

3. Axis-aligned boundaries. A shortcoming of our geometric view is if a boundary

is axis-aligned, there are no leaf regions of small volumes along this boundary.

This foils our sampling strategy. An easy way to address this problem is to trans-

form the data by rotating or shearing it, and then construct a decision tree. See

Figure 3.5. The image on the left shows a DT with two leaves constructed on the

data that has an axis-parallel boundary. The image on the right shows multiple

leaves around the boundary region, after the data is transformed (the transforma-

54

tion may be noticed at the top left and bottom right regions).

(a) depth=1, #leaves=2 (b) depth=5, #leaves=10

Figure 3.5: (a) Axis parallel boundaries don’t create small regions. (b) This can be addressed by trans-
forming the data. We see an increase in depth and the number of leaves of the density tree in
the latter case.

The idea of transforming data by rotation is not new (Rodriguez et al., 2006;

Blaser and Fryzlewicz, 2016). However, a couple of significant differences in our

setup are:

(a) We don’t require rotation per se as our specific transformation; any transfor-

mation that produces small leaf regions near the boundary works for us.

(b) Since interpretability in the original input space is our goal, we need to

transform back our sample. This would not be required, say, if our only

goal is to increase classification accuracy.

The need to undo the transformation introduces an additional challenge: we can-

not drastically transform the data since sampled points in the transformed space

might be outliers in the original space. Figure 3.6 illustrates this idea, using the

same data as in Figure 3.5.

The first panel shows leaves learned on the data in the transformed space. Note

how the overall region covered by the leaves is defined by the extremities - the

top-right and bottom-left corners - of the region occupied by the transformed data.

Any point within this rectangle is part of some leaf in a DT learned in this space.

Consider point P - it is valid for our sampler to pick this. The second panel shows

what the training data and leaf-regions look like when they are transformed back

to the original space. Clearly, the leaves from the transformed space may not

55

(a) Transformed data (b) Data and leaves transformed

D C

A B

P P A

B

C
D

Figure 3.6: (a) Point P lies within a leaf in the transformed data. (b) In the inverse transformation, it is
seen that the leaves contain regions outside the bounding box of the original dataset, and P
is an outlier.

create a tight envelope around the data in the original space, and here, P becomes

an outlier.

Sampling a significant number of outliers is problematic because:

(a) The validation and test sets do not have these points and hence learning a

model on a training dataset with a lot of outliers would lead to sub-optimal

accuracies.

(b) There is no way to selectively ignore points like P in their leaf, since we

uniformly sample within the entire leaf region. The only way to avoid sam-

pling P is to ignore the leaf containing it (using an appropriate pmf); which

is not desirable since it also forces us to ignore the non-outlier points within

the leaf.

Note that we also cannot transform the leaves back to the original space first and

then sample from them, since:

• We lose the convenience and low runtime of uniform sampling U(Ri): the

leaves are not simple hyperrectangles any more.

• For leaves that are not confined by the data bounding box in the original

space, e.g., ABCD, we cannot sample from the entire leaf region with-

out risking obtaining outliers again, i.e., we might end up obtaining out-of-

distribution points such as P anyway.

A simple and efficient solution to this problem is to only slightly transform the

56

data, so that we obtain the small volume leaves at class boundaries (in the trans-

formed space), but also, all valid samples are less likely to be outliers. This may

be achieved by restricting the extent of transformation using a “near identity”

matrix A ∈ Rd×d:

[A]pq = 1, if p = q (3.10)

[A]pq ∼ U([0, ε]), if p 6= q, where ε ∈ R>0 is a small number. (3.11)

With this transformation, we would still be sampling outliers, but:

(a) Their numbers are not significant now.

(b) The outliers themselves are close to the data bounding box in the original

space.

These substantially weaken their negative impact on our technique.

The tree is constructed onAX , whereX is the original data, and samples from the

leaves, X ′t, are transformed back with A−1X ′t. Figure 3.5 is actually an example

of such a near-identity transformation.

A relevant question here is how do we know when to transform our data, i.e., when

do we know we have axis-aligned boundaries? Since this is computationally ex-

pensive to determine, we always create multiple trees, each on a transformed

version of the data (with different transformation matrices), and uniformly sam-

ple from the different trees. It is highly unlikely that all trees in this bagging

step would have axis-aligned boundaries in their respective transformed spaces.

Bagging also provides the additional benefit of low variance.

We denote this bag of trees and their corresponding transformations by B. Algo-

rithm 5 details how B is created. Our process is not too sensitive to the choice of

epsilon, hence we set ε = 0.2 for our experiments.

4. Selective Generalization. Since we rely on geometric properties alone to define

our pmf, all boundary regions receive a high probability mass irrespective of their

contribution to classification accuracy. This is not desirable when the classifier is

small and must focus on a few high impact regions. In other words, we prioritize

57

Algorithm 5: Create bag of density trees, B
Data: (Xtrain, Ytrain), size of bag n
Result: B = {(T1, A1), (T2, A2), ..., (Tn, An)}

1 B = {};
2 for i← 1 to n do
3 Create matrix Ai ∈ Rd×d s.t. [Ai]pq = 1, if p = q else [Ai]pq ∼ U([0, ε]);
4 X ′train ← AiXtrain;
5 Ti ← learn tree on (X ′train, Ytrain);
6 B ← B ∪ {(Ti, Ai)}
7 end
8 return B

all boundaries, but not all of them are valuable for classification; our algorithm

needs a mechanism to ignore some of them. We refer to this desired ability of the

algorithm as selective generalization.

(a) Partitions using a shallow tree
with 2 leaves.

(b) Partitions using a deeper tree
with 8 leaves.

Figure 3.7: A region of low impact is shown in the first panel with a dashed blue circle. The first tree in
(a) ignores this while a second, larger, tree in (b) creates a leaf for it.

Figure 3.7 illustrates the problem and suggests a solution. The data shown has

a small green region, shown with a dashed blue circle in the first panel, which

we may want to ignore if we had to pick between learning its boundary or the

relatively significant vertical boundary. The figure shows two trees of different

depths learned on the data - leaf boundaries are indicated with solid black lines.

A small tree, shown on the left, automatically ignores the circle boundary, while

a larger tree, on the right, identifies leaves around it.

Thus, one way to enable selective generalization is to allow our technique to pick

a density tree of appropriate depth.

58

But a shallow density tree is already part of a deeper density tree! - we can just

sample at the depth we need. Instead of constructing density trees with different

depths, we learn a “depth distribution” over fully grown density trees; drawing a

sample from this tells us what fraction of the tree to consider.

depth sampling distribution density tree

depth 0

depth 1

depth 2

depth 3

density tree

sampling scheme at depth 0
A

B C

D E

F G

sampling scheme at depth 1

sampling scheme at
depth 2

sampling scheme
at depth 3

(a) (b)

Figure 3.8: (a) The set of nodes at a depth have an associated pmf to sample from (not shown). A depth is
picked based on the IBMM. (b) In case of an incomplete binary tree, we use the last available
nodes closest to the depth being sampled from, so that the entire input space is represented.
The red dotted lines show the nodes comprising the sampling scheme for different depths.

Figure 3.8(a) illustrates this idea. The depth distribution is visualized vertically

and adjacent to a tree. We sample r ∈ [0, 1] from the distribution, and scale

and discretize it to reflect a valid value for the depth. Let depthT () be the scal-

ing/discretizing function for a tree T . Taking the tree in the figure as our example,

r = 0 implies we sample our data instances from the nodes at depthT (r) = 0 i.e.

at the root, and r = 0.5 implies we must sample from the nodes at depthT (r) = 1.

We refer to the pmf for the nodes at a depth to be the sampling scheme at that

depth. T has 4 sampling schemes - each capturing class boundary information at

a different granularity, ranging from the root with no information and the leaves

with the most information.

We use an IBMM for the depth distribution. Similar to the one previously dis-

cussed in Section 3.2.2, the depth-distribution has a parameter α for the DP and

parameters {a, b, a′, b′} for its Beta priors. The significant difference is we have

just one dimension now: the depth. The IBMM is shared across all trees in the

bag; Algorithm 6 provides details at the end of this section.

5. Revisiting label entropy. When we sampled only from the leaves of a density

tree, we could assign the majority label to the samples owing to the low label en-

tropy. However, this is not true for nodes at intermediate levels - which the depth

59

distribution might lead us to sample from. We deal with this change by defining

an entropy thresholdE. If the label distribution at a node has entropy ≤ E, we

sample uniformly from the region encompassed by the node (which may be a leaf

or an internal node) and use the majority label. However, if the entropy > E, we

sample only among the training data instances that the node covers. Like ε, our

technique is not very sensitive to a specific value of E (and therefore, need not be

learned), as long as it is reasonably low: we use E = 0.15 in our experiments.

6. Incomplete trees. Since we use CART to learn our density trees, we have binary

trees that are always full, but not necessarily complete, i.e., the nodes at a certain

depth alone might not represent the entire input space. To sample at such depths,

we “back up” to the nodes at the closest depth. Figure 3.8(b) shows this: at

depth = 0 and depth = 1, we can construct our pmf with only nodes available

at these depths, {A} and {B,C} respectively, and still cover the whole input

space. But for depth = 2 and depth = 3, we consider nodes {B,D,E} and

{B,D, F,G} respectively. The dotted red line connects the nodes that contribute

to the sampling scheme for a certain depth.

Algorithm 6 shows how sampling from B works.

Figure 3.9 illustrates some of the distributions we obtain using our mechanism.

Panel (a) shows our data - note, we only have axis-aligned boundaries. In panels (b),

(c), (d), we show the depth distribution at the top, going from favoring the root in (b), to

nodes halfway along the height of the tree in (c), finally to the leaves in (d). The contour

plot visualizes the distributions, where a lighter color indicates relatively higher sample

density. We see that in (b), we sample everywhere in the data bounding box. In (c), the

larger boundary is identified. In (d), the smaller boundary is also identified. A bag of

size 5 was used and the smoothing coefficient λ was held constant at a small value.

This completes the discussion of the salient details of our sampling technique. The

optimization variables are summarized below:

1. λ, the Laplace smoothing coefficient.

60

Algorithm 6: Sampling from a bag of density trees, B
Data: # points to sample N , bag of density trees B, depth distribution Ψ,

smoothing parameter λ
Result: (X, Y), X ∈ RN×d, Y ∈ Rn

1 X = [], Y = [];
2 for i← 1 to N do
3 r ∼ Ψ ;
4 T,A←

randomly pick a tree and the corresponding transformation from B;
5 Θ← construct pmf over the nodes at depthT (r), smooth with

λ// back-up if depth is incomplete

6 L ∼ Θ // L is a node at depthT (r)

7 SL ← {(xj, yj) : xj ∈ Xtrain ∩RL and yj ∈ Ytrain is its label};
8 if entropy(L) ≤ E then
9 x ∼ U(L), y ← label(L) // label() defined in Equation 3

10 else
11 (x, y) ∼ SL // notation: sample a point from SL

12 end

13 X ←
[
X

A−1x

]
, Y ←

[
Y
y

]
;

14 end
15 return (X, Y)

2. α, the DP parameter.

3. {a, b, a′, b′}, the parameters of the Beta priors for the IBMM depth distribution.

A component/partition i is characterized by the distribution Beta(Ai, Bi), where

Ai ∼ Beta(a, b), Bi ∼ Beta(a′, b′).

The IBMM and its parameters, {α, a, b, a′, b′}, are shared across all trees in the bag

B, and λ is shared across all sampling schemes.

We also introduced two additional parameters: ε and E. As mentioned previously,

we do not include them in our optimization since our process is largely insensitive to

their precise values as long as these are reasonably small. We use ε = 0.2 and E = 0.15

for our experiments.

The above parameters exclusively determine how the sampler works. In addition,

we propose the following parameters:

4. Ns ∈ N, sample size. The sample size can have a significant effect on model

performance. We let the optimizer determine the best sample size to learn from.

61

(b) near root

(c) midway (d) near leaves

(a) data

Figure 3.9: (a) shows our dataset, while (b), (c), (d) show how the sampling distribution varies with
change of the depth distribution. At (b), where the depth distribution is concentrated at the
root, there is no significant pattern. As we move away from the root towards the middle
of the tree in (c), and then closer to leaves in (d), we observe the sampling distribution
progressively discovers the multiple class boundaries.

We constrain Ns to be larger than the minimum number of points needed for

statistically significant results.

Note that we can allow Ns > |Xtrain|. This larger sample will be created by

either repeatedly sampling points - at nodes where the label entropy > E - or by

generating synthetic points, when entropy ≤ E.

5. po ∈ [0, 1] - proportion of the sample from the original distribution. Given a

value for Ns, we sample (1 − po)Ns points from the density tree(s) and poNs

points (stratified) from our training data (Xtrain, Ytrain).

Recall that our hypothesis is that learning a distribution helps until a size η′ (Equa-

62

tion 3.1.2). Beyond this size, we need to provide a way for the sampler to repro-

duce the original distribution. While it is possible the optimizer finds a Ψt that

corresponds to this distribution, we want to make this easier: now the optimizer

can simply set po = 1. Essentially, po is way to “short-circuit” the discovery of

the original distribution.

This variable provides the additional benefit that observing a transition po = 0→

1, as the model size increases, would empirically validate our hypothesis.

We have a total of eight optimization variables in this technique. The variables

that influence the sampling behaviour are collectively denoted by Ψ = {α, a, b, a′, b′}.

The complete set of variables is denoted by Φ = {Ψ, Ns, λ, po}.

This is a welcome departure from our naive solution: the number of optimization

variables does not depend on the dimensionality d at all! Creating density trees as a

preprocessing step gives us a fixed set of eight optimization variables for any data. This

makes the algorithm much more efficient than before, and makes it practical to use for

real world data.

Algorithm 7 shows how we modify our naive solution to incorporate the new sam-

pler.

As before, we discover the optimal Φ using TPE as the optimizer and accuracy()

as the fitness function. We begin by constructing our bag of density trees, B, on

transformed versions of (Xtrain, Ytrain), as described in Algorithm 5. At each itera-

tion in the optimization, based on the current value po_t, we sample data from B and

(Xtrain, Ytrain), train our model on it, and evaluate it on (Xval, Yval). In our imple-

mentation, lines 7-11 are repeated (thrice, in our experiments) and the accuracies are

averaged to obtain a stable estimate for st.

Additional details pertaining to Algorithm 7 (also see Section A.1):

1. At t = 1, Φ is initialized as: α = 0.1, a = 1, b = 1, a′ = 1, b′ = 1, Ns =

|Dtrain|, po = 1. The values for α, a, b, a′, b′ carry no significance and are arbi-

trary, since setting po → 1 forces sampling only from the original distribution.

Combined with Ns = |Dtrain|, this setting mimics the baseline, i.e., training the

63

Algorithm 7: Adaptive sampling using density trees
Data: Learning algorithm trainF(), size of model η, data (X, Y), number of

density trees n, iterations T
Result: Φ∗, stest

1 Create stratified samples (Xtrain, Ytrain), (Xval, Yval), (Xtest, Ytest) from
(X, Y);

2 Construct bag B of n density trees on (Xtrain, Ytrain);
3 for t← 1 to T do
4 Φt ← suggest(st−1, ...s1,Φt−1, ...,Φ1) // see text for

initialization at t = 1

// Note: Φt = {Ψt, Ns_t, λt, po_t} where Ψt = {αt, at, bt, a
′
t, b
′
t}.

5 No ← po_t ×Ns_t ;
6 NB ← Ns_t −No ;
7 (Xo, Yo)← sample No points from (Xtrain, Ytrain) based on p(Xtrain; Ψt);
8 (Xdp, Ydp)← sample NB points from B, using Algorithm 6;

9 Xt ←
[
Xo

Xdp

]
, Yt ←

[
Yo
Ydp

]
// combine the above samples

10 Mt ← trainF((Xt, Yt), η);
11 st ← accuracy(Mt, (Xval, Yval));
12 end
13 t∗ ← arg maxt {s1, s2, ..., sT−1, sT};
14 Φ∗ ← Φt∗;
15 (X∗, Y ∗)← sample N∗s points from (Xtrain, Ytrain) and B based on p∗o;
16 M∗ ← trainF((X∗, Y ∗), η) ;
17 stest ← accuracy(M∗, (Xtest, Ytest));
18 return Φ∗, stest

interpretable model without our algorithm, thus providing the optimizer with a

good initial reference point in its search space9.

Note, however, that the optimizer still needs to discover that any setting with

po → 1 and Ns ≈ |Dtrain|, independent of values for α, a, b, a′ and b′, yields

similar accuracy.

2. We use a train : val : test split ratio of 60 : 20 : 20.

3. The training step to build modelMt in line 10, takes into account class imbalance:

it either balances the data by sampling (this is the case with a Linear Probability

Model), or it uses an appropriate cost function or instance weighting, to simulate

balanced classes (this is case with DTs or Gradient Boosted Models).

However, it is important to note that both (Xval, Yval) and (Xtest, Ytest) represent
9This is still not equivalent to the baseline because since models are trained in a resource constrained

environment within the optimizer - as described in Section 3.3.2.

64

the original distribution, and thus indeed test the efficacy of our technique on data

with varying degrees of class imbalance.

3.3 Experiments

3.3.1 Data

We use a variety of real-world datasets, with different dimensionalities, number of

classes and different class distributions to test the generality of our approach. The

datasets were obtained from the LIBSVM website (Chang and Lin, 2011), and are de-

scribed in Table 3.1. The column “Label Entropy”, quantifies the extent of class imbal-

ance, and is computed for a dataset with C classes in the the following way:

Label Entropy =
∑

j∈{1,2,...,C}

−pj logC pj (3.12)

Here, pj =
|{xi|yi = j}|

N

Values close to 1 imply classes are nearly balanced in the dataset, while values close to

0 represent relative imbalance.

3.3.2 Models

We use the following model families, F , and learning algorithms, trainF(), in our

experiments:

1. Decision Trees: We use the implementation of CART in the scikit-learn library

(Pedregosa et al., 2011). Our notion of size here is the depth of the tree.

Sizes: For a dataset, we first learn an optimal tree Topt based on the F1-score,

without any size constraints. Denote the depth of this tree by depth(Topt). We

then try our algorithm for these settings of CART’s max_depth parameter: {1,

2, ...,min(depth(Topt), 15)}, i.e., we experiment only up to a model size of 15,

stopping early if we encounter the optimal tree size. Stopping early makes sense

65

Table 3.1: Datasets: we use the dataset versions available on the LIBSVM website (Chang and Lin,
2011). However, we have mentioned the original source in the “Description” column. 10000
instances from each dataset are used. A train : val : test split ratio of 60 : 20 : 20 is used
for Dtrain, Dval and Dtest in Algorithm 7. The splits are stratified wrt labels.

S.No. Dataset Dimensions # Classes Label Entropy Description

1 cod-rna 8 2 0.92 Predict presence of non-coding RNA com-
mon to a pair of RNA sequences, based on
individual sequence properties and their sim-
ilarity (Uzilov et al., 2006).

2 ijcnn1 22 2 0.46 Time series data produced by an internal com-
bustion engine is used to predict normal en-
gine firings vs misfirings (Prokhorov, 2001).
Transformations as in Chang and Lin (2001).

3 higgs 28 2 1.00 Predict if a particle collision produces Higgs
bosons or not, based on collision properties
(Baldi et al., 2014).

4 covtype.binary 54 2 1.00 Modification of the covtype dataset (see row
12), where classes are divided into two groups
(Collobert et al., 2002).

5 phishing 68 2 0.99 Various website features are used to predict
if the website is a phishing website (Moham-
mad et al., 2012). Transformations used as in
Juan et al. (2016)

6 a1a 123 2 0.80 Predict whether a person makes over 50K a
year, based on census data variables (Dua
and Graff, 2017). Transformations as in Platt
(1998).

7 pendigits 16 10 1.00 Classify handwritten digit samples into the
digits 0-9. (Alimoglu and Alpaydin, 1996;
Dua and Graff, 2017).

8 letter 16 26 1.00 Images of the capital letters A-Z were pro-
duced by random distortion of these charac-
ters from 20 fonts. The task is to classify these
character images as one of the original letters
(Michie et al., 1995). Transformations as in
Hsu and Lin (2002).

9 Sensorless 48 11 1.00 Based on phase current measurements of an
electric motor, predict different error condi-
tions (Paschke et al., 2013). We use the trans-
formations from Wang et al. (2018b).

10 senseit_aco 50 3 0.95 Predict vehicle type using acoustic data gath-
ered by a sensor network (Duarte and Hu,
2004).

11 senseit_sei 50 3 0.94 Predict vehicle type using seismic data gath-
ered by a sensor network (Duarte and Hu,
2004).

12 covtype 54 7 0.62 Predicting forest cover type from carto-
graphic variables (Blackard, 1998; Dua and
Graff, 2017).

13 connect-4 126 3 0.77 Predict if the first player wins, loses or draws,
based on board positions of the board game
Connect Four (Dua and Graff, 2017).

66

since the model has attained the size needed to capture all patterns in the data;

changing the input distribution is not going to help beyond this point.

Note that while our notion of size is the actual depth of the tree produced, the

parameter we vary is max_depth; this is because decision tree libraries do not

allow specification of an exact tree depth. This is important to remember since

CART produces trees with actual depth up to as large as the specifiedmax_depth,

and therefore, we might not see actual tree depths take all values in {1, 2, ...,

min(depth(Topt), 15)}, e.g., max_depth = 5 might give us a tree with depth =

5, max_depth = 6 might also result in a tree with depth = 5, but max_depth =

7 might give us a tree with depth = 7. We report relative improvements at actual

depths.

2. Linear Probability Model (LPM) (Mood, 2010): This is a linear classifier. Our

notion of size is the number of terms in the model, i.e., features from the orig-

inal data with non-zero coefficients. We use our own implementation based on

scikit-learn. Since LPMs inherently handle only binary class data, for a multi-

class problem, we construct a one-vs-rest model, comprising of as many binary

classifiers as there are distinct labels. The given size is enforced for each binary

classifier. For instance, if we have a 3-class problem, and we specify a size of

10, then we construct 3 binary classifiers, each with 10 terms. We did not use the

more common Logistic Regression classifier because: (1) from the perspective of

interpretability, LPMs provide a better sense of variable importance (Mood, 2010)

(2) we believe our effect is equally well illustrated by either linear classifier.

We use the Least Angle Regression (Efron et al., 2004) algorithm, that grows the

model one term at a time, to enforce the size constraint.

Sizes: For a dataset with dimensionality d, we construct models of sizes:

{1, 2, ...,min(d, 15)}. Here, the early stopping for LPM happens only for the

dataset cod-rna, which has d = 8. All other datasets have d > 15 (see Table 3.1).

The density trees themselves use the CART implementation in scikit-learn. We use the

Beta distribution implementation provided by the SciPy package (Jones et al., 2001).

Model selection within an optimizer iteration is performed by averaging over three

67

runs of holdout cross validation, with the ratio of the training to holdout data size being

80 : 20. The splits are randomly determined and are stratified wrt class labels.

Baselines: For each model family, the baseline model is trained using standard

(i.e., without using our algorithm and without recourse to an oracle) 3-fold cross-

validation, stratified by class labels. In the case of DTs, the space of the parameter

min_impurity_decrease = {0, 0.25, 0.5, 0.75, 1} is also explored. This parameter en-

forces node splits to be executed only if the decrease in impurity is at least as large as

the parameter’s value10.

It must be noted that the baseline model has access to more data for training than

models trained within the optimizer: the former combines Dtrain and Dval for its 3-fold

CV, while the latter has access to only Dtrain. With our splits of Dtrain : Dval : Dtest ::

60 : 20 : 20, the baseline sees 80/60 or 1.33x more data. In fact, often the difference

is greater since at a particular iteration, the parameter Ns might be set to a value much

lower than |Dtrain|. The reduced training data size is why the within-optimizer model

selection doesn’t use a 3-fold CV, since that would enforce a training split of 67%, as

opposed to 80% that we use now.

3.3.3 Metrics

We measure the improvements in accuracy and the their statistical significance using

the following metrics:

1. For each combination of dataset, learning algorithm and model size, the percent-

age relative improvement in the F1(macro) score is measured over (Xtest, Ytest).

The baseline score is provided by a model trained on the original distribution:

δF1 =
100× (F1new − F1baseline)

F1baseline
(3.13)

We specifically choose the F1 macro metric as it accounts for class imbalance,

e.g., it penalizes the score even if the model performs well on a majority class but

10See documentation here: https://scikit-learn.org/stable/modules/
generated/sklearn.tree.DecisionTreeClassifier.html.

68

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

poorly on a minority class.

Since the original distribution is part of the optimization search space, i.e., when

po = 1, the lowest improvement we report is 0%, i.e., δF1 ∈ [0,∞).

All reported values of δF1 represent averaging over five runs of Algorithm 7,

where we average the baseline and new scores first, and then calculate the im-

provement. In other words, if the runs are indexed by i, F1new and F1baseline

are replaced by F1new =
∑5

i=1 F1new,i/5 and F1baseline =
∑5

i=1 F1baseline,i/5

respectively, in Equation 3.13. As mentioned before, in each such run, lines 7-11

in the algorithm are repeated thrice to obtain a robust estimate for accuracy(),

and thus, st.

We take an average of the scores first since F1baseline can be a small value, espe-

cially at smaller model sizes, and being in the denominator, slight changes to it

across runs can produce outsize differences in the per-run δF1 scores11.

2. To measure statistical significance of our results we use the Wilcoxon signed-

rank test, where the paired set of samples are F1baseline and F1new scores for a

dataset. The p-value is reported. This test is separately performed for different

model sizes.

3.3.4 Parameter Settings

Since TPE performs optimization with box constraints, we need to specify our search

space for the various parameters in Algorithm 7:

1. λ: this is varied in the log-space such that log10 λ ∈ [−3, 3].

2. po: We want to allow the algorithm to arbitrarily mix samples fromB and (Xtrain,

Ytrain). Hence, we set po ∈ [0, 1].

3. Ns: We set Ns ∈ [1000, 10000]. The lower bound ensures that we have statisti-

cally significant results. The upper bound is set to a reasonably large value.

11This is different from the improvements reported in our paper, Ghose and Ravindran (2020), where
the improvement scores from individual runs were averaged. We find the current approach more stable.

69

4. α: For a DP, α ∈ R>0. We use a lower bound of 0.1.

We rely on the general properties of a DP to estimate an upper bound, αmax.

Given α, for N points, the expected number of components k is given by:

E[k|α] = O(αHN) (3.14)

E[k|α] ≤ αHN (3.15)

α ≥ E[k|α]

HN

(3.16)

Here, HN is the N th harmonic sum (see Blei (2007)).

Since our distribution is over the depth of a density tree, we already know the

maximum number of components possible, kmax = 1+ depth of density tree. We

use N = 1000, since this is the lower bound of Ns, and we are interested in the

upper bound of α (note HN ∝ N - see Section A.3). We set kmax = 100 (this is

greater than any of the density tree depths in our experiments) to obtain a liberal

upper bound, αmax = 100/H1000 = 13.4. Rounding up, we set α ∈ [0.1, 14] 12.

We draw a sample from the IBMM using Blackwell-MacQueen sampling (Black-

well and MacQueen, 1973).

5. {a, b, a′, b′}: Each of these parameters are allowed a range [0.1, 10] to admit var-

ious shapes for the Beta distributions.

Hyperparameters: The box constraints and the iteration budget required by the

optimizer constitute task-specific hyperparameters. However, as we note above, we

don’t need to estimate a range for po and reasonable defaults may be applied to Ns,

{a, b, a′, b′}, λ and α. This results in the practical convenience of having to set the value

for only a single hyperparameter: T , the iteration budget. This was set to T = 1000

for LPMs and T = 3000 for DTs based on limited search. Since the LPMs we use

construct multiple one-vs-rest classifiers, higher iteration budgets are computationally

expensive to use.

12We later observe from our experiments that this upper bound is sufficient since nearly all depth
distributions have at most 2 dominant components (see Figures 3.13, 3.14).

70

Table 3.2: Classification Results with DTs. Values indicate improvements δF1, averaged over five runs.
Underlined entries denote the best improvement for a dataset.

depth = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

datasets

cod-rna 3.89 0.82 0.24 2.18 0.29 0.12 0.22 0.22 0.17 0.00 - - - - -
ijcnn1 3.19 12.91 8.64 8.94 3.35 1.19 2.35 1.20 0.91 0.00 0.25 0.39 0.60 0.00 0.69
higgs 3.68 0.93 0.92 0.44 0.00 0.46 - - - - - - - - -
covtype.binary 0.41 0.34 0.78 0.78 0.76 0.75 0.41 0.57 0.63 0.81 0.00 1.64 - - -
phishing 0.00 0.70 0.29 0.24 0.62 0.11 0.11 0.35 0.07 0.10 0.00 0.00 0.00 0.00 0.00
a1a 0.00 5.05 5.58 4.75 4.07 2.39 3.40 0.82 1.83 - 0.65 0.00 2.35 - 0.92

pendigits 10.48 3.08 4.44 9.79 4.66 2.18 1.04 0.07 0.09 0.00 0.00 0.00 0.00 0.00 0.10
letter 1.06 10.49 32.31 46.65 45.91 20.68 9.32 5.04 4.21 2.13 0.53 0.00 0.00 0.00 0.00
Sensorless 0.00 41.98 71.18 80.30 37.82 16.74 7.85 4.29 2.19 1.09 0.63 0.16 0.75 0.28 0.00
senseit_aco 19.64 0.57 3.09 1.46 1.48 0.46 0.38 0.93 - - - - - - -
senseit_sei 2.18 1.02 2.15 0.53 0.96 1.01 0.42 - - - - - - - -
covtype 27.80 99.72 18.36 6.74 6.23 2.42 2.11 2.43 1.65 2.03 2.61 1.69 0.00 0.67 0.53
connect-4 181.33 32.28 17.96 12.10 6.97 10.60 3.97 6.07 2.62 1.15 2.71 2.01 2.03 1.97 1.50

3.3.5 Improvements in Accuracy

The DT results are shown in Table 3.2. A series of unavailable scores, denoted by “-

”, toward the right end of the table for a dataset denotes we have already reached its

optimal size. For ex in Table 3.2, cod-rna has an optimal size of 10.

For each dataset, the best improvement across different sizes is shown underlined.

The horizontal line separates binary datasets from multiclass datasets.

This data is also visualized in Figure 3.10. The x-axis shows a scaled version of

the actual tree depths for easy comparison: if the largest actual tree depth explored is

ηmax for a dataset, then a size η is represented by η/ηmax. This allows us to compare

a dataset like cod-rna, which only has models up to a size of 10, with covtype, where

model sizes go all the way up to 15.

We observe significant improvements in the F1-score for at least one model size for

majority of the datasets. The best improvements themselves vary a lot, ranging from

0.71% for phishing to 181.33% for connect-4. More so, these improvements seem to

happen at small sizes: only one best score - for covtype.binary - shows up on the right

half of Table 3.2. This is inline with Equations 3.3 and 3.4: beyond a model size η′,

δF1 = 0%.

It also seems that we do much better with multiclass data than with binary classes.

Because of the large variance in improvements, this is hard to observe in Figure 3.10.

However, if we separate the binary and multiclass results, as in Figure 3.11, we note

71

0.2 0.4 0.6 0.8 1.0
normalized size

0

25

50

75

100

125

150

175

%
 im

pr
ov

em
en

t (
te

st
)

Decision Tree
cod-rna
ijcnn1
higgs
covtype.binary
phishing
a1a
pendigits
letter
Sensorless
senseit_aco
senseit_sei
covtype
connect-4

Figure 3.10: Improvement in F1 score on test with increasing size. Data in Table 3.2.

that there are improvements in both the binary and multiclass cases, and the magnitude

in the latter are typically higher (note the y-axes). We surmise this happens because, in

general, DTs of a fixed depth have a harder problem to solve when the data is multiclass,

providing our algorithm with an easier baseline to beat.

Class imbalance itself doesn’t seem to play a role. As per Table 3.1, the datasets with

most imbalance are ijcnn1, covtype, connect-4, for which we see best improvements of

12.91%, 99.72%, 181.33% respectively.

(a) binary datasets (b) multiclass datasets

Figure 3.11: Performance on (a) binary vs (b) multi-class classification problems using CART. This is
an elaboration of Figure 3.10.

Figure 3.12 shows the behavior of po, only for the datasets where our models have

grown close to the optimal size. Thus, we exclude ijcnn1, a1a, covtype, connect-4

(the last column in Table 3.2 for these datasets are either empty or tending to 0). We

observe that indeed po → 1 as our model grows to the optimal size. This empirically

72

validates our hypothesis from Section 3.1.1, that smaller models prefer a distribution

different from the original distribution to learn from, but the latter is optimal for

larger models. And we gradually transition to it as model size increases.

Demonstrating this effect is a key contribution of our work.

Figure 3.12: Variation of po with increasing model size.

We are also interested in knowing what the depth-distribution IBMM looks like.

This is challenging to visualize for multiple datasets in one plot, since we have an

optimal IBMM learned by our optimizer, for each model size setting. We summarize

this information for a dataset in the following manner:

1. Pick a sample size of N points to use.

2. We allocate points to sample from the IBMM for a particular model size, in pro-

portion of δF1. For instance, if we have experimented with 3 model sizes, and

δF1 are 7%, 11% and 2%, we sample 0.35N, 0.55N and 0.1N points respectively

from the corresponding IBMMs.

3. We fit a Kernel Density Estimator (KDE) over these N points, and plot the KDE

curve. This plot represents the IBMM across model sizes for a dataset weighted

by the improvement seen for a size.

N should be large enough that the visualization is robust to sample variances. We

use N = 10000.

73

Figure 3.13 shows such a plot for DTs. The x-axis represents the depth of the

density tree normalized to [0, 1]. The smoothing by the KDE causes some spillover

beyond these bounds.

Figure 3.13: Distribution over levels in density tree(s). Aggregate of distribution over different model
sizes.

We observe that, in general, the depth distribution is concentrated either near the

root of a density tree, where we have little or no information about class boundaries and

the distribution is nearly identical to the original distribution, or at the leaves, where we

have complete information of the class boundaries. An intermediate depth is relatively

less used. This pattern in the depth distribution is surprisingly consistent across all the

models and datasets we have experimented with. We hypothesize this might be because

of the following reasons:

1. The information provided at an intermediate depth - where we have moved away

from the original distribution, but have not yet completely discovered the class

boundaries - might be relatively noisy to be useful.

2. The model can selectively generalize well enough from the complete class bound-

ary information at the leaves.

Note that while fewer samples are drawn at intermediate depths, the number is not

always insignificant - as an example, see pendigits in Figure 3.13; hence using a distri-

bution across the height of the density tree is still a useful strategy.

74

Table 3.3: Classification Results with LPMs. Values indicate improvements δF1, averaged over five
runs. Underlined entries denote the best improvement for a dataset.

terms = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

datasets

cod-rna 6.24 13.68 20.12 22.46 22.95 30.04 11.66 3.90 - - - - - - -
ijcnn1 6.40 3.54 1.39 2.06 3.18 2.08 2.15 3.04 3.22 3.25 2.93 3.22 2.73 3.28 3.10
higgs 13.49 10.36 7.94 4.52 5.29 4.10 4.26 2.47 2.82 2.99 3.61 2.62 2.70 2.31 1.99
covtype.binary 24.30 22.99 25.31 11.87 7.06 7.25 4.50 3.65 5.86 5.44 6.18 6.01 6.09 5.81 5.23
phishing 0.00 1.11 1.40 1.66 1.84 2.17 2.17 1.08 0.81 0.68 0.63 0.51 0.64 0.87 1.84
a1a 0.00 8.50 21.15 21.26 18.22 14.65 6.10 4.79 7.33 7.40 2.96 5.76 5.41 3.99 3.91

pendigits 8.40 9.31 9.87 6.91 8.74 4.00 4.15 0.91 1.12 0.47 0.49 0.28 1.00 0.50 0.59
letter 11.76 9.22 19.06 10.39 10.50 3.29 2.60 2.19 2.06 2.90 2.43 2.21 3.62 4.93 4.83
Sensorless 69.62 56.36 28.76 11.73 14.48 14.07 15.33 23.07 20.56 24.61 27.08 30.47 39.85 40.88 38.90
senseit_aco 4.51 59.23 29.82 19.38 16.72 11.30 11.79 8.18 5.57 4.39 3.50 2.79 2.84 1.39 1.76
senseit_sei 147.09 46.02 18.89 7.68 2.54 0.96 1.11 1.38 0.95 1.26 1.12 1.36 1.34 0.31 0.45
covtype 27.47 20.16 6.15 4.95 2.24 6.82 2.77 5.00 7.56 7.11 6.90 8.07 7.36 9.17 8.60
connect-4 33.47 18.24 18.19 11.41 6.14 3.78 4.79 3.85 4.60 3.49 3.17 1.87 1.92 0.66 2.34

The results for LPM are shown in Table 3.3. The improvements look different

from what we observed for DT, which is to be expected across different model families.

Notably, compared to DTs, there is no prominent disparity in the improvements between

binary class and multiclass datasets (senseit_sei seems to be an exception). Since the

LPM builds one-vs-rest binary classifiers in the multiclass case, and the size restriction

- number of terms - applies to each individually, this intuitively makes sense. This

is unlike DTs where the size constraint was applied to a single multiclass classifier.

However, much like DTs, we still observe the pattern of the greatest improvements

occurring at relatively smaller model sizes.

Figure 3.14 shows the plots for improvement in the F1-score and the weighted depth

distribution. The depth distribution plot displays concentration near the root and the

leaves, similar to the case of the DT in Figure 3.13.

Note that unlike the case of the DT, we haven’t determined how many terms the

optimal model for a dataset has; we explore up to min(d, 15). Nevertheless, as in the

case of DTs, we note the pattern that the best improvements typically occur at smaller

sizesHere too, class imbalance doesn’t seem to play a role (datasets with most imbal-

ance - ijcnn1, covtype, connect-4 - show best improvements of 6.4%, 27.47%, 33.47%

respectively.

75

Figure 3.14: Linear Probability Model: improvements and the distribution over depths of the density
trees.

3.3.6 Statistical Significance

We perform the Wilcoxon signed-rank test (Wilcoxon, 1945) to measure statistical sig-

nificance of the δF1 scores presented in the previous section. These are shown in

Figure 3.15. We use this test as it has been shown to be useful in comparing classifiers

(Demšar, 2006; Benavoli et al., 2016; Japkowicz and Shah, 2011). The test setup is as

follows:

1. We compare the classifiers learned by our technique with the baseline, for a given

range of model sizes. Separate tests are performed for different model size ranges

since size strongly influences δF1.

2. Normalized model sizes are used for ease of comparison with Figure 3.10 and

Figure 3.14. Binning of model sizes is done using Sturges rule (Sturges, 1926).

3. The one-sided version of the paired test is performed for each bin, where pairs of

scores F1baseline and F1new for a dataset, for models with sizes assigned to the

bin, are compared. In cases were where multiple model sizes for a dataset fall

within the same bin, F1baseline and F1new are first averaged and then compared.

4. The following hypotheses are tested:

• H0, null hypothesis: accuracies of models trained using density trees are

not better.

• H1, alternate hypothesis: accuracies of models trained using density trees

are better.

76

p-values are shown for each bin. Small p-values favor H1, i.e., our algorithm.

5. Scores of δF1 = 0 are split equally between positive and negative ranks13.

0.11 0.18 0.26 0.34 0.42 0.49 0.57 0.65 0.73 0.81 0.88 0.96
normalized model size (12 bins)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

p-
va

lu
e,

 H
0:

or
a

is
no

t b
et

te
r

Linear Probability Model

0.04 0.12 0.21 0.29 0.38 0.46 0.54 0.62 0.71 0.79 0.88 0.96
normalized model size (12 bins)

0.000

0.002

0.004

0.006

0.008

0.010

p-
va

lu
e,

 H
0:

or
a

is
no

t b
et

te
r

Decision Tree

Figure 3.15: These plots show the p-values for the Wilcoxon signed-rank test, with the null hypothesis
H0: using density trees do not produce better F1 test scores. The bin boundaries are selected
using the Sturges rule (Sturges, 1926). Low p-values favor our algorithm.

We observe that the improvements from using our technique are indeed significant

for most model sizes for either model, as measured across multiple datasets.

3.3.7 Effect of Model Capacity

An interesting question to ask is how, if at all, the bias of the model family of F in

Algorithm 7, influences the improvements in accuracy. We cannot directly compare

DTs with LPMs since we don’t know how to order models from different families: we

cannot decide how large a DT to compare to a LPM with, say, 4 non-zero terms.

To answer this question we look at GBMs where we identify two levers to control

the model size. We consider two different GBM models - with the max_depth of base

classifier trees as 2 and 5 respectively. The number of boosting rounds is taken as

the size of the classifier and is varied from 1 to 10. We refer to the GBMs with base

classifiers with max_depth = 2 and max_depth = 5 as representing weak and strong

model families respectively. We use the LightGBM library (Ke et al., 2017) for our

experiments.

We recognize that qualitatively there are two opposing factors at play:
13The zplit option in https://numpy.org/doc/stable/reference/generated/

numpy.histogram_bin_edges.html is used.

77

https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html

Table 3.4: Classification Results with GBMs. Both F1new and δF1 are shown. Please see text for
explanation of the highlighting scheme.

boosting rounds = 1 2 3 4 5 6 7 8 9 10

datasets max depth score type

Sensorless 2 F1new 0.76 0.77 0.78 0.80 0.80 0.80 0.81 0.81 0.81 0.81
δF1 3.19 3.35 3.10 5.05 4.12 1.75 3.21 1.96 1.90 2.43

5 F1new 0.91 0.92 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.95
δF1 0.29 0.25 0.16 0.40 0.00 0.18 0.36 0.30 0.00 0.26

senseit_aco 2 F1new 0.22 0.24 0.31 0.37 0.52 0.59 0.61 0.62 0.63 0.63
δF1 0.00 6.81 41.41 67.44 69.29 9.39 6.83 4.70 2.33 1.10

5 F1new 0.22 0.30 0.42 0.51 0.58 0.62 0.65 0.66 0.67 0.68
δF1 0.00 36.80 85.44 46.66 9.72 2.91 1.17 0.34 0.39 0.40

senseit_sei 2 F1new 0.60 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.62
δF1 171.08 171.28 173.05 174.66 173.47 165.00 78.73 48.52 24.61 17.63

5 F1new 0.62 0.64 0.64 0.64 0.64 0.65 0.64 0.64 0.65 0.66
δF1 180.46 185.59 186.24 181.13 64.66 28.13 11.30 3.11 1.37 0.59

See Table A.1 for complete data, Fig 3.16 for plot.

1. A weak model family implies it might not learn sufficiently well from the samples

our technique produces. Hence, we expect to see smaller improvements than

when using a stronger model family.

2. A weak model family implies there is a lower baseline to beat. Hence, we expect

to see larger improvements.

We present an abridged version of the GBM results in Table 3.4 in the interest of

space. The complete results are made available in Table A.1 in the Appendix. We

present both the improvement in the F1 score, δF1, and its new value, F1new.

Figure 3.16 shows improvements for GBMs of different maximum depths for its

trees: for (a) max_depth = 2 and for (b), max_depth = 5.

(a) max_depth=2 (b) max_depth=5

Figure 3.16: GBMs with (a) max_depth = 2 and (a) max_depth = 5. Size is the number of boosting
rounds. Note the relatively faster drop in improvements in (b).

The cells highlighted in blue in Table 3.4 are where the GBM with max_depth = 2

showed a larger improvement than a GBM with max_depth = 5 for the same number

of boosting rounds. The cells highlighted in red exhibit the opposite case. Clearly,

78

both factors manifest themselves. Comparing the relative improvement plots in Figure

3.16, we see that improvements continue up to larger sizes when max_depth = 2 (also

evident from Table 3.4). This is not surprising: we expect a stronger model to extract

patterns from data at relatively smaller sizes, compared to a weaker model.

Observe that in Table 3.4, for the same number of boosting rounds, the new scores

F1new for the weaker GBMs are up to as large as the scores for the stronger GBMs.

This is to be expected since our sampling technique diminishes the gap between rep-

resentational and effective capacities (when such a gap exists); it does not improve the

representational capacity itself. Hence a weak classifier using our method is not ex-

pected to outperform a strong classifier that is also using our method.

3.3.8 Summary

Summarizing our analysis above:

1. We see significant improvements in the F1 score across different combinations

of model families, model sizes and datasets with different dimensionalities and

label distributions.

2. Since in the DT experiments, we have multiple datasets for which we reached the

optimal tree size, we were able to empirically validate the following related key

hypotheses:

(a) With larger model sizes the optimal distribution tends towards the original

distribution. This is conveniently indicated with po → 1 as η increases.

(b) There is model size η′, beyond which δF1 ≈ 0%.

3. For all the model families experimented with - DTs, LPMs, GBMs (results in

Table A.1) - the greatest improvements are seen for relatively smaller model sizes.

4. In the case of DTs, the improvements are, in general, higher with multiclass than

binary datasets. We do not see this disparity for LPMs. We believe this happens

because of our subjective notion of size: in the case of DTs there is a single tree to

79

which the size constraint applies, making the baseline easier to beat for multiclass

problems; while for LPMs it applies to each one-vs-rest linear model.

Its harder to characterize the behavior of the GBMs in this regard, since while the

base classifiers are DTs, each of which is a multiclass classifier, a GBM maybe

comprised of multiple DTs.

5. The GBM experiments give us the opportunity to study the effect of using model

families, F , of different strengths. We make the following observations:

(a) We see both these factors at work: (1) a weaker model family has an easier

baseline to beat, which may lead to higher δF1 scores relative to using a

stronger model family (2) a stronger model family is likely to make better

use of the optimal distribution, which may lead to higher δF1 scores relative

to using a weaker model family.

(b) For a stronger model family, the benefit of using our algorithm diminishes

quickly as model size grows.

(c) While the improvement δF1 for a weaker family may exceed one for a

stronger family, the improved score F1new may, at best, match it.

6. The depth distribution seems to favour either nodes near the root or the leaves,

and this pattern is consistent across learning algorithms and datasets.

Given our observations, we would recommend using our approach as a pre-processing

step for any size-limited learning, regardless of whether the size is appropriately small

for our technique to be useful or not. If the size is large, then our method will return to

the original sample anyways.

3.4 Discussion

In addition to empirically validating our algorithm, the previous section also provided

us with an idea of the kind of results we might expect of it. Using that as a foundation,

we revisit some of our design choices.

80

Conceptually, Algorithm 7 consists of quite a few building blocks. Although we

have justified our implementation choices for them in Section 3.2, it is instructive to

look at some reasonable alternatives.

1. Since we use our depth distribution to identify the value of a depth ∈ Z≥0, a

valid question is why not use a discrete distribution, e.g., a multinomial? Our

reason for using a continuous distribution is that we can use a a fixed number

of optimization variables to characterize a density tree of any depth, with just an

additional step of discretization. Also, recall that the depth distribution applies

to all density trees in the forest B, each of which may have a different depth.

A continuous distribution affords us the convenience of not having to deal with

them individually.

2. A good candidate for the depth distribution is the Pitman-Yor process (Pitman

and Yor, 1997) - a two-parameter generalization of the DP (recall, this has one

parameter: α). Considering our results in Figures 3.13 and 3.14 where most

depth distributions seem to have up to two dominant modes, we did not see a

strong reason to use a more flexible distribution at the cost of introducing an

optimization variable.

3. We considered using the Kumaraswamy distribution (Kumaraswamy, 1980) in-

stead of Beta for the mixture components. The advantage of the former is its

cumulative distribution function maybe be expressed as a simple formula, which

leads to fast sampling. However, our tests with a Python implementation of the

function showed us no significant benefit over the Beta in the SciPy package, for

our use case: the depth distribution is in one dimension, and we draw samples in

batches (all samples for a component are drawn simultaneously). Consequently,

we decided to stick to the more conventional Beta distribution14.

14Interestingly, another recent paper on interpretability does use the Kumaraswamy distribution (Bast-
ings et al., 2019).

81

3.5 Conclusion

The technique presented in this chapter addresses the trade-off between interpretability

and accuracy. The approach we take is to identify an optimal training distribution that

often dramatically improves model accuracy for an arbitrary model family, especially

when the model size is small. We believe this is the first such technique proposed. We

have framed the problem of identifying this distribution as an optimization problem,

and have provided a technique that is empirically shown to be useful across multiple

learning algorithms and datasets.

This technique possesses multiple salient properties:

1. The optimization step uses a fixed set of eight variables, irrespective of the di-

mensionality of the data.

2. A reasonable choice of box constraints over the search space produces good re-

sults across datasets.

3. The technique is model-agnostic, allowing for use with an arbitrary interpretable

model family.

4. Its a framework, which leaves open the possibility of conveniently improving

upon it as better optimizers become available.

In addition to the above, we believe this work is innovative in the following ways:

1. It highlights of a “small model effect”: the optimal training is different from the

test distribution at small model sizes. This challenges the conventional wisdom

that the training data must be drawn from the same distribution as the test data.

2. Use of the “depth distribution” over a DT to (a) control the extent of information

about class boundaries (b) reduce the size of the optimization search space.

The results presented here suggest some novel applications and directions for future

work - these are discussed in Section 5.3.

82

CHAPTER 4

Compact Models using Probabilistic Oracles

Since we use a forest of density trees to guide the training of an interpretable model,

it is reasonable to assume that their classification accuracy limits the accuracy of the

resultant interpretable model. This naturally leads us to ask: can we use an arbitrarily

powerful guiding model? We propose a technique to do so in this chapter, answering

the question in the affirmative.

At a high-level, our technique consists of the following steps:

1. We first learn an oracle: a highly accurate, possibly black-box, probabilistic

model trained on the training data. It produces a probability distribution over

labels for an instance x:

p(yi|x),∀yi ∈ {1, 2, ..., C} (4.1)

Here, {1, 2, ..., C} is the set of labels. The probabilities p(yi|x) may be informally

construed as confidences of predicting labels yi for instance x.

2. Next, we try to incorporate the oracle’s implicit representation of class boundaries

into our interpretable model. The mechanism used is to sample points from the

training data based on a learned distribution over the uncertainty in the oracle’s

predictions1.

3. The interpretable model is then trained on this sample.

We empirically show that this technique also leads to significant improvements in the

classification accuracy, especially when the interpretable model size is small. Addition-

ally, these improvements are greater than when using density trees.

1This is different from Knowledge Distillation; discussed in Section 1.6.

83

Figure 4.1: A demo of our technique using a GBM as an oracle. See text for explanation.

We visualize the use of such on oracle in Figure 4.1. The two-label balanced dataset

we want to classify is shown in Figure 4.1(a). Figure 4.1(b) visualizes the generalization

learned by a Gradient Boosted Model (GBM) using this dataset. This serves as our

oracle with an F1 score of = 0.84. Figure 4.1(c) shows what a CART (Breiman et al.,

1984) decision tree of depth = 5 learns; here F1 = 0.63. Finally, Figure 4.1(d) shows

what a CART decision tree of depth = 5 learns, when we supply the GBM as an oracle

to our technique. There is a significant improvement with F1 = 0.77. Visually, we see

the boundaries approximating the ones learned by the oracle in Figure 4.1(b).

The key contributions of the work presented in this chapter are:

1. The proposed algorithm identifies a sampling distribution over a training dataset

that is optimal in terms of achieving high test accuracy, for a provided model

family and model size.

2. We confirm the following “small model effect”: in general, the optimal train-

ing distribution is not the same as the test distribution, especially at small model

sizes. As model size increases the optimal training distribution progressively ap-

proximates the test distribution.

84

3. This algorithm is model-agnostic in that both the interpretable model and the or-

acle may belong to arbitrary model families, e.g., these can be Linear Probability

Model and a Random Forest, or even a decision tree and a Gated Recurrent Net-

work (GRU) respectively. It also admits a flexible notion of model size, e.g., depth

of a decision tree, number of terms with non-zero coefficients in a linear model,

number of trees and maximum depth per tree in a GBM model.

4. The sampling algorithm internally solves an optimization problem to identify the

optimal distribution; however, in our formulation only a fixed number of seven

optimization variables are required irrespective of the dimensionality of the data.

5. The proposed technique may be used as a tool to identify and study the optimal

training data for a given data size, for a model.

Contrasted with the density tree approach, our contributions are:

1. In general, improvements in model accuracy are greater.

2. The ability to use an oracle from an arbitrary model family results in the practical

benefit that it need not be learned from scratch. If there is already a pre-trained

probabilistic model like a deep neural network available for a dataset, it may be

conveniently plugged into our algorithm as-is.

3. The density trees and the interpretable model had to be constructed on the same

(or very similar) feature space. Here, this is not required, and the oracle might

be a sequence model that classifies text, while the interpretable model may be an

n-gram based classifier. This considerably broadens the scope of our technique.

We look at an example in Section 4.3.3.1.

The remainder of the chapter is structured as follows: in Section 4.1, we present

an overview of the work. Section 4.2 discusses the algorithm in detail while Section

4.3 presents extensive experimental validation using real-world datasets. In Section 4.4

we discuss the results and their implications. Section 4.5 concludes the chapter with a

summary of our contributions. A discussion on future work is deferred to Section 5.3.

85

4.1 Overview

In this section we present the intuition behind the proposed technique, a formal state-

ment of the problem, and then a discussion of where our technique fits in within the

standard model-building workflow. Finally, we establish the terminology relevant to

the remaining chapter.

For a discussion on previous work, see Section 1.6, where we differentiate our tech-

nique with Knowledge Distillation, Active Learning, Transfer Learning and Coreset

identification.

4.1.1 Intuition

Our intuition here builds upon certain observations from density tree based technique

discussed in the previous chapter. There, to find an optimal training distribution, we

learned two kinds of distributions for a density tree:

1. A pdf along the height of the tree.

2. A pmf across nodes at a particular depth. Although every depth has its own pmf ,

they are parameterized by a common parameter λ.

Figure 4.2 visualizes these.

Figure 4.2: A schematic showing the two distributions we learn for a density tree - a pdf along the height
and a pmf across the nodes at a particular depth.

86

To extend this technique, we need an arbitrary probabilistic model to provide infor-

mation equivalent to that encoded by these distributions. We deconstruct this require-

ment as follows:

1. The equivalence that’s probably easiest to see is for the information available

at the leaf level. Regions with small volumes that indicate proximity to a class

boundary may be substituted by regions of high prediction uncertainty.

Figure 4.3 compares (a) the leaf-level tessellation of a density tree with (b) high

uncertainty regions (darker in shade) obtained using a probabilistic SVM.

Figure 4.3: (a) Tessellation found by a density tree - this is a reproduction of Figure 3.3. (b) Uncertainty
scores from a SVM are shown, where darker shades imply greater uncertainty. Note how
low volume regions in (a) correspond to darker regions in (b).

2. At the root level there is no class boundary information available and we have

just one node to sample from; this is trivially approximated by the original distri-

bution.

3. There is probably no general model artifact that directly corresponds to the in-

termediate depths. However, recall our observation that in general, their con-

tribution is relatively less significant than the root and leaf levels. Figure 4.4

reproduces a plot from the previous chapter that shows some learned depth dis-

tributions - note the low contributions from the intermediate depths.

This suggests the possibility that we might ignore modeling this specific aspect

of density trees. It might seem that this is a cost we must pay for generalizing

87

Figure 4.4: Distribution over levels in density tree(s) - this is a reproduction of Figure 3.13. This plot
suggests that in general, the intermediate depths are not as important as the root and leaf
level distributions.

our technique, but our empirical validation (Section 4.3.2) demonstrates no nega-

tive impact. On the contrary, the technique proposed in this chapter outperforms

density trees.

4. The pmf distribution for nodes may be replaced by a continuous distribution over

uncertainty values.

5. The following parameters are not specific to density trees and therefore, may be

retained as-is:

• Ns: number of instances to sample from the training dataset.

• po: fraction of samples from the original distribution.

These equivalences (summarized in Table 4.1) inform the key intuition behind this

work: the problem of learning density trees may be extrapolated to learning a distribu-

tion over uncertainty scores. Of course, we validate the resulting technique rigorously

in Section 4.3.2.

88

Table 4.1: Information sources compared across density tree and oracle based approaches.

Density Tree Oracle
1 Original distribution,

controlled by po
Original distribution, controlled by po

2 Root node Approximated by original distribution,
controlled by po

3 Intermediate depths Ignored, owing to low impact
4 Leaf nodes Uncertainty information

4.1.2 Formal Statement

We extend the terminology of the previous chapter (Section 3.1.4) to formalize the

outcomes here. Let:

1. accuracy(M, p) be the classification accuracy of modelM on data represented by

the joint distribution p(X, Y) of instances X and labels Y . The term “accuracy”

is used in a generic sense to represent prediction accuracy; depending on the

application, this might be F1-score, AUC, lift, etc.

2. trainF ,f (p, η) produce a model obtained using a specific training algorithm f ,

e.g., CART (Breiman et al., 1984), for a given model family F , e.g., DTs, where

the model size is fixed at η, e.g., trees with depth = 5. p represents the joint

distribution p(X, Y) of instances X and labels Y . trainF ,f (p, ∗) denotes there

are no constraints imposed on the model size.

Then, we claim, and empirically demonstrate, that the interpretable model trained

on the sample generated by our learned distribution is at least as accurate as one

learned on the original training data, and is up to as accurate as the oracle:

accuracy(MIpη, p) / accuracy(MIqη, p) / accuracy(MOp∗, p) (4.2)

where,

MIpη = trainI,g(p, η)

MIqη = trainI,g(q, η)

MOp∗ = trainO,h(p, ∗)

89

Here,

• For a model named MABC , this is what the subscripts denote:

1. A signifies if the model is an oracle or an interpretable model, with symbols

O and I respectively.

2. B denotes the training distribution.

3. C is the model size.

• g and h represent specific training algorithms, e.g., CART for DTs, rmsprop

(Graves, 2013) for neural networks. These are omitted in model names for brevity,

and are made clear by context.

• We refer to MIpη as the “baseline model”, since this is the standard way of train-

ing a model against which we evaluate our approach.

• p and q both denote joint distributions of X and Y . p(X, Y) is the distribution we

are provided, and all our models use this as the test distribution. q(X, Y) is the

distribution we learn using the uncertainty scores provided by the oracle MOp∗.

Note that, typically, the train and test distributions are identical for a model, as in

the terms accuracy(MIpη, p) and accuracy(MOp∗, p). However, for the middle

term in Equation 4.2 - accuracy(MIqη, p) - the train and test distributions, q and

p respectively, are different.

• The use of the “/” symbol emphasizes these relationships are validated empiri-

cally using samples from the corresponding distributions p and q.

We also show that Equation 4.2 can be further refined into two size-regimes: the

interpretable model trained on the new sample is more accurate than the baseline model

only until a model size η∗. At sizes greater than η∗ the model performances are equal:

accuracy(MIpη, p) < accuracy(MIqη, p) / accuracy(MOp∗, p), when η ≤ η∗ (4.3)

accuracy(MIpη, p) = accuracy(MIqη, p) / accuracy(MOp∗, p), when η > η∗ (4.4)

90

Figure 4.5: Modified workflow. Arrows denote flow of information. Our samplerB receives uncertainty
information from the oracle C, which it then uses to iteratively learn a distribution, using the
performance of A as its objective function.

4.1.3 Workflow

Figure 4.5 compares (a) a standard workflow to our (b) model building workflow. The

arrows represent flow of information. In the standard setup, a model training algorithm,

A, accepts training data and produces a model that maximizes some pre-defined predic-

tion accuracy metric. Our workflow adds two new components - the adaptive sampling

technique, B, and an oracle, C. The oracle provides information to the sampling tech-

nique, that enables it to identify a potentially “better” sample from the training data for

input to algorithm A. Here, a “better” sample is the one that leads A to produce a model

with the higher accuracy (measured on a held-out dataset), compared to training on the

provided data as-is. Determining this sample is an iterative process; at each iteration,

B modifies the sample based on the current accuracy of the model from A. The in-

formation from the oracle is conveyed to the sampling technique only once, before the

beginning of the iterative interaction between A and B.

4.1.4 Terminology and Notation

We first define the notion of model size since it is critical for subsequent discussions.

Model size is a model parameter with the following properties:

1. model_size ∝ bias−1

2. The interpretability of a model decreases with increasing model size.

91

Only the first criteria above is required for using our technique. The second criteria

reflects the usefulness of the technique for interpretability.

It must be noted that the notion of model size is subjective. Consider a GBM with

DTs as base classifiers: here, the depth of the individual trees, or the number of trees, or

both collectively may be seen as representing size. Even for a given notion of size, the

value up to which a model is considered interpretable may be a matter of opinion. For

example, some might consider a DT with depth = 15 to be interpretable, while some

might decide depth = 10 to be the limit for interpretability. However, as long as the

notion of size satisfies the criteria above, the discussion in this chapter applies.

We now introduce the notations used:

1. We denote a dataset, D, by a set of instance-label pairs, i.e., D = {(x1, y1),

(x2, y2), ..., (xN , yN)}, where xi is the feature vector representing an instance and

yi is its corresponding label.

Sometimes, we use multisets, when instance-label pairs may be repeated. Such

usage is explicitly called out.

2. While we have referred earlier to the joint distribution of instances and labels,

e.g., p(X, Y) in Equation 4.2, this is understood to represent the dataset that we

are actually given, in the form of a finite number of instance-label pairs.

3. We use the term original, as in original distribution or original data to denote

the data that we are given. This is in contrast with samples we generate. The

distribution of test datasets or held-out datasets is the original distribution for all

models discussed in this chapter.

4. The terms accuracy() and trainF ,f () are overloaded to accept a dataset as input

in lieu of a distribution:

• accuracy(M,D) denotes the accuracy of model M with the dataset D as

the test set.

• trainF ,f (D, η) denotes a specific training algorithm f , for a model family

F , that accepts as input a dataset D, and trains a model of size η.

92

5. The terms pdf and pmf denote probability density function and probability mass

function respectively. The term “probability distribution” may refer to either, and

is made clear by the context.

Next, we look at our methodology.

4.2 Methodology

We describe our methodology in this section. We begin with the intuition, and then look

at the algorithm and various implementation details.

4.2.1 Measuring Uncertainty

We begin by discussing the measurement of uncertainty, since our technique critically

depends on this quantity. We denote the uncertainty of prediction by a model M on

an instance x by uM(x), where uM(x) ∈ [0, 1]. A good uncertainty metric for our

application (a) should not exclusively consider the confidence of the predicted label (b)

should result in a high value even if the model is uncertain between two labels in a

multi-class problem. We consider the following popular uncertainty metrics:

1. Margin Uncertainty (Scheffer et al., 2001): This is computed as:

uM(x)← 1− (pC1 − pC2) (4.5)

Here, pC1 and pC2 denote the probabilities of the most confident and next most

confident classes, provided by model M for instance x. Lower differences be-

tween the top two probabilities lead to higher scores for this metric.

2. Least confident: we calculate the extent of uncertainty w.r.t. the class we are

most confident about:

uM(x) = 1− max
yi∈{1,2,...,C}

M(yi|x) (4.6)

93

Here, we have C classes, and M(yi|x) is the probability score produced by the

model2.

3. Entropy: this is the standard Shannon entropy measure calculated over class

prediction confidences:

uM(x) =
∑

yi∈{1,2,...,C}

−M(yi|x) logM(yi|x) (4.7)

We do not use the least confident metric since it completely ignores confidence

distribution across labels. While entropy is quite popular, and does take into account

the confidence distribution, we do not use it since it reaches its maximum for only points

for which the classifier must be equally ambiguous about all labels; for datasets with

many labels (one of our experiments uses a dataset with 26 labels - see Table 4.2) we

may never reach this maximum. The margin uncertainty metric satisfies all our criteria,

and this is what we use.

We calibrate (Platt, 1999) the oracles for reliable probability estimates.

Fig 4.6 visually shows what uncertainty values look like for the different metrics.

Panel (a) displays a dataset with 4 labels. A probabilistic linear SVM is learned on

this, and uncertainty scores corresponding to the metrics “margin”, “least confident”

and “entropy” are visualized in panels (b), (c) and (d) respectively. Darker shades of

gray correspond to high uncertainty. Observe that only the “margin” metric in panel (b)

achieves scores close to 1 at the two-label boundaries.

There is no best uncertainty metric in general, and the choice is usually application

specific (Settles, 2009).

4.2.2 Density Representation for Uncertainty

Since we want to learn a distribution over uncertainties, p(uM(x)) needs to have a

flexible representation. A desiderata for such a distribution is:

2The possibly confusing name “least confident” for this idea originated within the context
of uncertainty sampling, where we are interested in sampling the most uncertain point, x∗ =
arg minx[maxyi∈{1,2,...,C}M(yi|x)], which may be considered to be the instance with the “least most
confident label”.

94

(a) (b)

(c) (d)

Figure 4.6: Visualizations of different uncertainty metrics. (a) shows a 4-label dataset on which linear
SVM is learned. (b), (c), (d) visualize uncertainty scores based on different metrics, as per
the linear SVM, where darker shades imply higher scores.

1. We want the distribution to be able to assume an arbitrary “shape”, unlike, say

using a normal distribution that is unimodal, and the mode is centered.

2. It should be defined over the bounded interval [0, 1] since uM(x) ∈ [0, 1].

3. A fixed set of parameters is preferred over a conditional parameter space.

We list this requirement since the parameters of this distribution are to be learned

via optimization, and there are many more optimizers that can handle fixed than

conditional parameter spaces. This affords us the flexibility of exploring a much

wider variety of optimizers. Further discussed in Section 4.2.4.

As we have seen in the previous chapter, the Infinite Beta Mixture Model (IBMM)

satisfies the above requirements.

We briefly review it here: the IBMM is a Dirichlet Process (DP) mixture model

with Beta components. A mixture model allows us to model an arbitrary distribution,

satisfying our first requirement. UsingBeta components enables support for a bounded

interval - this satisfies our second requirement. The DP is described by the concentra-

tion parameter α ∈ R>0, which identifies the components that have at least one point

assigned to them.The shape parameters of all the Beta components are drawn from

95

shared prior distributions, which themselves are Beta distributions. Use of a DP, with

shared priors, gives us a fixed parameter space; this satisfies our third requirement.

This is how we sample Ns points, from a dataset D, using an oracle MO:

1. Determine partitioning over theNs points induced by theDP . We use Blackwell-

MacQueen sampling (Blackwell and MacQueen, 1973) for this. Let’s assume this

step produces k partitions {c1, c2, ..., ck} and quantities ni ∈ N where
∑k

i=1 ni =

N . Here, ni denotes the number of points that belong to partition ci.

2. We determine the Beta(Ai, Bi) component for each ci. We assume the priors for

theBeta parameters are also represented byBeta distributions, i.e.,Ai ∼ scale×

Beta(a, b) and Bi ∼ scale×Beta(a′, b′). Since samples from the standard Beta

are within [0, 1], we use a parameter scale as a common multiplier to obtain a

wide range of Ai, Bi.

Thus we have exactly two prior Beta distributions associated with our IBMM.

Here, a, b, a′, b′ are positive reals.

3. Repeat for each ci: for each instance-label pair (xj, yj) in our training dataset,

we calculate the oracle uncertainty score, uMO
(xj). We then calculate pj =

Beta(uMO
(xj)|Ai, Bi). We scale the probabilities across instances to sum to 1.

These quantities are used as sampling probabilities for various (xj, yj), and ni

points are sampled with replacement based on them.

The parameters for the IBMM are collectively denoted by Ψ = {α, a, b, a′, b′}. The

best values for Ψ are learned via an optimization process detailed in Section 4.2.3.

The above procedure is summarized in Algorithm 8. Note that temp and D′ are

multisets in the algorithm, since we sample with replacement. Accordingly, line 13

uses the multiset sum,]: if (xi, yi) occurs m times in D′ and n times within temp,

then D′ ← D′] temp has m+ n occurrences of (xi, yi).

96

Algorithm 8: Sample based on uncertainties and Ψ

Data: Sample size Ns, oracle MO, dataset
D = {(x1, y1), (x2, y2), ..., (xN , yN)}, IBMM parameters
Ψ = {α, a, b, a′, b′}

Result: Sample D′, where |D′| = Ns

1 D′ = {} // assumed to be a multiset

2 {(c1, n1), (c2, n2), ..., (ck, nk)} ← partition Ns using the DP // Here∑k
i=1 ni = Ns.

3 for i← 1 to k do
4 Ai ∼ scale×Beta(a, b)
5 Bi ∼ scale×Beta(a′, b′)
6 for j ← 1 to N do
7 pj ← Beta(uMO

(xj);Ai, Bi)
8 end
9 for j ← 1 to N do

10 p′j ← c · pj, where c = 1/
∑N

j=1 pj // normalize the

probabilities

11 end
12 temp← sample with replacement ni instance-label pairs based on p′j

// assumed to be a multiset

13 D′ ← D′] temp //] is the multiset sum

14 end
15 return D′

4.2.3 Learning Interpretable Models using an Oracle

We tie together the various individual pieces in this section. We have already discussed

the parameters Ψ for the IBMM. Our technique uses two additional parameters:

1. po ∈ [0, 1], proportion of instance-label pairs from the original training data. This

parameter serves two purposes: (1) it acts as a “shortcut” for the optimizer to

sample from the original distribution, as opposed to determining the right Ψ to

do so (2) the relationship of po and model size enables us to study the correlation

between model size and effectiveness of the original distribution during training.

2. Ns ∈ N, sample size. Since the sample size can have a significant effect on

model performance, we allow the optimizer to determine its best value. Ns is

constrained to be at least as large as what is needed for statistically significant

results.

The complete set of parameters is denoted by Φ = {Ψ, Ns, po}, where the IBMM

97

parameters are denoted by Ψ = {α, a, b, a′, b′}.

Our technique randomly initializes Φ, creates a sample based on Algorithm 8 and

the original training data (based on po), learns an interpretable model of size η on this

sample, and evaluates it on a validation set. Based on the validation score, an optimizer

modifies the parameters Φ, and repeats the process. Our stopping criteria is an iteration

budget T . Algorithm 9 lists these steps.

Algorithm 9: Learning interpretable model using oracle
Data: Dataset D, model size η, trainO,h(), trainI,g(), iterations T
Result: Optimal parameters Φ∗, test set accuracy stest at Φ∗, and interpretable

model M∗ at Φ∗

1 Create splits Dtrain, Dval, Dtest from D, stratified wrt labels
2 MO ← trainO,h(Dtrain, ∗)
3 for t← 1 to T do
4 Φt ← suggest(s1, ...st−1,Φ1, ...,Φt−1) // see text for

initialization at t = 1

// Note: Φt = {Ψt, Ns,t, po,t} where Ψt = {αt, at, bt, a
′
t, b
′
t}.

5 No ← po,t ×Ns,t

6 Nu ← Ns_t −No

7 Do ← uniformly sample, with replacement, No points from Dtrain

8 Du ← sample Nu points from Dtrain using Algorithm 8 with input
(Nu,MO, Dtrain,Ψt).

9 Ds ← Do]Du // Do, Du are assumed to be multisets

10 Mt ← trainI,g(Ds, η)
11 st ← accuracy(Mt, Dval)

12 end
13 t∗ ← arg maxt {s1, s2, ..., sT−1, sT}
14 Φ∗ ← Φt∗

15 M∗ ←Mt∗

16 stest ← accuracy(M∗, Dtest)
17 return Φ∗, stest, M∗

Some details to note in Algorithm 9:

1. Values at t = 1 are identical to the case of using density trees (Algorithm 7). Φ

is initialized as: α = 0.1, a = 1, b = 1, a′ = 1, b′ = 1, Ns = |Dtrain|, po = 1. The

values for α, a, b, a′, b′ are arbitrary, since setting po → 1 implies only the original

distribution is used for sampling. Given Ns = |Dtrain|, this setting mimics the

baseline, i.e., training the interpretable model without our algorithm, thus pro-

viding the optimizer with a good initial reference point in its search space. This

98

setting is not equivalent to baseline training because of differences in resources,

data and computational - detailed in Section 4.3.1.2.

2. The optimizer is represented by the function call suggest() which takes as in-

put all past parameter values and validation scores. suggest() denotes a generic

optimizer; not all optimizers require this extent of historical information.

3. While the training algorithm for the oracle, trainO,h() is taken as input, a pre-

constructed oracleMO may also be used. This would eliminate the oracle training

step in line 2.

4. accuracy() on the validation data, Dval, serves as both the objective and fitness

function.

5. Evaluation on the test set, Dtest is done only once, in line 16, with the model that

produces the best validation score.

6. Since we sample with replacement, both temporary datasetsDo andDu, procured

from uniformly sampling the original training data and sampling based on uncer-

tainties respectively, are multisets. Accordingly, line 9 uses the multiset sum

operator] to combine them.

7. Since the validation score st (line 11) needs to be reliable, in our implementation

we repeat lines 7-10 thrice and use the averaged validation score as st.

8. Class imbalance is accounted for in our implementation when training model Mt

in line 10. We either balance the data by sampling (this is the case with a Linear

Probability Model), or an appropriate cost function is used to simulate balanced

classes (this is the case with DTs and GBMs).

It is important to note here that Dval and Dtest are not modified by our algorithm in

any way, and therefore st and stest measure the accuracy on the original distribution.

Algorithm 9 presents the core contribution of the chapter. Quite significantly, the

optimization loop has a fixed set of seven variables, irrespective of the dimensionality

of the data; this makes our technique practical for use on real-world datasets.

Clearly, the choice of the optimizer suggest() is crucial - we discuss this next.

99

4.2.4 Choice of Optimizer

We begin by listing below the challenges faced by our optimizer:

1. Black-box objective function: Our objective function is accuracy(), which de-

pends on the interpretable model produced by trainI,g() in Algorithm 9. Since

we want our technique to be model agnostic, nothing is assumed about the form

of trainI,g(). This effectively makes our objective a black-box function.

2. Noisy objective function: The interpretable model is trained on a sample based

on the current parameters Φt. This implies two models constructed for the same

Φt may not be identical. There might be other sources of noise intrinsic to the

learning algorithm too, e.g., local search used for training.

3. Expensive objective function: Every evaluation of the objective function re-

quires an interpretable model to be trained, which is expensive. We want our

optimizer to be conservative in its calls to the objective function.

We use Bayesian Optimization (BO) to implement suggest(). This is probably not

surprising considering that we used BO for the density tree based approach where we

had similar challenges. We don’t review the choice of BO in detail here, and instead

refer the reader to Section 3.2.3. BO is reviewed in Section 2.1.

We briefly justify its compatibility to our problem. Since BOs construct their own

model of the response surface and optimize the corresponding surrogate objective, they

can optimize black-box functions (Requirement 1). They explicitly model uncertainty3

in observations, leading to robustness to noise (Requirement 2). Finally, BOs balance

exploitation and exploration to make well-informed decisions about the best point to

next evaluate - making it conservative in its calls to the objective function. We use

the Tree Structured Parzen Estimator (TPE) algorithm (Bergstra et al., 2011) because

of its low runtime complexity and popularity within the hyperparameter optimization

community. We use the implementation provided in the Hyperopt library (Bergstra

et al., 2013).
3The connotation of this term here is different from that in Section 4.2.1. Here, it denotes variance

in the response surface model. In Section 4.2.1, it quantified uncertainty in the predicted label of an
instance.

100

We again make a note of the fact that having a fixed parameter space for optimiza-

tion makes our technique a framework: any optimizer that satisfies the above criteria

may be used. For example, any of the BO algorithms from the black-box optimization

challenge, NeurIPS2020 (Turner et al., 2021), may be used to implement suggest() in

Algorithm 9. This enables us to make Algorithm 9 faster and better as newer optimizers

become available.

4.2.5 Smoothing the Optimization Landscape

A final but key consideration in our optimization is to make it easier to discover the

global maximum: Φ∗ in Algorithm 9. Since BOs model the response surface of the

actual objective function using a finite number of evaluations (st in Algorithm 9), a

certain degree of smoothness is assumed (Shahriari et al., 2016; Brochu et al., 2010).

Here, the optimization variables Φt influence the sampling in Algorithm 8, which

directly affects the score st that the BO consumes. Empirically, we have observed

that the distribution of uncertainty scores produced by an oracle do not always form

a smooth distribution. Consequently, neighboring values of Φ may pick drastically

different samples leading to large differences in st.

To address this, we “flatten” the distribution4 within [0, 1]. Our transformation is

simple: we divide the interval [0, 1] into B bins, and map approximately |Dtrain|/B un-

certainty scores to each bin, while maintaining order between the original and mapped

scores. Within a bin, the mapped scores are linearly spread across its range. This dis-

tributes the mapped scores approximately uniformly in the range [0, 1]. The algorithm

is detailed in Section A.7.

The alternative to flattening is to identify a suitable parameter for the BO algorithm,

e.g., a suitable kernel for Gaussian Process based BO. However, this introduces addi-

tional hyperparameters; hence we prefer flattening.

Figure 4.7 visualizes the process of flattening. The original and modified uncer-

4Distribution transformations have a long history in statistics, e.g., power transforms like the Box-
Cox (Box and Cox, 1964) and Yeo-Johnson (Yeo and Johnson, 2000) transforms. Within ML, Batch
Normalization (Ioffe and Szegedy, 2015) is a popular example of a distribution transformation applied to
a loss landscape (Santurkar et al., 2018).

101

tainty distributions for the datasets Sensorless and covtype.binary are shown

in Figure 4.7(a) and 4.7(b) respectively.

(b) covtype.binary, GBM(a) Sensorless, GBM

Figure 4.7: Example of curve-flattening, for datasets (a) Sensorless and (b) covtype.binary.
The uncertainty scores shown are obtained using the GBM oracle.

While Sensorless appears to have a non-smooth distribution, and flattening here

might help, this seems redundant for covtype.binary. However, since this step is

computationally inexpensive, we perform this for all our experiments, saving us the

effort of assessing its need. The effect of flattening in our experiments is discussed in

Section 4.4.

Our transformation is invertible, which is useful in analyzing the observations from

our experiments. Note however, it is not differentiable because of the discontinuities at

the bin-boundaries; we also don’t require this property.

The transformation affects line 7 in Algorithm 8. Instead of sampling based on the

actual oracle uncertainty scores:

pj ← Beta(uMO
(xj);Ai, Bi) (4.8)

we sample based on the transformed uncertainty scores, u′MO
(xj):

pj ← Beta(u′MO
(xj);Ai, Bi) (4.9)

The use of the transformation is optional, since Algorithm 9 does not critically depend

upon it, but makes it robust (discussed in Section 4.4).

102

This concludes our discussion of algorithmic details (see Section A.1 for additional

implementation details). In summary, we require seven parameters Φ = {Ψ, Ns, po},

where Ψ = {α, a, b, a′, b′}. Hyperparameters are discussed in Section 4.3.1.5. Our

experimental validation of the technique is discussed next.

4.3 Experiments

We now look at extensive evaluation of our technique. Our experiments maybe catego-

rized into the following types:

1. Validation, Section 4.3.1: this set of experiments exhibit statistically significant

improvements across multiple datasets, using different models and oracles (Sec-

tion 4.3.1.6). Various properties of the learned distributions are analyzed (Section

4.3.1.8). The relationship between model capacity and the efficacy of our tech-

nique is also discussed (Section 4.3.1.9).

2. Comparisons, Section 4.3.2: here we compare the improvements produced by

our technique with (a) a supervised version of uncertainty sampling and (b) using

density trees.

3. Additional applications, Section 4.3.3: fundamentally, our technique learns a

sampling distribution that leads to effective training. This can be used as a tool

for the following interesting applications - (a) different feature representations

may be used across the interpretable model and the oracle, e.g., a DT as the

interpretable model with n-grams as input, and a Gated Recurrent Unit the oracle,

that operates on a sequence of tokens, (b) a minimal sample for effective learning

maybe identified using our technique and (c) a multivariate notion of model size

may be used.

The section on validation experiments is the most comprehensive, establishing various

aspects of our technique.

103

4.3.1 Validation

Since the goal of validation is the same as in the case of density trees, much of the

experimental setup is similar. The two setups overlap in the following aspects:

1. Datasets used (Section 3.3.1).

2. Interpretable models used (Section 3.3.2): Linear Probability Model (LPM) and

Decision Trees (DT). The notions of the model sizes are identical as well.

3. Validation metric and tests of statistical significance (Section 3.3.3).

4. Analyzing the effect of model capacity (Section 3.3.7).

The key difference is the presence of oracle models; Gradient Boosted Models (GBM)

and Random Forests (RF) are used, and metrics are reported for all combinations of the

interpretable and oracle models, i.e., {LPM,DT} × {GBM,RF}. In the interest of

brevity the descriptions in this section are kept concise - please refer to the respective

sections within Section 3.3 for details.

4.3.1.1 Data

Table 4.2 lists the 13 datasets used for evaluation. 10000 instances from each dataset

are used. We use a train : val : test split ratio of 60 : 20 : 20 to create Dtrain, Dval and

Dtest in all our experiments (line 1, Algorithm 9). The data splits are stratified wrt class

labels.

The skew of the label distribution is quantified using “Label Entropy”, which is

computed for a dataset with N instances and C labels in the the following manner:

Label Entropy =
∑

j∈{1,2,...,C}

−pj logC pj (4.10)

Here, pj =
|{xi|yi = j}|

N

This value lies in the range [0, 1], where high values indicate relatively balanced labels.

104

Table 4.2: We use the following datasets available on the LIBSVM website (Chang and Lin, 2011). Their
original source is mentioned in the “Description” column. 10000 instances from each dataset
are used. A train : val : test split ratio of 60 : 20 : 20 is used for Dtrain, Dval and Dtest in
Algorithm 9. The splits are stratified wrt labels.

S.No. Dataset Dimensions # Classes Label Entropy Description

1 cod-rna 8 2 0.92 Predict presence of non-coding RNA com-
mon to a pair of RNA sequences, based on
individual sequence properties and their sim-
ilarity (Uzilov et al., 2006).

2 ijcnn1 22 2 0.46 Time series data produced by an internal com-
bustion engine is used to predict normal en-
gine firings vs misfirings (Prokhorov, 2001).
Transformations as in (Chang and Lin, 2001).

3 higgs 28 2 1.00 Predict if a particle collision produces Higgs
bosons or not, based on collision properties
(Baldi et al., 2014).

4 covtype.binary 54 2 1.00 Modification of the covtype dataset (see row
12), where classes are divided into two groups
(Collobert et al., 2002).

5 phishing 68 2 0.99 Various website features are used to predict if
the website is a phishing website Mohammad
et al. (2012). Transformations used as in Juan
et al. (2016)

6 a1a 123 2 0.80 Predict whether a person makes over 50K a
year, based on census data variables (Dua and
Graff, 2017). Transformations as in (Platt,
1998).

7 pendigits 16 10 1.00 Classify handwritten digit samples into the
digits 0-9. (Alimoglu and Alpaydin, 1996;
Dua and Graff, 2017).

8 letter 16 26 1.00 Images of the capital letters A-Z were pro-
duced by random distortion of these charac-
ters from 20 fonts. The task is to classify these
character images as one of the original letters
(Michie et al., 1995). Transformations as in
(Hsu and Lin, 2002).

9 Sensorless 48 11 1.00 Based on phase current measurements of an
electric motor, predict different error condi-
tions (Paschke et al., 2013). We use the trans-
formations from (Wang et al., 2018b).

10 senseit_aco 50 3 0.95 Predict vehicle type using acoustic data gath-
ered by a sensor network (Duarte and Hu,
2004).

11 senseit_sei 50 3 0.94 Predict vehicle type using seismic data gath-
ered by a sensor network (Duarte and Hu,
2004).

12 covtype 54 7 0.62 Predict forest cover type from cartographic
variables (Blackard, 1998; Dua and Graff,
2017).

13 connect-4 126 3 0.77 Predict if the first player wins, loses or draws,
based on board positions of the board game
Connect Four (Dua and Graff, 2017).

105

4.3.1.2 Models

For interpretable models I, we consider the following model families (see Section 3.3.2

for additional details):

1. Linear Probability Model (LPM) (Mood, 2010): This is a linear classifier, where

the notion of model size used is the number of terms in the model, i.e., features

from the original data, with non-zero coefficients. The Least Angle Regression

(Efron et al., 2004) algorithm is used to construct the model up to a specified

size.

Since LPMs inherently handle only binary class data, for a multiclass problem,

we construct a one-vs-rest model. The given size is enforced for each binary

classifier.

Sizes: For a dataset with dimensionality d, we construct models of sizes:

{1, 2, ...,min(d, 15)}. We end up with sizes less than 15 only for the dataset

cod-rna, which has d = 8. All other datasets have d > 15 (see Table 4.2).

2. Decision Trees (DT): We use the implementation of CART in the scikit-learn

library. Our notion of size here is the depth of the tree.

Sizes: For a dataset, we first learn a tree Topt (no size constraints are imposed)

using standard 5−fold cross-validation. We refer to this as the optimal tree, and

its depth is denoted by depth(Topt). We then experiment up to a model size

of min(depth(Topt), 15). This is controlled by setting the values of CART’s

max_depth parameter to: {1, 2, ...,min(depth(Topt), 15)}.

We don’t exceed depth(Topt) since at this depth the model is saturated in its learn-

ing from the data, and we don’t expect changes in the input distribution to influ-

ence accuracy.

We control the depth using the parameter max_depth - the maximum depth to

which a DT is grown - since decision tree libraries do not allow specification of

an exact tree depth. However, we report improvements at actual depths. Being

only able to specify max_depth also means that for different values it might lead

106

to trees with the same actual depth. For example, a DT with depth = 5 might be

produced by setting max_depth = 5 or max_depth = 6.

Model selection within an optimizer iteration is performed by averaging over

three runs of holdout cross validation, with the ratio of the training to holdout

data size being 80 : 20. The splits are randomly determined and are stratified wrt

class labels.

Baselines: Similar to case for density trees (Section 3.3.2), baseline models are

trained using standard 3-fold cross-validation, stratified by class labels. In the

case of DTs, the space of the parametermin_impurity_decrease = {0, 0.25, 0.5, 0.75, 1}

is also explored. This parameter enforces node splits to be executed only if the

decrease in impurity is at least as large as the parameter’s value5.

The baseline model has access to more data for training than models trained

within the optimizer: the former combines Dtrain and Dval for its 3-fold CV,

while the latter has access to only Dtrain. With our splits of Dtrain : Dval :

Dtest :: 60 : 20 : 20, the baseline sees 80/60 or 1.33x more data. Often the differ-

ence is greater since at a particular iteration, the parameter Ns might be set to a

value much lower than |Dtrain|. The reduced training data size is why the within-

optimizer model selection doesn’t use a 3-fold CV, since that would enforce a

training split of 67%, as opposed to 80% that is available to it now.

4.3.1.3 Oracles

We want our oracle models O to be fairly accurate, so that the derived uncertainty

information is reliable. Hence we pick the following model families:

1. Gradient Boosted Models (GBM): We used a gradient boosting model with DTs

as our base classifiers. The LightGBM library Ke et al. (2017) is used in our ex-

periments. Effective parameters were determined using a validation set. NOTE:

This is not Dval from Algorithm 9, since that would constitute data leakage. A

sample, stratified by labels, from within Dtrain was held out for learning good

GBM parameters.
5See documentation here: https://scikit-learn.org/stable/modules/

generated/sklearn.tree.DecisionTreeClassifier.html.

107

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

2. Random Forests (RF): We used the implementation available in scikit-learn. Pa-

rameters were learned using 5-fold cross-validation over Dtrain.

The above oracles were calibrated (Platt, 1999) for reliable probability estimates.

4.3.1.4 Metrics

We measure two quantities - improvements in model accuracy and their statistical sig-

nificance. These are identical to the ones in Section 3.3.3 for ease of comparison:

1. To measure accuracy() as in Equation 4.2 or Algorithm 9, our metric of choice is

the F1 (macro) score, evaluated on Dtest. We use this since it accounts for class

imbalance, e.g., it doesn’t allow good results for a majority class to eclipse poor

results for a minority class.

To measure the improvements obtained using our technique, we record the per-

centage relative improvement in the F1 score compared to the baseline of training

the model on the original distribution:

δF1 =
100× (F1new − F1baseline)

F1baseline
(4.11)

Since the original distribution is part of the optimization search space, i.e., when

po = 1, the lowest improvement we report is 0%, i.e., δF1 ∈ [0,∞).

All reported values of δF1 represent averaging over five runs of Algorithm 9,

where we average the baseline and new scores first, and then calculate the im-

provement. If the runs are indexed by i, F1new and F1baseline are replaced by

F1new =
∑3

i=1 F1new,i/3 and F1baseline =
∑3

i=1 F1baseline,i/3 respectively, in

Equation 4.11.

Scores are averaged first to avoid large variations in per-run δF1, which can hap-

pen due to F1baseline potentially being a small value, especially at smaller model

sizes.

2. The Wilcoxon signed-rank test is used to measure statistical significance, where

the paired set of samples are F1baseline and F1new scores (from Equation 4.11)

108

for a dataset. The p-value is reported for all combinations of interpretable models

and oracles, i.e., {LPM,DT}×{GBM,RF}. This test is separately performed

for different model sizes.

4.3.1.5 Parameter Settings

The optimizer we use, TPE, requires box constraints. Here we specify our search space

for the optimization variables, Φ in Algorithm 9:

1. po: We want to allow the algorithm to pick an arbitrary fraction of samples from

the original data; we set po ∈ [0, 1].

2. Ns: We set Ns ∈ [400, 10000]. The lower bound ensures we have statistically

significant results. The upper bound is set to a reasonably large value.

3. {a, b, a′, b′}: Each of these parameters are allowed a range [0.1, 10] to allow for a

wide range of shapes for the component Beta distributions.

4. scale: We fix scale = 10000 for our experiments, to allow forAi andBi to model

skewed distributions where shape parameter large values might be required. For

small values, the algorithm adapts by learning the appropriate {a, b, a′, b′}.

5. α: For a DP, α ∈ R>0. We use a lower bound of 0.1.

To determine the upper bound, we rely on the following empirical relationship

(Ohlssen et al., 2007) between the number of components k and α:

E[k|α] ≈ 5α + 2 (4.12)

We empirically estimated a fairly inclusive upper bound on the number of com-

ponents to be 500, which provides us the α upper bound of 99.6. Thus, we use

α ∈ [0.1, 99.6].

We draw a sample from the IBMM using Blackwell-MacQueen sampling (Black-

well and MacQueen, 1973).

109

We use a flattening transformation (discussed in Section 4.2.5) on the original

uncertainty distributions, with a fixed number of 20 bins. However, all visualiza-

tions of distributions in the following sections were prepared after performing an

inverse transformation; hence, in studying them, it might be convenient to assume

that no transformation was applied.

Hyperparameters: In theory, the box constraints and the iteration budget required

by the optimizer constitute our hyperparameters, which may be tuned for a specific task.

However, as detailed above, we don’t need to estimate a range for po and reasonable

defaults may be applied to Ns, {a, b, a′, b′}, scale and α. This is practically valuable

since we are left with T as our only hyperparameter. This was set to T = 1000 for

LPMs and T = 3000 for DTs based on limited search. Since the LPMs we use construct

multiple one-vs-rest classifiers, higher iteration budgets are computationally expensive

to use.

This completes our discussion of the experimental setup; we present our observa-

tions next.

4.3.1.6 Improvements in Accuracy

Figure 4.8 shows the improvements for different combinations of interpretable and or-

acle models, {LPM,DT} × {GBM,RF}. The model size is on the x-axis, and is

normalized to be in [0, 1], so that performance across datasets may be conveniently

compared in the same plot.

For LPMs, the model sizes for a dataset, i.e., number of non-zero terms, are multi-

plied by 1/min(d, 15), where d is the dimensionality of the data. For DTs, the model

sizes are multiplied by 1/min(depth(Topt), 15). All δF1 values are averaged over five

runs, in the manner described in Section 4.3.1.4.

Table 4.3 enumerates the observations corresponding to the plots in Figure 4.8. The

column model_ora represents the model and oracle combination used. For example,

dt_gbm implies DT was used as the model and GBM as an oracle.

110

(a) (b)

(c) (d)

(a)

Figure 4.8: For different combinations of models and oracles: {LPM,DT} × {GBM,RF}, these
plots show improvements, δF1, seen for different model sizes and data. Table 4.3 shows the
corresponding improvement scores.

We observe that the oracle based approach indeed works on a variety of datasets,

across different combinations of interpretable and oracle models. In some cases, such

as the dataset Sensorless, for the LPM and RF combination, improvements are

as high as δF1 = 248.12%. The general trend seems to be that δF1 decreases as

model sizes increase, with eventually δF1 ≈ 0. This decrease seems to be faster for

DT s, which makes intuitive sense given that a unit increase in size for a DT adds more

representational power (a layer of nodes) than for an LPM (another term), making it

harder to beat the baseline performance of DTs.

This decrease empirically verifies the property expressed by Equations 4.3 and 4.4.

We note that δF1 does not strictly monotonically decrease for all datasets, possibly

due to the optimization terminating at a local maxima, e.g., in Table 4.3 see the entry for

letter, lpm_rf, size = 2 (improvement = 67.06%) and size = 3 (improvement =

71.08%). But it largely appears to follow the general trend of decrease even in these

cases.

111

Table 4.3: This table shows the average improvements, δF1, over five runs for different combi-
nations of models and oracles: {LPM,DT}×{GBM,RF}. The best improvement
for a model size and oracle is indicated in bold.

dataset model_ora 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cod-rna lpm_gbm 1.11 12.65 14.80 15.36 16.18 11.60 8.41 2.61 - - - - - - -
lpm_rf 2.95 13.37 14.31 15.49 15.78 12.53 5.89 0.18 - - - - - - -

dt_gbm 1.09 9.80 1.09 1.84 0.44 0.75 1.08 0.42 0.00 0.28 - - - - -
dt_rf 0.57 2.78 1.81 2.58 0.13 0.46 0.40 0.70 0.31 0.00 - - - - -

ijcnn1 lpm_gbm 0.59 2.84 3.71 2.39 4.97 4.61 3.85 3.97 3.46 2.34 3.00 2.74 2.85 3.46 2.62
lpm_rf 0.50 3.26 3.22 3.88 3.43 2.17 3.50 3.21 3.43 4.05 2.84 4.37 3.99 3.48 4.23
dt_gbm 2.10 11.75 7.07 8.95 8.47 3.89 2.67 2.36 0.60 0.39 0.02 0.29 0.67 0.74 0.39
dt_rf 4.24 14.43 10.77 11.00 10.38 5.46 4.74 2.32 2.76 1.25 1.72 1.31 1.70 1.24 1.70

higgs lpm_gbm 29.54 17.59 10.79 6.81 2.88 2.69 3.12 2.91 2.86 2.39 2.59 1.59 2.17 1.96 0.76
lpm_rf 23.18 18.59 15.03 7.96 4.33 3.61 2.29 2.55 1.78 1.34 2.02 2.22 2.79 1.63 1.51
dt_gbm 1.62 0.59 1.22 0.75 0.01 1.41 - - - - - - - - -
dt_rf 3.98 0.85 1.90 1.63 1.69 0.79 - - - - - - - - -

covtype.binary lpm_gbm 86.19 66.39 27.19 13.19 7.26 5.47 4.01 3.95 3.26 3.36 3.20 3.06 2.49 2.39 1.46
lpm_rf 87.10 63.38 12.76 8.33 6.25 3.75 2.49 2.41 2.76 2.77 2.41 2.67 2.42 2.34 2.19
dt_gbm 1.24 0.62 2.09 0.99 0.52 1.02 0.15 0.50 0.06 - - - - - -
dt_rf 0.68 0.40 1.61 2.01 1.70 1.45 1.04 1.30 0.97 0.50 - 0.00 - - -

phishing lpm_gbm 0.00 1.88 2.88 3.05 3.22 3.37 2.86 1.61 1.37 1.44 1.21 1.03 1.07 0.84 0.86
lpm_rf 0.00 2.14 3.29 3.22 3.59 3.79 3.29 1.85 1.46 1.46 1.18 1.18 1.22 1.27 1.08
dt_gbm 0.00 0.57 0.33 0.13 0.44 0.11 0.48 0.33 0.13 0.00 0.01 0.00 0.00 0.00 0.05
dt_rf 0.00 0.72 0.61 0.44 0.44 0.08 0.12 0.42 0.13 0.07 0.10 0.06 0.04 0.01 0.00

a1a lpm_gbm 0.00 2.55 7.58 9.11 9.03 7.87 8.72 8.86 8.56 7.90 7.38 7.14 5.78 6.15 5.56
lpm_rf 0.02 4.17 8.81 10.24 10.46 9.11 9.18 9.52 8.97 9.70 8.98 8.50 7.34 7.67 6.77
dt_gbm 0.01 5.67 2.10 4.33 3.53 2.91 0.40 0.64 0.27 - - - - - -
dt_rf 0.00 6.62 3.44 5.14 4.36 5.70 4.99 5.14 5.92 4.43 3.02 2.94 - - 3.16

pendigits lpm_gbm 52.66 22.62 16.88 8.34 9.73 6.90 5.12 2.03 2.44 2.21 2.31 2.13 3.26 3.03 2.39
lpm_rf 50.10 21.68 20.70 7.77 8.16 6.15 7.04 1.61 3.38 2.97 2.45 2.48 2.75 2.65 2.97
dt_gbm 13.70 6.98 4.92 12.72 6.21 4.68 2.40 0.87 0.48 0.04 0.00 0.19 0.00 0.00 0.01
dt_rf 18.93 4.26 4.36 13.70 6.67 4.58 2.38 0.32 0.00 0.02 0.00 0.00 0.00 0.00 0.00

letter lpm_gbm 59.54 44.83 58.49 29.47 35.49 17.43 21.06 16.47 17.48 15.02 16.88 15.98 18.10 17.24 15.30
lpm_rf 62.61 64.36 67.06 24.71 36.95 24.14 19.88 21.70 20.63 19.64 18.42 20.65 17.93 17.71 17.67
dt_gbm 2.10 10.91 25.55 33.11 30.04 15.54 11.32 4.47 3.59 3.06 1.85 1.26 1.08 0.62 0.35
dt_rf 0.12 12.53 34.24 37.39 35.43 16.14 5.82 1.22 2.30 0.71 0.49 0.16 0.00 0.00 0.00

Sensorless lpm_gbm 221.53 259.30 195.99 121.89 94.41 83.82 75.07 67.90 59.42 51.98 56.11 55.86 58.70 65.27 60.88
lpm_rf 238.94 238.83 143.82 103.65 85.69 71.32 74.25 65.22 66.78 61.20 59.88 56.84 60.67 69.39 72.12
dt_gbm 0.04 46.99 66.38 54.79 22.65 10.67 2.28 1.69 0.84 0.85 0.41 0.14 0.16 0.16 0.07
dt_rf 0.01 52.54 57.27 44.33 16.26 6.49 2.23 0.69 0.27 0.06 0.29 0.08 0.00 0.23 0.16

senseit_aco lpm_gbm 173.63 175.44 68.21 44.09 35.41 24.18 20.83 15.80 11.39 8.09 5.83 5.21 4.77 4.21 3.95
lpm_rf 177.67 175.20 91.96 47.67 37.03 30.28 25.19 22.54 14.74 10.46 9.28 6.31 5.91 5.46 4.23
dt_gbm 14.92 1.83 4.89 3.35 3.03 0.97 0.57 - - - - - - - -
dt_rf 15.41 2.22 3.88 4.82 3.81 3.54 1.66 0.25 - - - - - - -

senseit_sei lpm_gbm 160.59 57.00 23.42 10.47 6.70 4.49 4.49 4.12 4.55 4.14 4.40 4.91 3.83 3.97 4.29
lpm_rf 165.98 67.35 29.13 14.35 8.80 5.53 4.72 4.90 5.11 4.47 4.39 3.58 4.16 4.26 4.15

dt_gbm 2.42 0.75 3.26 1.23 0.39 0.42 0.27 0.27 - - - - - - -
dt_rf 2.54 1.28 3.23 2.26 1.18 1.49 1.91 - - - - - - - -

covtype lpm_gbm 36.69 46.55 14.35 6.51 4.64 6.49 6.73 7.72 8.42 8.39 11.47 8.39 4.73 9.37 6.17
lpm_rf 32.52 47.56 12.23 5.46 6.46 9.65 10.31 12.33 12.62 10.56 9.86 7.85 11.52 17.49 16.24
dt_gbm 146.22 107.32 43.31 15.53 4.30 5.64 3.83 3.22 3.15 0.93 2.68 1.56 0.63 0.34 0.00
dt_rf 152.12 102.28 53.72 7.86 9.41 4.97 4.67 4.42 1.68 2.86 1.08 0.00 0.85 0.90 2.79

connect-4 lpm_gbm 27.54 25.89 14.36 9.34 12.56 10.29 5.47 4.48 5.45 3.79 4.72 2.99 1.92 3.31 3.46
lpm_rf 59.19 14.24 17.20 9.00 9.22 6.98 7.87 7.65 5.58 5.32 2.40 3.04 4.94 1.94 3.23

dt_gbm 136.35 27.02 23.83 7.80 4.13 3.46 5.09 5.31 0.39 4.73 2.02 2.31 1.90 0.62 1.14
dt_rf 147.32 20.08 19.51 18.57 13.17 12.70 4.82 3.23 3.90 3.41 3.72 0.53 0.92 0.19 0.80

Before we conclude this section, we present an additional way to visualize improve-

ments: create a correspondence of model sizes, without and with our technique, for the

same accuracy. See Figure 4.9 as an example. The point (12, 2) for senseit_aco

implies that the accuracy of a LPM with 2 non-zero terms produced by our technique

equals, or is greater than, the accuracy of a baseline LPM with 12 non-zero terms. The

model size on the y-axis is the median of five runs. We refer to such a plot as the com-

112

paction profile for a model-oracle combination. See Section A.9 for more compaction

profiles.

Figure 4.9: The compaction profile of LPM models using GBM as an oracle. A point (x, y) denotes
the minimum size y of a model obtained using our technique that is at least as accurate as
the baseline model of size x.

4.3.1.7 Statistical Significance

The statistical significance of the improvements presented in Section 4.3.1.6 is mea-

sured by the one-sided version of the paired Wilcoxon signed-rank test, where the pairs

of scores F1baseline and F1new are used. Figure 4.10 shows the results. This test is

similar to the one used in the previous chapter (Section 3.3.6) except that we conduct

the test for every pair of model and oracle. The setup is as follows:

1. We compare the classifiers learned by our technique with the baseline, for a given

range of model sizes. Separate tests are performed for different model size ranges

since size strongly influences δF1.

2. Normalized model sizes are used for ease of comparison with Figure 4.8. Binning

of model sizes is done using Sturges rule (Sturges, 1926).

3. The one-sided version of the paired test is performed for each bin, where pairs of

scores F1baseline and F1new for a dataset, for models with sizes assigned to the

bin, are compared. In cases were where multiple model sizes for a dataset fall

within the same bin, F1baseline and F1new are first averaged and then compared.

113

4. The following hypotheses are tested:

• H0, null hypothesis: accuracies of models trained using the oracle are not

better.

• H1, alternate hypothesis: accuracies of models trained using the oracle are

better.

p-values are shown for each bin. Small p-values favor H1, i.e., our algorithm.

5. Scores of δF1 = 0 are split equally between positive and negative ranks6.

2 4 6 8
model size bins

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

p-
va

lu
e

(a) model=LPM, oracle=GBM

2 4 6 8
model size bins

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

p-
va

lu
e

(b) model=LPM, oracle=RF

2 4 6 8
model size bins

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

p-
va

lu
e

(c) model=DT, oracle=GBM

2 4 6 8
model size bins

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

p-
va

lu
e

(d) model=DT, oracle=RF

Figure 4.10: These plots show the p-values for the Wilcoxon signed-rank test, with the null hypothesis
H0: using the oracle does not produce better F1 test scores. The bin boundaries are selected
using the Sturges rule (Sturges, 1926). Low p-values favor our algorithm.

We observe that the improvements from using an oracle are indeed significant for

various model size and model-oracle combinations, when measured across multiple

datasets.

6The zplit option in https://numpy.org/doc/stable/reference/generated/
numpy.histogram_bin_edges.html is used.

114

https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html

4.3.1.8 Learned Distributions

It is also instructive to analyse the distributions we have learned: this includes both the

parameter po and the parameters for the IBMM Ψ = {α, a, b, a′, b′}.

Figure 4.11 shows how po varies with normalized model size when the interpretable

model is DT and the oracle is (a) GBM or (b) RF. This plot ignores the datasets where

the largest tree depth explored was less than depth(Topt) - so we can compare distri-

butions in size regimes where our technique is effective against when it is not (recall,

at sizes close to depth(Topt) we expect δF1 ≈ 0). The datasets ignored are7: a1a,

ijcnn1, covtype, connect-4. Here, we clearly see po → 1 as model size

increases, thus implying the training algorithm tends to use more of the original distri-

bution8. This observation is a key contribution of this work, since it challenges the

conventional wisdom that the training data must be drawn from the same distribution

as the test data, for effective learning. This reinforces a similar observation from the

previous chapter (Figure 3.12 in Section 3.3.5).

0.2 0.4 0.6 0.8 1.0
normalized model size

0.0

0.2

0.4

0.6

0.8

1.0

p o
, p

ct
. f

ro
m

 o
rig

in
al

 d
ist

rib
ut

io
n

(a) DT with oracle=GBM

0.2 0.4 0.6 0.8 1.0
normalized model size

0.2

0.4

0.6

0.8

1.0

p o
, p

ct
. f

ro
m

 o
rig

in
al

 d
ist

rib
ut

io
n

(b) DT with oracle=RF

cod-rna higgs covtype.binary phishing pendigits letter Sensorless senseit_aco senseit_sei

Figure 4.11: These plot shows the effect of increasing model size on po, when the interpretable model
is DT. These plots strongly indicate that larger model sizes learn better with the original
distribution. Some datasets are ignored - see text for explanation.

We now consider the IBMM distributions over the uncertainty values. These are

difficult to concisely visualize since one IBMM is learned for each model size. Hence,
7These datasets are easy to identify in Table 4.3: the ones where the last column(s) is neither ≈ 0 nor

“-”.
8In theory, the parameters Ψ could have been learned such that they mimic the original distribution,

but we hypothesize that it is easier for the optimizer to learn the appropriate value of one parameter po as
opposed to equivalent values of the multiple parameters Ψ. This is why we see the clear pattern in Figure
4.11.

115

we propose the following plot that aggregates distributions across model sizes for a

dataset:

1. We set a value for N ; the number of points to sample.

2. For a model size ηi, we sample ni points from its corresponding IBMM, where

ni ∝ δF1i, the improvement seen at this size. For example, let’s say we have

explored two model sizes η1, η2, and these have led to improvements of δF11 =

10% and δF12 = 20%, respectively. Then, n1 = 0.33N and n2 = 0.67N .

3. The various samples of sizes ni are pooled together and a Kernel Density Estima-

tor (KDE) fit on this data is visualized.

The KDE thus obtained is predominantly shaped by the distributions that resulted in

high δF1. For the case of the LPM these are visualized in Figure 4.12 for both oracles.

(a) (b)

Figure 4.12: The aggregated IBMMs are visualized for LPMs, when the oracle is a (a) GBM or (b) RF.
The corresponding plots for DTs are presented in Section A.8.

It is interesting to see that the optimal strategy, in general, turns out to be to sample

from both regions of low and high uncertainties.

Going a step further we might wonder what the aggregated distribution would look

like if adjusted for the number of instances with a given uncertainty value. For example,

we might see a peak on the extreme right for a dataset in Figure 4.12 simply because

most points receive a high uncertainty score.

We use the following technique to visualize such an adjusted aggregate distribution:

1. We again pick N , the number of points to sample. Exactly like in the previous

case: we pool together samples from IBMMs for different model sizes, where the

116

relative sample sizes are decided by the respective δF1 scores. We fit a KDE to

this data, which we refer to as A.

2. We fit another KDE to the uncertainty values produced by the oracle for the train-

ing data. Let’s call this B.

3. For K uniformly spaced values of uncertainty uk ∈ [0, 1], 1 ≤ k ≤ K, we cal-

culate the ratio pA(uk)/pB(uk), and plot a scaled version of it c · pA(uk)/pB(uk).

The scaling factor c is picked to transform the ratios into probability masses, i.e.,∑K
k=1 c · pA(uk)/pB(uk) = 1.

Essentially, we normalize the sampling probability pA(uk) at uk, with pB(uk), a

quantity representing the number of instances with uncertainty uk.

These plots are shown in Figure 4.13. The corresponding plots for the DT are shown

in Figure A.5, Section A.8.

(a) (b)

Figure 4.13: Aggregated IBMMs, adjusted for the uncertainty distribution. These plots are for the LPM,
using a (a) GBM or (b) RF as an oracle. The corresponding plots for DTs may be found in
Section A.8.

While the plots in Figure 4.12 are indicative of the individual distributions they

aggregate (most of the individual distributions have similar shapes; see Figure A.7 in

Section A.10), this is not true for the adjusted plots in Figure 4.13 - there are diverse

variations that are averaged out. We show some of them in Figure 4.14, for different

datasets and model sizes, for model = LPM, oracle = GBM . The size of the dots on

the curve represent pB(uk) at the corresponding value of uk on the x-axis. These are

intended to signify robustness of the adjustment, since they occur in the denominator of

the scaled ratios.

117

(a) a1a, size=2 (b) letter, size=2 (c) letter, size=3

uncertainty uncertainty uncertainty

a
d

ju
st

e
d

 p
ro

b
a
b

ili
ty

a
d

ju
st

e
d

 p
ro

b
a
b

ili
ty

a
d

ju
st

e
d

 p
ro

b
a
b

ili
ty

Figure 4.14: Adjusted IBMMs for some model sizes and datasets, formodel = LPM, oracle = GBM .
We observe that fairly different distributions may be learned across our experiments.

It is probably important to point out here that typical discussions of uncertainty

sampling, such as the classic version (Lewis and Gale, 1994), imply the non-adjusted

distributions shown in Figure 4.12.

4.3.1.9 Effect of Model Capacity

We assess the effect of model capacity here as well (in the spirit of Section 3.3.7). The

question we attempt to answer is: how does model capacity influence improvements?

This is difficult to answer in general since (a) there isn’t a standard way to easily quan-

tify capacity across model families, and (b) the notion of model size is subjective. And

while the LPM vs DT data indicates a trend, we want to isolate this effect in a manner

that is not affected by differences in the model families.

To that end, we adopt the following approach: we use two different instances of

GBMs, where the notion of model size is the number of DTs in a GBM (or equivalently,

the number of boosting rounds), and their model capacities are decided by the maximum

depth of the constituent DTs; these are set to 2 and 5 for these GBM instances. We refer

to these as the GBM-2 and GBM-5 “pseudo model families” respectively, where we un-

derstand GBM-5 to possess higher capacity than GBM-2. Since the training algorithms

and model representations are identical for GBM-2 and GBM-5, this setup allows us to

sidestep challenges with quantifying capacity for different model families. We use the

LightGBM library (Ke et al., 2017) for our experiments.

The oracle used is another GBM, with no size/capacity restrictions, learned on the

training dataset. The model sizes explored are {1, 2, ..., 10}. Figure 4.15 shows how

118

δF1 varies with model size (denoted as “num_trees”) for the datasets senseit-aco,

senseit-sei, cod-rna and higgs, for each of the models GBM-2 and GBM-5.

1 2 3 4 5 6 7 8 9 10
num_trees

0

25

50

75

100

125

150

175

200

%
 im

pr
ov

em
en

t o
n

te
st

(a) dataset: senseit_aco
model

GBM-2
GBM-5

1 2 3 4 5 6 7 8 9 10
num_trees

0

25

50

75

100

125

150

175

200

%
 im

pr
ov

em
en

t o
n

te
st

(b) dataset: senseit_sei
model

GBM-2
GBM-5

1 2 3 4 5 6 7 8 9 10
num_trees

0

20

40

60

80

100

120

%
 im

pr
ov

em
en

t o
n

te
st

(c) dataset: cod-rna
model

GBM-2
GBM-5

1 2 3 4 5 6 7 8 9 10
num_trees

0

10

20

30

40

50

60

70

%
 im

pr
ov

em
en

t o
n

te
st

(d) dataset: higgs
model

GBM-2
GBM-5

Figure 4.15: The above plots show how the capacity of a model family influences improvements, for
different datasets. With a higher max_depth setting for GBMs, the improvements decline
faster with an increase in number of trees.

As we might expect, we observe that improvements for GBM-5, the model with the

higher capacity, diminish faster with increasing size, compared to GBM-2.

4.3.2 Comparisons

In this section, we present a comparative evaluation of our technique. We compare

against the following techniques:

1. Supervised uncertainty sampling: the interpretable model, of a given size, is it-

eratively trained on a growing subset of training data; this subset starts with the

b most uncertain points in the training data, with b-sized batches of the most un-

certain points from the remaining training data being progressively added to it.

At every iteration, the model is evaluated on a validation set, and the one with

the highest F1-macro score is picked for comparison. We compare against this

technique because:

119

(a) This explores an obvious possibility: can a heuristic-driven, simple algo-

rithm outperform our algorithm?

(b) Although we borrow this technique from Active Learning (Lewis and Gale,

1994), this version is significantly more powerful, primarily because of the

oracle’s supervision: we have reliable uncertainty scores from a powerful

model. Because of this, we are able to avoid sampling bias arising due to a

partial view of the uncertainty distribution (detailed in Section A.5).

(c) Even within the Active Learning community, uncertainty sampling is a strong

baseline for Logistic Regression (Yang and Loog, 2018), and by extension,

we expect it to be a strong baseline for learning LPMs.

We use a batch size of b = 10. The algorithm is described in detail in Section

A.4.

2. Density Trees: We also compare against our previous work on density trees since

it uses a similar philosophy of determining an optimal distribution to build accu-

rate small models. We use the parameter search space described in the previous

chapter in Section 3.3.4.

4.3.2.1 Setup

The experimental setup is identical to the one used for the validation experiments in

terms of the datasets (see Section 4.3.1.1), models (Section 4.3.1.2), oracles (Section

4.3.1.3) and optimization search space (Section 4.3.1.5). The metrics differ, and these

are described next.

4.3.2.2 Metrics

To compare techniques, we wish to measure the following outcomes over multiple trials:

1. The extent to which a technique is better.

2. The proportion of times a technique is better.

120

The following properties are desirable for a metric that measures the first kind of

outcomes:

1. It should be bounded, so that scores across different data, model sizes, etc., are

on the same scale.

2. It should be easy to infer which approach is better.

We introduce a score called the Scaled Difference in Improvement (SDI), that possesses

these properties. The SDI is defined in terms of the improvement produced by our

method, δF1ora, and the alternative method, δF1alt:

SDI =


δF1ora
H
− δF1alt

H
, if H > 0

0, if H = 0

(4.13)

where H = max {δF1alt, δF1ora}

The central idea here is that the improvements possible across the competing tech-

niques are in [0, H], and the SDI score measures the difference between the fractions

of this range realized by either technique. Note that H ≥ 0 since δF1ora ≥ 0 and

δF1alt ≥ 0. This score has the following intuitive properties:

1. SDI ∈ [−1, 1]

2. SDI > 0 when δF1ora > δF1alt

3. SDI = 0 when δF1ora = δF1alt

4. SDI < 0 when δF1ora < δF1alt

The SDI score may be seen as the Mean Signed Deviation9 (MSD): δF1ora−δF1alt,

normalized with the maximum possible improvement H . We don’t directly use MSD

as δF1 ∈ [0,∞) makes it unbounded.

9https://en.wikipedia.org/wiki/Mean_signed_deviation

121

https://en.wikipedia.org/wiki/Mean_signed_deviation

For ease of interpretation, we average the SDI scores at the level of a dataset, across

model sizes, for a given model and oracle. This averaged score is denoted by SDI .

To measure the second kind of outcomes, we report the percentage of times δF1ora >

δF1alt across these model sizes. This is denoted as pct_better.

We consider the oracle-based approach to be a meaningful contribution if SDI > 0

and pct_better > 50% compared to alternatives.

4.3.2.3 Observations and Analysis

Table 4.4 and Table 4.5 compare our approach to Supervised Uncertainty Sampling and

the Density Tree based approach, respectively. All δF1ora and δF1alt scores used are

the average over five runs. This is the presentation format followed:

1. For each dataset, model and oracle combination we present two scores: (1) SDI

and (2) pct_better.

2. Favorable outcome values - SDI > 0 or pct_better > 50 - are colored green,

unfavorable outcomes are colored red, and tied values are unformatted.

3. In the case of Supervised Uncertainty Sampling, Table 4.4, scores are compared

across the same oracles, i.e., a score using oracle GBM in our method, is com-

pared to a score from Supervised Uncertainty Sampling using a GBM .

4. Unlike supervised uncertainty sampling, there is no notion of an oracle in the

Density Tree based approach. In Table 4.5, for a combination of dataset, model

and model size, improved scores from using either the GBM or RF as the oracle

are compared to the same reference score from the density tree based approach.

5. We also introduce two special groupings:

• ANY: For each model size, the SDI score considered is the higher of

the ones obtained from using the GBM or RF as oracles. The SDI and

pct_better scores are computed based on these scores. This grouping rep-

resents the ideal way to use our technique in practice: try multiple oracles

and pick the best.

122

Table 4.4: LPM, DT compared to Supervised Uncertainty Sampling

LPM DT

dataset GBM RF ANY GBM RF ANY

cod-rna 0.60, 100.00% 0.25, 87.50% 0.61, 100.00% 0.29, 60.00% 0.39, 60.00% 0.69, 80.00%
ijcnn1 0.28, 66.67% 0.17, 66.67% 0.37, 73.33% -0.42, 26.67% 0.32, 80.00% 0.32, 80.00%
higgs 0.88, 100.00% 0.23, 60.00% 0.91, 100.00% 0.75, 83.33% 0.28, 66.67% 0.83, 100.00%
covtype.binary 0.49, 93.33% 0.33, 93.33% 0.59, 100.00% 0.06, 44.44% 0.18, 45.45% 0.32, 54.55%
phishing 0.62, 93.33% 0.44, 93.33% 0.65, 93.33% 0.25, 40.00% -0.27, 13.33% 0.25, 40.00%
a1a 0.23, 93.33% 0.32, 93.33% 0.35, 100.00% -0.13, 44.44% 0.49, 91.67% 0.58, 100.00%

pendigits 0.73, 100.00% 0.81, 100.00% 0.83, 100.00% 0.22, 60.00% 0.13, 40.00% 0.32, 60.00%
letter 0.92, 100.00% 0.95, 100.00% 0.97, 100.00% 0.46, 73.33% 0.04, 46.67% 0.55, 73.33%
Sensorless 0.63, 100.00% 0.72, 100.00% 0.73, 100.00% 0.63, 73.33% 0.41, 60.00% 0.65, 73.33%
senseit_aco 0.15, 53.33% 0.30, 86.67% 0.31, 86.67% 0.39, 71.43% 0.44, 87.50% 0.60, 87.50%
senseit_sei 0.07, 53.33% 0.27, 60.00% 0.28, 60.00% -0.18, 37.50% 0.13, 57.14% 0.20, 50.00%
covtype 0.83, 100.00% 0.65, 93.33% 0.85, 100.00% 0.60, 73.33% 0.64, 73.33% 0.82, 86.67%
connect-4 0.13, 60.00% 0.43, 86.67% 0.50, 100.00% 0.11, 60.00% 0.13, 73.33% 0.53, 86.67%
OVERALL 0.50, 85.11% 0.46, 86.17% 0.61, 93.09% 0.23, 57.14% 0.25, 59.75% 0.50, 73.75%

• OVERALL: This averages results across datasets, to provide an aggregate

view of the comparison.

The entries identified by OVERALL and ANY provide comparison numbers ag-

gregated over datasets, model sizes and oracles.

Table 4.5: LPM, DT compared to the Density Tree approach.

LPM DT

dataset GBM RF ANY GBM RF ANY

cod-rna -0.38, 0.00% -0.45, 0.00% -0.33, 0.00% 0.51, 60.00% 0.50, 70.00% 0.65, 80.00%
ijcnn1 0.06, 66.67% 0.11, 80.00% 0.20, 93.33% 0.23, 53.33% 0.68, 100.00% 0.68, 100.00%
higgs -0.07, 40.00% -0.07, 40.00% 0.04, 46.67% 0.23, 50.00% 0.61, 83.33% 0.61, 83.33%
covtype.binary -0.16, 40.00% -0.33, 13.33% -0.15, 40.00% 0.23, 66.67% 0.26, 72.73% 0.38, 81.82%
phishing 0.30, 80.00% 0.37, 86.67% 0.38, 86.67% 0.11, 26.67% -0.00, 26.67% 0.23, 46.67%
a1a -0.03, 60.00% 0.13, 66.67% 0.13, 66.67% -0.06, 44.44% 0.43, 75.00% 0.52, 83.33%

pendigits 0.59, 100.00% 0.59, 93.33% 0.62, 100.00% 0.23, 60.00% 0.16, 46.67% 0.25, 60.00%
letter 0.79, 100.00% 0.81, 100.00% 0.81, 100.00% 0.02, 33.33% -0.34, 13.33% 0.06, 40.00%
Sensorless 0.64, 100.00% 0.65, 100.00% 0.66, 100.00% -0.23, 20.00% -0.39, 20.00% -0.23, 20.00%
senseit_aco 0.55, 100.00% 0.63, 100.00% 0.63, 100.00% 0.50, 85.71% 0.37, 75.00% 0.39, 75.00%
senseit_sei 0.61, 100.00% 0.66, 100.00% 0.67, 100.00% -0.25, 42.86% 0.51, 100.00% 0.51, 100.00%
covtype 0.20, 80.00% 0.39, 93.33% 0.43, 100.00% 0.26, 66.67% 0.16, 66.67% 0.40, 80.00%
connect-4 0.23, 73.33% 0.24, 66.67% 0.38, 86.67% -0.23, 33.33% -0.13, 53.33% 0.08, 66.67%
OVERALL 0.28, 75.00% 0.32, 75.00% 0.37, 81.38% 0.10, 47.06% 0.16, 57.23% 0.31, 67.30%

The predominant amount of values colored green, indicate that our technique per-

forms better in most settings. In both cases, the OVERALL +ANY entries indicate

that our technique works better on average. The pct_better scores in these entries also

indicate that we seem to do better much more frequently in the case of LPMs than

DTs.

We note here that the space of sampling distributions modeled by our technique

123

subsume the ones modeled by either competing technique:

1. Supervised Uncertainty Sampling assumes high uncertainty points are favorable;

this may be modeled with an IBMM with appropriate parameters.

2. Density Trees learn distributions that are based on the proximity of instances to

class boundaries; since uncertainty values also correlate with distance from class

boundaries - a high uncertainty value for an instance indicates it’s near a class

boundary and vice versa - this too is well within the scope of what an IBMM may

represent.

Our hypothesis as to when the competing techniques outperform our technique is that

the optimal sampling distribution is easier to discover given their distributional assump-

tions. For example, if the optimal distribution indeed turns out to be one where in-

stances with high uncertainty are preferred, the Supervised Uncertainty Sampling tech-

nique would quickly discover this, while our technique would need to navigate a larger

search space to converge to this solution. Our technique would likely do better on such

problems with a larger iteration budget or an appropriately defined prior; we leave this

analysis for future work.

Both Supervised Uncertainty Sampling and our technique use distributions over

uncertainty values. This makes it interesting to contrast them, and is reviewed in Section

A.6.

4.3.3 Additional Applications

Viewing our technique purely as a tool to find the optimal distribution for effective

learning, we explore some additional interesting applications of it in this section.

4.3.3.1 Different Feature Spaces

In our previous experiments, the feature vector representation was identical for the ora-

cle and the interpretable model. This is also what Algorithm 9 implicitly assumes. Here,

we consider the possibility of going a step further and using different feature vectors. If

124

fO and fI are the feature vector creation functions for the oracle and the interpretable

model respectively, and xi is a “raw data” instance, then:

1. The oracle is trained on instances fO(xi), and provides uncertainties uO(fO(xi)).

2. The interpretable model is provided with data fI(xi), but the uncertainty scores

available to it are uO(fO(xi)).

The motivation for using different feature spaces is that the combination (O, fO)

may be known to work well together and/or a pre-trained oracle might be available only

for this combination.

We illustrate this application with the example of predicting nationalities from sur-

names of individuals. Our dataset (Rao and McMahan, 2019) contains examples from

18 nationalities: Arabic, Chinese, Czech, Dutch, English, French, German, Greek, Irish,

Italian, Japanese, Korean, Polish, Portuguese, Russian, Scottish, Spanish, Vietnamese.

The representations and models are as follows:

1. The oracle model is a Gated Recurrent Unit (GRU) (Cho et al., 2014), that is

learned on the sequence of characters in a surname. The GRU is calibrated with

temperature scaling (Guo et al., 2017).

2. The interpretable model is a DT, where the features are character n-grams, n ∈

1, 2, 3. The entire training set is initially scanned to construct an n-gram vocabu-

lary, which is then used to create a sparse binary vector per surname - 1s and 0s

indicating the presence and absence of an n-gram respectively.

Figure 4.16 shows a schematic of the setup.

The n-gram representation leads to a vocabulary of ∼ 5000 terms, that is reduced to

600 terms based on a χ2-test in the interest of lower running time (see Section A.12 for

details). DTs of different depth ≤ 15 were trained. A budget of T = 3000 iterations

was used (the search space for Φ is the same as in Section 4.3.1.5), and the relative

improvement in the F1 macro score (as in Equation 4.11) is reported, averaged over

three runs. Figure 4.17 shows the results.

125

Figure 4.16: The feature representations for the oracle and the interpretable model may be different.
Consider the name “Amy”: the GRU is provided its letters, one at a time, in sequence,
while the DT is given an n-gram representation of the name.

Figure 4.17: Improvements δF1 are shown for different depths of the DT.

126

We see large improvements at small depths, that peak with δF1 = 83.04% at

depth = 3, and then again at slightly larger depths, which peak at depth = 9 with

δF1 = 12.34%.

To obtain a qualitative idea of the changes in the DT using a oracle produces, we

look at the prediction rules for Polish surnames, when DT depth = 3. For each rule,

we also present examples of true and false positives.

Baseline rules - precision = 2.99%, recall = 85.71%, F1 = 5.77%:

Rule 1. k ∧ ski ∧ ¬v

• True Positives: jaskolski, rudawski

• False Positives: skipper (English), babutski (Russian)

Rule 2. k ∧ ¬ski ∧ ¬v

• True Positives: wawrzaszek, koziol

• False Positives: konda (Japanese), jagujinsky (Russian)

Oracle-based DT rules - precision = 25.00%, recall = 21.43%, F1 = 23.08%:

Rule 1. ski ∧ ¬(b ∨ kin)

• True Positives: jaskolski, rudawski

• False Positives: skipper (English), aivazovski (Russian)

We note that the baseline rules are in conflict w.r.t. the literal “ski”, and taken

together, they simplify to k ∧ ¬v. This makes them extremely permissive, especially

Rule 2, which requires the literal “k” while needing “ski” and “v” to be absent. Not

surprisingly, these rules have high recall (= 85.71%) but poor precision (= 2.99%),

leading to F1 = 5.77%.

In the case of the oracle-based DT, now we have only one rule, that requires the

atypical trigram “ski”. This improves precision (= 25%), trading off recall (= 21.43%),

for a significantly improved F1 = 23.08%.

127

Figure 4.18: The distribution of nationalities in false positive predictions for the baseline and oracle
based models, shown for predicting Polish names. Only nationalities with non-zero counts
are shown.

The difference in rules may also be visualized by comparing the distribution of na-

tionalities represented in their false positives, as in Figure 4.18. We see that the baseline

DT rules, especially Rule 2, predict many nationalities, but in the case of the DT learned

using the oracle, the model confusion is concentrated around Russian names, which is

reasonable given the shared Slavic origin of many Polish and Russian names.

We believe this is a particularly powerful and exciting application of our technique,

and opens up a wide range of possibilities for translating information between models

of varied capabilities.

4.3.3.2 Size-Constrained Training Sample

Recall from Section 4.2.3, we make use of a parameter Ns, denoting sample size, that

we had constrained to ∈ [400, 10000] (Section 4.3.1.5) in our experiments. But it is

possible to set this to much smaller values to study the sampling distribution for pat-

terns, significance of regions in the input space, etc. Figure 4.19 shows an example of

this: we set Ns ∈ [50, 50] (so it can take exactly one value, 50), and for the dataset

shown in Figure 4.19(a), we visualize the sampling distribution when the model is a DT

of depth = 2 in Figure 4.19(b) vs when depth = 4 in Figure 4.19(c). The dataset is

balanced, and the oracle used is a GBM.

We see the following interesting patterns: (a) at depth = 2, the DT picks points

from both regions where label = 1, but the larger region shows higher density. This is

128

(a)

(b) (c)

Figure 4.19: Our technique might be used to identify the optimal sample of a given size. (a) shows the
original dataset. (b) and (c) visualize the learned distribution of points, using a KDE, for
DTs with depth = 2 and depth = 4 respectively, for a sample size of 50. NOTE: the
connection shown in (c), between the two originally disjoint regions with label = 1, is an
artifact of the KDE.

possibly because owing to its limited capacity, the model is able to effectively parame-

terize only one region, and therefore it prioritizes correct classification of points around

the larger region, (b) at depth = 4, we see increased sampling density in the smaller

region with label = 1 as well.

4.3.3.3 Vector Model Size

Although we have been using a scalar notion of model size - depth for DT, number of

terms for LPM, number of trees for a GBM - Algorithm 9 doesn’t restrict us from using

a vector-valued model size η. For example, in the case of GBMs, we may consider the

notion of model size η = [max_depth, num_trees], where the quantities respectively

denote the maximum depth allowed for each constituent DT in a GBM, and the num-

ber of DTs in the GBM. In Figure 4.20 we show how improvements for GBMs vary

when 1 ≤ max_depth ≤ 5 (x-axis) and 1 ≤ num_trees ≤ 5 (y-axis); the oracle

used is a GBM as well (unconstrained in size), and results for these datasets are shown:

(a) higgs (b) cod-rna (c) senseit-sei and (d) senseit-aco. The improve-

129

ments are averaged over three runs. We observe the familiar pattern that as model sizes

increase, in terms of both max_depth and num_trees, improvements decrease.

1 2 3 4 5
max_depth

1
2

3
4

5
nu

m
_t

re
es

(a) dataset: higgs

10

20

30

40

50

60

70

1 2 3 4 5
max_depth

1
2

3
4

5
nu

m
_t

re
es

(b) dataset: cod-rna

20

40

60

80

100

120

1 2 3 4 5
max_depth

1
2

3
4

5
nu

m
_t

re
es

(c) dataset: senseit_sei

25

50

75

100

125

150

175

1 2 3 4 5
max_depth

1
2

3
4

5
nu

m
_t

re
es

(d) dataset: senseit_aco

25

50

75

100

125

150

175

200

Figure 4.20: Improvements in test F1-macro for multiple datasets for different sizes of GBM models
are shown. Here, model size is the combination of max_depth and number of trees in the
GBM model. Greater improvements are seen at lower sizes.

4.3.4 Extrinsic Comparisons

Thus far our evaluations have looked at improvements produced by our technique for

a given model size. Here, we show that such improvements are also competitive with

task-specific techniques that produce accurate small models. We consider the problems

of explainable clustering and prototype-based classification for this evaluation.

4.3.4.1 Explainable Clustering

The first task we investigate is the problem of Explainable Clustering. Introduced by

Moshkovitz et al. (2020), the goal is to explain cluster allocations as discovered by tech-

niques such k-means or k-medians. This is achieved by constructing axis-aligned deci-

sion trees with leaves that either exactly correspond to clusters, e.g., Iterative Mistake

Minimization (IMM) (Moshkovitz et al., 2020), or are proper subsets, e.g., Expanding

Explainable k-Means Clustering (ExKMC) (Frost et al., 2020). We consider the former

130

case here, i.e., a tree must possess exactly k leaves to explain k clusters.

We denote a specific clustering by C. If the assigned cluster for an instance xi, i =

1...N , is denoted by C(xi) where C(xi) ∈ {1, 2, ..., k}, and the cluster centroids are

denoted by µj, j = 1, ..., k, then the cost of clustering C is given by:

C =
1

N

k∑
j=1

∑
{xi|C(xi)=µj}

||xi − µj||22 (4.14)

In the case of an explanation trees with k leaves, µj are centroids of leaves. Cluster

explanation techniques attempt to minimize this cost.

The price of interpretability maybe measured as CEx/CKM , where CEx is the cost

achieved by an explanation tree, and CKM is the cost obtained by a standard k-means

algorithm. We refer to this ratio as the cost ratio; it assumes values in the range [1,∞],

where the lowest cost is obtained when using k-means, i.e., CEx and CKM are the same.

One may also indirectly minimize the cost in the following manner: use k-means

to produce a clustering, use the cluster allocations of instances as their labels, and then

learn a standard decision tree for classification, e.g., CART. This approach has been

shown to be often outperformed by tree construction algorithms that directly minimize

the cost in Equation 4.14.

Algorithms and Hyperparameters: Within the family of explainable clustering

techniques, we use Iterative Mistake Minimization (IMM) (Moshkovitz et al., 2020)

and ExShallow (Laber et al., 2021), that minimize the cost in Equation 4.14. We com-

pare them with CART - without and with applying our technique; the latter is referred

to as c_CART. CART and c_CART maximize the F1(macro) score of predicting the

cluster labels. The metric of comparison is cost ratio. For our technique, the oracle

used is a GBM and the number of iterations is set as T = 2000. ExShallow is pa-

rameterized by λ, which is used to control the trade-off between clustering cost and

explanation size. This is set as λ = 0.03; this value is used in the original paper for

various experiments. For IMM there are no parameters to tune. The reference im-

plementations available at https://github.com/navefr/ExKMC and https:

//github.com/lmurtinho/ShallowTree respectively, were used. For CART,

131

https://github.com/navefr/ExKMC
https://github.com/lmurtinho/ShallowTree
https://github.com/lmurtinho/ShallowTree

we used the implementation in scikit (Pedregosa et al., 2011); during training, the

maximum number of leaves were set to the number of clusters k, and the parameter

class_weight is set to “balanced” to counter imbalance due to disparate cluster sizes10.

Experiment setup: The comparison is performed over five datasets (limited to 1000

instances), and for each dataset, k = 2, 3, ..., 10 clusters are produced. Results are

reported over five trials. Evaluations are performed over the following publicly available

datasets: avila, covtype, covtype.binary, Sensorless (Chang and Lin, 2011) and mice-

protein (Dua and Graff, 2017). We specifically picked these datasets since CART is

known to perform poorly on them (Frost et al., 2020; Laber et al., 2021).

Observations: Figure 4.21 presents our results. For each of the dataset-specific

plots (a), (b), (c), (d) and (e), the 95% confidence interval, in addition to mean normal-

ized cost, is shown. The cost for k-means is shown for reference. The final plot (f)

shows the mean ranks of the various techniques (lower is better), and its title shows the

p-value= 6.69 × 10−6 of a Friedman’s test conducted over the top three techniques11:

we restrict the test to top candidates since otherwise it would be very easy to obtain a

low/favorable score, due to the high normalized costs for CART.

We observe that although CART performs quite poorly, the application of our tech-

nique drastically improves its performance, to the extent that it competes favorably

with techniques like IMM and ExShallow; its mean rank places it between them. For

a Wilcoxon signed-rank test between IMM and c_CART we have p = 0.0155, show-

ing the performance of c_CART maybe interpreted as significantly different/better than

IMM. This is especially surprising given that it doesn’t explicitly minimize the cost in

Equation 4.14.

4.3.4.2 Prototype-based Classification

Next, we study the problem of prototype-based classification. At training time, such

techniques identify “prototypes” within the data (actual training instances or generated

instances), that maybe used to classify a test instance based on their similarity to them.

10Not surprisingly, we have observed that CART obtains better cost ratios with this setting.
11The test is typically performed over datasets, but here we use the combinations of datasets and k, the

number of clusters. Scores across trials are averaged.

132

(a) avila (b) Sensorless

(c) covtype (d) covtype.binary

(e) mice-protein (f) Mean Rank

Figure 4.21: Comparisons over various explainable clustering algorithms are shown. Sub-figures (a),
(b), (c), (d), (e) are specific to datasets, mentioned in the title. (f) shows the mean ranks
of techniques; the Friedman test is conducted over the top three techniques only, with
p = 6.69× 10−6.

133

A popular technique in this family is the k-Nearest Neighbor (kNN). These are simple

to interpret, and if a small but effective set of protoypes maybe identified, they can

be convenient to deploy on edge devices (Gupta et al., 2017; Zhang et al., 2020b).

Research in this area has focused on minimizing the number of prototypes that need to

be retained while minimally trading off accuracy. This is also the notion of model size

we use.

Algorithms and Hyperparameters: We compare to the following algorithms:

1. Fast Condensed Nearest Neighbor Rule (Angiulli, 2005): This technique iden-

tifies a minimal subset of points, known as a “consistent subset” designed to

maximize nearest neighbor based classification accuracy. Among its variations

we use FCNN1 (described in the original paper). This maximizes accuracy wrt

the “1NN” rule, i.e., predict the same label as the closest neighbor. We used our

own implementation of the algorithm.

2. ProtoNN (Gupta et al., 2017): This technique uses a Radial Basis Function (RBF)

kernel to aggregate influence of neighbors. Synthetic prototypes are learned and

additionally a “score” is learned for each of them that designates their contribu-

tion towards each label. The prediction function sums the influence of neighbors

using the RBF kernel, weighing contribution towards each class using the learned

score values.The method also allows for reducing dimensionality, but we don’t

use this aspect12. The various parameters are learned via gradient based opti-

mization. The RBF kernel accepts the kernel bandwidth γ as a parameter; to

identify an appropriate value, we perform a grid search over the following space:

[0.001, 0.01, 0.1, 1, 10].

We used the reference implementation available as part of the Microsoft EdgeML

library (Dennis, Don Kurian and Gaurkar, Yash and Gopinath, Sridhar and Goyal,

Sachin and Gupta, Chirag and Jain, Moksh and Jaiswal, Shikhar and Kumar,

Ashish and Kusupati, Aditya and Lovett, Chris and Patil, Shishir G and Saha,

Oindrila and Simhadri, Harsha Vardhan, 2021).

12The implementation provides no way to switch off learning a projection, so we set the dimensionality
of the projection to be equal to the original number of dimensions. This setting might however learn a
transformation of the data to space within the same number of dimensions, e.g., translation, rotation.

134

3. Stochastic Neighbor Compression (SNC) (Kusner et al., 2014): This also uses

a RBF kernel to aggregate influence of neighbors, but unlike ProtoNN, the pre-

diction is performed via the 1NN rule. The technique bootstraps with randomly

sampled prototypes, and then modifies their coordinates for greater accuracy us-

ing gradient based optimization. The technique maybe extended to reduce the

dimensionality of the data (and prototypes). We don’t use this aspect, and hence

refer to as SNC_basic in our experiments. A grid search over values of γ (param-

eter for the RBF kernel) is performed: [0.001, 0.01, 0.1, 1, 10].

We were unable to locate the reference implementation mentioned in the paper,

so we implemented our own version, with the help of the JAXopt library (Blondel

et al., 2021).

The above algorithms are compared to Radial Basis Function Networks (RBFN)

(Broomhead and Lowe, 1988). As the standard version, we use centroids of clusters

discovered by k-means as protoypes - we refer to this as KM_RBFN. The oracle based

technique directly provides prototypes to the RBFN via sampling (their precise num-

ber is controlled by fixing the sample size Ns,t in Algorithm 9), and is referred to as

c_RBFN. Because there is no way to perform dimensionality reduction using RBFNs,

to keep comparisons fair we don’t use this aspect of SNC or ProtoNN.

Experiment setup: We compare the techniques across five datasets and five trials.

The following publicly available datasets are used: covtype.binary, senseit-sei, senseit-

aco, phishing (Chang and Lin, 2011) and adult (Dua and Graff, 2017). The training

and test dataset sizes were limited to 1000 instances each. The number of prototypes

experimented with are {2, 4, 6, ..., 20}. This does not apply to FCNN1 since it does not

accept size of the prototype set as input; instead it iteratively constructs a prototype set

till it meets a stopping criteria. The size of this set at different iterations may vary across

trials; hence these are binned to compute confidence intervals of prediction accuracy

across trials. The metric of comparison is the F1 (macro) score for classification.

Observations: Figure 4.22 shows results from our experiments. At the outset, we

note FCNN1 performs quite poorly - this matches the observations in Kusner et al.

(2014). Plot (e) shows that ProtoNN performs the best. While c_RBFN improves

135

upon KM_RBFN, it still ranks behind SNC_basic. For a Friedman’s test13, we exclude

FCNN1 (otherwise it would be easy to obtain a favorable score because of its poor per-

formance), and report a p-value= 3.50 × 10−8. The low score indicates a statistically

significant performance difference across techniques. We note the following p-values

from the Wilcoxon signed-rank test:

1. SNC_basic vs c_RBFN, p-value= 0.1260: The test scores of SNC_basic aren’t

significantly better than c_RBFN, despite the difference in their mean ranks.. In

fact if our confidence threshold were α = 0.1, we wouldn’t have been able to

conclude SNC_basic is better.

2. c_RBFN vs KM_RBFN, p-value= 0.00016: This tells us that the improvement

of c_RBFN upon KM_RBFN is statistically significant.

We conclude that c_RBFN significantly improves the standard KM_RBFN, making

it competitive with SNC_basic, a technique that is specialized for this task.

4.3.5 Summary

We summarize our observations from our experiments here:

1. For all combinations of interpretable and oracle models - {LPM,DT}×{GBM,RF}

- we see good improvements, δF1, especially at small sizes (Section 4.3.1.6).

Sometimes these may be > 100%. For model sizes beyond a point, we observe

δF1 ≈ 0.

2. The results in Section 4.3.2 strongly indicate that the precise relationship of the

sampling distribution and the uncertainty needs to be learned, and a heuristic

strategy of exclusively sampling high uncertainty points is not optimal . We be-

lieve this is an important result, especially given that this is true for the supervised

version of uncertainty sampling, which is significantly more powerful than stan-

dard uncertainty sampling.

13As in the case of explainable clustering, we perform the test over a combination of dataset and
number of prototypes

136

(b) covtype.binary

(c) senseit-sei (d) senseit-aco

(e) phishing (f) Mean Rank

(a) adult

Figure 4.22: Different prototype-based classifiers are compared. Sub-figures (a), (b), (c), (d), (e) are
specific to datasets, mentioned in the title. (f) shows the mean ranks of techniques; the
Friedman test is conducted over the top four techniques only, with p = 3.50× 10−8.

137

3. Our approach produces better accuracy, in general, compared to both supervised

uncertainty sampling and the density tree based approach.

The results in Table 4.4 and Table 4.5 from Section 4.3.2.3 are summarized in Ta-

ble 4.6. Recall that the combination OVERALL + ANY averages over datasets

and oracles; Table 4.6 shows these summary statistics.

Table 4.6: Summary comparison results, OVERALL + ANY

compared to model SDI pct_better

supervised uncertainty sampling LPM 0.61 93.09%
DT 0.50 73.75%

density trees LPM 0.37 81.38%
DT 0.31 67.30%

We observe that density trees are more competitive to our technique than super-

vised uncertainty sampling: smaller SDI and pct_better scores. This is to be

expected since the density tree based approach is capable of learning flexible dis-

tributions over the input space.

4. A remarkable fact of practical value is that we don’t tune the parameters Φ for a

specific problem. The value ranges for these are fixed across tasks, with only the

iteration budget T being changed - as described in Section 4.3.1.5. This highlights

another strength of the technique: Φ need not be tuned for obtaining meaningful

improvements, as long as it admits a broad enough set of uncertainty distributions.

5. Section 4.3.3 showcases the generality of the proposed technique: we success-

fully used it with differing feature spaces across the oracle and the interpretable

model, to identify the optimal training sample for a given size, and with vector

valued model sizes. These applications considerably broaden the impact of our

work.

6. Section 4.3.4 shows that improvements produced by our technique are compet-

itive with task-specific specialized techniques. This is surprising, and further

attests to the broad utility of the technique.

Importantly, the various positive results from this section should be seen as repre-

sentative of the proposed framework, and not just our implementation. In other words,

138

these results establish a lower bound for the outcomes, because they may be potentially

improved by using different components within the larger framework, e.g., by using

a different optimizer from among the ones discussed in Feurer and Hutter (2019b) or

Turner et al. (2021) .

4.4 Discussion

Having looked at both the theory and empirical outcomes, we revisit a few points of

interest in this section.

1. Effect of flattening: We first consider the question: does flattening (Section

4.2.5) help? Table 4.7 contrasts improved F1 scores obtained without (rows de-

noted as “original”) and with (denoted “flattened”) flattening the uncertainty dis-

tribution. This is shown for the datasets Sensorless and covtype.binary,

for model size ∈ {1, 2, 3}, with model = LPM and oracle = GBM . Two dif-

ferent parameter settings are used: (a) Setting 1 is what we have used in the

experiments in Section 4.3: maximum allowed Beta components are 500 and

scale = 10000 (b) Setting 2 looks at much lower values of these parameters

where maximum allowed components is 50 and scale = 10. The scores pre-

sented are the average over three trials.

We observe that while flattening influences results, other parameters determine

the magnitude of its effect. At Setting 1, Sensorless is affected at size = 1

(flattening is better), but at higher sizes the differences seem to be from random

Table 4.7: Improved scores averaged over three trials, shown for different parameter settings, with and
without flattening. Here, Setting 1 is {max_components = 500, scale = 10000} and Set-
ting 2 is {max_components = 50, scale = 10}. “curr.” signifies this is the current setting
for our experiments in Section 4.3, while “low” signifies lower values of parameters. High-
lighted cells indicate positve effect of flattening.

Setting 1 (curr.) Setting 2 (low)

dataset dist. 1 2 3 1 2 3

Sensorless original 0.39 0.54 0.57 0.38 0.42 0.41
flattened 0.44 0.53 0.55 0.43 0.54 0.59

covtype.binary original 0.66 0.69 0.71 0.64 0.66 0.71
flattened 0.68 0.73 0.73 0.65 0.71 0.71

139

variations across trials. At Setting 2 however, the differences are seen for size ∈

{1, 2, 3} (flattening is better). For covtype.binary only size = 2 seems to

be affected in either setting.

Recall we had noted in Figure 4.7 that the datasets Sensorless and covtype.binary

have non-smooth and smooth uncertainty distributions respectively. The obser-

vations in Table 4.7 align well with the expectation that Sensorless is posi-

tively affected by the transformation, while results for covtype.binary re-

main mostly unchanged.

Based on these tests, we hypothesize that for non-smooth uncertainty distribu-

tions, flattening makes our technique robust across parameter settings. It does not

affect smooth distributions in a significant way. Of course, rigorous and extensive

tests are required to conclusively establish this effect.

2. Alternative Parameterization: Instead of using shape variables {a, b, a′, b′} to

characterize the IBMM (Section 4.2.3), which lie in the interval (0,∞), one might

wonder if its simpler to parameterize based on the mean, µ ∈ [0, 1] (bounded

by the range of uncertainty values), and standard deviation, σ ∈ [0, 0.5] (also

bounded; this range is a property of the Beta distribution). While this is ap-

pealing, we need to consider that unlike the Normal distribution, µ and σ are not

independent for a Beta distribution. For instance, µ → 1 =⇒ σ → 0. The

optimization would need to account for this dependence, and we would lose our

current convenience of using only box constraints. The scatter plot in Figure 4.23

marks the different combinations of µ and σ for which valid Beta distributions

exist.

Figure 4.23: Blue dots indicate a valid Beta distribution exists for the corresponding mean and standard
deviation values.

140

3. Measuring compaction: As we have indicated earlier, a possible area of appli-

cation of this work might be model compression. We would like to point out that

the compaction profile (Figure 4.9, Figure A.6) plots emphasize this use-case:

they’re a visual tool to determine the minimal model size achievable using our

technique, given a baseline model size.

To formalize this connection, we introduce the score Compaction Index (CI) that

denotes the extent of model size decrease possible, up to a size where δF1 ≈ 0.

Figure 4.24 shows a sample compaction profile. TheCI score, whereCI ∈ [0, 1],

is the ratio of the area in red to the area in green.

Figure 4.24: Compaction Index

The more reduction in model size our technique can obtain, the closer the red

curve is to the green boundary, and CI ≈ 1. If no reduction is possible at any

model size, the red line coincides with the diagonal and CI = 0. Clearly, this

score is specific to a model family F , a training algorithm f and a specific notion

of model size. And ideally, this should be averaged over all possible datasets and

oracles.

Here are the CI scores for our experiments :

• LPM : CI = 0.57

• DT : CI = 0.17

These scores indicate that LPMs may be compacted better than DTs, for the

respective notions of size we use here - this may also be seen from the plots in

Figure 4.8, where the improvements forDTs decrease faster, with growing model

141

size, than those for LPMs. Section 5.3 presents some additional discussion on

model compression.

4. Upper bound of improvements: In Equation 4.2, and then in Equations 4.3 and

4.4, the improved accuracy of the interpretable model is shown bounded by the

oracle accuracy. For example, see the rightmost term in Equation 4.2, reproduced

below:

accuracy(MIpη, p) / accuracy(MIqη, p) / accuracy(MOp∗, p) (4.15)

We empirically show this to be true now. In Figure 4.25, we show the distribution

of relative difference between the improved accuracy of a LPM model and the

accuracy of a GBM oracle.

Using the notation in the equation above, we calculate the relative difference ∆F1

as:

∆F1 =
accuracy(MIqη, p)− accuracy(MOp∗, p)

accuracy(MOp∗, p)
(4.16)

Here, of course, we measure accuracy using the F1 macro score.

Figure 4.25: Distribution of %age accuracy difference from the oracle accuracy.

There is one distribution plotted per dataset, where the distribution uses informa-

tion from multiple runs, for multiple model sizes. It may be seen in Figure 4.25

that all relative differences are at most 0 (there is some spillover to the right of 0

owing to the use of KDEs for visualization).

142

For precise numbers, we look at Table 4.8, which lists the %age of cases where

the interpretable model’s accuracy exceeded that of the oracle, and the average

value of the relative difference for the cases where it is positive. We also consider

the statistical significance of these values: using a one-sided Wilcoxon signed-

rank test, we determine the p-value for the null hypothesis that accuracy scores

produced our technique exceed those of the oracle. This is a paired test where

oracle and model scores for a dataset are paired, for a given combination of an

interpretable model and an oracle. Only the largest model built for the dataset is

used.

For instance, for dataset a1a, we note from Table 4.3 that using the GBM oracle,

LPMs of sizes 1 . . . 15 are constructed; however, this test uses only the LPM of

size 15. We don’t use all sizes since that biases results in our favor, as smaller

models are not expected to match the oracle’s accuracy.

Table 4.8: The percentage of cases where we see positive relative difference w.r.t. oracle, and the mean of
these positive difference are shown. The p-value for the hypothesis that model improvements
exceed oracle are also provided.

model oracle %age +ve cases mean +ve value p-value (largest models)

LPM GBM 1.60% 0.81 0.000737
LPM RF 4.47% 1.36 0.001183
DT GBM 3.51% 1.84 0.001488
DT RF 2.85% 0.65 0.000936

4.5 Conclusion

In this chapter we introduced a second novel technique to reduce the trade-off between

the size and accuracy of a model. The practical implication of this work is that instead

of picking an interpretable model family based on accuracy, one may use our method to

construct accurate models for their preferred model family. A Python implementation

has been made publicly available: Ghose (2020).

Producing an accurate model is formulated as an optimization problem of identi-

fying training data that maximizes learning, where the optimization is guided by an

oracle. It retains the following favorable properties of the density tree based approach:

143

1. Irrespective of the dimensionality of the data, the optimization uses a small fixed

set of seven variables (density trees use eight).

2. A reasonable choice of box constraints over the search space produces good re-

sults across datasets.

3. The technique is model-agnostic, allowing for use with an arbitrary interpretable

model family.

4. Its a framework, which leaves open the possibility of conveniently improving

upon it as better optimizers become available.

Additionally, it improves upon the density tree based approach in these significant

ways:

1. It is more accurate.

2. It is more flexible in the sense of being able to use an arbitrary oracle.

3. The oracle and the interpretable models may use different feature spaces.

This work also reaffirms some intriguing deeper findings:

1. Train and test distributions need not be identical for optimal learning.

2. Our observations here point to a “small model effect”: this difference in distri-

butions exists for small model sizes, and it is in this model size regime that we

observe most improvements.

The general theme of the proposed technique, that of shaping data density to in-

fluence accuracy, as well as the deeper results, offer promising directions for future

research - we discuss them in Section 5.3.

144

CHAPTER 5

Conclusions and Future Directions

In this chapter, we first revisit our primary metric, δF1, and discuss an alternate calcu-

lation. We then conclude the dissertation by summarizing our contributions and sug-

gesting avenues for future research.

5.1 Analysis of Small Improvements

As mentioned in Chapters 3 and 4, the lower bound of δF1 is set to 0. This is done since

the baseline data distribution, i.e., po = 1, is part of the search space of distributions

available to the optimizer, and thus in the ideal setting of a much larger optimization

budget and number of trials, δF1 ≮ 0.

However, to analyze negative improvements in our setup that has finite budget, we

note:

1. The baseline doesn’t provide a fair reference since it possesses multiple advan-

tages over a model trained within the optimizer: more available training data,

model selection via a robust cross-validation process and in the case of DTs, ex-

ploration of a larger parameter space (discussed in Sections 3.3.2 and 4.3.1.2).

This baseline was picked for our experiments to reflect the practical scenario

that a baseline model would be trained in a standard fashion, i.e., external to our

technique.

2. In general, the baseline is not a good reference for small values of δF1, negative

and positive, because of its inherent advantages.

3. The model produced at the first iteration serves as a fair reference. Recall from the

discussions of Algorithms 7 and 9, here the configuration settings of po → 1 and

Ns → |Dtrain| mimic the data distribution available to the baseline models, and

145

being constructed within the optimizer, it has access to the exact same resources

as the optimized model.

We recompute δF1 with the model at the first iteration as the baseline. To account

for variability across runs, we perform a t-test between the validation F1 macro scores

at the first iteration and the optimal iteration, across runs. This is only shown for the

oracle-based technique, since (a) we recommend its use over the density tree technique

because it is more accurate in general (Section 4.3.2.3), and (b) we expect similar be-

havior for the alternate δF1 in the case of density trees, since the optimizer plays a

similar role.

Our null hypothesis is the model at the first iteration is better, and we accept the

alternative only when p < 0.1. Improvements δF1 are reported on test scores. Here,

δF1 ∈ (−∞,∞).

These improvements are shown in Table 5.1, where negative improvements are in-

dicated in red. Also note that some of the small positive δF1 scores from Table 4.3,

e.g., dataset a1a for model size of one, now become exactly 0.

146

Table 5.1: This table shows the average improvements, δF1, over five runs for different combi-
nations of models and oracles: {LPM,DT}×{GBM,RF}. The improvements are
measured relative to the model at the first iteration.The best improvement for a model
size and oracle is indicated in bold. Here, δF1 ∈ (−∞,∞). Negative improvements
are shown in red.

dataset model_ora 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cod-rna lpm_gbm 1.39 12.53 14.76 15.73 14.97 12.00 0.00 0.08 - - - - - - -
lpm_rf 2.66 13.91 14.69 15.34 16.06 12.49 8.30 0.00 - - - - - - -

dt_gbm 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00 -0.28 0.08 - - - - -
dt_rf 0.00 0.00 1.78 2.28 0.39 -0.02 0.17 0.47 0.00 0.72 - - - - -

ijcnn1 lpm_gbm -0.16 3.36 3.93 0.00 5.19 4.18 3.85 3.79 3.69 2.99 2.97 3.21 3.11 3.26 3.02
lpm_rf 0.19 2.80 3.36 3.65 3.33 1.94 3.58 3.30 3.46 3.81 2.66 4.65 3.99 3.82 4.85
dt_gbm 1.96 12.00 10.15 11.37 10.63 7.18 3.63 4.52 2.91 1.78 1.93 2.29 1.47 2.26 0.00
dt_rf 4.06 12.10 8.95 10.75 10.13 8.25 5.38 2.46 2.63 1.25 1.46 1.37 1.91 0.00 1.38

higgs lpm_gbm 29.29 17.80 11.40 6.56 3.06 2.68 3.16 2.90 2.67 2.82 2.65 1.79 2.62 2.19 1.63
lpm_rf 26.71 17.29 15.06 10.60 5.35 4.04 2.35 2.03 1.66 1.89 2.91 2.94 3.31 2.58 2.22
dt_gbm 0.00 0.00 1.86 0.26 0.93 0.45 - - - - - - - - -
dt_rf 4.04 1.26 1.74 1.32 1.54 0.91 - - - - - - - - -

covtype.binary lpm_gbm 76.52 66.39 29.17 12.51 9.18 5.28 4.94 4.56 3.92 3.56 3.62 3.31 2.59 2.83 2.39
lpm_rf 96.77 63.38 14.36 9.61 6.79 3.94 2.93 2.81 2.96 2.84 2.31 2.26 2.00 2.43 2.22

dt_gbm 0.00 0.00 2.35 1.27 1.18 1.11 0.00 0.00 0.00 - - - - - -
dt_rf 0.00 0.00 2.10 2.33 2.44 2.39 1.84 2.19 1.65 0.70 - 0.89 - - -

phishing lpm_gbm 0.00 1.88 2.88 3.05 3.22 3.25 2.99 1.69 1.42 1.45 1.29 0.00 0.00 0.00 0.00
lpm_rf 0.00 2.14 3.29 3.22 3.59 3.79 3.29 2.05 1.42 1.44 1.24 1.23 1.16 1.26 1.02
dt_gbm 0.00 0.00 0.00 0.07 0.39 0.00 0.28 0.22 0.44 0.23 0.00 0.00 0.00 0.00 0.00
dt_rf 0.00 0.72 0.00 0.57 0.00 -0.17 0.13 0.48 0.13 0.05 0.03 -0.03 -0.28 0.00 -0.16

a1a lpm_gbm 0.00 2.55 7.58 8.98 8.40 8.03 8.90 8.23 8.17 7.90 5.96 7.10 6.97 6.18 5.73
lpm_rf 0.00 4.17 8.81 9.92 9.88 9.47 8.99 9.31 9.19 9.26 9.33 8.25 7.15 7.55 7.98
dt_gbm 0.00 5.54 2.39 3.84 3.55 2.55 1.51 2.25 4.87 - - - - - -
dt_rf 0.00 6.44 3.36 5.60 3.40 5.94 6.06 4.97 4.89 4.01 4.73 5.21 - - 4.53

pendigits lpm_gbm 51.39 23.44 16.18 8.95 8.84 6.63 4.86 1.83 2.27 2.16 2.44 2.16 3.33 2.97 2.73
lpm_rf 46.28 22.74 21.72 8.80 8.47 6.29 6.48 1.69 3.03 2.79 2.34 2.68 2.70 3.02 0.00

dt_gbm 14.02 6.72 5.11 13.14 6.42 4.20 2.46 1.09 0.98 0.16 -0.26 0.00 0.00 0.00 0.00
dt_rf 21.46 4.18 5.22 14.51 7.36 4.55 2.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

letter lpm_gbm 57.06 48.48 59.85 29.76 36.09 19.27 20.37 16.08 17.55 15.16 17.26 16.51 18.46 17.19 15.55
lpm_rf 61.06 65.34 64.26 23.69 35.20 26.15 22.10 20.74 20.91 20.31 19.28 21.40 20.77 19.39 18.18
dt_gbm 0.00 13.98 25.05 33.96 32.05 15.49 11.17 0.00 4.26 3.50 1.99 0.00 0.00 0.00 0.00
dt_rf 0.00 12.21 28.67 33.47 33.51 18.41 8.10 0.00 1.84 1.21 1.31 0.67 0.61 0.11 -0.08

Sensorless lpm_gbm 216.47 257.56 178.31 117.01 90.70 83.90 73.50 65.95 61.57 57.97 56.54 57.15 55.45 66.24 68.24
lpm_rf 224.18 210.28 134.44 115.00 85.85 74.96 66.77 61.10 66.88 64.65 69.00 70.09 72.91 80.14 82.15
dt_gbm -0.01 42.42 68.13 44.38 17.39 10.32 1.82 1.44 0.79 0.64 0.41 0.12 0.00 -0.02 0.34
dt_rf 0.00 52.54 57.10 44.61 16.63 6.19 2.19 0.96 0.51 0.00 0.48 0.33 0.00 0.00 0.10

senseit_aco lpm_gbm 173.71 170.68 63.95 44.20 33.49 22.99 19.14 13.50 10.29 7.59 6.26 5.92 5.30 4.89 4.32
lpm_rf 177.67 181.26 79.86 42.86 37.60 28.80 23.75 19.06 13.91 10.74 8.48 6.09 5.20 5.32 4.62
dt_gbm 14.89 0.00 3.71 2.32 4.85 0.81 0.00 - - - - - - - -
dt_rf 20.03 2.54 3.64 5.91 3.34 2.63 0.00 0.00 - - - - - - -

senseit_sei lpm_gbm 160.59 65.27 23.44 10.48 6.76 4.86 4.82 4.46 4.79 4.12 4.54 5.17 3.91 4.21 4.46
lpm_rf 165.98 63.72 31.58 14.94 9.07 5.79 4.95 5.07 5.24 4.70 4.60 3.74 4.30 4.35 4.35

dt_gbm 2.66 1.01 3.49 2.29 0.95 1.30 1.37 0.00 - - - - - - -
dt_rf 2.33 0.00 3.36 1.65 0.87 0.00 -1.23 - - - - - - - -

covtype lpm_gbm 36.87 49.24 12.78 11.21 7.84 7.15 7.15 8.07 7.70 8.25 10.94 8.35 4.37 8.77 5.84
lpm_rf 32.15 39.49 10.49 8.53 8.11 8.59 9.61 11.99 11.22 9.91 8.47 8.16 10.34 13.76 12.92
dt_gbm 342.27 92.85 43.23 20.04 8.14 8.05 5.67 3.26 4.92 3.52 2.72 0.00 0.00 0.00 1.74
dt_rf 354.45 98.94 50.87 14.10 9.46 7.38 4.76 4.20 0.94 1.81 2.30 0.71 -0.37 0.00 0.00

connect-4 lpm_gbm 37.62 11.66 12.01 6.84 5.68 6.82 4.58 2.10 3.82 3.21 3.02 3.64 2.32 2.97 3.40
lpm_rf 33.77 12.99 17.60 14.66 15.91 10.73 6.38 5.35 7.07 6.98 2.84 3.14 2.09 2.52 2.46

dt_gbm 89.33 29.23 20.20 12.10 9.73 9.88 7.82 7.43 0.57 4.61 1.08 3.35 2.23 1.15 1.55
dt_rf 113.71 21.91 20.52 11.23 16.86 10.96 10.64 9.11 6.51 5.88 6.76 2.16 2.97 0.61 0.00

We also perform a Wilcoxon signed-rank test to measure statistical significance of

the δF1 scores here. The setup is identical to that in Section 4.3.1.7: one-sided test,

paired over datasets, performed separately for ranges of normalized bin sizes. Scores of

δF1 = 0 are split equally between positive and negative ranks. A key difference here is

that δF1 ∈ (−∞,∞).

147

The results are shown in Figure 5.1.

2 4 6 8
model size bins

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

p-
va

lu
e

(a) model=LPM, oracle=GBM

2 4 6 8
model size bins

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

p-
va

lu
e

(b) model=LPM, oracle=RF

2 4 6 8
model size bins

0.000

0.005

0.010

0.015

0.020

0.025

p-
va

lu
e

(c) model=DT, oracle=GBM

2 4 6 8
model size bins

0.00

0.01

0.02

0.03

0.04

p-
va

lu
e

(d) model=DT, oracle=RF

Figure 5.1: These plots show the p-values for the Wilcoxon signed-rank test, with the null hypothesis
H0: using the oracle does not produce better F1 test scores. The bin boundaries are selected
using the Sturges rule (Sturges, 1926). Low p-values favor our algorithm.

We note that p-values are small here as well. In comparison to Figure 4.10, for

decision trees, the p-values are typically larger. This is to be expected since we now

have cases where δF1 < 0. We don’t see this for LPMs possibly because they are not

constructed all the way up to their maximum possible size, i.e., when number of non-

zero coefficients is equal to the number of features, and so the impact of our technique

is significant irrespective of how improvements are calculated.

5.2 Summary of Contributions

This dissertation proposes two techniques for building compact models, i.e., models

that minimize the trade-off between size and accuracy. Such techniques find use in

a growing number of applications that require interpretability, where small accurate

models are typically preferred.

We demonstrated that it is possible to do so by learning a sampling distribution

over the training data. In developing our techniques, we make the following novel

contributions:

148

1. We show that the training distribution that leads to the highest test accuracy is, in

general, different from the test distribution at small model sizes. We also clearly

show that the ideal training distribution progressively grows closer to the test

distribution as model size increases.

2. We provide two techniques to learn such a distribution. These are empirically

validated across a diverse set of data and models.

3. Both approaches formulate the problem of identifying this distribution as an opti-

mization problem in a way that the number of optimization variables does not de-

pend on the dimensionality of data - the density tree and oracle based approaches

are specified by a fixed set of eight and seven variables respectively. This makes

the techniques scalable.

4. It is shown that reasonable defaults exist for these parameters which make it pos-

sible to achieve good results without hyperparameter tuning. This augments their

practical value.

5. Both approaches are frameworks in the sense that the key optimization step only

identifies certain attributes that an optimizer must possess. This makes it conve-

nient to replace the optimizer used in our implementation with better optimizers

as they become available.

6. The density tree based approach introduces an innovative tool to control the extent

of class boundary information available to a learner.

7. The oracle based approach is shown to be highly flexible in terms of both the

model family of the oracle that may be used and the difference in its feature

space wrt to that of the interpretable model.

The oracle based technique has also been publicly released as a Python library (Ghose,

2020).

149

5.3 Future Directions

We present potential avenues of future work in this section. This is divided into two

groups: (a) algorithmic improvements and additional applications (b) research direc-

tions. While most suggestions here apply to both the density tree based and oracle

based approaches, those that apply exclusively to one are explicitly indicated.

We start with the former group. Our algorithms are reasonably abstracted from low

level details, which enables various extensions like the following;

1. Smoothing: Applies to density trees. We had hinted at alternatives to Laplace

smoothing in Section 3.2.5. We discuss one possibility here. Assuming our den-

sity tree has n nodes, we let S ∈ Rn×n denote a pairwise similarity matrix for

these nodes, i.e., [S]ij is the similarity score between nodes i and j. Let P ∈ R1×n

denote the base (i.e. before smoothing) probability masses for the nodes. Normal-

izing P × Sk, k ∈ Z≥0 gives us a smoothed pmf that is determined by our view

of similarity between nodes. Analogous to transition matrices, the exponent k

determines how diffuse the the similarity is; this can replace λ as an optimization

variable.

The ability to incorporate a node similarity matrix opens up a wide range of pos-

sibilities, e.g., S might be based on the Wu-Palmer distance (Wu and Palmer,

1994), SimRank (Jeh and Widom, 2002) or Random Walk with Restart (RWR)

(Pan et al., 2004).

2. Categorical variables: We have not explicitly discussed the case of categorical

features. This is not a challenge for the oracle based approach since it can work

across disparate feature spaces (as demonstrated in Section 4.3.3.1).

For the density tree based approach, there are a couple of ways to handle data

with such features:

(a) The density tree may directly deal with categorical variables. When sam-

pling uniformly from a node that is defined by conditions on both continuous

and categorical variables, we need to combine the outputs of a continuous

150

Table 5.2: Classification Results with GBMs. Both F1new and δF1 are shown. A reproduction of Table
3.4.

boosting rounds = 1 2 3 4 5 6 7 8 9 10

datasets max depth score type

Sensorless 2 F1new 0.76 0.77 0.78 0.80 0.80 0.80 0.81 0.81 0.81 0.81
δF1 3.19 3.35 3.10 5.05 4.12 1.75 3.21 1.96 1.90 2.43

5 F1new 0.91 0.92 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.95
δF1 0.29 0.25 0.16 0.40 0.00 0.18 0.36 0.30 0.00 0.26

senseit_aco 2 F1new 0.22 0.24 0.31 0.37 0.52 0.59 0.61 0.62 0.63 0.63
δF1 0.00 6.81 41.41 67.44 69.29 9.39 6.83 4.70 2.33 1.10

5 F1new 0.22 0.30 0.42 0.51 0.58 0.62 0.65 0.66 0.67 0.68
δF1 0.00 36.80 85.44 46.66 9.72 2.91 1.17 0.34 0.39 0.40

senseit_sei 2 F1new 0.60 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.62
δF1 171.08 171.28 173.05 174.66 173.47 165.00 78.73 48.52 24.61 17.63

5 F1new 0.62 0.64 0.64 0.64 0.64 0.65 0.64 0.64 0.65 0.66
δF1 180.46 185.59 186.24 181.13 64.66 28.13 11.30 3.11 1.37 0.59

See Table A.1 for complete data.

uniform sampler (which we use now) and a discrete uniform sampler (i.e.

multinomial with equal masses) for the respective feature types.

(b) We could create a version of the data with one-hot encoded categorical fea-

tures for constructing the density tree. For input to trainF() at each it-

eration, we transform back the sampled data by identifying values for the

categorical features to be the maximums in their corresponding sub-vectors.

Since the optimizer already assumes a black-box trainF() function, this

transformation would be modeled as a part of it.

3. Model compression: An interesting possible application of our techniques is

model compression1. This is possible with either technique. We demonstrate the

idea with the GBM analysis data - see Table 5.2- for density trees.

Consider the column boosting round = 1 for the senseit_sei dataset in Table 5.2.

Assuming the base classifiers have grown to theirmax_depths, the memory foot-

print in terms of nodes for the GBMs with max_depth = 2 and max_depth = 5

are 22 + 1 = 5 and 25 + 1 = 33 respectively.

Replacing the second model (larger) with the first (small) in a memory con-

strained system reduces footprint by (33− 5)/33 = 85% at the cost of changing

the F1 score by (0.60− 0.62)/0.62 = −3.2% only.

Such a proposition becomes particularly attractive if we look at the baseline

scores, i.e., accuracies on the original distribution. For the larger model, F1baseline =

1This was briefly discussed in Section 4.4

151

F1new/(1+δF1/100) = 0.62/(1+1.8046) = 0.22. If we replace this model with

the smaller model enhanced by our algorithm, we not only reduce the footprint

but actually improve the F1 score by (0.60− 0.22)/0.22 = 173.7%!

We precisely state this application thus: our algorithm may be used to identify a

model size ηe (subscript “e” for “equivalent”) in relation to a size η > ηe such

that:

accuracy(trainF(p∗ηe , ηe), p) ≈ accuracy(trainF(p, η), p) (5.1)

4. Segment analysis: Our sampling operates within the bounding box U ⊂ Rd; in

previous sections, U was defined by the entire input data. However, this is not

necessary: we may use our algorithms on a subset of the data V ⊂ U , as long as

V is a hyperrectangle in Rd′ , d′ ≤ d. This makes our algorithms useful for appli-

cations like cohort analysis, common in marketing studies, where the objective

is to study the behaviour of a segment - say, based on age and income - within

a larger population. Our algorithms are especially appropriate since traditionally

such analyses have emphasized interpretability.

5. Multidimensional size: The notion of model size is not restricted to being a

scalar quantity. We demonstrated this for the oracle based approach in Section

4.3.3.3, but this also applies to the density tree based approach.

6. Using different optimizers: As mentioned earlier, both our algorithms are frame-

works, and as better optimizers become available, our algorithms may be easily

improved by using them to re-implement suggest() in Algorithm 7 and Algo-

rithm 9. This is especially enabled by the conscious choice of using a fixed set of

optimization variables.

We show examples in Figure 5.2, where accuracies against number of iterations

are shown for the datasets (a) covtype and (b) letter. The model used is LPM - size

2 and 3 respectively - and the oracle is GBM. This setup uses ten trials, each with

an optimizer budget of 1000 iterations. The datasets contain 2000 instances, and

the splits are the same as in our other experiments, i.e.,Dtrain : Dval : Dtest :: 60 :

20 : 20. The F1 macro score on Dtrain is shown since the optimizer’s objective

152

function is defined on this split, making it a good choice for tracking progress.

In addition to TPE (denoted as “hyperopt”, for the name of the library), optimiz-

ers LIPO (Malherbe and Vayatis, 2017) and pySOT (Eriksson et al., 2019) are

used. The pySOT library supports multiple search strategies; we show results

for Stochastic Radial Basis Function (denoted as “pysot(srbf)”) (Regis and Shoe-

maker, 2007, 2009) and Dynamic Coordinate Search (denoted as “pysot(dycors)”)

(Regis and Shoemaker, 2013).

(a) covtype, LPM(2), GBM (b) letter, LPM(3), GBM

Figure 5.2: Use of different optimizers is illustrated; see text for details. The plot titles have the follow-
ing format: dataset, model family (model size), oracle family.

Note the different behavior of the optimizers: in Figure 5.2(a), while hyperopt

eventually does better, stopping before the 600th iteration favors pysot(srbf). In

Figure 5.2(b), pysot(dycors) nearly entirely dominates hyperopt.

The strong influence of optimizers on convergence in our setup make them a

meaningful area of study.

7. Fast Sampling: Even though the data that we apply the IBMM to is univariate,

the sampling can still be expensive, especially when there are multipleBeta com-

ponents (we present some representative running times in Section A.13). This

suggests an obvious direction for improvement: use a faster sampling procedure.

One way to attain this would be to use a distribution like the Kumaraswamy dis-

tribution (briefly discussed in Section 3.4), which leads to faster sampling due to

the simple nature of its Cumulative Distribution Function.

153

From the perspective of research, we find the following future directions appealing:

1. Applicability to Deep Learning: A significant extension would be to test if the

principle of learning the training distribution to reduce model size applies also

to Deep Learning (DL). A direct application of our techniques is infeasible since

they train multiple models, which can be prohibitively expensive for DL. Alterna-

tive optimization strategies need to be explored, such as those based on gradient

information (see next point) or a hybrid of early-stopping and BO (Falkner et al.,

2018).

This has a related benefit. The primary reason why experiments here are restricted

to tabular datasets, and do not include unstructured datasets such as ImageNet

(Deng et al., 2009), is the infeasibility of using DL. The proposed extension will

also open up paths to analyzing such datasets.

2. Differentiable optimization: We might think of our techniques as learning a

sampling distribution p′(xi) indirectly on the input space:

• via p(uMO
(xi)), the distribution over uncertainty scores, in the case of the

oracle based approach, and

• using the depth distribution and the pmfs over nodes, in the case of density

trees.

An alternative view might be to directly learn instance weights wi instead, where

wi = p′(xi). This approach clearly suffers from challenges in scaling - there

are as many weights as training instances. However, recent work suggests that

for differentiable model losses, this problem might be efficiently solved by for-

mulating it as a bi-level optimization problem (Pedregosa, 2016; Lorraine et al.,

2020); which makes this a feasible direction to explore. The expected benefit is

this might be faster2, at least for moderately sized datasets.

This approach brings its own challenges that future work would need to consider:

(a) since gradient information is required, the loss function must be known; there-

fore this approach is not model-agnostic (b) even if an automatic differentiation

2Pedregosa (2016) compares this approach against BO for the task of hyperparameter tuning; these
numbers should be assumed to be indicative only, since the BO algorithm used is not TPE.

154

framework is used, such as JAX (Bradbury et al., 2018), to generalize to unseen

loss functions, model families like DTs remain out of scope since their loss isn’t

differentiable3.

3. Evaluating Active Learners: The standard way to evaluate active learning algo-

rithms is to evaluate model accuracy against the number of labeled training data

instances. It is interesting to consider an alternative approach: for a given budget

of labeled instances, measure the divergence between the sampling distribution

our method learns4 and the one that an active learner proposes for labeling. Such

an analysis is insightful since it can indicate precisely which points an active

learner is supposed to label.

4. Ensemble of small models: We noted that improvements from our techniques

diminish as model size grows. For larger model sizes, a possible direction to

explore might be to “chain” together multiple small models. This is similar to

gradient boosting, and it would be especially informative to compare the two

approaches.

5. Theoretical framework: An obvious question to ask is if our observations around

the impact of training distribution on accuracy may be theoretically explained.

There is some recent work in the area of KD that might serve as fruitful start-

ing points: (a) Dao et al. (2021) provide theoretical tools to analyze distillation

by treating it as a semi-parameteric inference problem (b) Menon et al. (2021)

propose a connection between the effectiveness of a teacher and its ability to

approximate Bayes class-probabilities. (c) study of sample re-weighting on the

effectiveness of distillation (Zhang et al., 2021; Lu et al., 2021).

6. Acceptable difference between the capabilities of an interpretable model and

an oracle: While the example in Section 4.3.3.1 shows that the oracle based ap-

proach can work across different feature spaces, it is also easy to think of patho-

logical examples where it’s likely to fail. Consider the mapping f : X ′ → X ′′,

between the feature vector x′ ∈ X ′ for an instance in the oracle feature space and

its counterpart x′′ ∈ X ′′ in the feature space of the interpretable model. For a

3There is recent interesting research in this area as well, see Bolte et al. (2021)
4As in Section 4.3.3.2; but the density tree based approach may also be used to produce similar output.

155

dataset, if the number of unique vectors x′ is much larger than x′′, it is easy to see

that information is lost between the two models. It would be useful to determine

the properties of the mapping f that decide if our technique can produce useful

results accounting for such loss.

7. Quantifying importance of data: It would also be interesting to explore the

connection between the sample of a given size our method finds (Section 4.3.3.2)

and the data Shapley value (Ghorbani and Zou, 2019): a per-instance value quan-

tifying the contribution of an instance to predictor accuracy. Some questions of

interest are: (a) does an instance that has a high sampling probability across a

range of sample sizes, per our method, also receive a high data Shapley value?

(b) if there is indeed a correspondence between the two techniques, what algo-

rithmic ideas may be borrowed from one technique to another?

156

APPENDIX A

APPENDIX

157

158

A.1 Implementation Details

Setting the lower bound of the Ns parameter to ensure statistical significance is not

sufficient in itself. Since our sample comes from both the density trees and the origi-

nal training data, we must ensure these samples lead to statistically significant results

individually.

In order to do so the our implementation internally adjusts the quantity po. Recall

that po ∈ [0, 1]. A low value of po can result in a small sample of size poNs from the

original training data, while a high value of po might result in a small sample of size

(1 − po)Ns from the density trees. Interestingly however, po = 0 and po = 1 should

be allowed as valid values, since the sample is then drawn from only one of the sources

and is therefore not small!

The adjustment we make is shown in Figure A.1. The x-axis shows the value of po

proposed by the optimizer, while the y-axis shows the adjusted version presented to the

sampler.

Below a user specified threshold for po, it is adjusted to po = 0. Beyond a certain

user specified threshold, it is adjusted to po = 1. The lack of smoothness or differentia-

bility of the adjustment does not impact our optimization, since a BO would construct

its version of the objective function anyway.

Figure A.1: Adjustments to po.

159

A.2 GBM Results

Table A.1 represents the improvements seen using GBMs where we havemax_depth =

2 or max_depth = 5 for the base classifier trees. This is an expanded version of data

presented in Table 3.4. Note here that much like DTs and LPMs, we see the largest δF1

values typically for relatively smaller model sizes.

160

Table A.1: F1new and δF1 scores are shown for GBM models with max_depth = 2 and
max_depth = 5. All scores are averaged over five runs. Underlined entries de-
note the best improvement for a dataset.

boosting rounds = 1 2 3 4 5 6 7 8 9 10

datasets max depth score type

cod-rna 2 F1 0.42 0.64 0.69 0.70 0.70 0.71 0.74 0.78 0.82 0.84
δF1 4.78 59.01 72.16 38.09 3.58 3.64 6.68 12.46 16.91 5.22

5 F1 0.44 0.78 0.83 0.84 0.86 0.87 0.88 0.88 0.89 0.89
δF1 11.24 95.76 35.22 2.11 0.63 0.45 0.61 0.20 0.19 0.33

ijcnn1 2 F1 0.71 0.71 0.71 0.71 0.72 0.72 0.71 0.71 0.71 0.72
δF1 9.55 9.77 8.11 7.28 8.28 6.98 4.70 5.87 5.18 7.15

5 F1 0.77 0.77 0.77 0.78 0.78 0.79 0.79 0.79 0.79 0.80
δF1 4.76 3.92 3.56 3.44 3.31 3.97 3.85 3.87 2.04 3.05

higgs 2 F1 0.61 0.62 0.63 0.63 0.63 0.63 0.63 0.64 0.64 0.64
δF1 60.32 32.30 14.09 6.76 3.02 2.28 2.23 1.32 1.79 1.85

5 F1 0.62 0.64 0.64 0.65 0.66 0.66 0.67 0.67 0.67 0.68
δF1 29.78 11.48 3.25 0.96 1.32 1.13 0.06 1.07 0.77 0.48

covtype.binary 2 F1 0.73 0.73 0.73 0.73 0.74 0.74 0.74 0.74 0.74 0.74
δF1 0.14 0.55 0.51 0.67 0.75 0.92 0.64 0.70 0.46 0.74

5 F1 0.76 0.76 0.77 0.76 0.76 0.77 0.77 0.77 0.77 0.77
δF1 1.15 0.75 0.77 0.49 0.99 0.76 0.50 0.07 0.15 0.06

phishing 2 F1 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
δF1 152.30 5.02 0.29 0.02 0.01 0.03 0.36 0.40 0.32 0.21

5 F1 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94
δF1 156.68 1.87 1.08 1.26 0.89 0.72 0.56 0.56 0.67 0.43

a1a 2 F1 0.71 0.72 0.72 0.72 0.73 0.73 0.73 0.73 0.73 0.74
δF1 4.69 3.95 4.46 5.87 5.86 5.86 4.90 4.87 5.05 5.03

5 F1 0.74 0.74 0.75 0.75 0.74 0.74 0.75 0.75 0.75 0.76
δF1 3.88 2.57 2.86 3.72 2.77 2.73 3.40 3.05 3.63 3.56

pendigits 2 F1 0.76 0.80 0.81 0.82 0.82 0.83 0.83 0.84 0.84 0.84
δF1 3.73 1.95 1.46 0.70 0.91 0.64 0.40 0.47 0.47 0.67

5 F1 0.92 0.94 0.94 0.95 0.95 0.95 0.95 0.96 0.96 0.96
δF1 0.17 0.21 0.17 0.17 0.05 0.02 0.11 0.00 0.02 0.07

letter 2 F1 0.53 0.58 0.59 0.61 0.61 0.62 0.63 0.63 0.63 0.64
δF1 3.04 0.97 1.45 0.97 2.05 0.68 1.16 0.41 0.79 0.43

5 F1 0.71 0.76 0.77 0.78 0.79 0.80 0.80 0.80 0.81 0.82
δF1 1.03 0.11 0.00 0.03 0.00 0.00 0.00 0.10 0.00 0.00

Sensorless 2 F1 0.76 0.77 0.78 0.80 0.80 0.80 0.81 0.81 0.81 0.81
δF1 3.19 3.35 3.10 5.05 4.12 1.75 3.21 1.96 1.90 2.43

5 F1 0.91 0.92 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.95
δF1 0.29 0.25 0.16 0.40 0.00 0.18 0.36 0.30 0.00 0.26

senseit_aco 2 F1 0.22 0.24 0.31 0.37 0.52 0.59 0.61 0.62 0.63 0.63
δF1 0.00 6.81 41.41 67.44 69.29 9.39 6.83 4.70 2.33 1.10

5 F1 0.22 0.30 0.42 0.51 0.58 0.62 0.65 0.66 0.67 0.68
δF1 0.00 36.80 85.44 46.66 9.72 2.91 1.17 0.34 0.39 0.40

senseit_sei 2 F1 0.60 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.62
δF1 171.08 171.28 173.05 174.66 173.47 165.00 78.73 48.52 24.61 17.63

5 F1 0.62 0.64 0.64 0.64 0.64 0.65 0.64 0.64 0.65 0.66
δF1 180.46 185.59 186.24 181.13 64.66 28.13 11.30 3.11 1.37 0.59

covtype 2 F1 0.41 0.42 0.41 0.41 0.41 0.40 0.41 0.40 0.40 0.40
δF1 12.04 17.93 17.60 11.32 12.42 16.22 16.03 19.05 14.57 19.58

5 F1 0.47 0.48 0.48 0.48 0.49 0.49 0.50 0.50 0.49 0.50
δF1 0.64 2.55 0.17 1.17 1.50 0.52 1.16 0.69 0.43 1.32

connect-4 2 F1 0.43 0.44 0.45 0.45 0.47 0.46 0.47 0.47 0.47 0.47
δF1 21.59 19.36 20.89 22.65 23.41 14.61 14.13 19.09 9.78 9.98

5 F1 0.48 0.49 0.50 0.51 0.51 0.52 0.52 0.53 0.53 0.53
δF1 4.30 5.26 2.68 4.72 1.89 3.43 4.69 2.89 5.87 1.92

161

A.3 Harmonic Numbers

The N th harmonic number is defined as:

HN = 1 +
1

2
+

1

3
+ ...+

1

N
=

N∑
k=1

1

k
(A.1)

Clearly HN ∝ N , since increasing N adds positive terms to HN . Figure A.2 shows the

relationship of HN and N for N = 1, 2, ..., 100

Figure A.2: Variation of HN with increasing N .

A.4 Supervised Uncertainty Sampling

In Algorithm 10:

1. The loop in lines 5-11 runs d|Dtrain|/be times, where every iteration adds the b

most uncertain points to the current training dataset Dt. If b doesn’t evenly divide

|Dtrain|, the last iteration picks all remaining points.

2. In our implementation, uMO(xi) in line 6 is precomputed and stored as a lookup

table to reduce execution time.

3. In our experiments, we use a batch size b = 10. Note that this gives us optimal

162

Algorithm 10: Supervised Uncertainty Sampling
Data: Dataset D, model size η, trainO,h(), trainI,g(), batch size b
Result: Test set accuracy stest, and interpretable model M∗

1 Create stratified splits Dtrain, Dval, Dtest from D
2 MO ← trainO,h(Dtrain, ∗)
3 Iremaining ← {1, 2, ..., |Dtrain|} be an index set of Dtrain

4 Icurrent ← {}
5 for t← 1 to d|Dtrain|/be do
6 IU ← set of top b entries from Iremaining, based on uMO(xi), i ∈ Iremaining
7 Iremaining ← Iremaining − IU
8 Icurrent ← Icurrent ∪ IU
9 Dt ← {Dtrain,i|i ∈ Icurrent}

10 Mt ← trainI,g(Dt, η)
11 st ← accuracy(Mt, Dval)

12 end
13 t∗ ← arg maxt {s1, s2, ..., sT−1, sT}
14 M∗ ←Mt∗

15 stest ← accuracy(M∗, Dtest)
16 return stest, M∗

models as per Algorithm 10, for all batch sizes of the form 10k, where k ∈

{1, 2, ..., b|Dtrain|/10c}

The modified algorithm is a significantly more powerful version compared to the

ones typically used in Active Learning setups, due to the following reasons:

1. We do not assume a cost for procuring or applying the oracle, which contrasts

with the typical active learning setup. Thus, our oracle utilizes complete label

information and our model has access to reliable uncertainty scores; this avoids

the sample bias discussed in Section A.5 (visualized in Figure A.3).

2. Since we have complete label information, we have a validation setDval available

to us. In active learning, a validation set would be created from within the current

labelled subset of data, which often makes it statistically insignificant or non-

representative of the true distribution, especially at early iterations.

3. We do not have to estimate how many times the loop in lines 5-11 must run - this is

executed till all data from Dtrain has been used up to train the model. Estimating

the number of iterations is required when performing active learning since every

iteration incurs a cost - that of calling the oracle to compute IU . Consequently,

163

here, we have the liberty of being able to pick the best model based on a validation

set Dval.

A.5 Pitfalls of Simple Uncertainty Sampling

In active learning, the goal is to learn a model when we are given none or few of the

labels of our training data, but we are allowed to query for labels for a cost Settles

(2009). This is helpful in scenarios where acquiring labels is expensive, and instead of

asking for labels for a random 1000 points to train on, we could ask for the labels of a

specific 200 points, chosen in some manner, that leads to comparable model accuracy.

Uncertainty Sampling was introduced in Lewis and Gale (1994) to solve this problem.

We begin by requesting the labels of small batch of randomly sampled points - this is

the labelled subset of the data. The following steps are then repeated:

1. Construct a classifier on the current labelled subset.

2. Use it to provide uncertainty scores for unlabelled points in the data, and then

request labels for the top b (the precise value of b may be task specific) uncertain

points. These now become part of the labelled subset.

Although intuitive, this approach was shown to suffer from sample bias Dasgupta and

Hsu (2008); Dasgupta (2011). We illustrate this in Figure A.3.

We consider the simple case where our data is located on a line, has two labels

(denoted by red and green in the figure) and most of the data is located at the extremes

of the line segment, as shown by blocks P and Q, each of which represent 45% of the

overall data. Here, learning a classifier is equivalent to identifying a single point on the

line, and the classification rule is we assign labels green and red, to left and right of this

point, respectively. B and C show two possible classifiers.

In the active learning setup, we observe only the points but not their labels. To use

uncertainty sampling, we pick our first small batch of points randomly and query their

labels. Because of the distribution of the data, its highly likely that we would only

see points from P and Q. The best classifier on this sample is C, which is midway

164

Figure A.3: Uncertainty estimates from classifier after first iteration. Smaller boundaries are missed
since the sample predominantly comes from P and Q.

between P and Q. Plot A shows what the uncertainty across the input space looks like

according to C. In the next iteration, we will sample close to C, since that’s where the

highest uncertainties are, and the new classifier constructed would again be at location

C. Subsequent iterations would further reinforce the belief that C is the only class

boundary. Here, the classification error of C is 5%, but the optimal classifier is B, with

an error of 2.5%, which uncertainty sampling fails to discover. The key problem here is

we may never see some boundaries, like those defined byR, because of the combination

of initial sample bias and subsequent aggressive sampling.

This problem does not affect us since the oracle has access to the complete training

data. Plot D shows the uncertainty distribution as per the oracle. However, as our

results show, even with its complete view of uncertainty landscape, simple uncertainty

sampling is not optimal.

165

A.6 Comparison of Uncertainty Distributions

It is instructive to look at some specific adjusted IBMMs in the context of the relative

performance of techniques. Figure A.4 shows the plots from Figure 4.14 annotated with

SDI scores. These are for LPMs using GBM as the oracle.

(a) a1a, size=2, SDI=1.0 (b) letter, size=2, SDI=1.0 (c) letter, size=3, SDI=0.93

(d) Sensorless, size=1, SDI=0 (f) connect-4, size=2, SDI=-0.62(e) senseit_sei, size=3, SDI=-0.3

uncertainty uncertainty uncertainty

uncertainty uncertainty uncertainty

a
d

ju
st

e
d

 p
ro

b
a
b

ili
ty

a
d

ju
st

e
d

 p
ro

b
a
b

ili
ty

a
d

ju
st

e
d

 p
ro

b
a
b

ili
ty

a
d

ju
st

e
d

 p
ro

b
a
b

ili
ty

a
d

ju
st

e
d

 p
ro

b
a
b

ili
ty

a
d

ju
st

e
d

 p
ro

b
a
b

ili
ty

Figure A.4: Examples of adjusted distributions are shown, and the SDI scores, measured against su-
pervised uncertainty sampling, are mentioned. The plots in the top row are the same as in
Figure 4.14. The top row - (a), (b), (c) - shows instances where our technique performed rel-
atively better, and the bottom row shows cases where uncertainty sampling was competitive
- (d) - or better - (e), (f).

The top row - (a), (b), (c) in Figure A.4 - shows instances where our technique did

much better (SDI > 0); it would seem that these are cases where sampling exclusively

at high uncertainties is not an optimal distribution. Figure A.4(d) shows a case where

the optimal distribution is composed exclusively of high uncertainty points - so its not

surprising that uncertainty sampling is at par with our technique (SDI = 0). (e) and (f)

show similar trends.

While these plots are helpful in developing intuition for the underlying process, we

would like to add the caveat that they are not conclusive in isolation. An example of this

is (c) - it is not clear why uncertainty sampling does so poorly here. Possibly, instances

with low uncertainties need to be sampled in a very specific manner that cannot be

166

approximated by selecting the top n uncertain points, for any n.

A.7 Flattening of the Uncertainty Distribution

Algorithm 11 details the flattening process mentioned in Section 4.2.5.

Algorithm 11: Flatten distribution of uncertainty scores
{u(x1), u(x2), ..., u(xN)}

Data: {u(x1), u(x2), ..., u(xN)}, number of bins B
Result: {u′(x1), u′(x2), ..., u′(xN)}

1 bin_size← dN/Be, bin_range← 1/B
2 bin_min← [], bin_max← []
3 Let sortedIndex(i) ∈ {1, 2, ..., N} be the index of u(xi) in the sequence of

scores ordered by non-decreasing values.
4 for j ← 1 to B do
5 bin_min[j]← min{u(xi)|i ∈ {1, 2, ..., N} ∧ sortedIndex(i) = j}
6 bin_max[j]← max{u(xi)|i ∈ {1, 2, ..., N} ∧ sortedIndex(i) = j}
7 end
8 for i← 1 to N do
9 j ← sortedIndex(i)

10 bin_num← dj/bin_sizee
11 boundary_low ← (bin_num− 1)× bin_range+ δ
12 boundary_high← bin_num× bin_range− δ
13 u′(xi)← low + u(xi)−bin_min[j]

bin_max[j]−bin_min[j] × (boundary_high− boundary_low)

14 end
15 return {u′(x1), u′(x2), ..., u′(xN)}

In lines 11 and 12 of Algorithm 11, we offset bin boundary limits by a small positive

value δ to avoid assignment conflicts across adjacent bins at their boundaries.

This algorithm produces a transformation that looks like the uniform distribution.

We prefer the likeness to the uniform distribution since it makes all regions within the

interval [0, 1] equally easy to discover.

A.8 Uncertainty Distribution for DT

The uncertainty distributions learned when using a DT with different oracles are shown

in Figure A.5. The first row shows visualizes the aggregation of the IBMMs that were

167

learned, while the second row shows them adjusted with the uncertainty distribution

from the oracle. These are analogues of the LPM plots in Figure 4.12 and Figure 4.13.

Figure A.5: The aggregated IBMMs visualized when using a DT as our interpretable model. The top
row shows the aggregated IBMMs for different oracles: GBM (left) and RF (right). The
bottom row visualizes the IBMMs adjusted for the uncertainty distribution.

The patterns we observe here are similar to what we saw for LPMs:

1. Top-row: the IBMMs seem to prefer both low and high uncertainty regions.

2. Bottom-row: when adjusted with the oracle’s uncertainty distribution, there is

sampling across the entire range of uncertainty values, with slight/occasional

preference for higher uncertainties.

A.9 Compaction Profiles

Figure A.6 shows the compaction profiles for all model-oracle combinations. These are

discussed in Section 4.3.1.6, in reference to Figure 4.9.

168

(a) (b)

(c) (d)

Figure A.6: For different combinations of models and oracles: {LPM,DT} × {GBM,RF}, these
plots show the size of an improved model (y-axis), that may replace a traditionally trained
model of a given size (x-axis). A model is considered as a replacement for another if its
accuracy is at least as high as the latter.

A.10 Distributions for Different Model Sizes

Figure A.7 shows the IBMMs learned over uncertainties for individual model sizes of

the LPM , with GBM as the oracle,. These are not adjusted with the density of the

uncertainty distribution. The plot shows them for the datasets (a) covtype.binary

and Sensorless. We observe that the unified IBMM weighted by improvements,

shown in Figure 4.12, are indicative of the individual distributions in this Figure A.7.

169

Figure A.7: IBMM distributions for model sizes {1, 2, ..., 15}, for the datasets (a) covtype.binary
and (b) Sensorless. These are for the combination of using LPM as the model with
GBM as an oracle. Darker curves indicate higher model sizes.

A.11 Improvements Relative to Oracle

Figure A.8: These plots show the distribution of the percentage relative difference of a model’s improved
score w.r.t. to the accuracy of the oracle it is trained with. We note that this quantity is almost
always non-positive as claimed in Equations 4.2, 4.3 and 4.4.

Some of the positive values we see in Figure A.8 may be attributed to spillovers due

to the kde fit. Their magnitudes and occurrences are typically small: these are detailed

in Table 4.8.

170

A.12 Feature Selection for n-gram DT

For the experiments in Section 4.3.3.1, we perform feature selection to reduce their

running time. After the n-gram (n ∈ {1, 2, 3}) vocabulary is created from the training

data, we perform a χ2-test to select the k−best features. The original number of features

is 5308. To pick the smallest useful set of features, we test different values of k ≤ 1000.

A test constitutes of:

1. Construct a DT, for a given max_depth, on the original set of features. Obtain its

test accuracy, F1all.

2. Construct a DT, with the same max_depth, using only the k best features as per

the χ2-test, and obtain its test accuracy F1k.

3. Report:

δF1 = 100× F1k − F1all
F1all

We use the “macro” averaging for the F1 score to be consistent with other experiments

in the chapter. All reported δF1 are averaged over ten runs.

Figure A.9 shows how δF1 varies with k.

Figure A.9: The relationship between δF1 and k ≤ 1000. Each data point is an average over ten runs.

We observe that at around 600 features, δF1 ≈ 0%. The only exception is the

case for max_depth = 3, but that is admissible since δF1 > 0, i.e., we seem to be

171

improving the accuracy.

A.13 Running Time for Sampling

In this section, we analyze the running time of the sampling process in the oracle based

setup (Algorithm 8) relative to the model fitting time in the overall algorithm (Algorithm

9). Of course, these numbers will vary wrt the dataset used and the model being fit, but

we present some sample numbers here.

We vary the size of the dataset used for training and use the following values, N =

{100, 500, 1000, 1500, ..., 5000}. At each dataset size, we measure the wall-clock time

in seconds for the following and report values averaged over ten trials:

1. Sampling N instances from the IBMM. The Beta priors are randomly selected

in the range [0.1, 10]. The α for the Dirichlet Process is fixed at a given value.

2. Fitting a CART decision tree on a dataset of size N , for values of max_depth ∈

{3, 5}. To get a broad sense of running times, we use two datasets -cod-rna

and a1a, with 123 and 8 features respectively. Each has two classes.

Multiple values of α were tested, α ∈ {0.1, 2, 4, 6, 8, 10}. The plots are presented in

Figure A.10.

Not surprisingly, it is seen that as the number of clusters increase (higher α), the

time for sampling increases due to sampling from multiple Beta components. In fact,

surpasses the time to learn a CART decision tree. As mentioned, this will vary across

models. It is also important to note that because of the model selection performed in

practice, requiring multiple models to be trained, the total time model training time is

higher than what is shown.

Nevertheless, this points to an interesting direction for future work: accelerate

the sampling process, e.g., use a distribution like the Kumaraswamy distribution (Ku-

maraswamy, 1980), where sampling is fast because of its simple form for the Cumula-

tive Distribution Function (CDF).

172

0 1000 2000 3000 4000 5000
num points

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

ru
nt

im
e

(s
ec

)

(a) =0.10, #trials=10

time for
sampling
a1a(123), max_depth=3
a1a(123), max_depth=5
cod-rna(8), max_depth=3
cod-rna(8), max_depth=5

0 1000 2000 3000 4000 5000
num points

0.00

0.01

0.02

0.03

0.04

ru
nt

im
e

(s
ec

)

(b) =2.00, #trials=10

time for
sampling
a1a(123), max_depth=3
a1a(123), max_depth=5
cod-rna(8), max_depth=3
cod-rna(8), max_depth=5

0 1000 2000 3000 4000 5000
num points

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ru
nt

im
e

(s
ec

)

(c) =4.00, #trials=10

time for
sampling
a1a(123), max_depth=3
a1a(123), max_depth=5
cod-rna(8), max_depth=3
cod-rna(8), max_depth=5

0 1000 2000 3000 4000 5000
num points

0.00

0.02

0.04

0.06

0.08
ru

nt
im

e
(s

ec
)

(d) =6.00, #trials=10

time for
sampling
a1a(123), max_depth=3
a1a(123), max_depth=5
cod-rna(8), max_depth=3
cod-rna(8), max_depth=5

0 1000 2000 3000 4000 5000
num points

0.00

0.02

0.04

0.06

0.08

0.10

ru
nt

im
e

(s
ec

)

(e) =8.00, #trials=10

time for
sampling
a1a(123), max_depth=3
a1a(123), max_depth=5
cod-rna(8), max_depth=3
cod-rna(8), max_depth=5

0 1000 2000 3000 4000 5000
num points

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ru
nt

im
e

(s
ec

)

(f) =10.00, #trials=10

time for
sampling
a1a(123), max_depth=3
a1a(123), max_depth=5
cod-rna(8), max_depth=3
cod-rna(8), max_depth=5

Figure A.10: The running time (y-axis) of sampling is shown in comparison to model fit time, for various
dataset sizes (x-axis). Plots (a)-(f) show these comparisons for α ∈ {0.1, 2, 4, 6, 8, 10}
and α = 10 respectively. A legend of the form “a1a(123), max_depth=3” represents a
model fit on the dataset a1a, which has 123 features, where the tree was restricted to
max_depth = 3. Reported values were averaged over ten trials. Note that the scale of the
y-axes vary across the plots.

173

REFERENCES

1. Ackley, D. H., A connectionist machine for genetic hillclimbing. Kluwer Boston
Inc.,Hingham, MA, United States, 1987. URL https://www.osti.gov/
biblio/6210712. Availability: Kluwer Boston Inc., 190 Old Derby St., Hingham,
MA 02043.

2. Agarwal, A., Y. S. Tan, O. Ronen, C. Singh, and B. Yu, Hierarchical shrinkage:
Improving the accuracy and interpretability of tree-based models. In K. Chaudhuri,
S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato (eds.), Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research. PMLR, 2022. URL https://proceedings.mlr.
press/v162/agarwal22b.html.

3. Alaa, A. M. and M. van der Schaar, Attentive state-space modeling of disease pro-
gression. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019a. URL https://proceedings.neurips.
cc/paper/2019/file/1d0932d7f57ce74d9d9931a2c6db8a06-
Paper.pdf.

4. Alaa, A. M. and M. van der Schaar, Demystifying black-box models with
symbolic metamodels. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 32. Curran Associates, Inc., 2019b.
URL https://proceedings.neurips.cc/paper/2019/file/
567b8f5f423af15818a068235807edc0-Paper.pdf.

5. Aldous, D. J., Exchangeability and related topics. In P. L. Hennequin (ed.), École
d’Été de Probabilités de Saint-Flour XIII – 1983. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1985. ISBN 978-3-540-39316-0.

6. Alimoglu, F. and E. Alpaydin, Methods of combining multiple classifiers based on
different representations for pen-based handwritten digit recognition. In Proceedings
of the Fifth Turkish Artificial Intelligence and Artificial Neural Networks Symposium
(TAINN 96. 1996.

7. Alloway, T. (2015). Big data: Credit where credit’s due. https://www.ft.com/
content/7933792e-a2e6-11e4-9c06-00144feab7de.

8. Alvarez-Melis, D. and T. S. Jaakkola (2018). On the robustness of interpretability
methods. Proceedings of the 2018 ICML Workshop in Human Interpretability in Ma-
chine Learning, abs/1806.08049. URL http://arxiv.org/abs/1806.08049.

9. Alvi, A., B. Ru, J.-P. Calliess, S. Roberts, and M. A. Osborne, Asynchronous
batch Bayesian optimisation with improved local penalisation. In K. Chaudhuri and

174

https://www.osti.gov/biblio/6210712
https://www.osti.gov/biblio/6210712
https://proceedings.mlr.press/v162/agarwal22b.html
https://proceedings.mlr.press/v162/agarwal22b.html
https://proceedings.neurips.cc/paper/2019/file/1d0932d7f57ce74d9d9931a2c6db8a06-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1d0932d7f57ce74d9d9931a2c6db8a06-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1d0932d7f57ce74d9d9931a2c6db8a06-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/567b8f5f423af15818a068235807edc0-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/567b8f5f423af15818a068235807edc0-Paper.pdf
https://www.ft.com/content/7933792e-a2e6-11e4-9c06-00144feab7de
https://www.ft.com/content/7933792e-a2e6-11e4-9c06-00144feab7de
http://arxiv.org/abs/1806.08049

R. Salakhutdinov (eds.), Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine Learning Research. PMLR,
Long Beach, California, USA, 2019. URL http://proceedings.mlr.press/
v97/alvi19a.html.

10. Ancona, M., C. Oztireli, and M. Gross, Explaining deep neural networks with a
polynomial time algorithm for shapley value approximation. In K. Chaudhuri and
R. Salakhutdinov (eds.), Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine Learning Research. PMLR,
Long Beach, California, USA, 2019. URL http://proceedings.mlr.press/
v97/ancona19a.html.

11. Angelino, E., N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin, Learning certifi-
ably optimal rule lists. In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’17. ACM, New York, NY,
USA, 2017. ISBN 978-1-4503-4887-4. URL http://doi.acm.org/10.1145/
3097983.3098047.

12. Angiulli, F., Fast condensed nearest neighbor rule. In Proceedings of the 22nd In-
ternational Conference on Machine Learning, ICML ’05. Association for Comput-
ing Machinery, New York, NY, USA, 2005. ISBN 1595931805. URL https:
//doi.org/10.1145/1102351.1102355.

13. Angwin, J., J. Larson, S. Mattu, and L. Kirchner (2016). Machine
Bias. https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing.

14. Arya, V., R. K. E. Bellamy, P.-Y. Chen, A. Dhurandhar, M. Hind, S. C. Hoff-
man, S. Houde, Q. V. Liao, R. Luss, A. Mojsilović, S. Mourad, P. Pedemonte,
R. Raghavendra, J. Richards, P. Sattigeri, K. Shanmugam, M. Singh, K. R. Varsh-
ney, D. Wei, and Y. Zhang, Ai explainability 360: Hands-on tutorial. In Proceedings of
the 2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20. Asso-
ciation for Computing Machinery, New York, NY, USA, 2020. ISBN 9781450369367.
URL https://doi.org/10.1145/3351095.3375667.

15. Avellaneda, F. (2020). Efficient inference of optimal decision trees. Proceedings of
the AAAI Conference on Artificial Intelligence, 34(04), 3195–3202. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/5717.

16. Bachem, O., M. Lucic, and A. Krause (2017). Practical Coreset Constructions
for Machine Learning. Preprint at https://ui.adsabs.harvard.edu/abs/
2017arXiv170306476B.

17. Baldi, P., P. Sadowski, and D. Whiteson (2014). Searching for exotic particles in
high-energy physics with deep learning. Nature Communications, 5(1), 4308. ISSN
2041-1723. URL https://doi.org/10.1038/ncomms5308.

18. Barceló, P., M. Monet, J. Pérez, and B. Subercaseaux, Model inter-
pretability through the lens of computational complexity. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33. Curran Associates, Inc.,

175

http://proceedings.mlr.press/v97/alvi19a.html
http://proceedings.mlr.press/v97/alvi19a.html
http://proceedings.mlr.press/v97/ancona19a.html
http://proceedings.mlr.press/v97/ancona19a.html
http://doi.acm.org/10.1145/3097983.3098047
http://doi.acm.org/10.1145/3097983.3098047
https://doi.org/10.1145/1102351.1102355
https://doi.org/10.1145/1102351.1102355
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1145/3351095.3375667
https://ojs.aaai.org/index.php/AAAI/article/view/5717
https://ojs.aaai.org/index.php/AAAI/article/view/5717
https://ui.adsabs.harvard.edu/abs/2017arXiv170306476B
https://ui.adsabs.harvard.edu/abs/2017arXiv170306476B
https://doi.org/10.1038/ncomms5308

2020. URL https://proceedings.neurips.cc/paper/2020/file/
b1adda14824f50ef24ff1c05bb66faf3-Paper.pdf.

19. Barredo Arrieta, A., N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Bar-
bado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera
(2020). Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities
and challenges toward responsible ai. Information Fusion, 58, 82–115. ISSN 1566-
2535. URL https://www.sciencedirect.com/science/article/pii/
S1566253519308103.

20. Bastings, J., W. Aziz, and I. Titov, Interpretable neural predictions with differentiable
binary variables. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, Florence, Italy,
2019. URL https://www.aclweb.org/anthology/P19-1284.

21. Benavoli, A., G. Corani, and F. Mangili (2016). Should we really use post-hoc tests
based on mean-ranks? Journal of Machine Learning Research, 17(5), 1–10. URL
http://jmlr.org/papers/v17/benavoli16a.html.

22. Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl, Algorithms for hyper-parameter
optimization. In Proceedings of the 24th International Conference on Neural Informa-
tion Processing Systems, NIPS’11. Curran Associates Inc., USA, 2011. ISBN 978-
1-61839-599-3. URL http://dl.acm.org/citation.cfm?id=2986459.
2986743.

23. Bergstra, J., D. Yamins, and D. D. Cox, Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. In Proceedings
of the 30th International Conference on International Conference on Machine Learning
- Volume 28, ICML’13. JMLR.org, 2013. URL http://dl.acm.org/citation.
cfm?id=3042817.3042832.

24. Bertsimas, D., A. Delarue, P. Jaillet, and S. Martin (2019). The price of interpretabil-
ity. CoRR, abs/1907.03419. URL http://arxiv.org/abs/1907.03419.

25. Bhatt, U., A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh, R. Puri,
J. M. F. Moura, and P. Eckersley, Explainable machine learning in deployment. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency,
FAT* ’20. Association for Computing Machinery, New York, NY, USA, 2020. ISBN
9781450369367. URL https://doi.org/10.1145/3351095.3375624.

26. Blackard, J. A. (1998). Comparison of Neural Networks and Discriminant Analysis in
Predicting Forest Cover Types. Ph.D. thesis, USA. AAI9921979.

27. Blackwell, D. and J. B. MacQueen (1973). Ferguson distributions via polya urn
schemes. Ann. Statist., 1(2), 353–355. URL https://doi.org/10.1214/aos/
1176342372.

28. Blaser, R. and P. Fryzlewicz (2016). Random rotation ensembles. Journal of Ma-
chine Learning Research, 17(4), 1–26. URL http://jmlr.org/papers/v17/
blaser16a.html.

176

https://proceedings.neurips.cc/paper/2020/file/b1adda14824f50ef24ff1c05bb66faf3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b1adda14824f50ef24ff1c05bb66faf3-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.aclweb.org/anthology/P19-1284
http://jmlr.org/papers/v17/benavoli16a.html
http://dl.acm.org/citation.cfm?id=2986459.2986743
http://dl.acm.org/citation.cfm?id=2986459.2986743
http://dl.acm.org/citation.cfm?id=3042817.3042832
http://dl.acm.org/citation.cfm?id=3042817.3042832
http://arxiv.org/abs/1907.03419
https://doi.org/10.1145/3351095.3375624
https://doi.org/10.1214/aos/1176342372
https://doi.org/10.1214/aos/1176342372
http://jmlr.org/papers/v17/blaser16a.html
http://jmlr.org/papers/v17/blaser16a.html

29. Blei, D. (2007). COS 597C Notes, Bayesian Nonparametrics. https:
//www.cs.princeton.edu/courses/archive/fall07/cos597C/
scribe/20070921.pdf.

30. Blondel, M., Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pe-
dregosa, and J.-P. Vert (2021). Efficient and modular implicit differentiation. arXiv
preprint arXiv:2105.15183.

31. Bloniarz, A., A. Talwalkar, B. Yu, and C. Wu, Supervised neighborhoods for dis-
tributed nonparametric regression. In A. Gretton and C. C. Robert (eds.), Proceed-
ings of the 19th International Conference on Artificial Intelligence and Statistics, vol-
ume 51 of Proceedings of Machine Learning Research. PMLR, Cadiz, Spain, 2016.
URL https://proceedings.mlr.press/v51/bloniarz16.html.

32. Bolte, J., T. Le, E. Pauwels, and A. Silveti-Falls (2021). Nonsmooth Implicit Differen-
tiation for Machine Learning and Optimization. URL https://hal.archives-
ouvertes.fr/hal-03251332. Working paper or preprint.

33. Box, G. E. P. and D. R. Cox (1964). An analysis of transformations. Journal of the
Royal Statistical Society. Series B (Methodological), 26(2), 211–252. ISSN 00359246.
URL http://www.jstor.org/stable/2984418.

34. Bradbury, J., R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclau-
rin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang
(2018). JAX: composable transformations of Python+NumPy programs. URL http:
//github.com/google/jax.

35. Breiman, L. et al., Classification and Regression Trees. Chapman & Hall, New York,
1984. ISBN 0-412-04841-8.

36. Brochu, E., V. M. Cora, and N. de Freitas (2010). A tutorial on bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. CoRR, abs/1012.2599.

37. Broderick, T. (2015). Bayesian nonparametrics. https://tamarabroderick.
com/tutorial_2015_mlss_tubingen.html.

38. Broomhead, D. and D. Lowe (1988). Multivariable functional interpolation and adap-
tive networks. Complex Systems, 2, 321–355.

39. Bucilă, C., R. Caruana, and A. Niculescu-Mizil, Model compression. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’06. Association for Computing Machinery, New York, NY, USA, 2006.
ISBN 1595933395. URL https://doi.org/10.1145/1150402.1150464.

40. Caruana, R., Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad, Intelligible
models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’15. ACM, New York, NY, USA, 2015. ISBN 978-1-
4503-3664-2. URL http://doi.acm.org/10.1145/2783258.2788613.

177

https://www.cs.princeton.edu/courses/archive/fall07/cos597C/scribe/20070921.pdf
https://www.cs.princeton.edu/courses/archive/fall07/cos597C/scribe/20070921.pdf
https://www.cs.princeton.edu/courses/archive/fall07/cos597C/scribe/20070921.pdf
https://proceedings.mlr.press/v51/bloniarz16.html
https://hal.archives-ouvertes.fr/hal-03251332
https://hal.archives-ouvertes.fr/hal-03251332
http://www.jstor.org/stable/2984418
http://github.com/google/jax
http://github.com/google/jax
https://tamarabroderick.com/tutorial_2015_mlss_tubingen.html
https://tamarabroderick.com/tutorial_2015_mlss_tubingen.html
https://doi.org/10.1145/1150402.1150464
http://doi.acm.org/10.1145/2783258.2788613

41. Castellanos, S. and K. S. Nash (2018). Bank of America Confronts AI’s ‘Black
Box’ With Fraud Detection Effort. https://blogs.wsj.com/cio/2018/
05/11/bank-of-america-confronts-ais-black-box-with-fraud-
detection-effort/.

42. Chang, C.-C. and C.-J. Lin, Ijcnn 2001 challenge: Generalization ability and text
decoding. In Proceedings of IJCNN. IEEE. 2001.

43. Chang, C.-C. and C.-J. Lin (2011). LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2, 27:1–27:27. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

44. Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer (2002). Smote:
Synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1), 321–357. ISSN
1076-9757.

45. Chen, J., L. Song, M. Wainwright, and M. Jordan, Learning to explain: An
information-theoretic perspective on model interpretation. In J. Dy and A. Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research. PMLR, 2018. URL http:
//proceedings.mlr.press/v80/chen18j.html.

46. Cho, K., B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, Learning phrase representations using RNN encoder–decoder for statis-
tical machine translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Association for Computational Linguis-
tics, Doha, Qatar, 2014. URL https://www.aclweb.org/anthology/D14-
1179.

47. Clarke, Y. D. (2019). Algorithmic Accountability Act of 2019. https://www.
congress.gov/bill/116th-congress/house-bill/2231.

48. Collobert, R., S. Bengio, and Y. Bengio, A parallel mixture of svms for very
large scale problems. In T. G. Dietterich, S. Becker, and Z. Ghahramani
(eds.), Advances in Neural Information Processing Systems 14. MIT Press, 2002,
633–640. URL http://papers.nips.cc/paper/1949-a-parallel-
mixture-of-svms-for-very-large-scale-problems.pdf.

49. Craven, M. and J. Shavlik, Extracting tree-structured representations of trained
networks. In D. Touretzky, M. Mozer, and M. Hasselmo (eds.), Ad-
vances in Neural Information Processing Systems, volume 8. MIT Press,
1995. URL https://proceedings.neurips.cc/paper/1995/file/
45f31d16b1058d586fc3be7207b58053-Paper.pdf.

50. Dai, W., Q. Yang, G.-R. Xue, and Y. Yu, Boosting for transfer learning. In Proceedings
of the 24th International Conference on Machine Learning, ICML ’07. ACM, New
York, NY, USA, 2007. ISBN 978-1-59593-793-3. URL http://doi.acm.org/
10.1145/1273496.1273521.

51. Dai, Z., H. Yu, B. K. H. Low, and P. Jaillet, Bayesian optimization meets Bayesian
optimal stopping. In K. Chaudhuri and R. Salakhutdinov (eds.), Proceedings of

178

https://blogs.wsj.com/cio/2018/05/11/bank-of-america-confronts-ais-black-box-with-fraud-detection-effort/
https://blogs.wsj.com/cio/2018/05/11/bank-of-america-confronts-ais-black-box-with-fraud-detection-effort/
https://blogs.wsj.com/cio/2018/05/11/bank-of-america-confronts-ais-black-box-with-fraud-detection-effort/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://proceedings.mlr.press/v80/chen18j.html
http://proceedings.mlr.press/v80/chen18j.html
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://www.congress.gov/bill/116th-congress/house-bill/2231
https://www.congress.gov/bill/116th-congress/house-bill/2231
http://papers.nips.cc/paper/1949-a-parallel-mixture-of-svms-for-very-large-scale-problems.pdf
http://papers.nips.cc/paper/1949-a-parallel-mixture-of-svms-for-very-large-scale-problems.pdf
https://proceedings.neurips.cc/paper/1995/file/45f31d16b1058d586fc3be7207b58053-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/45f31d16b1058d586fc3be7207b58053-Paper.pdf
http://doi.acm.org/10.1145/1273496.1273521
http://doi.acm.org/10.1145/1273496.1273521

the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research. PMLR, Long Beach, California, USA, 2019. URL
http://proceedings.mlr.press/v97/dai19a.html.

52. Danka, T. and P. Horvath (2018). modAL: A modular active learning framework for
Python. URL https://github.com/cosmic-cortex/modAL. Available on
arXiv at https://arxiv.org/abs/1805.00979.

53. Dao, T., G. M. Kamath, V. Syrgkanis, and L. Mackey, Knowledge distillation as
semiparametric inference. In International Conference on Learning Representations.
2021.

54. Dasgupta, S. (2011). Two faces of active learning. Theor. Comput. Sci., 412(19), 1767–
1781. ISSN 0304-3975. URL http://dx.doi.org/10.1016/j.tcs.2010.
12.054.

55. Dasgupta, S. and D. Hsu, Hierarchical sampling for active learning. In Proceedings of
the 25th International Conference on Machine Learning, ICML ’08. ACM, New York,
NY, USA, 2008. ISBN 978-1-60558-205-4. URL http://doi.acm.org/10.
1145/1390156.1390183.

56. Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1), 1–22. URL https://rss.onlinelibrary.wiley.
com/doi/abs/10.1111/j.2517-6161.1977.tb01600.x.

57. Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7(1), 1–30. URL http://jmlr.org/papers/
v7/demsar06a.html.

58. Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition. Ieee, 2009.

59. Dennis, Don Kurian and Gaurkar, Yash and Gopinath, Sridhar and Goyal, Sachin
and Gupta, Chirag and Jain, Moksh and Jaiswal, Shikhar and Kumar, Ashish
and Kusupati, Aditya and Lovett, Chris and Patil, Shishir G and Saha, Oindrila
and Simhadri, Harsha Vardhan (2021). EdgeML: Machine Learning for resource-
constrained edge devices. URL https://github.com/Microsoft/EdgeML.

60. Desai, S. and H. G. Ramaswamy, Ablation-cam: Visual explanations for deep convo-
lutional network via gradient-free localization. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV). 2020.

61. Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers). Asso-
ciation for Computational Linguistics, Minneapolis, Minnesota, 2019. URL https:
//www.aclweb.org/anthology/N19-1423.

179

http://proceedings.mlr.press/v97/dai19a.html
https://github.com/cosmic-cortex/modAL
https://arxiv.org/abs/1805.00979
http://dx.doi.org/10.1016/j.tcs.2010.12.054
http://dx.doi.org/10.1016/j.tcs.2010.12.054
http://doi.acm.org/10.1145/1390156.1390183
http://doi.acm.org/10.1145/1390156.1390183
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1977.tb01600.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1977.tb01600.x
http://jmlr.org/papers/v7/demsar06a.html
http://jmlr.org/papers/v7/demsar06a.html
https://github.com/Microsoft/EdgeML
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423

62. Dhurandhar, A., K. Shanmugam, R. Luss, and P. A. Olsen, Improv-
ing simple models with confidence profiles. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper/2018/file/
972cda1e62b72640cb7ac702714a115f-Paper.pdf.

63. Di Castro, F. and E. Bertini (2019). Surrogate decision tree visualization interpreting
and visualizing black-box classification models with surrogate decision tree. CEUR
Workshop Proceedings, 2327. ISSN 1613-0073. 2019 Joint ACM IUI Workshops,
ACMIUI-WS 2019 ; Conference date: 20-03-2019.

64. Doshi-Velez, F. and B. Kim (2017). Towards a rigorous science of interpretable ma-
chine learning. arXiv. URL https://arxiv.org/abs/1702.08608.

65. Dua, D. and C. Graff (2017). UCI machine learning repository. URL http://
archive.ics.uci.edu/ml.

66. Duarte, M. F. and Y. H. Hu (2004). Vehicle classification in distributed sensor
networks. J. Parallel Distrib. Comput., 64(7), 826–838. ISSN 0743-7315. URL
https://doi.org/10.1016/j.jpdc.2004.03.020.

67. Dziugaite, G. K., S. Ben-David, and D. M. Roy (2020). Enforcing interpretability and
its statistical impacts: Trade-offs between accuracy and interpretability. URL https:
//arxiv.org/abs/2010.13764.

68. Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least angle regression.
The Annals of Statistics, 32(2), 407 – 499. URL https://doi.org/10.1214/
009053604000000067.

69. Elsken, T., J. H. Metzen, and F. Hutter (2019). Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55), 1–21. URL http://jmlr.org/
papers/v20/18-598.html.

70. Engen, S. (1975). A note on the geometric series as a species frequency model.
Biometrika, 62(3), 697–699. ISSN 0006-3444. URL https://doi.org/10.
1093/biomet/62.3.697.

71. Eric, B., N. Freitas, and A. Ghosh, Active preference learning with discrete
choice data. In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), Advances
in Neural Information Processing Systems, volume 20. Curran Associates, Inc.,
2008. URL https://proceedings.neurips.cc/paper/2007/file/
b6a1085a27ab7bff7550f8a3bd017df8-Paper.pdf.

72. Eriksson, D., D. Bindel, and C. A. Shoemaker (2019). pysot and poap: An event-
driven asynchronous framework for surrogate optimization. URL https://arxiv.
org/abs/1908.00420.

73. Ewens, W. J., Population Genetics Theory - The Past and the Future. Springer
Netherlands, Dordrecht, 1990. ISBN 978-94-009-0513-9, 177–227. URL https:
//doi.org/10.1007/978-94-009-0513-9_4.

180

https://proceedings.neurips.cc/paper/2018/file/972cda1e62b72640cb7ac702714a115f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/972cda1e62b72640cb7ac702714a115f-Paper.pdf
https://arxiv.org/abs/1702.08608
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.jpdc.2004.03.020
https://arxiv.org/abs/2010.13764
https://arxiv.org/abs/2010.13764
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053604000000067
http://jmlr.org/papers/v20/18-598.html
http://jmlr.org/papers/v20/18-598.html
https://doi.org/10.1093/biomet/62.3.697
https://doi.org/10.1093/biomet/62.3.697
https://proceedings.neurips.cc/paper/2007/file/b6a1085a27ab7bff7550f8a3bd017df8-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/b6a1085a27ab7bff7550f8a3bd017df8-Paper.pdf
https://arxiv.org/abs/1908.00420
https://arxiv.org/abs/1908.00420
https://doi.org/10.1007/978-94-009-0513-9_4
https://doi.org/10.1007/978-94-009-0513-9_4

74. Falkner, S., A. Klein, and F. Hutter, Bohb: Robust and efficient hyperparameter op-
timization at scale. In ICML. 2018. URL http://proceedings.mlr.press/
v80/falkner18a.html.

75. Feldman, J. (2000). Minimization of boolean complexity in human concept learning.
Nature, 407, 630–3.

76. Ferguson, T. S. (1973). A Bayesian Analysis of Some Nonparametric Problems. The
Annals of Statistics, 1(2), 209 – 230. URL https://doi.org/10.1214/aos/
1176342360.

77. Feurer, M. and F. Hutter, Hyperparameter optimization. In Hutter et al. (2019), 3–38.

78. Feurer, M. and F. Hutter, Hyperparameter Optimization. Springer International Pub-
lishing, Cham, 2019b. ISBN 978-3-030-05318-5, 3–33. URL https://doi.org/
10.1007/978-3-030-05318-5_1.

79. Fountain-Jones, N. M., G. Machado, S. Carver, C. Packer, M. Recamonde-
Mendoza, and M. E. Craft (2019). How to make more from exposure data? an
integrated machine learning pipeline to predict pathogen exposure. bioRxiv. URL
https://www.biorxiv.org/content/early/2019/03/06/569012.

80. Freitas, A. A. (2014). Comprehensible classification models: A position paper.
SIGKDD Explor. Newsl., 15(1), 1–10. ISSN 1931-0145. URL https://doi.org/
10.1145/2594473.2594475.

81. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5), 1189 – 1232. URL https://doi.org/10.1214/
aos/1013203451.

82. Friedman, J. H. and B. E. Popescu (2008). Predictive learning via rule ensembles.
The Annals of Applied Statistics, 2(3), 916–954. ISSN 19326157. URL http://
www.jstor.org/stable/30245114.

83. Frost, N., M. Moshkovitz, and C. Rashtchian (2020). Exkmc: Expanding explainable
k-means clustering. arXiv preprint arXiv:2006.02399.

84. Gelbart, M. A., J. Snoek, and R. P. Adams, Bayesian optimization with unknown
constraints. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial
Intelligence, UAI’14. AUAI Press, Arlington, Virginia, United States, 2014. ISBN 978-
0-9749039-1-0. URL http://dl.acm.org/citation.cfm?id=3020751.
3020778.

85. Gelfand, S. B. and S. K. Mitter (1989). Simulated annealing with noisy or imprecise
energy measurements. Journal of Optimization Theory and Applications, 62, 49–62.

86. Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin,
Bayesian Data Analysis. Chapman and Hall/CRC, 2021, 3 edition. URL http://
www.stat.columbia.edu/~gelman/book/BDA3.pdf.

181

http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
https://doi.org/10.1214/aos/1176342360
https://doi.org/10.1214/aos/1176342360
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://www.biorxiv.org/content/early/2019/03/06/569012
https://doi.org/10.1145/2594473.2594475
https://doi.org/10.1145/2594473.2594475
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
http://www.jstor.org/stable/30245114
http://www.jstor.org/stable/30245114
http://dl.acm.org/citation.cfm?id=3020751.3020778
http://dl.acm.org/citation.cfm?id=3020751.3020778
http://www.stat.columbia.edu/~gelman/book/BDA3.pdf
http://www.stat.columbia.edu/~gelman/book/BDA3.pdf

87. Ghorbani, A. and J. Zou, Data shapley: Equitable valuation of data for machine learn-
ing. In K. Chaudhuri and R. Salakhutdinov (eds.), Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97 of Proceedings of Machine Learn-
ing Research. PMLR, 2019. URL https://proceedings.mlr.press/v97/
ghorbani19c.html.

88. Ghose, A. (2020). compactem. URL https://pypi.org/project/
compactem/.

89. Ghose, A. and B. Ravindran (2020). Interpretability with accurate small models.
Frontiers in Artificial Intelligence, 3, 3. ISSN 2624-8212. URL https://www.
frontiersin.org/article/10.3389/frai.2020.00003.

90. Goodman, B. and S. Flaxman (2017). European union regulations on algo-
rithmic decision-making and a “right to explanation”. AI Magazine, 38(3), 50–
57. URL https://ojs.aaai.org/index.php/aimagazine/article/
view/2741.

91. Gou, J., B. Yu, S. J. Maybank, and D. Tao (2021). Knowledge distillation: A survey.
International Journal of Computer Vision, 129(6), 1789–1819. ISSN 1573-1405. URL
https://doi.org/10.1007/s11263-021-01453-z.

92. Graves, A. (2013). Generating sequences with recurrent neural networks. CoRR,
abs/1308.0850. URL http://arxiv.org/abs/1308.0850.

93. Grill, J.-B., M. Valko, R. Munos, and R. Munos, Black-box optimization of
noisy functions with unknown smoothness. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Infor-
mation Processing Systems 28. Curran Associates, Inc., 2015, 667–675. URL
http://papers.nips.cc/paper/5721-black-box-optimization-
of-noisy-functions-with-unknown-smoothness.pdf.

94. Guidotti, R., A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, and F. Turini
(2019). Factual and counterfactual explanations for black box decision making. IEEE
Intelligent Systems, 34(6), 14–23.

95. Gunning, D. (2016). Explainable Artificial Intelligence. https://www.darpa.
mil/program/explainable-artificial-intelligence.

96. Guo, C., G. Pleiss, Y. Sun, and K. Q. Weinberger, On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17. JMLR.org, 2017.

97. Gupta, C., A. S. Suggala, A. Goyal, H. V. Simhadri, B. Paranjape, A. Kumar,
S. Goyal, R. Udupa, M. Varma, and P. Jain, ProtoNN: Compressed and accurate
kNN for resource-scarce devices. In D. Precup and Y. W. Teh (eds.), Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research. PMLR, 2017. URL https://proceedings.mlr.
press/v70/gupta17a.html.

98. Gutjahr, W. J. and G. C. Pflug (1996). Simulated annealing for noisy cost functions.
Journal of Global Optimization, 8(1), 1–13. ISSN 1573-2916. URL https://doi.
org/10.1007/BF00229298.

182

https://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.mlr.press/v97/ghorbani19c.html
https://pypi.org/project/compactem/
https://pypi.org/project/compactem/
https://www.frontiersin.org/article/10.3389/frai.2020.00003
https://www.frontiersin.org/article/10.3389/frai.2020.00003
https://ojs.aaai.org/index.php/aimagazine/article/view/2741
https://ojs.aaai.org/index.php/aimagazine/article/view/2741
https://doi.org/10.1007/s11263-021-01453-z
http://arxiv.org/abs/1308.0850
http://papers.nips.cc/paper/5721-black-box-optimization-of-noisy-functions-with-unknown-smoothness.pdf
http://papers.nips.cc/paper/5721-black-box-optimization-of-noisy-functions-with-unknown-smoothness.pdf
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://proceedings.mlr.press/v70/gupta17a.html
https://proceedings.mlr.press/v70/gupta17a.html
https://doi.org/10.1007/BF00229298
https://doi.org/10.1007/BF00229298

99. Hansen, N. and S. Kern, Evaluating the CMA evolution strategy on multimodal test
functions. In X. Yao et al. (eds.), Parallel Problem Solving from Nature PPSN VIII,
volume 3242 of LNCS. Springer, 2004.

100. Hansen, N. and A. Ostermeier (2001). Completely derandomized self-adaptation in
evolution strategies. Evol. Comput., 9(2), 159–195. ISSN 1063-6560. URL http:
//dx.doi.org/10.1162/106365601750190398.

101. He, H., Y. Bai, E. A. Garcia, and S. Li, Adasyn: Adaptive synthetic sampling approach
for imbalanced learning. In 2008 IEEE International Joint Conference on Neural Net-
works (IEEE World Congress on Computational Intelligence). 2008.

102. Herman, B. (2017). The promise and peril of human evaluation for model interpretabil-
ity. URL http://arxiv.org/abs/1711.07414. Presented at NIPS 2017 Sym-
posium on Interpretable Machine Learning. Available at: https://arxiv.org/
abs/1711.09889v3.

103. Hernández-Lobato, J. M., M. A. Gelbart, R. P. Adams, M. W. Hoffman, and
Z. Ghahramani (2016). A general framework for constrained bayesian optimization
using information-based search. J. Mach. Learn. Res., 17(1), 5549–5601. ISSN 1532-
4435. URL http://dl.acm.org/citation.cfm?id=2946645.3053442.

104. Hinton, G., O. Vinyals, and J. Dean, Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop. 2015. URL http:
//arxiv.org/abs/1503.02531.

105. Howard, J. and S. Ruder, Universal language model fine-tuning for text classification.
In ACL. Association for Computational Linguistics, 2018. URL http://arxiv.
org/abs/1801.06146.

106. Hsu, C.-W. and C.-J. Lin (2002). A comparison of methods for multiclass support
vector machines. IEEE transactions on neural networks / a publication of the IEEE
Neural Networks Council, 13, 415–25.

107. Hu, X., C. Rudin, and M. Seltzer, Optimal sparse decision trees. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
2019, 7265–7273. URL http://papers.nips.cc/paper/8947-optimal-
sparse-decision-trees.pdf.

108. Hutter, F., H. H. Hoos, and K. Leyton-Brown, Sequential model-based optimization
for general algorithm configuration. In Proceedings of the 5th International Conference
on Learning and Intelligent Optimization, LION’05. Springer-Verlag, Berlin, Heidel-
berg, 2011. ISBN 978-3-642-25565-6. URL http://dx.doi.org/10.1007/
978-3-642-25566-3_40.

109. Hutter, F., L. Kotthoff, and J. Vanschoren (eds.), Automatic Machine Learning:
Methods, Systems, Challenges. Springer, 2019.

110. Hyafil, L. and R. L. Rivest (1976). Constructing optimal binary decision trees is np-
complete. Inf. Process. Lett., 5, 15–17.

183

http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1162/106365601750190398
http://arxiv.org/abs/1711.07414
https://arxiv.org/abs/1711.09889v3
https://arxiv.org/abs/1711.09889v3
http://dl.acm.org/citation.cfm?id=2946645.3053442
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
http://papers.nips.cc/paper/8947-optimal-sparse-decision-trees.pdf
http://papers.nips.cc/paper/8947-optimal-sparse-decision-trees.pdf
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-642-25566-3_40

111. Ioffe, S. and C. Szegedy, Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37, ICML’15. JMLR.org,
2015.

112. Ishwaran, H. and L. F. James (2001). Gibbs sampling methods for stick-breaking
priors. Journal of the American Statistical Association, 96(453), 161–173. ISSN
01621459. URL http://www.jstor.org/stable/2670356.

113. James Bergstra, Dan Yamins, and David D. Cox, Hyperopt: A Python Library for
Optimizing the Hyperparameters of Machine Learning Algorithms. In Stéfan van der
Walt, Jarrod Millman, and Katy Huff (eds.), Proceedings of the 12th Python in Sci-
ence Conference. 2013.

114. Japkowicz, N. and M. Shah, Evaluating Learning Algorithms: A Classification Per-
spective. Cambridge University Press, 2011.

115. Japkowicz, N. and S. Stephen (2002). The class imbalance problem: A systematic
study. Intell. Data Anal., 6(5), 429–449. ISSN 1088-467X. URL http://dl.acm.
org/citation.cfm?id=1293951.1293954.

116. Jeh, G. and J. Widom, Simrank: A measure of structural-context similarity. In Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’02. ACM, New York, NY, USA, 2002. ISBN 1-58113-
567-X. URL http://doi.acm.org/10.1145/775047.775126.

117. Jones, D. R., C. D. Perttunen, and B. E. Stuckman (1993). Lipschitzian optimization
without the lipschitz constant. Journal of Optimization Theory and Applications, 79(1),
157–181. ISSN 1573-2878. URL https://doi.org/10.1007/BF00941892.

118. Jones, E., T. Oliphant, P. Peterson, et al. (2001). SciPy: Open source scientific tools
for Python. URL http://www.scipy.org/. http://www.scipy.org/.

119. Juan, Y., Y. Zhuang, W.-S. Chin, and C.-J. Lin, Field-aware factorization machines
for ctr prediction. In Proceedings of the 10th ACM Conference on Recommender
Systems, RecSys ’16. Association for Computing Machinery, New York, NY, USA,
2016. ISBN 9781450340359. URL https://doi.org/10.1145/2959100.
2959134.

120. Jurafsky, D. and J. Martin (2019). Speech and language processing. Preprint on web-
page at https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf.

121. Kamishima, T., M. Hamasaki, and S. Akaho, Trbagg: A simple transfer learning
method and its application to personalization in collaborative tagging. In Proceedings
of the 2009 Ninth IEEE International Conference on Data Mining, ICDM ’09. IEEE
Computer Society, Washington, DC, USA, 2009. ISBN 978-0-7695-3895-2. URL
https://doi.org/10.1109/ICDM.2009.9.

122. Kaur, H., H. Nori, S. Jenkins, R. Caruana, H. Wallach, and J. Wortman Vaughan,
Interpreting interpretability: Understanding data scientists’ use of interpretability tools
for machine learning. In CHI 2020. 2020. URL https://www.microsoft.com/
en-us/research/publication/interpreting-interpretability-

184

http://www.jstor.org/stable/2670356
http://dl.acm.org/citation.cfm?id=1293951.1293954
http://dl.acm.org/citation.cfm?id=1293951.1293954
http://doi.acm.org/10.1145/775047.775126
https://doi.org/10.1007/BF00941892
http://www.scipy.org/
http://www.scipy.org/
https://doi.org/10.1145/2959100.2959134
https://doi.org/10.1145/2959100.2959134
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://doi.org/10.1109/ICDM.2009.9
https://www.microsoft.com/en-us/research/publication/interpreting-interpretability-understanding-data-scientists-use-of-interpretability-tools-for-machine-learning/
https://www.microsoft.com/en-us/research/publication/interpreting-interpretability-understanding-data-scientists-use-of-interpretability-tools-for-machine-learning/
https://www.microsoft.com/en-us/research/publication/interpreting-interpretability-understanding-data-scientists-use-of-interpretability-tools-for-machine-learning/

understanding-data-scientists-use-of-interpretability-
tools-for-machine-learning/. CHI 2020 Honorable Mention Award.

123. Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, Light-
gbm: A highly efficient gradient boosting decision tree. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17. Curran
Associates Inc., USA, 2017. ISBN 978-1-5108-6096-4. URL http://dl.acm.
org/citation.cfm?id=3294996.3295074.

124. Kennedy, J. and R. Eberhart, Particle swarm optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, volume 4. 1995.

125. Kim, J. and J. Canny, Interpretable learning for self-driving cars by visualizing causal
attention. In IEEE International Conference on Computer Vision (ICCV). 2017.

126. Kim, J., A. Rohrbach, T. Darrell, J. Canny, and Z. Akata, Textual explanations for
self-driving vehicles. In Proceedings of the European Conference on Computer Vision
(ECCV). 2018.

127. Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated
annealing. Science, 220(4598), 671–680. ISSN 00368075. URL http://www.
jstor.org/stable/1690046.

128. Krishnan, M. (2020). Against interpretability: a critical examination of the inter-
pretability problem in machine learning. Philosophy & Technology, 33(3), 487–502.
ISSN 2210-5441. URL https://doi.org/10.1007/s13347-019-00372-
9.

129. Kulesza, T., S. Stumpf, M. Burnett, S. Yang, I. Kwan, and W.-K. Wong, Too much,
too little, or just right? ways explanations impact end users’ mental models. In 2013
IEEE Symposium on Visual Languages and Human Centric Computing. 2013.

130. Kumaraswamy, P. (1980). A generalized probability density function for double-
bounded random processes. Journal of Hydrology, 46(1), 79 – 88. ISSN 0022-
1694. URL http://www.sciencedirect.com/science/article/pii/
0022169480900360.

131. Kusner, M., S. Tyree, K. Weinberger, and K. Agrawal, Stochastic neighbor compres-
sion. In E. P. Xing and T. Jebara (eds.), Proceedings of the 31st International Confer-
ence on Machine Learning, volume 32 of Proceedings of Machine Learning Research.
PMLR, Bejing, China, 2014. URL https://proceedings.mlr.press/v32/
kusner14.html.

132. Laber, E. S., L. Murtinho, and F. Oliveira (2021). Shallow decision trees for ex-
plainable k-means clustering. CoRR, abs/2112.14718. URL https://arxiv.org/
abs/2112.14718.

133. Lage, I., E. Chen, J. He, M. Narayanan, B. Kim, S. J. Gershman, and F. Doshi-
Velez (2019). Human evaluation of models built for interpretability. Proceedings of
the AAAI Conference on Human Computation and Crowdsourcing, 7(1), 59–67. URL
https://ojs.aaai.org/index.php/HCOMP/article/view/5280.

185

https://www.microsoft.com/en-us/research/publication/interpreting-interpretability-understanding-data-scientists-use-of-interpretability-tools-for-machine-learning/
https://www.microsoft.com/en-us/research/publication/interpreting-interpretability-understanding-data-scientists-use-of-interpretability-tools-for-machine-learning/
https://www.microsoft.com/en-us/research/publication/interpreting-interpretability-understanding-data-scientists-use-of-interpretability-tools-for-machine-learning/
http://dl.acm.org/citation.cfm?id=3294996.3295074
http://dl.acm.org/citation.cfm?id=3294996.3295074
http://www.jstor.org/stable/1690046
http://www.jstor.org/stable/1690046
https://doi.org/10.1007/s13347-019-00372-9
https://doi.org/10.1007/s13347-019-00372-9
http://www.sciencedirect.com/science/article/pii/0022169480900360
http://www.sciencedirect.com/science/article/pii/0022169480900360
https://proceedings.mlr.press/v32/kusner14.html
https://proceedings.mlr.press/v32/kusner14.html
https://arxiv.org/abs/2112.14718
https://arxiv.org/abs/2112.14718
https://ojs.aaai.org/index.php/HCOMP/article/view/5280

134. Lakkaraju, H., S. H. Bach, and J. Leskovec, Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16. ACM,
New York, NY, USA, 2016. ISBN 978-1-4503-4232-2. URL http://doi.acm.
org/10.1145/2939672.2939874.

135. Lapuschkin, S., S. Wäldchen, A. Binder, G. Montavon, W. Samek, and K.-R.
Müller (2019). Unmasking clever hans predictors and assessing what machines re-
ally learn. Nature Communications, 10(1), 1096. ISSN 2041-1723. URL https:
//doi.org/10.1038/s41467-019-08987-4.

136. Larson, J., S. Mattu, L. Kirchner, and J. Angwin (2016). How We Analyzed the
COMPAS Recidivism Algorithm. https://www.propublica.org/article/
how-we-analyzed-the-compas-recidivism-algorithm.

137. Lee, E., D. Braines, M. Stiffler, A. Hudler, and D. Harborne, Developing the sen-
sitivity of LIME for better machine learning explanation. In T. Pham (ed.), Artifi-
cial Intelligence and Machine Learning for Multi-Domain Operations Applications,
volume 11006. International Society for Optics and Photonics, SPIE, 2019. URL
https://doi.org/10.1117/12.2520149.

138. Lei, T., R. Barzilay, and T. Jaakkola, Rationalizing neural predictions. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics, Austin, Texas, 2016. URL https:
//www.aclweb.org/anthology/D16-1011.

139. Letham, B., B. Karrer, G. Ottoni, and E. Bakshy (2017). Constrained bayesian
optimization with noisy experiments. Bayesian Analysis.

140. Letham, B., C. Rudin, T. H. McCormick, and D. Madigan (2015). Interpretable
classifiers using rules and Bayesian analysis: Building a better stroke prediction model.
The Annals of Applied Statistics, 9(3), 1350 – 1371. URL https://doi.org/10.
1214/15-AOAS848.

141. Levesque, J.-C., A. Durand, C. Gagné, and R. Sabourin (2017). Bayesian optimiza-
tion for conditional hyperparameter spaces. 2017 International Joint Conference on
Neural Networks (IJCNN), 286–293.

142. Lewis, D. D. and W. A. Gale, A sequential algorithm for training text classifiers. In
Proceedings of the 17th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’94. Springer-Verlag New York, Inc.,
New York, NY, USA, 1994. ISBN 0-387-19889-X. URL http://dl.acm.org/
citation.cfm?id=188490.188495.

143. Li, C., S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, and A. Shilton, High dimensional
bayesian optimization using dropout. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17. 2017a. URL https://doi.
org/10.24963/ijcai.2017/291.

144. Li, L., K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar (2017b). Hy-
perband: A novel bandit-based approach to hyperparameter optimization. J. Mach.

186

http://doi.acm.org/10.1145/2939672.2939874
http://doi.acm.org/10.1145/2939672.2939874
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1038/s41467-019-08987-4
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://doi.org/10.1117/12.2520149
https://www.aclweb.org/anthology/D16-1011
https://www.aclweb.org/anthology/D16-1011
https://doi.org/10.1214/15-AOAS848
https://doi.org/10.1214/15-AOAS848
http://dl.acm.org/citation.cfm?id=188490.188495
http://dl.acm.org/citation.cfm?id=188490.188495
https://doi.org/10.24963/ijcai.2017/291
https://doi.org/10.24963/ijcai.2017/291

Learn. Res., 18(1), 6765–6816. ISSN 1532-4435. URL http://dl.acm.org/
citation.cfm?id=3122009.3242042.

145. Liao, X., Y. Xue, and L. Carin, Logistic regression with an auxiliary data source. In
Proceedings of the 22Nd International Conference on Machine Learning, ICML ’05.
ACM, New York, NY, USA, 2005. ISBN 1-59593-180-5. URL http://doi.acm.
org/10.1145/1102351.1102415.

146. Lijoi, A. and I. Pruenster (2009). Models beyond the Dirichlet process. ICER Work-
ing Papers - Applied Mathematics Series 23-2009, ICER - International Centre for
Economic Research. URL https://ideas.repec.org/p/icr/wpmath/23-
2009.html.

147. Lim, M. and T. Hastie (2015). Learning interactions via hierarchical group-lasso
regularization. J Comput Graph Stat, 24(3), 627–654. ISSN 1061-8600. URL
https://www.ncbi.nlm.nih.gov/pubmed/26759522. 26759522[pmid].

148. Lin, J., C. Zhong, D. Hu, C. Rudin, and M. Seltzer, Generalized and scalable optimal
sparse decision trees. In H. D. III and A. Singh (eds.), Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research. PMLR, 2020. URL https://proceedings.mlr.press/
v119/lin20g.html.

149. Lipton, Z. C. (2018). The mythos of model interpretability. Queue, 16(3), 30:31–
30:57. ISSN 1542-7730. URL http://doi.acm.org/10.1145/3236386.
3241340.

150. Liu, F. T., K. M. Ting, and Z.-H. Zhou, Isolation forest. In 2008 Eighth IEEE Inter-
national Conference on Data Mining. 2008.

151. Lorraine, J., P. Vicol, and D. Duvenaud, Optimizing millions of hyperparameters by
implicit differentiation. In S. Chiappa and R. Calandra (eds.), Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume
108 of Proceedings of Machine Learning Research. PMLR, 2020. URL https://
proceedings.mlr.press/v108/lorraine20a.html.

152. Lou, Y., R. Caruana, J. Gehrke, and G. Hooker, Accurate intelligible models with
pairwise interactions. In Proceedings of the 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’13. ACM, New York, NY,
USA, 2013. ISBN 978-1-4503-2174-7. URL http://doi.acm.org/10.1145/
2487575.2487579.

153. Lu, P., A. Ghaddar, A. Rashid, M. Rezagholizadeh, A. Ghodsi, and P. Langlais,
RW-KD: Sample-wise loss terms re-weighting for knowledge distillation. In Find-
ings of the Association for Computational Linguistics: EMNLP 2021. Association for
Computational Linguistics, Punta Cana, Dominican Republic, 2021. URL https:
//aclanthology.org/2021.findings-emnlp.270.

154. Lundberg, S. M., G. G. Erion, and S.-I. Lee (2018). Consistent individualized feature
attribution for tree ensembles. arXiv preprint arXiv:1802.03888.

187

http://dl.acm.org/citation.cfm?id=3122009.3242042
http://dl.acm.org/citation.cfm?id=3122009.3242042
http://doi.acm.org/10.1145/1102351.1102415
http://doi.acm.org/10.1145/1102351.1102415
https://ideas.repec.org/p/icr/wpmath/23-2009.html
https://ideas.repec.org/p/icr/wpmath/23-2009.html
https://www.ncbi.nlm.nih.gov/pubmed/26759522
https://proceedings.mlr.press/v119/lin20g.html
https://proceedings.mlr.press/v119/lin20g.html
http://doi.acm.org/10.1145/3236386.3241340
http://doi.acm.org/10.1145/3236386.3241340
https://proceedings.mlr.press/v108/lorraine20a.html
https://proceedings.mlr.press/v108/lorraine20a.html
http://doi.acm.org/10.1145/2487575.2487579
http://doi.acm.org/10.1145/2487575.2487579
https://aclanthology.org/2021.findings-emnlp.270
https://aclanthology.org/2021.findings-emnlp.270

155. Lundberg, S. M. and S.-I. Lee, A unified approach to interpreting model
predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 30. Curran Associates, Inc., 2017, 4765–4774. URL
http://papers.nips.cc/paper/7062-a-unified-approach-to-
interpreting-model-predictions.pdf.

156. Ma, L., J. Cui, and B. Yang, Deep neural architecture search with deep graph bayesian
optimization. In 2019 IEEE/WIC/ACM International Conference on Web Intelligence
(WI). 2019.

157. Malherbe, C. and N. Vayatis, Global optimization of Lipschitz functions. In D. Precup
and Y. W. Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research. PMLR, 2017.
URL https://proceedings.mlr.press/v70/malherbe17a.html.

158. Malkomes, G. and R. Garnett, Automating bayesian optimization with
bayesian optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 31. Curran Associates, Inc., 2018, 5984–5994. URL
http://papers.nips.cc/paper/7838-automating-bayesian-
optimization-with-bayesian-optimization.pdf.

159. McCloskey, J. W. (1965). A model for the distribution of individuals by species in an
environment.. Ph.D. thesis, Michigan State University.

160. Menon, A. K., A. S. Rawat, S. Kumar, S. Reddi, and S. Kim, A statistical perspective
on distillation. In International Conference on Machine Learning (ICML) 2021. 2021.

161. Merrill, E., A. Fern, X. Fern, and N. Dolatnia (2021). An empirical study of bayesian
optimization: Acquisition versus partition. Journal of Machine Learning Research,
22(4), 1–25. URL http://jmlr.org/papers/v22/18-220.html.

162. Michie, D., D. J. Spiegelhalter, C. C. Taylor, and J. Campbell (eds.), Machine
Learning, Neural and Statistical Classification. Ellis Horwood, USA, 1995. ISBN
013106360X.

163. Mihalkova, L. and R. Mooney, Transfer learning with markov logic networks. In
Proceedings of the ICML-06 Workshop on Structural Knowledge Transfer for Machine
Learning. Pittsburgh, PA, 2006. URL http://www.cs.utexas.edu/users/
ai-lab/?mihalkova:icml-wkshp06.

164. Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sci-
ences. Artificial Intelligence, 267, 1–38. ISSN 0004-3702. URL https://www.
sciencedirect.com/science/article/pii/S0004370218305988.

165. Ming, Y., H. Qu, and E. Bertini (2019). Rulematrix: Visualizing and understanding
classifiers with rules. IEEE Transactions on Visualization and Computer Graphics,
25(1), 342–352.

188

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://proceedings.mlr.press/v70/malherbe17a.html
http://papers.nips.cc/paper/7838-automating-bayesian-optimization-with-bayesian-optimization.pdf
http://papers.nips.cc/paper/7838-automating-bayesian-optimization-with-bayesian-optimization.pdf
http://jmlr.org/papers/v22/18-220.html
http://www.cs.utexas.edu/users/ai-lab/?mihalkova:icml-wkshp06
http://www.cs.utexas.edu/users/ai-lab/?mihalkova:icml-wkshp06
https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://www.sciencedirect.com/science/article/pii/S0004370218305988

166. Mita, G., P. Papotti, M. Filippone, and P. Michiardi, Libre: Learning interpretable
boolean rule ensembles. In S. Chiappa and R. Calandra (eds.), Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume
108 of Proceedings of Machine Learning Research. PMLR, 2020. URL https://
proceedings.mlr.press/v108/mita20a.html.

167. Mohammad, R. M., F. Thabtah, and L. McCluskey, An assessment of features re-
lated to phishing websites using an automated technique. In 2012 International Con-
ference for Internet Technology and Secured Transactions. 2012. ISSN null.

168. Molnar, C., Interpretable Machine Learning. 2022, 2 edition. URL https:
//christophm.github.io/interpretable-ml-book.

169. Mood, C. (2010). Logistic regression : Why we cannot do what we think we can do,
and what we can do about it. European Sociological Review, 26(1), 67–82.

170. Moshkovitz, M., S. Dasgupta, C. Rashtchian, and N. Frost, Explainable k-means
and k-medians clustering. In H. D. III and A. Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research. PMLR, 2020. URL https://proceedings.mlr.press/
v119/moshkovitz20a.html.

171. Munteanu, A. and C. Schwiegelshohn (2018). Coresets-methods and history: A the-
oreticians design pattern for approximation and streaming algorithms. KI - Künstliche
Intelligenz, 32(1), 37–53. ISSN 1610-1987. URL https://doi.org/10.1007/
s13218-017-0519-3.

172. Murdoch, W. J., C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu (2019). Defi-
nitions, methods, and applications in interpretable machine learning. Proceedings of
the National Academy of Sciences, 116(44), 22071–22080. ISSN 0027-8424. URL
https://www.pnas.org/content/116/44/22071.

173. Murphy, K. P., Machine learning: a probabilistic perspective. MIT press, 2012.

174. Nayebi, A., A. Munteanu, and M. Poloczek, A framework for Bayesian optimization
in embedded subspaces. In K. Chaudhuri and R. Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research. PMLR, Long Beach, California, USA, 2019. URL
http://proceedings.mlr.press/v97/nayebi19a.html.

175. Nori, H., S. Jenkins, P. Koch, and R. Caruana (2019). Interpretml: A unified frame-
work for machine learning interpretability. arXiv preprint arXiv:1909.09223. URL
https://interpret.ml.

176. Ohlssen, D. I., L. D. Sharples, and D. J. Spiegelhalter (2007). Flexible random-effects
models using bayesian semi-parametric models: applications to institutional compar-
isons. Statistics in Medicine, 26(9), 2088–2112. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/sim.2666.

177. Olkin, I. and T. Trikalinos (2014). Constructions for a bivariate beta distribution.
Statistics & Probability Letters, 96.

189

https://proceedings.mlr.press/v108/mita20a.html
https://proceedings.mlr.press/v108/mita20a.html
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://proceedings.mlr.press/v119/moshkovitz20a.html
https://proceedings.mlr.press/v119/moshkovitz20a.html
https://doi.org/10.1007/s13218-017-0519-3
https://doi.org/10.1007/s13218-017-0519-3
https://www.pnas.org/content/116/44/22071
http://proceedings.mlr.press/v97/nayebi19a.html
https://interpret.ml
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2666
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2666

178. Ozaki, Y., Y. Tanigaki, S. Watanabe, and M. Onishi, Multiobjective tree-structured
parzen estimator for computationally expensive optimization problems. In Proceedings
of the 2020 Genetic and Evolutionary Computation Conference, GECCO ’20. Associ-
ation for Computing Machinery, New York, NY, USA, 2020. ISBN 9781450371285.
URL https://doi.org/10.1145/3377930.3389817.

179. Pan, J.-Y., H.-J. Yang, C. Faloutsos, and P. Duygulu, Automatic multimedia cross-
modal correlation discovery. In Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’04. ACM, New York,
NY, USA, 2004. ISBN 1-58113-888-1. URL http://doi.acm.org/10.1145/
1014052.1014135.

180. Pan, S. J. and Q. Yang (2010). A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10), 1345–1359. ISSN 1041-4347.

181. Parsopoulos, K. E. and M. N. Vrahatis, Particle swarm optimizer in noisy and con-
tinuously changing environments. In M.H. Hamza (Ed.), Arti cial Intelligence and Soft
Computing, IASTED/ACTA. IASTED/ACTA Press, 2001.

182. Paschke, F., C. Bayer, M. Bator, U. Mönks, A. Dicks, O. Enge-Rosenblatt, and
V. Lohweg, Sensorlose zustandsüberwachung an synchronmotoren. In Proceedings of
Computational Intelligence Workshop. 2013.

183. Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosoph-
ical Transactions of the Royal Society of London. A, 185, 71–110. ISSN 02643820.
URL http://www.jstor.org/stable/90667.

184. Pedregosa, F., Hyperparameter optimization with approximate gradient. In Proceed-
ings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16. JMLR.org, 2016.

185. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

186. Perrone, V., R. Jenatton, M. W. Seeger, and C. Archambeau, Scalable hyperparame-
ter transfer learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems
31. Curran Associates, Inc., 2018, 6845–6855. URL http://papers.nips.cc/
paper/7917-scalable-hyperparameter-transfer-learning.pdf.

187. Perry, W. L., B. McInnis, C. C. Price, S. Smith, and J. S. Hollywood, Predictive
Policing: The Role of Crime Forecasting in Law Enforcement Operations. RAND
Corporation, Santa Monica, CA, 2013.

188. Pitman, J. and M. Yor (1997). The two-parameter poisson-dirichlet distribution de-
rived from a stable subordinator. Ann. Probab., 25(2), 855–900. URL https:
//doi.org/10.1214/aop/1024404422.

190

https://doi.org/10.1145/3377930.3389817
http://doi.acm.org/10.1145/1014052.1014135
http://doi.acm.org/10.1145/1014052.1014135
http://www.jstor.org/stable/90667
http://papers.nips.cc/paper/7917-scalable-hyperparameter-transfer-learning.pdf
http://papers.nips.cc/paper/7917-scalable-hyperparameter-transfer-learning.pdf
https://doi.org/10.1214/aop/1024404422
https://doi.org/10.1214/aop/1024404422

189. Platt, J., Fast training of support vector machines using sequential mini-
mal optimization. In Advances in Kernel Methods - Support Vector Learn-
ing. MIT Press, 1998. URL https://www.microsoft.com/en-
us/research/publication/fast-training-of-support-vector-
machines-using-sequential-minimal-optimization/.

190. Platt, J. C., Probabilistic outputs for support vector machines and comparisons to reg-
ularized likelihood methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS. MIT
Press, 1999.

191. Plumb, G., D. Molitor, and A. S. Talwalkar, Model agnostic supervised
local explanations. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 31. Curran Associates, Inc., 2018.
URL https://proceedings.neurips.cc/paper/2018/file/
b495ce63ede0f4efc9eec62cb947c162-Paper.pdf.

192. Poursabzi-Sangdeh, F., D. Goldstein, J. Hofman, J. Wortman Vaughan, and
H. Wallach, Manipulating and measuring model interpretability. In CHI 2021. 2021.
URL https://www.microsoft.com/en-us/research/publication/
manipulating-and-measuring-model-interpretability/.

193. Prokhorov, D. (2001). IJCNN 2001 Neural Network Competition. http://www.
geocities.ws/ijcnn/nnc_ijcnn01.pdf.

194. Pröllochs, N., S. Feuerriegel, and D. Neumann, Learning interpretable negation rules
via weak supervision at document level: A reinforcement learning approach. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 2019.
URL https://www.aclweb.org/anthology/N19-1038.

195. Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learn-
ing, 5(3), 239–266. ISSN 1573-0565. URL https://doi.org/10.1023/A:
1022699322624.

196. Quinlan, J. R., C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993. ISBN 1-55860-238-0.

197. Quinlan, J. R. (2004). C5.0. https://rulequest.com/.

198. Ram, P. and A. G. Gray, Density estimation trees. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’11. Association for Computing Machinery, New York, NY, USA, 2011. ISBN
9781450308137. URL https://doi.org/10.1145/2020408.2020507.

199. Rana, S., C. Li, S. Gupta, V. Nguyen, and S. Venkatesh, High dimensional Bayesian
optimization with elastic Gaussian process. In D. Precup and Y. W. Teh (eds.), Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research. PMLR, International Convention Cen-
tre, Sydney, Australia, 2017. URL http://proceedings.mlr.press/v70/
rana17a.html.

191

https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://www.microsoft.com/en-us/research/publication/fast-training-of-support-vector-machines-using-sequential-minimal-optimization/
https://proceedings.neurips.cc/paper/2018/file/b495ce63ede0f4efc9eec62cb947c162-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/b495ce63ede0f4efc9eec62cb947c162-Paper.pdf
https://www.microsoft.com/en-us/research/publication/manipulating-and-measuring-model-interpretability/
https://www.microsoft.com/en-us/research/publication/manipulating-and-measuring-model-interpretability/
http://www.geocities.ws/ijcnn/nnc_ijcnn01.pdf
http://www.geocities.ws/ijcnn/nnc_ijcnn01.pdf
https://www.aclweb.org/anthology/N19-1038
https://doi.org/10.1023/A:1022699322624
https://doi.org/10.1023/A:1022699322624
https://rulequest.com/
https://doi.org/10.1145/2020408.2020507
http://proceedings.mlr.press/v70/rana17a.html
http://proceedings.mlr.press/v70/rana17a.html

200. Rao, D. and B. McMahan, Natural Language Processing with PyTorch. O’Reilly,
2019. ISBN 978-1491978238. https://www.amazon.com/Natural-
Language-Processing-PyTorch-Applications/dp/1491978236/
and https://github.com/joosthub/PyTorchNLPBook.

201. Rasmussen, C. E., The infinite gaussian mixture model. In Proceedings of the 12th
International Conference on Neural Information Processing Systems, NIPS’99. MIT
Press, Cambridge, MA, USA, 1999. URL http://dl.acm.org/citation.
cfm?id=3009657.3009736.

202. Regis, R. G. and C. A. Shoemaker (2007). A stochastic radial basis function method
for the global optimization of expensive functions. INFORMS Journal on Computing,
19(4), 497–509. URL https://doi.org/10.1287/ijoc.1060.0182.

203. Regis, R. G. and C. A. Shoemaker (2009). Parallel stochastic global optimization
using radial basis functions. INFORMS Journal on Computing, 21(3), 411–426. URL
https://doi.org/10.1287/ijoc.1090.0325.

204. Regis, R. G. and C. A. Shoemaker (2013). Combining radial basis function surrogates
and dynamic coordinate search in high-dimensional expensive black-box optimization.
Engineering Optimization, 45(5), 529–555. URL https://doi.org/10.1080/
0305215X.2012.687731.

205. Ren, L., L. Du, L. Carin, and D. Dunson (2011). Logistic stick-breaking process. J.
Mach. Learn. Res., 12(null), 203–239. ISSN 1532-4435.

206. Ribeiro, M. T., S. Singh, and C. Guestrin, “Why Should I Trust You?”: Explaining the
predictions of any classifier. In Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16. ACM, New York,
NY, USA, 2016. ISBN 978-1-4503-4232-2. URL http://doi.acm.org/10.
1145/2939672.2939778.

207. Ribeiro, M. T., S. Singh, and C. Guestrin, Anchors: High-precision model-
agnostic explanations. 2018. URL https://aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16982.

208. Rodriguez, J. J., L. I. Kuncheva, and C. J. Alonso (2006). Rotation forest: A new
classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell., 28(10), 1619–
1630. ISSN 0162-8828. URL https://doi.org/10.1109/TPAMI.2006.
211.

209. Romero, A., N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, Fit-
nets: Hints for thin deep nets. In Y. Bengio and Y. LeCun (eds.), 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings. 2015. URL http://arxiv.org/abs/
1412.6550.

210. Rudin, C. (2019). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1(5),
206–215. ISSN 2522-5839. URL https://doi.org/10.1038/s42256-019-
0048-x.

192

https://www.amazon.com/Natural-Language-Processing-PyTorch-Applications/dp/1491978236/
https://www.amazon.com/Natural-Language-Processing-PyTorch-Applications/dp/1491978236/
https://github.com/joosthub/PyTorchNLPBook
http://dl.acm.org/citation.cfm?id=3009657.3009736
http://dl.acm.org/citation.cfm?id=3009657.3009736
https://doi.org/10.1287/ijoc.1060.0182
https://doi.org/10.1287/ijoc.1090.0325
https://doi.org/10.1080/0305215X.2012.687731
https://doi.org/10.1080/0305215X.2012.687731
http://doi.acm.org/10.1145/2939672.2939778
http://doi.acm.org/10.1145/2939672.2939778
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://doi.org/10.1109/TPAMI.2006.211
https://doi.org/10.1109/TPAMI.2006.211
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1412.6550
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x

211. Rudin, C., C. Wang, and B. Coker (2020). The age of secrecy
and unfairness in recidivism prediction. Harvard Data Science Review,
2(1). URL https://hdsr.mitpress.mit.edu/pub/7z10o269.
Https://hdsr.mitpress.mit.edu/pub/7z10o269.

212. Sanh, V., L. Debut, J. Chaumond, and T. Wolf (2019). Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108. URL http:
//arxiv.org/abs/1910.01108.

213. Santhiappan, S., J. Chelladurai, and B. Ravindran, A novel topic modeling based
weighting framework for class imbalance learning. In Proceedings of the ACM
India Joint International Conference on Data Science and Management of Data,
CoDS-COMAD ’18. Association for Computing Machinery, New York, NY, USA,
2018. ISBN 9781450363419. URL https://doi.org/10.1145/3152494.
3152496.

214. Santurkar, S., D. Tsipras, A. Ilyas, and A. Madry, How does batch nor-
malization help optimization? In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper/2018/file/
905056c1ac1dad141560467e0a99e1cf-Paper.pdf.

215. Scheffer, T., C. Decomain, and S. Wrobel, Active hidden markov models for in-
formation extraction. In Proceedings of the 4th International Conference on Ad-
vances in Intelligent Data Analysis, IDA ’01. Springer-Verlag, London, UK, UK,
2001. ISBN 3-540-42581-0. URL http://dl.acm.org/citation.cfm?id=
647967.741626.

216. Scholbeck, C. A., C. Molnar, C. Heumann, B. Bischl, and G. Casalicchio, Sampling,
intervention, prediction, aggregation: A generalized framework for model-agnostic in-
terpretations. In P. Cellier and K. Driessens (eds.), Machine Learning and Knowledge
Discovery in Databases. Springer International Publishing, Cham, 2020. ISBN 978-3-
030-43823-4.

217. Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, Grad-
cam: Visual explanations from deep networks via gradient-based localization. In 2017
IEEE International Conference on Computer Vision (ICCV). 2017. ISSN 2380-7504.

218. Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica,
4, 639–650.

219. Settles, B. (2009). Active learning literature survey. Computer Sciences Technical Re-
port 1648, University of Wisconsin–Madison. URL http://axon.cs.byu.edu/
~martinez/classes/778/Papers/settles.activelearning.pdf.

220. Setzu, M., R. Guidotti, A. Monreale, F. Turini, D. Pedreschi, and F. Giannotti
(2021). Glocalx - from local to global explanations of black box ai models. Artificial In-
telligence, 294, 103457. ISSN 0004-3702. URL https://www.sciencedirect.
com/science/article/pii/S0004370221000084.

193

https://hdsr.mitpress.mit.edu/pub/7z10o269
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.1145/3152494.3152496
https://doi.org/10.1145/3152494.3152496
https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
http://dl.acm.org/citation.cfm?id=647967.741626
http://dl.acm.org/citation.cfm?id=647967.741626
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
https://www.sciencedirect.com/science/article/pii/S0004370221000084
https://www.sciencedirect.com/science/article/pii/S0004370221000084

221. Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas (2016). Taking
the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE,
104(1), 148–175. ISSN 0018-9219.

222. Sharchilev, B., Y. Ustinovskiy, P. Serdyukov, and M. de Rijke, Finding influen-
tial training samples for gradient boosted decision trees. In J. Dy and A. Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research. PMLR, 2018. URL http:
//proceedings.mlr.press/v80/sharchilev18a.html.

223. Shrikumar, A., P. Greenside, and A. Kundaje, Learning important features through
propagating activation differences. In D. Precup and Y. W. Teh (eds.), Proceed-
ings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research. PMLR, International Convention Cen-
tre, Sydney, Australia, 2017. URL http://proceedings.mlr.press/v70/
shrikumar17a.html.

224. Simonyan, K., A. Vedaldi, and A. Zisserman, Deep inside convolutional networks:
Visualising image classification models and saliency maps. In Workshop at Interna-
tional Conference on Learning Representations. 2014.

225. Simonyan, K. and A. Zisserman, Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations. 2015.

226. Slack, D., S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, Fooling lime and shap:
Adversarial attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, AIES ’20. Association for Computing Machin-
ery, New York, NY, USA, 2020. ISBN 9781450371100. URL https://doi.org/
10.1145/3375627.3375830.

227. Slack, D. Z., S. Hilgard, S. Singh, and H. Lakkaraju, Reliable post hoc explanations:
Modeling uncertainty in explainability. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan (eds.), Advances in Neural Information Processing Systems. 2021. URL
https://openreview.net/forum?id=rqfq0CYIekd.

228. Snoek, J., H. Larochelle, and R. P. Adams, Practical bayesian optimiza-
tion of machine learning algorithms. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger (eds.), Advances in Neural Information
Processing Systems 25. Curran Associates, Inc., 2012, 2951–2959. URL
http://papers.nips.cc/paper/4522-practical-bayesian-
optimization-of-machine-learning-algorithms.pdf.

229. Snoek, J., O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A.
Patwary, P. Prabhat, and R. P. Adams, Scalable bayesian optimization using deep
neural networks. In Proceedings of the 32Nd International Conference on Interna-
tional Conference on Machine Learning - Volume 37, ICML’15. JMLR.org, 2015. URL
http://dl.acm.org/citation.cfm?id=3045118.3045349.

230. Song, J., L. Yu, W. Neiswanger, and S. Ermon, A general recipe for likelihood-free
bayesian optimization. In International Conference on Machine Learning. 2022.

194

http://proceedings.mlr.press/v80/sharchilev18a.html
http://proceedings.mlr.press/v80/sharchilev18a.html
http://proceedings.mlr.press/v70/shrikumar17a.html
http://proceedings.mlr.press/v70/shrikumar17a.html
https://doi.org/10.1145/3375627.3375830
https://doi.org/10.1145/3375627.3375830
https://openreview.net/forum?id=rqfq0CYIekd
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://dl.acm.org/citation.cfm?id=3045118.3045349

231. Souza, A., L. Nardi, L. B. Oliveira, K. Olukotun, M. Lindauer, and F. Hutter,
Bayesian optimization with a prior for the optimum. In N. Oliver, F. Pérez-Cruz,
S. Kramer, J. Read, and J. A. Lozano (eds.), Machine Learning and Knowledge Dis-
covery in Databases. Research Track. Springer International Publishing, Cham, 2021.
ISBN 978-3-030-86523-8.

232. Springenberg, J. T., A. Klein, S. Falkner, and F. Hutter, Bayesian opti-
mization with robust bayesian neural networks. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 29. Curran Associates, Inc., 2016.
URL https://proceedings.neurips.cc/paper/2016/file/
a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf.

233. Sturges, H. A. (1926). The choice of a class interval. Journal of the Ameri-
can Statistical Association, 21(153), 65–66. URL https://doi.org/10.1080/
01621459.1926.10502161.

234. Teh, Y. W. (2010). Dirichlet process. https://www.stats.ox.ac.uk/~teh/
research/npbayes/Teh2010a.pdf.

235. Tenney, I., J. Wexler, J. Bastings, T. Bolukbasi, A. Coenen, S. Gehrmann, E. Jiang,
M. Pushkarna, C. Radebaugh, E. Reif, and A. Yuan, The language interpretability
tool: Extensible, interactive visualizations and analysis for NLP models. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations. Association for Computational Linguistics, Online, 2020. URL
https://www.aclweb.org/anthology/2020.emnlp-demos.15.

236. Thrun, S. and T. M. Mitchell, Learning one more thing. In IJCAI. 1994.

237. Tiao, L. C., A. Klein, M. W. Seeger, E. V. Bonilla, C. Archambeau, and F. Ramos,
Bore: Bayesian optimization by density-ratio estimation. In M. Meila and T. Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research. PMLR, 2021. URL https://
proceedings.mlr.press/v139/tiao21a.html.

238. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 58(1), 267–288. ISSN 00359246.
URL http://www.jstor.org/stable/2346178.

239. Tjoa, E. and C. Guan (2020). A survey on explainable artificial intelligence (xai):
Toward medical xai. IEEE Transactions on Neural Networks and Learning Systems,
1–21.

240. Torrey, L. and J. W. Shavlik, Handbook of research on machine learning applications
(Chapter 11). IGI Global, 2009.

241. Turner, R., D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon
(2021). Bayesian optimization is superior to random search for machine learning hy-
perparameter tuning: Analysis of the black-box optimization challenge 2020. CoRR,
abs/2104.10201. URL https://arxiv.org/abs/2104.10201.

195

https://proceedings.neurips.cc/paper/2016/file/a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a96d3afec184766bfeca7a9f989fc7e7-Paper.pdf
https://doi.org/10.1080/01621459.1926.10502161
https://doi.org/10.1080/01621459.1926.10502161
https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf
https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.15
https://proceedings.mlr.press/v139/tiao21a.html
https://proceedings.mlr.press/v139/tiao21a.html
http://www.jstor.org/stable/2346178
https://arxiv.org/abs/2104.10201

242. Ustun, B. and C. Rudin (2016). Supersparse linear integer models for optimized med-
ical scoring systems. Machine Learning, 102(3), 349–391. ISSN 1573-0565. URL
https://doi.org/10.1007/s10994-015-5528-6.

243. Uzilov, A. V., J. M. Keegan, and D. H. Mathews (2006). Detection of non-coding
rnas on the basis of predicted secondary structure formation free energy change. BMC
bioinformatics, 7, 173–173. ISSN 1471-2105. URL https://www.ncbi.nlm.
nih.gov/pubmed/16566836. 16566836[pmid].

244. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, u. Kaiser,
and I. Polosukhin, Attention is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17. Curran Associates
Inc., Red Hook, NY, USA, 2017. ISBN 9781510860964.

245. Vig, J., A. Madani, L. R. Varshney, C. Xiong, richard socher, and N. Ra-
jani, {BERT}ology meets biology: Interpreting attention in protein language mod-
els. In International Conference on Learning Representations. 2021. URL https:
//openreview.net/forum?id=YWtLZvLmud7.

246. Wallace, E., J. Tuyls, J. Wang, S. Subramanian, M. Gardner, and S. Singh, Al-
lenNLP Interpret: A framework for explaining predictions of NLP models. In Empir-
ical Methods in Natural Language Processing. 2019. URL https://allennlp.
org/interpret.

247. Wang, A., Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill,
O. Levy, and S. Bowman, Superglue: A stickier benchmark for general-
purpose language understanding systems. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper/2019/file/
4496bf24afe7fab6f046bf4923da8de6-Paper.pdf.

248. Wang, A., A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman, GLUE: A multi-
task benchmark and analysis platform for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP. Association for Computational Linguistics, Brussels, Belgium,
2018a. URL https://www.aclweb.org/anthology/W18-5446.

249. Wang, C.-C., K. L. Tan, C.-T. Chen, Y.-H. Lin, S. S. Keerthi, D. Mahajan, S. Sun-
dararajan, and C.-J. Lin (2018b). Distributed newton methods for deep neural
networks. Neural Comput., 30(6), 1673–1724. ISSN 0899-7667. URL https:
//doi.org/10.1162/neco_a_01088.

250. Wang, T., Multi-value rule sets for interpretable classification with feature-
efficient representations. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information
Processing Systems 31. Curran Associates, Inc., 2018, 10835–10845. URL
http://papers.nips.cc/paper/8281-multi-value-rule-sets-
for-interpretable-classification-with-feature-efficient-
representations.pdf.

196

https://doi.org/10.1007/s10994-015-5528-6
https://www.ncbi.nlm.nih.gov/pubmed/16566836
https://www.ncbi.nlm.nih.gov/pubmed/16566836
https://openreview.net/forum?id=YWtLZvLmud7
https://openreview.net/forum?id=YWtLZvLmud7
https://allennlp.org/interpret
https://allennlp.org/interpret
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://www.aclweb.org/anthology/W18-5446
https://doi.org/10.1162/neco_a_01088
https://doi.org/10.1162/neco_a_01088
http://papers.nips.cc/paper/8281-multi-value-rule-sets-for-interpretable-classification-with-feature-efficient-representations.pdf
http://papers.nips.cc/paper/8281-multi-value-rule-sets-for-interpretable-classification-with-feature-efficient-representations.pdf
http://papers.nips.cc/paper/8281-multi-value-rule-sets-for-interpretable-classification-with-feature-efficient-representations.pdf

251. Wang, Z., B. Shakibi, L. Jin, and N. Freitas, Bayesian Multi-Scale Optimistic Op-
timization. In S. Kaski and J. Corander (eds.), Proceedings of the Seventeenth In-
ternational Conference on Artificial Intelligence and Statistics, volume 33 of Pro-
ceedings of Machine Learning Research. PMLR, Reykjavik, Iceland, 2014. URL
https://proceedings.mlr.press/v33/wang14d.html.

252. Wang, Z., M. Zoghi, F. Hutter, D. Matheson, and N. De Freitas, Bayesian optimiza-
tion in high dimensions via random embeddings. In Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence, IJCAI ’13. AAAI Press, 2013.
ISBN 9781577356332.

253. Wang, Z. J., A. Kale, H. Nori, P. Stella, M. Nunnally, D. H. Chau, M. Vorvoreanu,
J. W. Vaughan, and R. Caruana (2021). Gam changer: Editing generalized additive
models with interactive visualization. URL https://arxiv.org/abs/2112.
03245.

254. Weiss, K., T. M. Khoshgoftaar, and D. Wang (2016). A survey of transfer learning.
Journal of Big Data, 3(1), 9. ISSN 2196-1115. URL https://doi.org/10.
1186/s40537-016-0043-6.

255. White, C., W. Neiswanger, and Y. Savani, Bananas: Bayesian optimization with neu-
ral architectures for neural architecture search. In Proceedings of the AAAI Conference
on Artificial Intelligence. 2021.

256. Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bul-
letin, 1(6), 80–83. ISSN 00994987. URL http://www.jstor.org/stable/
3001968.

257. Wu, Z. and M. Palmer, Verbs semantics and lexical selection. In Proceedings of the
32Nd Annual Meeting on Association for Computational Linguistics, ACL ’94. Asso-
ciation for Computational Linguistics, Stroudsburg, PA, USA, 1994. URL https:
//doi.org/10.3115/981732.981751.

258. Yang, Y. and M. Loog (2018). A benchmark and comparison of active learning for
logistic regression. Pattern Recognit., 83, 401–415. URL https://doi.org/10.
1016/j.patcog.2018.06.004.

259. Yeh, C.-K., C.-Y. Hsieh, A. Suggala, D. I. Inouye, and P. K. Ravikumar, On
the (in)fidelity and sensitivity of explanations. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper/2019/file/
a7471fdc77b3435276507cc8f2dc2569-Paper.pdf.

260. Yeo, I.-K. and R. A. Johnson (2000). A new family of power transformations to im-
prove normality or symmetry. Biometrika, 87(4), 954–959. ISSN 00063444. URL
http://www.jstor.org/stable/2673623.

261. Yoon, J., J. Jordon, and M. van der Schaar, INVASE: Instance-wise variable selection
using neural networks. In International Conference on Learning Representations. 2019.
URL https://openreview.net/forum?id=BJg_roAcK7.

197

https://proceedings.mlr.press/v33/wang14d.html
https://arxiv.org/abs/2112.03245
https://arxiv.org/abs/2112.03245
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186/s40537-016-0043-6
http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/3001968
https://doi.org/10.3115/981732.981751
https://doi.org/10.3115/981732.981751
https://doi.org/10.1016/j.patcog.2018.06.004
https://doi.org/10.1016/j.patcog.2018.06.004
https://proceedings.neurips.cc/paper/2019/file/a7471fdc77b3435276507cc8f2dc2569-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a7471fdc77b3435276507cc8f2dc2569-Paper.pdf
http://www.jstor.org/stable/2673623
https://openreview.net/forum?id=BJg_roAcK7

262. Yoon, J., W. R. Zame, A. Banerjee, M. Cadeiras, A. M. Alaa, and M. van der
Schaar (2018). Personalized survival predictions via trees of predictors: An application
to cardiac transplantation. PLOS ONE, 13(3), 1–19. URL https://doi.org/10.
1371/journal.pone.0194985.

263. Zhang, H., Z. Hu, W. Qin, M. Xu, and M. Wang (2021). Adversarial co-distillation
learning for image recognition. Pattern Recognition, 111, 107659. ISSN 0031-
3203. URL https://www.sciencedirect.com/science/article/pii/
S0031320320304623.

264. Zhang, L. A., J. Xu, D. Gold, J. Hagen, A. K. Kochhar, A. J. Lohn, and O. A.
Osoba, Air Dominance Through Machine Learning: A Preliminary Exploration of Ar-
tificial Intelligence?Assisted Mission Planning. RAND Corporation, Santa Monica,
CA, 2020a.

265. Zhang, W., X. Chen, Y. Liu, and Q. Xi (2020b). A distributed storage and compu-
tation k-nearest neighbor algorithm based cloud-edge computing for cyber-physical-
social systems. IEEE Access, 8, 50118–50130.

198

https://doi.org/10.1371/journal.pone.0194985
https://doi.org/10.1371/journal.pone.0194985
https://www.sciencedirect.com/science/article/pii/S0031320320304623
https://www.sciencedirect.com/science/article/pii/S0031320320304623

LIST OF PAPERS BASED ON THESIS

1. Ghose, A., and Ravindran, B. (2020) Interpretability with Accurate Small Models.

In Frontiers in Artificial Intelligence, section: Machine Learning and Artificial

Intelligence, Vol 3, February 2020. DOI: 10.3389/frai.2020.00003, https://

www.frontiersin.org/articles/10.3389/frai.2020.00003/pdf.

2. Ghose, Abhishek, and Balaraman Ravindran. Learning Interpretable Models

Using an Oracle. ArXiv:1906.06852 [Cs, Stat], Jan. 2022. arXiv.org, http:

//arxiv.org/abs/1906.06852.

3. Ghose, Abhishek. Accurate Small Models using Adaptive Sampling. ArXiv:2210.03921

[cs.LG], Oct. 2022. arXiv.org, https://arxiv.org/abs/2210.03921

Software(s): compactem (Ghose, 2020), https://compactem.readthedocs.

io/en/latest/.

199

https://www.frontiersin.org/articles/10.3389/frai.2020.00003/pdf
https://www.frontiersin.org/articles/10.3389/frai.2020.00003/pdf
http://arxiv.org/abs/1906.06852
http://arxiv.org/abs/1906.06852
https://arxiv.org/abs/2210.03921
https://compactem.readthedocs.io/en/latest/
https://compactem.readthedocs.io/en/latest/

200

DOCTORAL COMMITTEE

Chairperson: Dr. P. Sreenivasa Kumar
Professor
Computer Science & Engineering
Indian Institute of Technology Madras

Research Advisor: Dr. Balaraman Ravindran
Professor
Computer Science & Engineering
Indian Institute of Technology Madras

Members: Dr. Deepak Khemani
Professor
Computer Science & Engineering
Indian Institute of Technology Madras

Dr. Mitesh Khapra
Associate Professor
Computer Science & Engineering
Indian Institute of Technology Madras

Dr.Palaniappan Ramu
Associate Professor
Department of Engineering Design
Indian Institute of Technology Madras

201

202

CURRICULUM VITAE

1. NAME : Abhishek Ghose

2. DATE OF BIRTH : 29th June, 1982

3. PERMANENT ADDRESS : S-18, Mana Jardin

HN Halli Lake Road, Off Sarjapur Main Road,

Bengaluru - 560035,

Karnataka

Email: abhishek.ghose.82@gmail.com

Phone: +91-9686809809

4. EDUCATIONAL QUALIFICATIONS

Master of Science, Engineering (MS)

Year of Completion : 2012

Institution : Indian Institute of Technology, Madras

Specialization : Computer Science and Engineering

Bachelor of Science, Engineering (B.Sc. Engg.)

Year of Completion : 2004

Institution : National Institute of Technology, Jamshedpur

Specialization : Mechanical Engineering

203

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	Introduction
	Understandable Models
	Types of Understandable Models
	Interpretability using Compact Models
	Objectives of Thesis
	Contributions of Thesis
	Previous Work
	Outline of the Thesis

	Background
	Bayesian Optimization
	Overview
	Tree-Structured Parzen Estimators

	Dirichlet Process Mixture Models
	Overview
	The Stick-Breaking Process
	The Dirichlet Process

	Relevance

	Compact Models using Density Trees
	Overview
	Intuition
	Formal Statement
	Workflow
	Terminology and Notation

	Methodology
	A Naive Formulation
	Density Representation
	Choice of Optimizer
	Challenges
	An Efficient Approach using Decision Trees

	Experiments
	Data
	Models
	Metrics
	Parameter Settings
	Improvements in Accuracy
	Statistical Significance
	Effect of Model Capacity
	Summary

	Discussion
	Conclusion

	Compact Models using Probabilistic Oracles
	Overview
	Intuition
	Formal Statement
	Workflow
	Terminology and Notation

	Methodology
	Measuring Uncertainty
	Density Representation for Uncertainty
	Learning Interpretable Models using an Oracle
	Choice of Optimizer
	Smoothing the Optimization Landscape

	Experiments
	Validation
	Data
	Models
	Oracles
	Metrics
	Parameter Settings
	Improvements in Accuracy
	Statistical Significance
	Learned Distributions
	Effect of Model Capacity

	Comparisons
	Setup
	Metrics
	Observations and Analysis

	Additional Applications
	Different Feature Spaces
	Size-Constrained Training Sample
	Vector Model Size

	Extrinsic Comparisons
	Explainable Clustering
	Prototype-based Classification

	Summary

	Discussion
	Conclusion

	Conclusions and Future Directions
	Analysis of Small Improvements
	Summary of Contributions
	Future Directions

	APPENDIX
	Implementation Details
	GBM Results
	Harmonic Numbers
	Supervised Uncertainty Sampling
	Pitfalls of Simple Uncertainty Sampling
	Comparison of Uncertainty Distributions
	Flattening of the Uncertainty Distribution
	Uncertainty Distribution for DT
	Compaction Profiles
	Distributions for Different Model Sizes
	Improvements Relative to Oracle
	Feature Selection for n-gram DT
	Running Time for Sampling

	LIST OF PAPERS BASED ON THESIS

