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ABSTRACT 

KEYWORDS: Single view metrology, Mathematical imaging, Map Reconstruction, 

Robot Mapping, Computational Geometry, Navigation, Path planning

  

In the field of mobile robotics, robot tasks usually involve navigation in a known or 

unknown environment, for which the robot needs a map of that environment and also 

needs to know its position within the operating area. Although there are techniques like 

SLAM (Simultaneous Localization and Mapping) where a map is constructed and/or 

updated while simultaneously localizing the robot, they do need a map for localizing. 

So, in any case, having a map at hand is advantageous.   

Traditional map construction methods depend extensively on costly sensors. For indoor 

applications, the robot has to wander around the world numerous times to catch as much 

data as possible to construct a map, mostly supervised by human. Vision based 

navigation systems are hence gaining popularity because of being cheap and easy to 

handle. While map building is easier using multiple vision systems or using multiple 

images, map construction from single image is definitely a harder problem, although 

its applications are immense.  

In the domain of robotics, the idea of constructing maps from a single image taken from 

monocular cameras might solve several complex issues related to path planning and 

navigation. Owing to its diverse applications, the current research focus is on 

developing methods which would utilize the properties of the images. One such 

property being considered is Vanishing points (VPs). Existing methods on single 

camera vision systems depend either on multiple images or on prior information to be 

fed to the system. The focus of  the research presented in this thesis is to develop 

geometrical methods that will take advantage of VPs for constructing scaled 2D free-

space maps and 3D models from a single image, the image being either in two-point 

perspective (2PP) or three-point perspective (3PP).   

Given an image with one or more objects in it, the proposed approach is to bring all the 

objects to a common ground depth w.r.t. the camera view point. This will ensure that 

all the objects’ projections are to a common scale and thus a scaled map can be 

constructed. The principal contribution of this thesis is the concept of side view 

geometry of an image, which is first of its kind. All the mathematical derivations have 

been done using the proposed side view geometry. A systematic method has been 
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developed, which has been proved as a generalized approach for both 2PP and 3PP 

cases. A generalized algorithm has been developed, coded, tested with some case 

studies, and the results are compared with the ground truths. The effectiveness of the 

proposed method is established through the results and the error plots.  

A new methodology for path planning of mobile robots in known environments with 

static obstacles is also proposed in this thesis. A new concept of multi-bug system will 

be introduced. Multi Bug Path Planning (MBPP) works by assuming a virtual bug that 

move towards the goal from the start state. If in case it meets an obstacle, then that bug 

generates a new bug. The two bugs now move along walls of the obstacle in either 

direction until specific conditions are met. Bug generation continues whenever any of 

the current bugs hit a new obstacle, until target is reached by all live bugs. MBPP thus 

evaluates best possible paths for a given environment and chooses the best route that is 

supposed to be optimal. Experimentally, it will be shown that MBPP finds paths that 

are shorter and comparable with post-smoothed A* in lesser runtimes.  Proposed work 

on MBPP is an attempt to combine the features of offline and online methods so that 

the same algorithm could be used for both cases. Current work on MBPP demonstrates 

the offline case with static obstacles in a priori known environment.  
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NOTATIONS 
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𝛽 Angle made by the nearest base corner of object along the viewing direction 

in the side view 

𝛽𝑎 Orientation of the actual object’s side (skewness) w.r.t horizontal 

𝛽𝑚 Orientation of the modelled object’s side (skewness) w.r.t horizontal 

θ ‘Image Plane Angle’ – Pitch angle of the camera w.r.t. the 

ground/horizontal floor  

𝜃𝑎 Orientation of the centroid of the actual object (angular pose) w.r.t 

horizontal 

𝜃𝑚 Orientation of the centroid of the modelled object (angular pose) w.r.t 

horizontal 

𝜃𝑟𝑜𝑙𝑙 Camera Roll Angle  

𝜃𝑦𝑎𝑤 Camera Yaw Angle 

English Letters 

𝐴𝑎 Actual area of the object found using ground truths, scaled by 𝑆𝑘 

𝐴𝑐𝑚 Area of the coincident zone between the modelled object and the actual 

object positioned w.r.t. view point 

𝐴𝑚 Area of the object in map 

Bi ith Object  

bi Vertical distance of object i from station point in side view 

𝐶𝑖 ith corner of floor 

𝐶𝑖
1 Projected ith corner of floor 

d, f Focal length of the camera; distance between the camera centre and the 

image centre 

𝑑𝑎 Euclidian distance of centroid of the actual object from the station point 

𝑑𝑐𝑚 Euclidian distance between the centroids of the actual object (𝐶𝑎) and the 

modelled object (𝐶𝑚) 

𝑑𝑓 Offset distance by which a floor corner has to be shifted to bring it to a 

common reference   

𝑑𝑚 Euclidian distance of centroid of the modelled object from station point 

𝑑𝑝 Offset distance between the original and the transformed image planes in 

the side view for object corners 
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ℎ𝑑 Vertical distance between two objects base corners 

𝑙 Height of reference object in side view of 3PP case 

Li, Bi  Dimensions (length and breadth) of ith object 

𝑙𝑛𝑒𝑤 Projected height of non-reference object in side view of 3PP case   

O Image plane centre 

𝑂’ Image centre projection onto the vanishing circle 

𝑆𝑘 ‘Scale factor’ – A Common scaling factor for the whole map   

𝑆𝑆, 𝑆𝐺 Start and Goal states 

u, v Image plane coordinate axes 

VPi ith vanishing point 

XC, YC, ZC Camera frame coordinate system 
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CHAPTER 1 

INTRODUCTION 

In the field of mobile robotics, navigation is an important task for any robot. Robots are 

meant to perform desired tasks like fetching drinks, shifting objects, guiding people, 

cleaning rooms etc. In most of the applications concerned, navigation (and hence path 

planning) plays a vital role in the performance of a robot. For the robot to plan a path, 

it either needs a pre-loaded map of the environment or needs to build the map on-the-

go. In either case, a prior knowledge of the environment in the form of a map is a must, 

so that the robot can deal with the basic questions like ‘where am I ’, and ‘where am I 

going’. Robotic mapping addresses the problem of acquiring spatial models of physical 

environments through sensors mounted on the mobile robots. The mapping problem is 

generally regarded as one of the most important problems in the pursuit of building 

truly autonomous mobile robots (Thrun, 2002). Despite significant progress in this area, 

it still poses great challenges. Several research works exist for depth estimation, image 

reconstruction as well as for 3D map building. Most of them fall under one of the 

categories mentioned below: 

• Maps built using sensors like LIDAR (Light Detection and Ranging), ultrasonic 

or range sensors, and sometimes in combination with vision systems (termed as 

Robotic Mapping) (Thrun, 2002) 

• Maps built using depth measuring sensors or RGB-D sensors like Microsoft 

Kinect (Zhu et al., 2016; Endres et al., 2013)  

• Maps constructed using techniques like depth-from-defocus (Zhuo and Sim, 

2011) 

• Using stereo vision systems (Saez and Escolano, 2004) 

• Monocular (single camera) vision system using techniques like depth from 

motion (taking sequence of images and finding the depth) or using machine 

learning algorithms; the later part is expensive, in terms of human involvement 

(Einhorn et al., 2009). 

In the traditional way of building maps for robot navigation costly sensors are used and 

the process is time consuming and laborious. Typically, robots are allowed to wander 

around to gather cloud points. This will be processed to form images and they are 
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stitched to build maps. This is apparently a tedious process. Apart from that, most of 

the times the process demands multiple sensors, especially when constructing outdoor 

maps. It has to be noted that the usual mapping process through SLAM (Simultaneous 

Localization and Mapping) needs a high end workstation, needing large size memory, 

graphics and compatibility platforms, and OS for even running the software to process 

the huge data acquired through the sensors. Considering these factors, any map building 

process that reduces the dependency on multiple, costly process and also reduces the 

involvement of humans is considered to be futuristic. So, the research focus is moving 

towards map construction process using cheaper, alternative solutions. Using vision 

systems for map building is one of the focus areas due to the fact that they are cheap, 

readily available and easy to handle.  

Cameras are generally used for capturing 2D images of 3D environments. Besides the 

problem of losing information when 3D worlds are captured in 2D images, problems 

exist in finding the relative positions of objects as well as in estimating the camera 

locations. Finding the position of a camera and its properties from images/photographs 

is called Camera Calibration (Zhang, 2000). The process of calibration is quite tedious 

and involving. Tremendous work has already been carried out in this area. Computer 

vision researchers are facing a big challenge of depth reconstruction from camera 

images without the need of calibration process. To the best of our knowledge, very few 

works have been observed which could address the problem of estimating the 

properties/measurements from images by eliminating completely the calibration step 

(images taken either from a single camera or several cameras). The main issue is the 

difficulties involved in getting a prior knowledge of the world being captured in the 

image. This requires human interventions and lot of external processing.   

Most often, stereo cameras (Scharstein and Szeliski, 2002) are used which incorporates 

two cameras separated by a known gap and uses triangulation principle (Hartley and 

Sturm, 1997) for depth information. Finding depths using calibrated stereo cameras are 

commonly employed for depth-map generation (Kamencay, 2012). Depth-map of an 

image or scene gives information relating to the distance of the surfaces of scene objects 

from the viewpoint. In other words, if the camera from which the image was taken was 

assumed to be the view point, then depth-map just gives the Euclidean distance of the 

scene points from the camera centre. However, depth maps will not provide information 
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of free and occupied space as well as the relative positions of the objects on the floor, 

which is essential for a robot to plan a path in order to navigate in that environment.  

Monocular (single camera) vision systems do exist. However, much of the reported 

techniques (as observed in the literature of single camera vision) focus on one of the 

following methods: 

• Methods based on multiple images (sequence of images) (Einhorn et al., 2009) 

• Methods relying on human interaction for inputting necessary data, performed 

every time when the algorithm is put to work (Horry et al., 1997; Gozali, 2006) 

• Methods that needs a one-time processing of huge training data set (priori) by 

considering several images along with their ground truth, for assisting a learning 

algorithm (Saxena et al., 2008) 

It is clear that the existing methods on single camera vision systems depend either on 

multiple images or on prior information to be fed to the system. Considering the 

advantages and diverse applications of using single images for depth/map 

reconstruction, and with the motto of eliminating laborious human involvement to make 

the process completely automatic, researchers have been working on single image 

systems without camera calibration. ‘Single View Metrology’ are methods that 

evaluates measurements from single perspective images using minimal geometric 

information (Criminisi et al., 2000). The problem is tough since information is lost and 

any point in the image plane would represent infinite number of possible positions in 

the real world. Using geometrical properties of the image might be a way forward in 

finding a solution to this problem. 

Vanishing point is one such property that is useful in finding the depth and camera 

position in an image. Any object/scene as seen from human eyes or through camera 

appears in perspective. Perspectiveness can generally be visualized by the distorted 

shape of the object. Several methods have been developed for finding the position of 

the vanishing points (KoSecki and Zhang, 2002; Rother, 2002; Saini et al., 2013) as 

well as for camera calibrations using vanishing points (Caprile and Torre, 1990; Cipolla 

et al., 1999; He and Li, 2007). In (Li, 2010), a method for simultaneous vanishing point 

detection and camera calibration has been introduced. Although the author claims about 

the ability of the method for camera calibration, it could only measure the focal length, 
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apart from VP detection. Also, examples shown as experimental images considered 

only a single object in the image and depth estimation or map building is not considered. 

Some of the recent and relevant works on single image metrology and map building is 

discussed in the following section.  

1.1 LITERATURE SURVEY 

Understanding scene from a single 2D image is a subject matter of interest for 

researchers, given its applications in wide domains, especially for robot navigation 

tasks. Robust methods are yet to be developed for constructing 3D maps from single 

images taken from monocular cameras. In the literature related to single image analysis, 

few works are observed which dealt with the estimation of spatial layout of indoor 

scenes. Most of them are based on the common assumption of Manhattan worlds 

(Coughlan and Yuille, 1999). In an attempt to recover pose and to extract rectangular 

surfaces of a scene aligned along the three major directions, Kosecka (Kosecka and 

Zhang, 2005) introduced a method that utilized their previous work on estimating image 

properties (Jang and Rossignac, 2001) viz. vanishing points and also camera 

parameters. However, this work gave knowledge about the salient directions in a 

structured scene and didn’t deal with spatial layout estimation.  

Pero et al. (2011) proposed a generative modelling framework using a top-down 

Bayesian approach, for understanding indoor scenes to distinguish between scene types 

such as bedrooms, living rooms etc.  Objects were modelled as simple blocks, typically 

a good approximation or a bounding box for 3D world or object characteristics. 

Although their work exhibited estimations of room models it couldn’t clearly 

distinguish different objects in the scene. The notion of 2D/3D map of the world 

specifying the actual free space available in the scene is missing in this work.  

The best known attempt on Single View Metrology can be found  in (Criminisi et al., 

2000) where attempts to get 3D affine measurements from single view of a scene in 

perspective, making use of minimal information (vanishing line and a vanishing point) 

a priori, is presented. They applied their method for several architectural images and 

also showed 3D models of renaissance paintings (Liebowitz et al., 1999). Their work 

was successful in reconstructing 3D models of the scenes. But the reconstructed 3D 

models are not helpful in providing floor plans, which specifies the free space available 

in the given scene. When the technique is to be utilized for robotic navigation tasks, the 
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robot needs to get information about boundary/size of the objects (and hence the free 

space), without which the robot cannot plan a feasible path in the environment. In fact, 

manual labelling is needed for this work (Hoiem et al., 2007).  

Similar works are noted in (Hoiem et al., 2005(a), 2005(b)), where authors proposed a 

technique to estimate scene structure from single image by learning appearance-based 

models of geometric classes. Each pixel will be assigned a label belonging to any one 

of the three major classes: ground plane, surfaces at right angles to the ground plane 

and sky. They focused extensively on outdoor images, added with an important 

assumption that the camera axis is parallel to the ground plane. This in itself is a serious 

challenge to indoor environments, especially when the images are taken from 

surveillance cameras from different tilt positions. In fact, the paper has not given any 

clear indication of depth maps, but rather gave few results showing novel views of 

scaled 3D model.  

One of the earliest works on modelling the 3D interaction between objects and the 

spatial layout are observed in (Hedau et al., 2009), where the problem of recovering 

spatial layouts of indoor cluttered scenes from single images is addressed by modelling 

the scenes jointly in terms of  3D box layouts and surface labels of pixels. A more 

closely related approach is observed in (Hedau et al., 2010; Lee et al., 2010). The 

authors in (Lee et al., 2010) considered parametric representation of objects in 3D to fit 

box shaped cuboids in the world, by giving volumetric reasoning to the layout. Their 

work relied on three volumetric constraints of the physical world and performed well 

on extracting spatial layout of the room and the configuration of objects in the scene. 

However, their goal was not on free space estimations in the scene. In addition, for 

predicting the surface geometry of the regions in the image, labelling is to be done for 

each super pixel which included solid and porous regions.   

Recent efforts on extracting spatial layout using classifiers to fit a parametric model of 

the room was presented in (Pero et al., 2012; Hoiem et al., 2008).  This method was 

successful in predicting surface orientation labels such as floor, ceilings, left, right, 

centre wall etc. But according to (Lee et al., 2010), labels are limited in the sense that 

they under-utilize the extractable cues from the configuration of the objects in the room. 

A dynamic Bayesian network model for recovering 3D reconstruction was done in 

(Delage et al., 2005(a), 2006(b)), where an approach using Markov random field (MRF) 

was introduced. These 3D reconstruction works are suited for uncluttered worlds and 
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the notion of free space finding is missing in their works. In (Saxena et al., 2008), 3D 

depth maps were constructed from single images using supervised learning technique 

(a hierarchical multi-scale Markov Random Field model). Their approach needed 

collection of large set of training data in the form of images (unstructured indoor and 

outdoor environments covering trees, forests, buildings etc.). But, as stated in (Hedau 

et al., 2009), depth maps are successful in providing only local information about 

visible surfaces. For applications like robot navigation, depth maps might not be 

helpful. Few other approaches on spatial layout estimations from single images are 

found in (Han and Zhu, 2003; Yu et al., 2008; Lee et al., 2009; Gupta et al., 2011). 

Out of the available research works on spatial layout estimation, very few of them have 

actually worked on the notion of free space maps (Hedau et al., 2012; Herbert et al., 

2012). A free space map is a 2D or 3D map illustrating the unoccupied space in the 

given scene, with near-to-accurate measure of the relative distances between the objects 

in the cluttered scene. Existing works on floor map buildings modelled objects which 

are axis-aligned with the identified walls and the floor. Objects’ boundaries in the 

constructed floor maps are made parallel to the walls/scenes even if they are not parallel 

in the real world.  

Figure 1.1 shows the sample results taken directly from (Hedau et al., 2012), which 

clearly shows how objects are aligned to the side walls. In addition, they had to create 

a dataset of 592 indoor images taken from several sources to train their model. Some of 

the floor map results available in (Herbert et al., 2012) didn’t even capture accurate free 

space in the scene, which is quite different from our goal of accurately positioning the 

cuboid and non-cuboid shaped objects relative to one another to help in robotic path 

planning.  

In (Horry et al., 1997), a new method termed TIP - 'Tour into the picture' was introduced 

that can create animations from single image/photograph. TIP method uses prior 

information (manual input) in the form of foreground object and the method just created 

views (a model) without considering the correct 3D structure of the objects. A similar 

work was observed in (Gozali, 2006), where 3D modelling of single images were done 

semi-automatically, i.e. with the help of user interaction with the system. The method 

requires that the user supply reference lines and points typically related to perspective 

of the image. The method is applicable only for 2PP structured images and is not 

applicable for 3PP case.  
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Fig. 1.1: Results on free space recovery from single images (Hedau et al., 2012). 

In (Hoiem et al., 2005), an attempt to estimate scene structure from single image has 

been made by learning appearance-based models of geometric classes. Each pixel has 

been assigned a label belonging to any one of three major classes: ground plane, 

surfaces at right angles to the ground plane, and sky. Surfaces sticking up from the 

ground are further subdivided. One more important assumption considered is that the 

camera axis is parallel to the ground plane. This in itself is a serious challenge to indoor 

environments, especially when the images are taken from surveillance cameras. In fact, 

the paper has not given any clear indication of depth maps but rather gave few results 

showing novel views of scaled 3D model.   

In (Byres and Henle, 2004), the problem of understanding the relative positions of 

objects and images was discussed along with mathematical relations for architectural 

scenes, which can also be used for related applications. They considered objects as 

rectangular solids and their method works only if one side of the object/structure in the 

scene is measured physically at the site (location of capture). Similar work was done in 
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(Crannell, 2006). Both the works are seemingly applicable only when the object of 

interest in the image is in 2PP. A few other works on making measurements using single 

images can be found in (Proesmans et al., 1998; Kim et al., 1998).      

Techniques such as shape-from-shading (SFS) (Horn, 1970) recovers shape from the 

shading information in an image. SFS methods needs the principle of homogeneity, 

Lambertian reflectance (Durou, 2008) and works well when surface is lit with single 

distant light source assuming that the source direction is known. However, for images 

with many light sources SFS needs assumptions about the surface shape (Tsai et al., 

1999). Depth from Defocus (DFD) is another technique for depth measurement using 

single camera (Chaudhuri and Rajagopalan, 1999) but uses a minimum of two images 

taken with different focal lengths, which involves modification of camera property 

every time when images are taken. RGB-D Camera systems are yet another sensing 

tools for estimating depths (Henry et al., 2014). But they usually depend either on stereo 

or time-of-flight sensing. 

Map building using visual images has been in the research focus for many years. 

However, map building using single camera image is relatively new topic. In (Davison 

et al., 2007), an approach dubbed MonoSLAM was presented for online building of 

probabilistic maps using single uncontrolled camera, without the need for any other 

sensor assistance. But, MonoSLAM gets data sequentially while in transit (during 

motion) and keeps updating the map. This is the situation of depth from motion. In fact, 

certain amount of prior information about the scene has been considered as a start-up 

aid to the system (that they developed). This aid is in the form of a known target (a 

black rectangle with measured corner positions) placed in front of the camera. So, 

MonoSLAM is basically not useful when an image taken long back or taken from 

unknown cameras is provided for analysis.  

In the domain of robotics, the idea of constructing maps that can accurately distinguish 

between the occupied and available space in a scene from a single image might solve 

several complex issues related to path planning and navigation.  This concept has the 

ability to avoid the dependency of the robotic systems on costly sensors for usual 

mapping process, which is labour and time intense, apart from cost concern. Auto 

calibration and map construction from single image has the extended advantages of 

being useful for state-of-the-art and future technologies like driverless cars, Virtual and 

Augmented Reality, to name a few. So, the primary concern of the work presented in 
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this thesis is to develop robust methods for 2D and 3D map building from single images 

taken from monocular cameras, without the need of camera calibration. 

1.2 MOTIVATION AND RESEARCH GAP 

The literature survey related to map building has resulted in the following observations:  

1 Methods for spatial layout estimations exist but are not applicable for map 

building and/or robot navigation tasks since they don't address the problem of 

estimating free space from single images.  

2 Most of the existing works addressed the problem of spatial layout estimation 

for structured rooms, especially of the categories like living room, bed room, 

and dining room. 

3 Existing floor space estimation methods are not complete and consider only 

objects that are axis‒aligned (parallel) to the walls. They don’t capture the exact 

free space in the environment. 

4 Depth maps might not be useful for robot navigation applications. 

5 Traditional/existing robotic mapping involves costly sensors and the process is 

cumbersome. 

Owing to the concerns listed above, this thesis aims at proposing methods for building 

near-to-accurate maps using simpler approaches and using minimal resources, without 

the need of costly process.  

1.3 OBJECTIVES OF THE RESEARCH WORK  

The overall objectives of this research work are  

1. To construct free space maps (2D and 3D) from single images taken using 

monocular cameras, without the need of calibration and/or pre-learning. 

2. To introduce a new path planning algorithm that will take the constructed maps 

as input, and thereby plans navigable and optimal paths.   

The tasks involved in achieving these objectives are:  

1. Generation of side view geometries for both 2PP and 3PP configurations. 

2. Development of a new generalized methodology for building 2D as well as 3D 

maps, using simple geometrical information from single monocular camera 

images.  
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3. Design of a new algorithm for planning optimal paths in a static environment, 

utilizing the constructed maps from the proposed map building method. 

Two new methods are developed for single image analysis of 2PP and 3PP images. 

Both approaches take the advantage of geometry of vanishing points and are based on 

general artistic way of constructing top view of a given perspective object (Ching and 

Juroszek, 2010). Results show the robustness of the methods introduced. Proposed 

methods are primarily built to construct a 2D/3D map of the world of interest as seen 

from the image, such that, if any one object’s dimension (say robot dimension) is 

known, then, we can build the map to the same scale as that of the real world. If prior 

information is not available, then the methods are able to construct maps that are scaled 

to a scaling factor. We assume that vanishing points and spatial layouts of the given 

scene are available and thus proceed on solving the latter part of map building. 

However, below are some challenges for the proposed methods. 

1. Correct estimation of the vanishing points. 

2. Fitting/inscribing a bounding box for identified world object. 

3. Dealing with occluded surfaces. 

4. Analysis for objects having non orthogonal surfaces, i.e. when all the objects in 

the scene have different shapes other than rectangular cuboid.  

5. When objects are far, then their exact edges are tough to identify. 

1.4 OVERVIEW OF THE RESEARCH  

The foremost work on single image map construction process starts with the concept of 

side view geometries, which happens to be the core contribution of this thesis. Using 

the basic notion of the side views, several geometries were introduced, separately, for 

both 2PP and 3PP cases. Considering one case study for each of the two cases, 

derivations of the relations had been done in step by step and structured manner. These 

relations were then employed for the example case study images for finding the objects’ 

scaled dimensions and their relative positions w.r.t. each other, and the position of the 

camera station point for that specific scene. The geometries were extended further to 

identify the navigable free space of the given scene. Later, derivations for height 

measurements were done, using which 3D maps were constructed for the case studies 
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considered. Map construction results were shown by comparing with their 

corresponding ground truths for all the considered example single images and 

discussions on the error plots were carried.  

Finally, the map results of the set of 2PP and 3PP single images were considered to test 

on a new path planning algorithm – multi-bug path planning algorithm (MBPP), and 

the optimal performance were proved by comparing the simulation results with that of 

standard A* post smoothening algorithm.  

1.5 POTENTIAL CONTRIBUTION OF THIS THESIS 

1. To the best of our knowledge, no work has been observed in the literature related to 

accurate free space floor map construction from single image, except depth 

estimations and spatial layout. Proposed work is first of its kind which eases the 

process of map building with just a single image. 

2. This thesis will introduce the notion of estimating geometric parameters from side 

view geometry of a given single image which is not available in the literature till 

date.  

3. The method doesn't need the dependency on preliminary camera calibration 

process, assuming that the skew and the lens distortion are within acceptable range. 

In fact, estimation of the focal length and the pose of the camera in the scene are 

made an integral of the map building process, using just geometries, needing no 

physical measurements in the world. Therefore, the advantages are many folds.  

4. Proposed geometrical approach is generalized and is very simple, easy to 

understand and implement. The method doesn’t involve any learning process for 

map construction and hence very efficient in terms of time as well as accuracy. 

5. Proposed method eliminate the need of relying on costly sensors for map building. 

A single image is sufficient and no need for multiple images, taken in sequence, or 

techniques like depth from defocus. 

6. A new Planning and Re-planning algorithm that can help in finding multiple 

feasible paths, apart from optimal paths. 

1.6 ORGANIZATION OF THE THESIS 

Chapter 2 introduces the basics needed to understand the map building process. A 

detailed subsection regarding the introduction and types of vanishing points, the 
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common terminology employed for mapping geometries and the standard coordinate 

system considered have been dealt at length. The concept of side view geometry is 

introduced here which happened to be the core idea using which all the geometries (and 

hence the mathematic relations) will be derived.  

Chapter 3 is dedicated to the discussions on map reconstruction using a single two-point 

perspective (2PP) image. The chapter begins with the brief introduction on 2PP, 

followed by the common assumptions made before going to the method. Then, a 

detailed discussion on the proposed methodology (applied to a case study) will be done 

with sufficient images, for deriving the mathematical relations that will find the offset 

distances. Later, relations needed for recognizing free space using the floor corners will 

be introduced, applying the same to the example image considered.  

Chapter 4 begins with introduction to the three-point perspective (3PP) case. 

Considering only one single object, the mathematical relations needed to evaluate the 

parameters will be discussed at length with relevant side view geometries.  The concept 

will be extended to the scenario of multiple images and the core mathematical relations 

for finding the offset distances for all the objects in the given 3PP scene will be derived. 

This chapter also shows the possibility of 3D map constructions (a model of the given 

scene) by deriving the relations for height calculations too.  

In Chapter 5, a new path planning algorithm called “Multi-Bug Path Planning” 

(abbreviated hereafter as MBPP) is introduced. We discuss the algorithm at length with 

the help of an example, followed by a flow chart for clear understanding. Later, we also 

discuss in detail the various conditions and properties of proposed MBPP algorithm. 

In chapter 6, the experimental results of map construction for both the cases of 2PP as 

well as 3PP will be presented. Experimental results of MBPP algorithm applied on the 

maps deduced from the proposed map constructions process also will be presented. 

Chapter 7 gives a summary of the work and contributions of this thesis and concludes 

the findings with a brief discussion on the future scope of work.    
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CHAPTER 2 

BASICS OF MAP BUILDING METHODS 

This chapter introduces the basic concepts essential for understanding the process of 

Map building. The concepts introduced include details of Vanishing Points (VPs), the 

common terminology followed throughout this thesis, and the notion of standard 

coordinate system. This chapter also discusses about the very important concept of side 

view of an image which has been proposed in this thesis. Using the side view geometry 

all the mathematical relations needed for constructing a map would be derived. This 

chapter concludes with a brief discussion on constructing a top view of the objects in a 

given image.   

2.1 VANISHING POINTS 

Any object/scene as seen through human eyes or through cameras appear in perspective. 

When 3D objects are represented in 2D planes, taking into consideration the right 

details of their dimensions including their positions (relative to each other), then, we 

can say that the objects are in perspective. Perspective is an important concept in several 

fields that are related to cameras, images etc. Perspectiveness can generally be 

visualized by the distorted shape of the objects. Based on the property called Vanishing 

Point, one can tell the type of perspective (Jang and Rossignac, 2001). When an object 

is placed under perspective, a vanishing point is a point at which a set of parallel lines 

of that object appear to converge. Mathematically, parallel lines meet at infinity and so 

the vanishing points are supposed to lie at infinity. When seen through image plane, 

these vanishing points assume to be lying on a straight horizontal line called ‘horizon 

line’, which happens to be the eye level of the camera. Perspective projection differs 

from orthographic projection in a way that there will be no notion of vanishing points 

in orthographic projection. In orthographic projections, all the parallel lines will still be 

parallel in the view unlike in the perspective projection in which parallel lines will 

appear to converge at vanishing points.  

In 2D/3D, based on the angular pose of the camera w.r.t. the object or world coordinate 

system, three types of perspective is possible viz. ‘One-Point Perspective’, ‘Two-Point 

Perspective’ and ‘Three-Point Perspective’ (hereafter termed as 1PP, 2PP and 3PP 

respectively) (Mauldin, 1985). Figure 2.1 shows the situation of 1PP. When the camera 
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(and hence its image plane) is parallel to one of the surface of the object with zero 

angular pose (shown in Fig. 2.1(a)), then the perspective projection obtained will be 

considered as 1PP. The situation is shown in Fig. 2.1(d). In this case there will be only 

one vanishing point. 

 

Fig. 2.1: One point perspective (1PP) image. (a) 3D view (b) Right-side view (c) Top 

view (d) Front view showing one vanishing point 

Figure 2.2 shows the situation of 2PP. When one of the edges of the object is parallel 

to the image plane (as visible in Fig. 2.2(b)), then the perspective projection obtained 

will be considered as 2PP as shown in Fig. 2.2(d). In 2PP case, object’s surface is not 

parallel to the image plane but only one of the edges is parallel. As shown in Fig. 2.2(c), 

if we try extending the edges of the object (shown in red colour), they meet at two 

vanishing points marked as 𝑉𝑃1 and 𝑉𝑃2. Note that these two points lie along the same 

horizontal line termed as ‘horizon line’, which represents the eye level of the viewer or 

the camera. In 2PP case, camera (hence its image plane) has still zero angular pose. 

Figure 2.3 shows the situation of 3PP. In this case, the image plane has some pitch and 

makes some pitch angle with the world coordinate system. Also, neither any surface of 

the object nor its edges are parallel to the image plane. As shown in Fig. 2.3(c), the 

object looks distorted with its side not being parallel. If we try extending the edges of 

the object (shown in red colour), they meet at three vanishing points marked as 𝑉𝑃1, 

𝑉𝑃2 and 𝑉𝑃3. Note that still two vanishing points lie along the horizontal line which 
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still represents the ‘horizon line’, in other words, the eye level of the viewer or the 

camera. 

 

Fig. 2.2: Two point perspective (2PP) image. (a) 3D view (b) Right-side view (c) Top 

view (d) Front view showing two vanishing points 

 

Fig. 2.3: Three point perspective (3PP) image. (a) 3D view (b) Right-side view (c) Top 

view (d) Front view showing three vanishing points 
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2.2 TERMINOLOGY  

With reference to Fig. 2.4, the following list provides the common terminology 

considered in literature and this work. Standard pinhole camera model (Eggar, 1998) 

has been considered as the camera configuration in this work. More insight on basic 

background and standard assumptions are available in (Byres and Henle, 2004). 

1. The point where camera centre (camera axes) lies is termed as ‘projection point' 

or 'view point' or even 'eye level', denoted by V. 

2. Projections of objects are assumed to be captured on a plane called 'Image 

plane', which lies at a distance equal to focal length ‘f’ of the camera. Image 

plane is assumed to be perpendicular to the direction of view.   

3. Point of intersection of a line passing through V and the image plane such that 

the line is along the viewing direction (perpendicular to the image plane) is 

termed as 'image centre', denoted by O. 

4. Camera orientation is represented in the form of Pitch (𝜃𝑝), Roll (𝜃𝑟𝑜𝑙𝑙) and 

Yaw (𝜃𝑦𝑎𝑤).  

5. Horizontal line along which vanishing points are lying are termed as 'horizon 

line' and represents the eye level or height of the camera (when roll of the 

camera is zero, i.e. if the image plane is perpendicular to the floor, 𝜃𝑟𝑜𝑙𝑙 = 0).  

If the camera has roll, then the horizon line will be tilted by the roll angle. 

 

Fig. 2.4: Standard camera model showing the notion of top and side views. 
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2.3 CORDINATE SYSTEMS 

Commonly used coordinate system representation is shown in Figure 2.4. Camera 

centre is assumed to be at V and has its own coordinate system called Camera Frame. 

World Frame is the reference coordinate system from where distance to real world 

objects would be measured. World's z-axis is always assumed to be vertical 

(perpendicular to ground) and will be in-line along the projection of camera centre onto 

the ground, as shown in Fig. 2.4. Origin of this world coordinate system can be termed 

as Station Point, representing the point on the world where the camera (or the person 

capturing the image) is stationed. Station point in the top view will be shown as point 

O'. The other two axes (x and y-axis) are assumed to be on the floor.   

 

Fig. 2.5: Camera system DoF. 

Image plane will itself be having its own 2D coordinate system given in u and v axes, 

origin at its bottom left corner as seen from the camera centre. This thesis requires the 

notion of top and side views, which are also shown in Fig. 2.4. Top view of the model 

means orthographic view from the top such that the viewing plane is perpendicular to 

the image plane. Side view of the camera model means viewing from the right side of 

the camera centre such that the viewing plane is perpendicular to the image plane. 

Camera frame is aligned according to the 3 DoF of the camera viz. pitch, roll and yaw 

as shown in Fig 2.5. 

Pitch can be considered as the amount of tilt (angle) that the camera exhibits w.r.t. x‒

axis of the camera coordinate system. It can also be viewed as the tilt angle of the image 

plane with XY plane. Assuming ground surface to be flat, pitch angle 𝜃𝑝 determines the 

perspective type of the image (either 2PP or 3PP). If 𝜃𝑝 is zero, then the image captured 

could be either one-point or two-point perspective. If 𝜃𝑝 has some value, then the image 
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captured would be three-point perspective in general. Likewise, Roll (𝜃𝑟𝑜𝑙𝑙) and Yaw 

(𝜃𝑦𝑎𝑤) of the camera can be considered as the amount of tilt (angles) that the camera 

exhibits w.r.t. z‒axis and y‒axis, respectively on a standard camera coordinate system. 

Coordinate system will be chosen such that z-axis is always perpendicular to the image 

plane i.e. camera view direction will be assumed to always lie along z-axis and so Yaw 

has no significance (𝜃𝑦𝑎𝑤 = 0). It doesn't affect the type of perspective (2PP or 3PP), 

except that the direction of view will be changed. Only pitch and roll angles contribute 

to the proposed mathematical relations.  

If the camera has some roll, then the horizon line (also the eye level) will not be 

horizontal, but will be inclined at an angle with the image plane, denoted by 𝜃𝑟𝑜𝑙𝑙. Other 

than that, there will be no difference in the method being followed. Throughout this 

paper, we explain the methods considering horizon line with no roll, i.e. 𝜃𝑟𝑜𝑙𝑙 = 0, for 

better understanding. However, 𝜃𝑟𝑜𝑙𝑙 has also been considered for the generalized 

pseudocode (Algorithm 1) given in Appendix A.1. 

2.4 SIDE VIEW OF AN IMAGE 

The notion of side view for finding the relations and the required parameters in building 

a map will be introduced in this section. Imagination of side view is bit confusing 

(without proper explanation with images) and hence the concept will be explained here, 

considering 2PP case; the same is applicable for 3PP case too, with the only difference 

that the image plane will have some pitch. In Fig. 2.6, image is shown on the right side 

with two objects. The green enclosed borders denote the image.  

Let the vanishing points of the objects lie along the line connecting VP1 and VP2, which 

in the side view will be at V, the view point, as shown in the figure 2.6. This line 

indicates the eye level or height of the camera from the ground. Note that ground level 

is not known to us in the side view and it will be taken at some level. Image plane in 

the side view is shown by a green vertical line at a distance ‘d’ from the view point. Let 

P1 and Q1 are the bottom and top nearest corners of the first object near to the camera, 

as shown in the image. The same points in the side view are shown with the same 

notations as P1 and Q1. 
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Fig. 2.6: Concept of side view geometry for an example image. 

As can be seen, if the image plane is moved farther from V, the vertical distance P1Q1 

will increase, owing to the fact that the image plane is getting closer to the object. The 

closer the image plane to the camera (or farther from the object), the smaller will be the 

object captured in the image. Similarly let P2 and Q2 be the bottom and top nearest 

corners for the second object, the same will be captured in the image plane as shown in 

the side view. The side view thus generated can be used for further analysis of the image 

for various measurements, and the details are discussed in Chapter 3.  

2.5 CONSTRUCTION OF TOP VIEW 

There is a standard procedure in the literature for constructing a top view for a given 

perspective object (considering only one object), for both two-point and three-point 

perspective geometries (a step-by-step procedure with details needed for top view 

construction for  2PP image is given in Appendix B). By following this method, top 

views of 2PP and 3PP images can be created. However, all the objects will be positioned 

along the horizon line and they appear to be equidistant from the camera. This situation 

is explained through an example here.  

Consider the example of a single 2PP image with three objects as shown in Fig.  2.7. If 

we follow the standard procedure of construing top view for all the three objects, we 

will get a new top view of individual objects as shown in Fig. 2.8 denoted as B1, B2 

and B3, with their nearest corners having the same vertical distance from the station 

point. 
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Fig. 2.7: Line diagram of an example 2PP image. 

 

Fig. 2.8: Top view of the objects obtained using traditional method. 

However, their actual positions will be as shown in Fig. 2.9 (red coloured rectangles). 

In order to create a realistic top view, we need a transformation by which they are placed 

more or less at the same relative position w.r.t. a reference object (we considered the 

first object, which is nearer to the camera as reference having least ‘y’ distance w.r.t. 

image plane coordinate system (u,v)). An important task of map building is finding this 

transformation. 
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Fig. 2.9: Actual position of the objects in top view. 

Denoting the distance to be shifted as dp, we need to find dp for all the objects. In 

addition to this, for 3PP case, actual top view distances of all the objects need to be 

found, along with other parameters like camera pose (in particular, pitch angle of the 

camera), and depth of all the objects in the side view. The questions that needed to be 

answered in this regard are: 

1. How to solve for shift distance for all the objects? 

2. How to project and bring all the objects to a common scale? 

3. How to find the relative pose of all objects w.r.t. a reference object or station 

point? 

4. How to find the camera pitch angle w.r.t vertical, for 3PP case?   

Answers to the above questions will help us to generate a 3D map of the environment 

and the procedure developed is explained in the following chapters.  
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CHAPTER 3 

MAP CONSTRUCTION FROM A SINGLE TWO-POINT 

PERSPECTIVE (2PP) IMAGE 

Using vision/camera for robot navigations in indoor applications when a camera is 

mounted on the robot usually provide images in two-point perspective. The basic 

geometrical background required for finding the top view of a given 2PP object in an 

image and for finding the camera view point (available in the literature) are explained 

in Appendix B. This chapter discusses the overview of the methodology proposed for 

building floor maps from single 2PP image using the side view geometry, assuming 

that the distortion and the skew of the camera with which the image was taken are 

insignificant..   

3.1 OVERVIEW OF METHODOLOGY  

Figure 3.1 shows the structure of the procedure that will be followed in the proposed 

generalized algorithm for getting floor maps. Inputs for the system will be a single 

captured image from which the details of vanishing points and objects corners will be 

extracted and fed to the algorithm.  

 

Fig. 3.1: Flow chart depicting the proposed methodology for 2PP case. 

Since this thesis is not concerned with getting the required inputs but is rather concerned 

only with building of floor maps, the inputs will be fed manually to the algorithm. 

Proposed algorithm builds the top views for all the identified objects, employs the 

concept of side view geometry and the mathematics related to that for evaluating the 
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offset distance dp for all the objects. The scale factor is evaluated by using the input of 

ground truths and overlays the found object top views onto the scaled ground truth view, 

taking into consideration the measured distances dp. The output from the program will 

be a floor map showing the scaled objects (with a scale factor Sk) positioned relative to 

one another at a scaled distance (by the same factor Sk). 

3.2 ASSUMPTIONS 

The following important assumptions are considered while deriving the proposed 

methods: 

1. Position of the image centre O and view point V are assumed to be same for all 

the objects w.r.t. the image.  

2. Since all the objects in the given single image are on the same image plane, we 

assume that they exhibit the same orthogonal distances from the view point. 

3. Horizon line should be same for all the objects, although vanishing points may 

be located anywhere along this line.  

4. Image plane is always assumed to be along z-axis of the standard camera 

coordinate system, perpendicular to the camera or viewing direction. 

5. Ground (floor) is assumed to be flat and all the objects are assumed to be lying 

on the same flat floor. 

6. At least one object in the image is assumed to be in perspective. 

7. Object (in perspective) nearer to the camera will be taken as reference.  

8. Left base corner of the given image will be considered as the origin for the uv 

image plane and all other coordinates (like vanishing points, image centre, 

objects in top view etc.) will be referenced from this origin.  

3.3 PROPOSED METHODOLOGY 

3.3.1 Finding Relative Position of Objects 

Consider an example image with two objects, base corners of which are denoted as 𝑃1 

and 𝑃2 as shown in Fig. 3.2. Figure 3.3 was introduced that depicts the side view of the 

considered image. The side view shows the position of the camera view point, original 

image plane and also the positioning of the objects’ corners on the original image plane. 

Depth of first object’s base corner, 𝑃1, (on the original image plane) from the horizon 

is taken as h1 as shown in Fig 3.3.  
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Fig. 3.2: Line diagram of an example 2PP image. 

 

Fig. 3.3: Side view geometry for objects in 2PP. 

Depth of second object’s base corner 𝑃2 from the same horizon line is denoted by h2, 

which is lesser than h1. But in the real situation, both the objects will be lying on the 

same flat surface. So, if the second object was made to project such that its depth also 

measures h1, then the required offset distance can be obtained. To achieve this, the 

proposed concept of side view geometry will come handy. 
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Trying to project 𝑃2 to the same ground depth as 𝑃1 will result in a new image plane 

positioned parallel to the original image plane at a distance dp from it, as shown in Fig. 

3.3, denoted as ‘Transformed Image Plane’. Let 𝜃1 and 𝜃2 be the angles made by the 

objects’ base corners with view point V, as viewed from the side view. Let the 

perpendicular distance between the reference object’s base corner and the second object 

base corner measured by 𝑃1𝑃2 in the original image plane be hd.  Q2 in the original 

image plane denotes the top corner of the second object. 

Distance ‘d’ of the object from the view point can be obtained from the top view 

construction.  Apart from that, we can get objects’ base corners vertical depths (w.r.t. 

the horizon line) from the image, denoted by h1 and h2 as shown in Fig. 3.3, considering 

two objects. Our problem of interest is to find the shift distance dp, using which the 

second object’s imaginary plane would be transformed such that the object measures 

the same depth as h1.  

From triangle VOP2 in Fig. 3.3, 

𝑡𝑎𝑛 𝜃2 = 
𝑂𝑉

𝑂𝑃2
= 

𝑑

ℎ2
         (3.1) 

Now, from triangle 𝑃2𝑃1𝑃2
1 and using (3.1), we get 

𝑡𝑎𝑛 𝜃2 = 
𝑑𝑝

ℎ𝑑
         (3.2) 

𝑑𝑝 = ℎ𝑑 . 𝑡𝑎𝑛 𝜃2 = ( 
ℎ𝑑.𝑑

ℎ2
)            (3.3) 

With the finding of  dp , it is possible to list out the steps to be followed for constructing 

the map, given that there are two objects in the example image considered here. 

1. Construct the top view for the first object, measure the depth h1 and make it as 

reference depth. 

2. Construct the top view for the second object (with the base corner at 𝑃2), and 

find the ground depth h2  w.r.t the horizon line.  

3. Determine the distance dp using equation (3.3) for the second object. 

4. Marking the station point at O', position the top views of both the objects along 

the same horizon line. After that, draw construction lines for the second object. 

5. Offset top view of the second object such that its base corner, denoted by 𝑃ℎ is 

now at 𝑃𝑝
1. This transformation is done such that the vertical distance between 

𝑃ℎ and 𝑃𝑝
1 is dp as shown in Fig. 3.4.  
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6. Identify the visible corners of the ground in the image. For the example 

considered in Fig. 3.4, corners are denoted by C1, C2 and C3. Find the distances 

dp for all the corners and project them with respective distances in the top view. 

This will be at 𝐶1
1, 𝐶2

1 and 𝐶3
1. Join them by straight lines to denote the boundary 

of the map.  

 

Fig. 3.4: 2PP objects top view. (a) Geometrical projections (b) Relative positioning of 

objects neglecting all the construction lines w.r.t. the station point 

If there are multiple objects (more than two) in the image, repeat the process by keeping 

the nearest object’s depth as the reference. Thus, a relative scaled map can be 

constructed with ease, utilizing just geometrical projections and using some simple 

mathematical relations that are proposed here.  

3.3.2 Recognizing Free Space Using the Floor Corners 

Now that the top view of the given scene showing the relative positioning of the objects 

w.r.t. the station point has been constructed, the next step in building the complete map 

would be to find the available free space in the scene. Free space means the 

unobstructed space on the ground as visible in the given single image on which the 

robot can navigate. Consider the case of a 2PP image with a floor corner denoted as 𝑓1 
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on the original image plane, which is positioned at a depth ℎ𝑓 from the horizon line, as 

shown in Fig. 3.5.  

 

Fig. 3.5: Side view geometry for floor corners in 2PP. 

From triangle VO𝑓1 

𝑡𝑎𝑛 𝜃𝑓 = 
𝑂𝑉

𝑂𝑓2
= 

𝑑

ℎ𝑓
         (3.4)  

Now, from triangle 𝑓1
1𝑃1𝑓1  and using (3.8), we get 

𝑡𝑎𝑛 𝜃𝑓 = 
𝑓1

1𝑃1

𝑃1𝑓1
= 

𝑑𝑓

ℎ𝑑𝑓
        (3.5) 

𝑑𝑓 = ( 
ℎ𝑑𝑓.𝑑

ℎ𝑓
)              (3.6) 

Equation (3.6) is similar to (3.3) except that the values of distances ℎ𝑑𝑓 and ℎ𝑑 vary. 

Using (3.6) we can find the offset distance of the floor corners. Fig 3.6(b) shows the 

positioning of the floor points in the top view for the example scenario considered in 

Fig. 3.6(a). Figure 3.7 shows the complete 2D map clubbing identified free space and 

the occupied space of the objects, along with the relative positioning of the station point.    
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Fig. 3.6: Top view of the floor. (a) Geometrical projections of floor corners. (b) Top 

view of the floor w.r.t. station point  

 

Figure 3.7 Complete Free space map for the 2PP example image in Fig. 3.2. 
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3.4 FINDING HEIGHT OF OBJECTS FOR BUILDING 3D MAPS 

Apart from getting dimensions of the objects for building a 2D map, we can also obtain 

scaled heights of all the objects by introducing few more relationships. This shows the 

ability of the proposed methods for constructing 3D maps too. From Fig 3.3, it is clear 

that the second object’s height is measured by the distance 𝑃2𝑄2 directly from the 

image, before projection. But, we have projected the object onto the new plane at O', 

the object height will now be 𝑃2
1𝑄2

1. 

From triangle VOQ2 in fig. 3.3,  

𝑡𝑎𝑛 𝜃3 = 
𝑑

ℎ3
          (3.7) 

Also, the height of the object is given by 

𝑃2
1𝑄2

1 = ℎ1 − 𝑂′𝑄2
1 = ℎ1 − (ℎ3 + 𝑄2𝑄2

1)      (3.8) 

Using triangle 𝑄2𝑄2
1𝑄2

2, we get 

𝑃2
1𝑄2

1 = ℎ1 − (ℎ3 + 
𝑑𝑝

tan𝜃3
)        (3.9) 

Using (3.7) in (3.9), we get 

𝑃2
1𝑄2

1 = ℎ1 − ℎ3 (1 + 
𝑑𝑝

𝑑
)        (3.10) 

𝑃2
1𝑄2

1 is the required object height scaled by the same factor Sk to the original value. 

This projected height estimation is required for objects other than the reference one 

(first object). For the reference object, scaled height can be obtained directly from the 

image. It has to be noted that all the distances that has been obtained so far are scaled 

by the same scaling factor Sk. If at least one actual dimension (say length or height of 

the object/robot) is known, then it is possible to get the actual dimensions of all the 

objects, as in real environment. Finding Sk will be the key decision factor in determining 

the actual position and dimensions of the objects, if in case we wish not to use any 

external measurements like the robot size as an input to the model.  

The methods presented above can be used for 3D map building from 2PP image, as 

well as for estimating the free space in an environment for robot navigation. 

Experimental results of 3D map constructions, considering heights of the objects for 

several example scenes are provided in chapter 6 under 2PP results (section 6.1.2).  
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CHAPTER 4 

MAP CONSTRUCTION FROM A SINGLE THREE-POINT 

PERSPECTIVE (3PP) IMAGE 

The procedure for reconstruction of floor map from 3PP image is slightly more 

cumbersome compared to the 2PP image. The step-by-step process involved in building 

maps from 3PP images is presented in this chapter along with the derivations of 

geometrical and mathematical relations. Also, it is shown towards the end of the chapter 

that the map construction using 2PP image is a special case of that of 3PP case.   

4.1 OVERVIEW OF PROPOSED METHODOLOGY FOR 3PP SINGLE 

IMAGE MAP CONSTRUCTION 

Figure 4.1 shows the procedure starting from inputting a single 3PP image till the 

algorithm generates a floor map, including a comparison map by using ground truth.    

Inputs for the system considered from a single captured image consist of vanishing 

points and objects’ corners. The inputs will be fed manually to the algorithm.  

 

Fig. 4.1:  Flow chart depicting the proposed methodology for 3PP case. 

The system finds the pitch angle of the camera w.r.t. the world reference frame. It then 

builds the top views for all the identified objects, employs the concept of side view 

geometry and the mathematics related to that for finding offset distance dp for all the 

objects. The system then evaluates scale factor by using the input of ground truths and 
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scales down the actual ground truth of objects. Finally, the found object top views will 

be overlaid on top of the scaled ground truth view, taking into consideration the 

measured distances dp. The output from the program will be a free space map showing 

the objects’ scaled dimensions (say with scale factor Sk) positioned relative to one 

another, distance of which is also scaled by the same factor Sk. 

4.2 PRELIMINERY CONCEPTS OF 3PP 

Considering a simple case study of a single three-point perspective (3PP) image with 

two objects in it, this chapter explains the step by step process involved in building 

maps by introducing and deriving geometrical relations whenever needed. 3PP case 

arises when the camera (image plane) is neither parallel to any of the surfaces nor 

parallel to any of the edges of the object. The image looks distorted and vertical edges 

of objects will not look vertical but rather appear slanted. Figure 4.2 shows an image 

with two objects in 3PP, along with the object's line diagram. Let us denote the two 

objects as B1 and B2.  

 

Fig. 4.2: An example image in 3PP with its line diagram. 

Before proceeding to build a map, it's necessary to know the camera (hence image 

plane) pitch angle 𝜃 as well as the relative position of the station point. To accomplish 

this, we need to take each object in the image and analyse for the necessary parameters. 

The common procedure for the first object (object B1) will be discussed and then the 

same will be extended for other objects in the given single image. The object with its 

base corner (denoted by 𝑃1) nearest to the image bottom will be considered as the 
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reference object. In other words, the object which appears to be near to the camera is 

considered to be the reference (we can consider any object as the reference, the only 

difference is that the remaining objects in the image should be mapped based on this 

new reference). 

 

Fig. 4.3: Finding image center and vanishing points. 

As a first step, the view point (camera location, denoted by V) needs to be established. 

Mauldin (Mauldin, 1985) gave a simple mathematical relationship for finding the view 

point (camera location) in 3PP images using vanishing points. The view point 

projection onto the image plane (termed as image centre, denoted by capital O) should 

lie at the point of intersections of altitudes of the triangle formed by joining the three 

vanishing points as shown in Fig. 4.3. The view point will lie on the plane passing 

through O and orthogonal to the image plane. The distance between the view point and 

the image centre, denoted by d, depends on the vertical lengths OG and OC and is given 

as (Mauldin, 1985): 

𝑑 =  √||𝑂𝐺||. ||𝑂𝐶||         (4.1) 
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Once the position of the view point is known, a simple architectural method (Ching, 

2010) exists for constructing the top view of a given single parallelepiped object by 

using the object's vanishing points. Since the position of the image centre (O) is known, 

we can now position its vertical projection onto the vanishing circle as O', as shown in 

Fig. 4.4 (procedure for constructing top view of a single object for 2PP is given in 

Appendix B, which is also applicable for 3PP except that the image centre is found 

using the procedure described above). Figure 4.4 shows the top view of object B1. This 

construction is of not much help as it gave only a scaled rectangular top view which is 

just positioned along the horizon line. Apart from that, the camera pitch 𝜃 and the 

position of station point is not yet known. If we somehow get 𝜃 and the relative 

distances of all the objects w.r.t. the view point, then we can position them accordingly 

and get a floor map. 

 

Fig. 4.4: Geometrical construction for top view of single 3PP object. 
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4.3 DERIVATION OF MATHEMATICAL RELATIONS FOR ESTIMAING 

GEOMETRIC PARAMETERS 

For finding the camera pitch (𝜃) and to derive all the other necessary mathematical 

relations, we need to construct a geometrical side view of the given scenario. Figure 4.5 

shows an imaginative deduction of the side view of the image plane relative to the view 

point. What we see in the image plane will consist of the scene with objects B1 and B2 

(for the example considered in Fig. 4.2), but the same image plane in side view will 

look like a tilted line. For the object B1, the method for generating the appropriate side 

view can be explained with the help of Fig. 4.6 and Fig. 4.7.   

 

Fig. 4.5: Imaginative side view. 

In Fig. 4.6, the nearest bottom and top corners of B1 are marked on the image plane as 

P1 and Q1. So, the actual position of the base corner P1 in the world should lie along the 

line passing through P1 (on the image plane) and the view point V as shown in Fig. 4.6. 

This will have an infinite number of possible positions. Assuming some arbitrary 

ground level (which is not known), base corner projection of P1 onto the ground can 

now be deduced by the point at which the extended line meets this arbitrary ground 

level, marked as p1 in Fig. 4.6. The intersection point of the vertical line through p1 

(lying on the ground) and the line passing through Q1 and V will give the position of 

the top corner of the object, denoted by q1 in Fig. 4.6. By similar procedure, we can 

now construct the whole object, assuming that it is lying on that arbitrary ground level.   
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Fig. 4.6: Side view depicting an object and camera view point in 3PP. 

 

Fig. 4.7: Side view with construction details. 

Figure 4.7 shows the same side view as in Fig. 4.6 with more details. From the 

perspective image with vanishing points being given, we can get the measures OG, OC, 

OP1 and d. It has to be noted that G will lie on the horizon line while C, the third 

vanishing point (VP3) will lie on the vertical line through V (Jang, 2001). From triangle 

VOC, we can get the value of camera inclination 𝜃, using the relation   
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𝑡𝑎𝑛 𝜃 =  
𝑉𝑂

𝑂𝐶
= 

𝑑

𝑂𝐶
=  

√𝑂𝐺.𝑂𝐶 

𝑂𝐶
= √

𝑂𝐺

𝑂𝐶
      (4.2) 

Or, from triangle VOG 

𝑡𝑎𝑛 𝜃 =  
𝑂𝐺

𝑂𝑉
= 

𝑂𝐺

𝑑
=  

𝑂𝐺

√𝑂𝐺.𝑂𝐶 
= √

𝑂𝐺

𝑂𝐶
      (4.3) 

So, in both cases, we get the same result for measuring 𝜃, which signifies that VP3 lies 

on the same vertical as V. 

Finally, 

𝜃 =  𝑡𝑎𝑛−1 (√
𝑂𝐺

𝑂𝐶
)          (4.4) 

Now that the camera pitch angle 𝜃 is known, the depth of the object base corner (same 

as depth of ground plane) from V  can be obtained to some scale (say by a scaling factor 

Sk) from the triangle P1GP' as 

𝑐𝑜𝑠 𝜃 =  
𝑃𝑃′

𝑃𝐺
= 

ℎ1

𝑃1𝐺
        (4.5) 

ℎ1  =  𝑃1𝐺. 𝑐𝑜𝑠 𝜃        (4.6) 

From triangle VOP  

𝑡𝑎𝑛 𝛽 =  
𝑂𝑃1

𝑂𝑉
= 

𝑂𝑃1

𝑑
         (4.7) 

In Fig. 4.7, from triangle VSP1, we can get the horizontal distance from station point to 

object's nearest corner, again, distance scaled by the same scaling factor Sk. Note that 

VS = 𝑃1P' = ℎ1.   

𝑡𝑎𝑛(𝜃 +  𝛽) =  
𝑉𝑆

𝑆𝑃1
=  

ℎ1

𝑆𝑃1
         (4.8) 

 𝑏1  =  𝑆𝑃1 = 
ℎ1

𝑡𝑎𝑛(𝜃+ 𝛽)
        (4.9) 

Here, 𝑏1 denotes the distance between the station point and the object’s nearest base 

corner in the side view as shown in Fig. 4.7. The above relationships can be used for 

generating the top and side views of an image with multiple objects, as explained I nthe 

following section. 
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4.4 SIDE VIEW GEOMETRY OF SEVERAL OBJECTS IN A GIVEN 3PP 

SCENE 

In section 4.1 and 4.2, the mathematical relations for finding camera height, pitch angle, 

object's relative distance and dimensions from station point have been derived 

considering a single object.  However, trying to follow the same procedure for all the 

objects in the given image will result in the top view with all the objects aligned side 

by side along the horizon line, as shown in Fig. 4.8(a) for the image in Fig. 4.2. The 

finding of b1 for the reference object B1 in Fig. 4.7 simply means that in top view, the 

perpendicular distance from the station point to the base corner will be b1. 

So, marking a point at a distance b1 from the base corner of B1 as shown in Fig. 4.8(b) 

will give the exact position of the station point relative to the first object’s base corner. 

It has to be noted that the object as well as the distances are all now scaled by some 

factor, which is not to the actual scale as in real world. Trying to visualize only the two 

object projections and the station point will look something like shown in Fig. 4.8(b), 

which clearly is not much useful. The actual position of the second object B2 relative to 

B1 and station point is shown in Fig 4.8(c). We know b1 for the first object but we are 

yet to get b2 and B2's dimensions that need to be scaled to the same scale factor as B1. 

Only then, we can say that a meaningful map is developed. So, further mathematical 

relations are needed in order to find out this offset distance and the scaling of the rest 

of the objects. 

 
Fig. 4.8: Top view construction. (a) Traditional geometrical construction (b) Obtained 

top view (c) Actual top view 
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All the important assumptions introduced for 2PP case in section 3.3 are applicable for 

3PP case too. Apart from that, we consider an additional assumption of image plane 

angle 𝜃 being same for all the objects under consideration. The same idea proposed for 

2PP case will also be followed for 3PP case too, i.e. bringing all the objects to a common 

reference ground depth (scaled) w.r.t. the horizon line as viewed in the image. This will 

be explained with several figures. 

Figure 4.9 shows the actual configuration of side view, considering two objects, as 

shown in Fig. 4.2. It is obvious that the two objects are lying on the same ground 

surface. Although the ground level (in other words, the height of V from ground surface) 

is not known, we assume some random height just for visualization purpose and for 

deriving the relations. Projection of the objects’ corners onto the image plane has been 

marked in Fig. 4.9. Figure 4.10 shows what actually projections of objects mean relative 

to the image plane. According to this configuration, it is clear that the depth of the 

second object is less than the depth of the reference object.  

 

Fig. 4.9: Actual side view of two objects. 

This is applicable even for any scene with several objects. Denoting the depth of B1 

from the horizon line as h1 and likewise denoting the depth of B2 from the horizon line 

as h2, it is clear from the side view that h1 > h2. But in the real world, the two objects 

are lying on the same floor. So, the basic idea that we have developed here is to bring 

all objects (for now only two) to a common depth relative to the horizon. Since, for the 

reference object B1 we already have the measurements and distance, it is very 
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convenient to project other object (B2) until it measure same depth as B1, i.e. we aim at 

h1 = h2 and if there are several objects we make all depths to be same as h1. 

 

Fig. 4.10: Deduced configuration. 

Figure 4.11 shows the basic concept that is proposed to achieve this.  Assuming an 

imaginary image plane (denoted as transformed image plane) which will be shifted such 

that P2 is now at 𝑃2
1. The two objects are projected to the same ground level. Now, the 

proposed configuration will be used in the further sections to find the offset distances 

of multiple objects, their relative positioning and their projected dimensions.  

 

Fig. 4.11: Side view with the transformed image plane. 
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4.5 FINDING OFFSET DISTANCES OF MULTIPLE OBJECTS IN THE 

IMAGE 

The following methodology has been proposed for projecting the second object B2 to 

the same depth as the depth of the first object B1: 

1. For the first object, find the scaled depth h1 and horizontal distance b1 using 

equations eq. (4.6) and eq. (4.9) respectively.  

2. For the second object, find h2 using eq. (4.6). 

3. Determine the difference of the depths (h1 ‒ h2).  

4. Transfer the image plane to a new location such that the new transferred image 

plane is parallel to the actual image plane and the new projection of the object's 

corner on this image plane i.e. 𝑃2
1 lie on the same horizontal as P1, as shown in 

Fig. 4.12. This is a detailed view of the triangle 𝑃1𝑃2𝑃2
1 shown in figure 4.11. 

By this way, the object has been artificially projected onto the new image plane 

such that they now have the same scale.   

5. Project image centre O until it meets this new image plane at O'.   

 

Fig 4.12: Geometry for offset distance measurement. 

Figure 4.12 shows all other angles and notations considered for deriving mathematical 

relations for the case when the image centre is positioned somewhere between the two 

objects corners. Here 𝑃2𝑄 = (h1 ‒ h2). 
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From triangle 𝑃2𝑃2
1𝑄 in Fig. 4.12, we get 

𝑠𝑖𝑛(𝜃 −  𝛽) =  
𝑃2𝑄

𝑃2𝑃2
1         (4.10) 

 𝑃2𝑃2
′ = 

𝑃2𝑄

𝑠𝑖𝑛(𝜃− 𝛽)
= 

ℎ1−ℎ2

𝑠𝑖𝑛(𝜃− 𝛽)
       (4.11) 

𝑡𝑎𝑛(𝜃 −  𝛽) =  
𝑃2𝑄

𝑄𝑃2
1         (4.12) 

𝑄𝑃2′ =  
𝑃2𝑄

𝑡𝑎𝑛(𝜃− 𝛽)
= 

ℎ1−ℎ2

𝑡𝑎𝑛(𝜃− 𝛽)
       (4.13) 

From triangle 𝑂𝑃2
1̅̅ ̅𝑂′ in Fig. 4.12, and observing that 𝑂𝑃2

1̅̅ ̅ =  𝑃2𝑃2
1  

𝑐𝑜𝑠 𝛽 =  
𝑂𝑂′

𝑃2𝑃2
1          (4.14) 

Thus, 

𝑂𝑂′ =  𝑃2𝑃2
1𝑐𝑜𝑠 𝛽         (4.15) 

New distance d' from view point V to the transferred image plane centre O' is therefore 

given by 

𝑑′ = 𝑑 + 𝑂𝑂′          (4.16) 

From triangle P1P2Q, we get 

𝑡𝑎𝑛 𝜃 =  
𝑃1𝑄

𝑃2𝑄
          (4.17) 

𝑃1𝑄 =  𝑃2𝑄 𝑡𝑎𝑛 𝜃 =  (ℎ1 − ℎ2)𝑡𝑎𝑛 𝜃      (4.18) 

The horizontal distance b1 has already been measured from the first object's base corner 

(i.e. P1) to the station point.  𝑃1𝑄 and 𝑄𝑃2
1 are also determined from equations (4.18) 

and (4.13) respectively. Therefore, the second object's base corner horizontal distance 

(to the same scale as the first object) can be measured as: 

𝑏2 = 𝑏1 + 𝑃1𝑄 + 𝑄𝑃2
1        (4.19) 

Equations (4.10) ‒ (4.19) are applicable for two cases: 

• Case 1: When the image centre O lies in between P1 and P2. 

• Case 2: When the image centre O lies below both P1 and P2.  

Case 3 happens when the image centre O lies above P1 and P2 . Equations (4.10) ‒ 

(4.19) are all applicable except for a small change. In-place of β, we use ‒β and all other 

equations remain same. This situation is shown in Fig. 4.13. In general, for images with 
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several objects, the first object (farthest most from horizon) has been considered as the 

reference. With the help of the reference, and considering each object one at a time, it's 

relative position w.r.t. P1 and O will be found, then β or ‒β cases will be considered 

accordingly; to finally find the base distance bi  (for  ith object). 

 

Fig. 4.13: Geometry for case 3. 

4.6 RELATIVE POSITIONING OF MULTIPLE OBJECTS 

Now that the horizontal distances for all the objects are found, a 2D map can be 

constructed using the relations (and hence the distances) derived. Figure 4.14 shows the 

construction process with two objects as considered in the example image. The basic 

procedure proposed is: 

1. For the first object B1, construct the top view with image centre being at O. 

2. Find d, 𝜃, h1, object dimensions and finally horizontal distance b1 as given in 

equations (4.2) – (4.9). 

3. Since b1 is known, position the station point in the top view, denoted by On in Fig. 

4.14(a). Position On such that its vertical distance is b1 from the first object's base 

corner. 

4. For the second object B2 also, construct the top view, three corners of which will be 

positioned at rp, Ph and sp.  

5. Find b2 using (4.19) for the second object. 

6. Now, in the orthographic view, project the second object corners rp, Ph and sp along 

their corresponding projection lines such that the vertical distance between 𝑂𝑛 and 
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the new position of 𝑃ℎ (call it 𝑃𝑃
1) is 𝑏2. The respective transferred positions of the 

other two corners for the second object will then be at 𝑟𝑃
1 and 𝑠𝑃

1 as shown in Fig. 

4.14(a).  

 

Fig. 4.14: Top view construction of objects. (a) Geometrical construction (b) objects 

relative positions in top view 

It should be noted that, because the vanishing points detection are challenging and are 

not always accurate, horizon lines appear to be different for both the objects. But, in 

reality, they should be along the same horizontal since they indicate the eye level of the 

viewer/camera. We now have top views for the two objects, both being to the same 

scale factor 𝑆𝑘. Figure 4.14(b) shows just the objects and the view point, neglecting all 

the construction lines. By measuring the relative distance between the objects, it can be 

verified that all the object dimensions are scaled to the same scale by which the objects 

are positioned. In other words, a floor plan has been constructed, scaled to 𝑆𝑘. If one 

real dimension is known in the environment, then, the whole constructed map can be 

scaled by the ratio and hence a map of real-world scale can be easily obtained.   
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4.7 MATHEMTICAL RELATIONS FOR FREE SPACE 

Until now, discussions have been carried on how to construct objects relative to one 

another and w.r.t. the camera station point. In order to complete the process of building 

free space map, it is also necessary to use the visible floor corners of the given scene, 

in order to make the boundary of the space where the objects will be positioned 

according to the given scene.  

The free space boundary map can then be used by the robot for its navigation. This 

subsection deals with derivation of mathematical relations relevant to floor space 

estimation. When the image is in 3PP, three cases (two cases will have a common 

configuration) will arise, depending on the position of the floor corners with respect to 

the image centre (O), as shown in Fig. 4.15. 

 

Fig 4.15: Geometries for floor space estimation. 

Consider Fig. 4.15(a) which is applicable for both case 1 and case 2, where the floor 

corners of interest are below O. From triangle P1f1Q, we get 

𝑃1𝑓1 = 
𝑓1𝑄

cosθ
          (4.20)  

New distance d' from view point V to the transferred image plane centre O' is therefore 

given by 

𝑑′ = 𝑑 − 𝑂𝑂′          (4.21) 

From triangle O’f1Q, we get 

𝑡𝑎𝑛(𝜃 + 𝛽𝑓) =  
𝑓1𝑄

𝑂′𝑄
         (4.22) 

Equation (4.22) is same as eq. (4.12). Similarly, from triangle P1f1Q, we get 
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𝑃1𝑄 =  𝑓1𝑄 𝑡𝑎𝑛 𝜃         (4.23) 

Equation (4.23) is same as eq. (4.18). Finally, just like in eq. (4.19), we can measure 

the floor corners horizontal distance (to the same scale as the first object) as 

𝑏2 = 𝑏1 − 𝑂1𝑄 − 𝑃1𝑄       (4.24) 

 For case 3, the same equations (4.20) to (4.24) applies except that instead of  𝛽𝑓 we use 

−𝛽𝑓 in all the relations, because of the geometrical arrangement as shown in Fig 

4.15(b). 

Figure 4.16 shows the result of the complete 2D-map constructed by the proposed 

algorithm for the image shown in Fig. 4.2. Grey area in the map represents the boundary 

within which the robot can operate. In other words, it represents the free space available 

for the robot. Blue coloured polygons represent the relative positioning of the objects 

w.r.t. the station point which is shown as cyan coloured blob. 

 

Fig. 4.16: A complete 2D map for the example scene shown in Fig. 4.2. 

4.8 FINDING HEIGHT OF OBJECTS FOR BUILDING 3D MAPS 

Evaluating height of the objects in a given image would help in 3D reconstruction. 

Figure 4.17 shows side view of a situation considering two objects on the ground. Let 

the first object’s (object 1) bottom and top nearest corners projections on the original 

image plane be P1 and Q1 and let the second object’s (object 2) bottom and top nearest 

corner projections on the original image plane be P2 and Q2. After the transformation 

of image plane to get second object's height same as first objects’, maintaining common 
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scale Sk, distance between P2 and Q2 will now be 𝑃2
1 and 𝑄2

1, which needs to be obtained 

geometrically. It has to be noted that, if the image plane is passing through say P2 (the 

actual object's base corner on the ground) then the height of that object is given by p2q2, 

which will be captured as p2q
1 in the image plane.  

 

Fig. 4.17: Notion of transformed image plane for height measurement. 

Let us first find the height of the reference object (object 1). Figure 4.18 shows the 

detailed view of the highlighted area in Fig. 17. Note that the height of the first object 

when the image plane passes through P1 will be P1Q
1 and 𝜃2 =  𝜃 + 𝛽𝑞, where 𝛽𝑞 is 

similar to 𝛽 but for the top corner Q of the object, obtained using eq. (4.14).  

 

Fig. 4.18: Geometry for reference object height measurement. 
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From triangle P1Q1R in Fig. 4.18, 

𝑃1𝑅 = 𝑙. 𝑐𝑜𝑠 𝜃        (4.25) 

𝑄1𝑅 = 𝑙. 𝑠𝑖𝑛 𝜃        (4.26) 

From triangle 𝑄1𝑅𝑄1 

𝑡𝑎𝑛 𝜃2 = 
𝑅𝑄1

𝑄1𝑅
          (4.27) 

Using eq. (4.26) in eq. (4.27),  

𝑅𝑄1 = 𝑙. 𝑠𝑖𝑛 𝜃. 𝑡𝑎𝑛 𝜃2        (4.28) 

Thus, height of the reference object (object 1) can be obtained as 

𝑃1𝑄
1 = 𝑃1𝑅 +  𝑅𝑄1 = 𝑙. 𝑐𝑜𝑠 𝜃 + 𝑙. 𝑠𝑖𝑛 𝜃. 𝑡𝑎𝑛 𝜃2      (4.29) 

The height of other objects cannot be obtained in the same way as obtained for the first 

object. After projection of the objects (other than the first object), the relative distance 

between top and bottom corners will increase. This situation is shown in Fig. 4.19 for 

object 2, where l denotes the actual length of P2Q2 in the original image plane. But the 

same distance in the projected image plane is represented by  𝑃2
2𝑄2

2 for the case when 

both P2 and Q2 lie below O. P2O1 and Q2O2 are both same and equal to OO', 

representing the perpendicular distance between the two parallel image planes, which 

is already calculated using eq. (4.15).  

 

Fig. 4.19: Geometry for measuring the projected length 𝑙𝑛𝑒𝑤. 
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Let 𝛽1 and 𝛽2 are the angles made by P2 and Q2 respectively with the viewing axis 

(perpendicular to image plane) in the side view, obtained similarly using eq. (4.7). Note 

that 𝜃2
1 =  𝜃 + 𝛽1 and 𝜃2

2 =  𝜃 + 𝛽2. From Fig. 4.19, we have 

𝑙𝑛𝑒𝑤 =   𝑃2
1𝑄2

1 = 𝑂1𝑂2 + 𝑂1𝑃2
1 + 𝑂2𝑄2

1  

         =  𝑂1𝑂2 +  𝑘. 𝑡𝑎𝑛(𝛽1) −  𝑘. 𝑡𝑎𝑛(𝛽2)                (4.30) 

Equation (4.30) gives new length of the second object between top and bottom corner 

projections on the new image plane. Now that the new length 𝑙𝑛𝑒𝑤 is available, 

replacing l with 𝑙𝑛𝑒𝑤 and plugging this in eq. (4.29) will result in computing the height 

of second object, to the same scale Sk as the first object. This will look like:  

height of the second object = 𝑙𝑛𝑒𝑤. 𝑐𝑜𝑠 𝜃 + 𝑙𝑛𝑒𝑤. 𝑠𝑖𝑛 𝜃. 𝑡𝑎𝑛 𝜃2  (4.31) 

The procedure will be repeated if there are multiple objects. Discussion until now 

considered that P2 and Q2 are both below O, in the image plane. But there are two other 

cases: second case when both P2 and Q2 are above O in the image plane (Fig. 4.20), 

third case when the image centre O is in between P2 and Q2 in the image plane (Fig. 

4.21). Fortunately, the same relation (4.26) applies for all the three cases, with the only 

difference in 𝛽 values. 𝛽 will be considered negative when the corresponding corner 

(for which we are finding 𝛽) lies above the image centre O and positive otherwise. 

 

Fig. 4.20: Geometry for finding 𝑙𝑛𝑒𝑤 in case 2. 
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Fig. 4.21: Geometry for finding 𝑙𝑛𝑒𝑤 in case 3. 

Figure 4.22 shows the 3D model of the sample map constructed, taking into 

consideration the heights of the objects found using the relations derived here. More 

experimental results on 3D construction is presented in the following chapters. 

 

Fig. 4.22: Constructed 3D model. 

4.9 THEOREM 1: 2PP is a special case of 3PP, when pitch angle is zero 

Proof: 2PP is a situation when the image plane is positioned parallel to any one of the 

objects’ surface. So, in this case, viewing direction will be horizontal in the side view. 

Hence, the camera pitch angle will be given by 𝜃 = 0. As is clear from Fig. 4.6 when  

𝜃 = 0, 𝑂𝐺 will also be zero and hence 𝑃1𝐺 = 𝑂𝑃1.  
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From (4.6) and using 𝜃 = 0, we get 

ℎ1  =  𝑃1𝐺. 𝑐𝑜𝑠 𝜃 = 𝑃1𝐺 = 𝑂𝑃1      (4.32) 

𝑡𝑎𝑛 𝛽 =  
𝑂𝑃1

𝑑
          (4.33) 

From (4.9), we can say 

𝑏1  =  
ℎ1

𝑡𝑎𝑛(𝜃+ 𝛽)
= 

ℎ1

𝑡𝑎𝑛(𝛽)
= 

ℎ1.𝑂𝑉

𝑂𝑃1
= 𝑂𝑉      (4.34) 

So, 𝑏1, the horizontal distance of the base corner from the station point is equal to 𝑂𝑉 

which is the perpendicular distance from the view point to the image centre. This 

distance is nothing but the perpendicular distance ‘d’ which we measure from the 2PP 

top view construction. Let us consider an image consisting of two objects, with image 

centre O positioned in between the base corners of the two objects as shown in Fig. 

4.12. Now, for the other object (second object with base corner at 𝑃2) other than the 

reference object, ground distance of 𝑃2 from the station point is taken from (4.19) as 

𝑏2 = 𝑏1 + 𝑃1𝑄 + 𝑄𝑃2
′         (4.35) 

Where 𝑃1𝑄 and  𝑄𝑃2′ are taken from equation (4.18) and (4.13) respectively as 

𝑃1𝑄 =  𝑃2𝑄 𝑡𝑎𝑛 𝜃 =  (ℎ1 − ℎ2)𝑡𝑎𝑛 𝜃         (4.36) 

𝑄𝑃2′ =  
𝑃2𝑄

𝑡𝑎𝑛(𝜃− 𝛽)
= 

ℎ1−ℎ2

𝑡𝑎𝑛(𝜃− 𝛽)
       (4.37) 

Taking 𝜃 = 0, we get  

𝑃1𝑄 = 0          (4.38) 

𝑄𝑃2′ =
ℎ1−ℎ2

𝑡𝑎𝑛(− 𝛽)
         (4.39) 

Note that the second object’s base corner is above the image centre as visible in the side 

view shown in Fig. 4.12. So, the sign of the angle 𝛽 should be taken as negative. Hence 

(4.39) will become  

𝑄𝑃2′ =
ℎ1−ℎ2

𝑡𝑎𝑛( 𝛽)
          (4.40) 

ℎ1 − ℎ2 is the difference in heights of the two base corners which is nothing but ℎ𝑑 as 

discussed during 2PP derivations. Substituting for 𝑡𝑎𝑛 𝛽 we get 

 𝑄𝑃2
′ =

ℎ𝑑.𝑑

𝑂𝑃2
= 

ℎ𝑑.𝑑

ℎ2
        (4.41) 
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Substituting for 𝑃1𝑄 and 𝑄𝑃2
′ in (4.35), we get  

𝑏2 = 𝑏1 + 0 +
ℎ𝑑.𝑑

ℎ2
         (4.42) 

So, the shift distance for the second object from the view point (station point in top 

view) should be 
ℎ𝑑.𝑑

ℎ2
 more than 𝑏1 (vertical distance of first object from view point). 

Note that this offset distance is same as that obtained for 2PP case given in equation 

(3.3), proving our claim that 2PP is a special case of 3PP by keeping the pitch angle as 

zero. Thus, the mathematical relations given for 3PP can be considered as a generalized 

one, applicable for all cases. 
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CHAPTER 5 

MULTI-BUG PATH PLANNING (MBPP) ALGORITHM 

Techniques for building maps of given scenes from single images were presented in the 

previous chapters. Once a map is ready, path planning can be done for a robot to 

navigate by avoiding the obstacles. There are several methods that addresses the 

problem of planning an optimal path, given a map of the environment. In this section, 

we introduce a new path planning algorithm, named as ‘Multi-Bug Path Planning’ 

(MBPP). MBPP has several advantages over traditional techniques which will be 

explained in the following sections. Input maps from the mapping algorithms will be 

converted to grid maps and will be fed to the algorithm which will process it and give 

a feasible path, avoiding obstacles. 

5.1 INTRODUCTION 

In the field of mobile robotics, path planning is essentially one of the core research 

areas. An optimal path is generated for the robot to move from the start position to goal 

position, taking into account many constraints such as distance travelled and time. In 

spite of emergence of several techniques and algorithms during the past years, two 

popular approaches are almost always studied in literature for path planning problem: 

deterministic algorithms (that uses some kind of heuristic) and sampling based 

algorithms (probabilistic). Most of the research techniques focus on global path 

planning wherein the environment is completely known to the robot. Usually, global 

planning for the given start and goal states are done offline i.e. before the start of the 

robot.  There are several approaches to local path planning too, wherein planning is 

carried online (referred as reactive), while the robot is actually in transit.  

Bug algorithms are a class of local path planning and online techniques wherein the 

robot uses its sensors to get information while navigating through real worlds. Once the 

robot reaches an obstacle, it exhibits wall-following phenomena in order to reach the 

destination (Ng and Braunl, 2007). Paths found in online mode are usually not optimal 

and are mostly sub-optimal. 

The fact that the environment is known in advance to the robot motion in deterministic 

case helps the A* (read as A-Star) algorithm to find shortest paths through grid/graph 
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worlds (Hart et al., 1968). Because of its optimality and simplistic approach, A* is 

almost always the first choice for path planning and hence it is still used extensively in 

robotics and by video gaming community. But the paths found by A* are unrealistic 

when applied to real robot navigations; because A* paths exhibits several heading 

changes and are constrained to move along grid edges (Daniel et al., 2010). Usually, 

post-smoothing techniques are required to overcome unrealistic and optimal issues. But 

they still don’t change the path topologies and results in sub-optimal paths. This is 

explained in Fig. 5.1 (Ferguson and Stentz, 2006), where post-smoothed A* (A* PS) 

finds the path along the red line while the actual shortest path is along blue dashed line.  

 

Fig. 5.1: A* Algorithm Post Smoothening. 

Researchers came up with several variants of A* for real time implementations 

including any-angle path finding methods. D* (Stentz, 1994), incremental A* (Koenig 

and Likhachev, 2002(b)) and D* Lite (Stentz, 1994) are the major variants found in 

literature. (Ferguson and Stentz, 2006) proposed an interpolation based planning 

algorithm called Field D* which is an extension to D* and D* Lite algorithms, that 

allows path to take any angle. Currently, many mobile robots employ Field D*. In 

(Daniel et al., 2010), authors introduced two variants of any-angle path planning 

algorithms called Basic Theta* and Angle-Propagation Theta*. These algorithms 

showed great results in terms of realistic as well as optimal path finding capabilities. 

In-spite of the improved performances, A* variants still employ the fundamental A* 

concepts. They still need CLOSED and OPEN lists in order to construct a path, to avoid 

revisiting of states as well as to expand the next node (while planning) by sorting the 

list using costs and heuristics. These lists consume memory, especially when the search 

space is large. Pruning (reducing the size) of OPEN and CLOSED lists are always a 

concern in Artificial Intelligence studies. Although many researchers came up with 
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several A* pruning techniques, still not much work on applications of pruned A* 

methods for robotics has been found. 

A new global path planning algorithm (MBPP) that employs approaches similar to bug 

algorithms is proposed here. MBPP algorithm eliminates the need for OPEN and 

CLOSED lists. This algorithm basically takes greedy actions in the search space. 

Greedy behaviour of algorithms often results in the problem of getting stuck in local 

optima. But the proposed method uses conditions to move from greedy to non-greedy 

behaviour as and when required, thereby eliminating the danger of giving local optimal 

results. 

5.2 BUG ALGORITHMS AND RELATED WORK 

In Bug algorithms, given the start and target points, the shortest straight line connecting 

them is referred as m_line. Robot starts moving along m_line and uses its on-board 

sensors to sense for any obstacles. Once it reaches an obstacle, it starts following the 

wall in any one direction (left or right), specific to that algorithm. Bug1 and Bug2 

(Lumelsky and Stepanov, 1987) are the two basic Bug-algorithms that allow robots to 

follow in any one specific direction throughout their travel. But other variants of bug-

algorithms for example ABUG and Bug2+ (Antich et al., 2009) allows robot to change 

directions based on the pre-set conditions. ABUG algorithm is an extension of Bug2+ 

algorithm with conditions derived from bug family. In (Ng and Braunl, 2007), 

performance comparisons of eleven variations of Bug algorithms using EyeSim 

simulation platform was presented. MBPP is similar to ABUG in the sense that it also 

uses the concept of multi-path, but MBPP has its own conditions viz. leaving 

conditions, waiting conditions, multi-bug generation, corner finding and realistic 

implementation of the path. 

Proposed work employs the online behaviour of bug algorithms to offline planning with 

static obstacles. This work aims to derive a method that is possibly a hybrid of both 

deterministic and non-deterministic methods so that the same program could be used in 

both cases. Additionally, MBPP employs line-of-sight algorithm making use of well-

known Bresenham line-drawing algorithm, which was initially proposed for digital 

plotters (Bresenham, 1965). 
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5.3 NOTATIONS 

𝑆𝑆  →   start position of the robot 

𝑆𝑔  →   desired goal position of the robot 

m_line → set of states representing the path taken by robot whenever there are no 

obstacles  

Oi →  obstacle i 

v_list → list that stores identified obstacle corner states by the bug 

rrmxn → state values matrix, where m and n are size of the map M  

LOS(S, S') → line of sight check between S and S' 

neigb(S) → neighbours to state S; every S will have eight neighbours 

select_list → list of states representing the best possible path chosen by algorithm at 

every episode 

hit_list, leave_list → lists that store states whenever bug hits/leaves Oi respectively 

Given M, the map of the environment with position of the obstacles Oi marked in it and 

given the start 𝑆𝑆 and target positions 𝑆𝑔 for the environment, the goal of the algorithm 

is to find a shortest feasible path p: 

𝑝 = {𝑝: (𝑝 ∈ 𝑃) 𝑎𝑛𝑑 (𝑒𝑢𝑐𝑙𝑑(𝑝) ≤ 𝑒𝑢𝑐𝑙𝑑(𝑝𝑖))|𝑆𝑠, 𝑆𝑔, 𝑀} ∀ 𝑖 = 1,2…𝑛 

where n denotes the number of feasible paths, P denotes the set of all paths i.e.  𝑃 =

{𝑃1, 𝑃2 … , 𝑃𝑛}  and eucld(pi) denotes sum of Euclidean distance between successive 

connecting states for the path pi. 

5.4 MULTI-BUG PATH PLANNING (MBPP) ALGORITHM 

MBPP algorithm starts by initializing the start and goal states for the given environment 

and assigns state values to each state using distance transform method. 𝑆𝑔 is assigned a 

larger rrg value and all other remaining states are assigned lesser values according to 

their distance from 𝑆𝑔 i.e. 𝑟𝑟𝑖,𝑗 = 𝑟𝑟𝑔 − 𝑑𝑖𝑠𝑡(𝑆𝑔, 𝑆𝑖,𝑗) for (i, j)th  state. The program then 

sets m_line which is a list of states visited by navigating in the environment without 

any obstacles.  Once the m_line is set, the actual program starts. A bug moves along the 

m_line by taking action at each step and moving to any one of the neighbouring states 
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with a branching factor of eight. Greedy actions are taken at each step by choosing the 

state with largest rr value, until the bug meets an obstacle. If no obstacle is found and 

the bug reaches the goal position, then the algorithm will smooth the path using LOS 

algorithm and reports the smoothed-path.  

During the bug travel, if it hits an obstacle, then the current bug generates a new bug 

and that state is added to hit_list for both the bugs. Both the bugs now adopt wall-

following phenomena such that the parent bug takes its usual greedy action, while the 

newly generated bug instead of taking greedy action chooses the state that is on the 

other side of its parent bugs state at the instant of hit. After this hit step, the generated 

bug also chooses greedy actions. Also, the bugs are avoided from taking actions that 

result in states - already visited by that bug, by maintaining a list of two recent states. 

This procedure allows the bugs to move in either direction of the wall so that they can 

exploit possible paths around the obstacle, thus avoiding the danger of getting trapped 

in local optima as well as reducing time for bug travel.  

At each step during the wall travel, LOS check is done to see if the new state is visible 

from the start state. Visibility between two states means that the straight line path 

between the two states is obstacle free. If there is no visibility between the current and 

start states, then the algorithm marks the common neighbour for both previous and 

current states in v_list for that bug such that the noted state is visible from the start state 

as well as visible to the current state. The bug continues moving along the wall and now 

the LOS check is done between the current state and the recently added state in v_list 

for that specific bug and noting corner states in v_list continues if there is no line of 

sight. 

The bug drops the wall following behaviour if it meets m_line along the wall. At this 

instant, it notes the state detail in its leave_list and now starts moving along m_line 

towards the goal. If during its travel, it again hits an obstacle, then bug generation 

continues and wall following phenomena repeats. If in case any bug ends in a wall 

corner with no direct path towards the goal, then that bug is terminated. If the bug meets 

its own latest hit or leave states as noted in their respective lists, then the bug is looping 

around the obstacle and is useless. So MBPP algorithm terminates this bug. Also, any 

bug that ends in a state which is noted in the leave_list of other bugs will wait without 

any further iteration. Since further movement of this bug result in moving along the 
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same states as taken by some other bug (that has already travelled this path) which will 

ultimately end up in noting same corners, hit points as well as leave points if any. 

Keeping this bug idle till other bugs are done saves computational time as well as 

memory. Later, after all bugs complete their travel, additional states are added to this 

bugs v_list making use of the leave_list. The latest state in leave_list of this bug is taken 

and a check is done among all other bugs leave_list to see if this state is available. If 

that state is found in say bug-k, then all the corner states that are after this leave state 

will be added directly to the idle bug to make it complete.  

The whole process continues and the algorithm runs until all the bugs either terminates 

or waits or reaches the target state and not a single bug needs iteration. Once all the 

bugs are done with their travel and if it is found that no bug reaches goal even after 

completion of the process, then it literally mean that there are no feasible paths between 

the given states. MBPP algorithm reports this and terminates. If goal is reached by at 

least one bug, then MBPP algorithm adds additional states to the waiting bugs, as 

discussed previously, and evaluates Euclidean distance between each states of the v_list 

for all the selected bugs. Then, the one resulting in least distance (call it select_list) is 

chosen for further check.  

A line of sight check is performed for successive states of select_list and if it is clear, 

the algorithm terminates outputting the select_list. Otherwise, if the path is not clear 

and LOS algorithm senses any occupancy of the states during the check, then the 

algorithm re-plans the path by starting the loop again with the state just before the first 

identified occupied state as the start state.  Now, bug generation, corner identification, 

leaving and termination conditions are carried as usual, until the newly generated bugs 

are visible to the next state in the select_list. The v_list of all the earlier bugs are 

modified with the introduction of newly identified corner states.  Then the process of 

Euclidean distance evaluation, line of sight and feasibility check are repeated until 

shortest feasible path is found. As can be seen, MBPP algorithm finds all feasible paths 

and employees re-planning strategy if in case no feasible or shortest path is identified. 

Thus the proposed algorithm is good enough to be considered for its feasibility for 

online case too.  

Figure 5.2 shows a case study with start, goal and obstacles indicated. For simplicity, 

illustration, and easy understanding, path was shown in single line and the robot was 
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shown as point size. In actual implementation, the robot dimensions was considered as 

square cell size and the planning was done such that it finds path for the cell as a whole. 

As can be seen, the bug b1 starts from S, moves along m_line and hits the obstacle at 

H1. Now b2 is generated and moves downwards while b1 continues moving in upward 

direction, both along the walls. After bug b1 crosses S3, it loses line of sight to S. So the 

corner state S3 is noted to v_list of bug b1. Bug b1 moves further and now the line of 

sight check is done between S3 and the current state. Since there is no visibility from S3 

to states after S3, the corner state S4 gets noted in b1 bugs v_list. This continues and once 

it reaches the m_line at L1, b1 becomes idle and waits. The reason is because bug b2 has 

already reached this state and noted L1 in its leave_list. So b1 waits till other bugs (b2 in 

this case) either reaches G or terminates. Bug b2 reaches the goal and the v_list state 

after L1 for b2 i.e G is hence added to b1’s v_list, thus making it complete. Figure 5.3 

shows the result of line of sight check between successive states in v_list for both bugs. 

MBPP terminates by outputting the shortest path identified (S, S1, S2, G). 

 

Fig. 5.2: MBPP implementation. 

 

Fig. 5.3: Paths found by MBPP. 
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Figure 5.4 shows one more example which intuitively explains how search in MBPP 

algorithm is propagated, by way of multiple bug generation. After making a loop, bug 

b1 (path shown as blue line) meets its own hit point at H1 and hence is terminated. Bug 

b2 (path shown as dashed line in red) meets the hit point H2 that has already been 

reached by b1 and hence it waits. Bug b3 (path shown as green) actually reaches the 

goal, which is generated after b1 hits at H2. 

 

Fig. 5.4: Another example for MBPP implementation. 

5.5 FLOW CHART 

Figure 5.5 shows an example environment with two obstacles in-between the start and 

the goal state. Three bugs will be generated as the algorithm propagates. Neglecting the 

last part of finding the optimal path, the flow chart in Fig. 5.6 illustrates the step by step 

process on how the bugs are generated and propagated. The algorithm runs until the 

third bug (b3) reaches the goal state, while the other two bugs (b1 and b2) are made to 

wait. 

 

Fig. 5.5: An example environment with two obstacles. 
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Fig. 5.6: Flow chart depicting the structure of MBPP. 

5.6 MBPP CONDITIONS 

Following are the set of important conditions that are applicable for MBPP algorithm. 

1. Condition C1 : Termination conditions 

• C1(a): If a bug is following an obstacle Oi and if it meets the boundary of the 

map M such that any action taken is unsuccessful and will not result into any 

state, as the bug is not allowed to take previously visited state and it is not 

allowed to select a state away from the obstacle Oi wall, then that means the bug 

has reached a wall and there is no direct path. So, the bug should be terminated. 
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• C1(b): If a bug while following an obstacle Oi lands in a state S = Lk that is listed 

as the latest (the most recently added) leave state in the bugs leave_list, i.e. 

leave_list = [𝐿1, 𝐿2, … , 𝐿𝐾], then that bug has completed a loop without finding 

goal state. This bug is not helpful and hence has to be terminated.  

• C1(c): If while following an obstacle Oi, a bug ends up in a state S that is already 

in the hit list of any of the bugs i.e. S ∈ anyof(hit_list)j ∀ j = 1...n, where n is the 

number of bugs, then that bug can be terminated. 

2. C2 : Leaving conditions 

• C2(a):  If a bug while following an obstacle Oi lands in a state S that is in m_line, 

then leave the wall following behaviour and take greedy steps thereafter.  

• C2(b): If repetition = True, do line of sight check between current state and next 

state in the v_list of the bug, if visible then leave wall following behaviour. 

3. C3 : Waiting condition 

• If a bug while following an obstacle Oi moves to a state Lk such that condition 

C1(b) is False and Lk ∈ anyof(hit_list)j ∀ j = 1...n, where n is the number of bugs, 

then make the bug wait till other bugs end their iteration. 

4. C4 : Action selection conditions 

• MBPP assumes MDP (Markov Decision Process) properties; since the next state 

Snew ‒ to be chosen from a given state S is not dependent on the history of states 

{𝑆𝑔, 𝑆1,......}. If the bug is not following any wall or hasn't hit any obstacle Oi 

yet, and is moving in m_line, then, action selection will be greedy, given by 𝑎 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑛𝑒𝑖𝑔ℎ𝑏(𝑆)[𝑟𝑟] i.e. bug moves to the neighbouring state which has the 

largest rr value. But, action selection for the bug which has just taken birth from 

its parent bug, (because of hitting an obstacle) is not greedy at this instant and 

the new bug will take a state on the other side of its parent bug - no matter what 

this state’s rr value is. At every action selection step, bug is not allowed to visit 

from where it came from, by having a note of its previous two visited states. If 

the bug is following an obstacle and it has already taken at least one step along 

the wall, then action selection is again greedy as given by 𝑎 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑛𝑒𝑖𝑔ℎ𝑏(𝑆)[𝑟𝑟]. 
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5.7 PROPERTIES OF MBPP 

Following are the properties exhibited by MBPP with formal proofs. 

Lemma 1: MBPP is correct 

Proof: MBPP is a planning and re-planning algorithm. MBPP initially finds set of 

states representing the corners of the obstacles, including the start and goal states. After 

finding the desired set of states, MBPP employs path smoothing and line of sight 

techniques to check if the path is feasible or not. By definition of feasibility we mean 

navigable and obstacle free. If the path is clear, then MBPP terminates outputting the 

found path. But if it finds any occupancy during the path, then re-planning part of 

MBPP starts and the algorithm propagates the search along the boundary of the newly 

identified obstacles, in order to find the feasibility and corner states of that obstacle. 

Once the corners are found, then again MBPP performs check for optimality as well as 

feasibility until it finds a path that is shorter and unblocked (navigable). This proves the 

correctness of MBPP algorithm. 

Lemma 2: MBPP is complete 

Proof: MBPP propagates the search in the direction of target and in case of obstacle 

collision; it splits the search and exploits in both possible directions thus guaranteeing 

the path finding behaviour if a path exists. If P is empty i.e. the set of all possible paths 

to the goal is NIL, then all the bugs in MBPP runs over walls and boundaries and hence 

gets terminated,  reporting no path status. Thus MBPP is complete and terminates in all 

cases. In fact, MBPP finds shortest possible realistic path for a given environment with 

or without obstacles, rather than restricting the path to grid edges as is the usual case of 

A*. 

Lemma 3: No two bugs travel the same path in the same direction 

Proof: Bugs after leaving the hit state move in either direction and hence there is a 

possibility that they meet in opposite direction, but they can never move in the same 

direction. For the bug to move in the same direction, it must have the same leave state 

L as contained by some other bug. But according to condition C3, when the bug meets 

the state already left by some other bug, then that bug is made idle. Hence, no two bugs 

can move in the same direction. 
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Lemma 4: MBPP does not end in infinite looping and infinite bug generation 

Proof: Generation of bugs and looping occurs whenever a bug meets any of the 

already hit states and is allowed to proceed. Since MBPP uses condition C1(c), bugs are 

terminated whenever they meet already hit state and so there is no possibility of 

repeatedly visiting already visited hit states. Also, infinite bug generation occurs when 

we allow the bug to proceed further, even when the bug while its travel meets its own 

recent leave state as noted in respective leave_list. The reason is obvious. Any leave 

state is a state in m_line and so when the bug which has the root from say Lk revisits Lk, 

then it assumes the same path, hit the wall and generate one more bug unnecessarily 

making an infinite loop. But MBPP which utilizes condition C1(b) terminates this bug 

and hence eliminate the danger of infinite bug generation. 

5.8 MBPP PSEUDOCODE 

Algorithm 2 given in Appendix A.2 shows pseudocode for the main MBPP program 

which uses two functions viz. line of sight and path smoothing. Pseudocode for line of 

sight check (denoted as LOS()) is given in Algorithm 4, while pseudocode for the path 

smoothing part of MBPP (denoted as Pat_smooth()) is given under Algorithm 5. 

It has to be noted that MBPP algorithm plans a realistic path by checking line of sight 

between the given two states using two straight lines that join the two direct visible 

corners of the state cells such that the two lines are the farthest possible lines from the 

center of travel. For both the set of corners, line of sight check will be performed. 

Simulation results for MBPP is provided in the following chapter. 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

This chapter discusses the results obtained using the proposed methods for map building 

and path planning. First, the map building results for several images in 2PP followed 

by 3PP will be presented. Then, the results of MBPP algorithm implemented on the 

deduced maps of the example single images will be dealt. Six error metrics have been 

considered in evaluating the efficiency of the map building method and the same have 

been discussed through error box plots. For MBPP, the simulation results of the 

algorithm were compared with the simulation results of standard A* algorithm. 

6.1 MAP BUILDING EXPERIMENTAL RESULTS 

As part of experiments, several images consisting mostly of real world objects like 

boxes, chairs, tables etc. were captured using ordinary monocular camera. The 

algorithm was also tested on images with some of the objects being partially occluded. 

Assuming that bounding boxes can be inscribed around all the objects, box shaped 

objects were used in most of the captured scenes to assist in fast and easy recognition 

of the corners, edges, and also vanishing points. Nevertheless, we also present results 

without considering bounding boxes, for both 2PP and 3PP image examples. Figure 6.1 

shows one such experimental environment depicting a scene in 2PP.  

 

Fig. 6.1: An example image in 2PP. 
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In this thesis work, we considered that the object shapes were given in priori for the 

sake of evaluation of the proposed methods. This is accounting to the fact that several 

computer vision algorithms are available for finding edges, separating floor and objects, 

and also for finding vanishing points. Experiments to evaluate the influence of skew 

and distortion (of the camera) on floor map construction were not done. That's because 

these parameters in most of today's cameras (especially mobile phones) are negligible. 

Nonetheless, the experiential images were taken using different cameras to evaluate the 

errors in map building. Regardless of the camera chosen and despite the negligence of 

the two properties, the results have proven to be quite satisfactory. 

Note that all the length measurements were in centimetres in this thesis. Results for 2PP 

and 3PP cases were dealt separately with all the necessary plots. Proposed method was 

implemented using Mathematica™. A generalized pseudocode is provided in Appendix 

A.1 under Algorithm 1, which is applicable for both 2PP and 3PP cases, considering 

camera roll (𝜃𝑟𝑜𝑙𝑙) also. To validate the method, the generated maps were compared 

with their corresponding ground truths. Ground truth (measurements) includes: 

• Height of the camera position and its tilt (pitch and roll). 

• Dimensions of objects ‒ l,b,h if rectangle parallelepiped, or bounding size of 

objects, including its height, if shape of the objects are anything else other than 

rectangle parallelepiped. 

• Distance of the objects’ nearest base corner to the camera centre projection on 

the ground, measured in x and y direction of the assumed world coordinate 

system. 

• Angle made by the edges of the bounded objects with the x-axis of the world 

coordinate system. 

To check the error bounds, a scale factor was estimated manually for each experimental 

image such that the object measurements (with their relative positions) taken physically 

at the site will be scaled up/down to the constructed map scale. Scale factor 𝑆𝑘 

estimation is given in eq. (6.1), where, L1 and B1 are the dimensions (length, breadth) 

of the reference object as measured from experiments (model dimension value). Let L2, 

B2 are the actual dimensions of the reference object.  

𝑆𝑘 = 
1

2
 (

𝐿2

𝐿1
+ 

𝐵2

𝐵1
)       (6.1) 
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Station point has been considered as the origin of a reference coordinate system while 

building comparison floor maps. For quantifying the errors, actual world dimensions 

have to be scaled up/down to that of the modelled world dimensions. Note that the 

scaling factor 𝑆𝑘 is decided using the reference object (first object) only, regardless of 

other object dimensions. Based on the reference 𝑆𝑘, all other objects will be brought to 

the same factor. 

6.1.1 Error Metrics  

Figure 6.2 shows the notations used to evaluate the errors in order to validate the 

proposed method. Six error metrics were considered to strengthen the comparisons with 

the ground truths. They are listed below. 

1. Percentage error in centroid shift = (
𝑑𝑐𝑚

𝑑𝑎
) ∗ 100% 

2. Percentage error between distance of centroid from camera centre/view-point of 

the actual scaled object and centroid distance of the modelled object = 

(
𝑑𝑚 −  𝑑𝑎

𝑑𝑎
) ∗ 100% 

3. Percentage of area coincidence/overlap of modelled object with area of the 

actual object scaled = (
𝐴𝐶𝑚

𝐴𝑎
) ∗ 100% 

4. Percentage error between area of actual scaled object and area of object from 

model = (
𝐴𝑚 −  𝐴𝑎

𝐴𝑎
) ∗ 100% 

5. Error in angular pose of centroid w.r.t. horizontal = (𝜃𝑚 − 𝜃𝑎) in degrees 

6. Error in skew angle (angle of tilt of object) = (𝛽𝑚 − 𝛽𝑎) in degrees 

where,  

𝑑𝑚 = Euclidian distance of centroid of the modelled object from view point 

𝑑𝑎 = Euclidian distance of centroid of the actual object from the view point, positioned 

and dimensioned by scaling factor 𝑆𝑘 

𝑑𝑐𝑚 = Euclidian distance between the centroids of the actual object (𝐶𝑎) and the 

modelled object (𝐶𝑚) 

𝐴𝑚 = Area of the object from the model (given by 𝐿𝑚. 𝐵𝑚) 

𝐴𝑎 = Actual Area of the object found using ground truths, scaled by 𝑆𝑘 (given by 

𝐿𝑎 . 𝐵𝑎) 

𝐴𝑐𝑚 = Area of the coincident zone between the modelled object and the actual object, 

positioned w.r.t. view point 
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𝜃𝑚 = Orientation of the centroid of the modelled object (angular pose) w.r.t horizontal 

𝜃𝑎 = Orientation of the centroid of the actual object (angular pose) w.r.t horizontal 

𝛽𝑚 = Orientation of the modelled object’s side (skewness) w.r.t horizontal  

𝛽𝑎 = Orientation of the actual object’s side (skewness) w.r.t horizontal 

 

Fig. 6.2: Notations used for finding errors. 

6.1.2 Results for 2PP Images 

Experiments have been carried out with the help of several images in 2PP. Results of 

the 2D and 3D map construction for some of the images are shown in Figures 6.3−6.7. 

In all the images (Figures 6.3−6.7), the actual captured scene is shown in (a), the 

constructed 2D free space map for the given scene is shown in (b) where ground truth 

objects (yellow coloured rectangles) were overlaid on top of the modelled objects (blue 

coloured polygons) and (c) represents the 3D representation of the given scene 

depicting the view of the scene, as seen from the camera (the camera centre being shown 

as yellow coloured blob).  Another 3D view of the reconstruction is shown in (d), for 

better visualization of how the objects are lying relative to one another and also w.r.t. 

the cyan coloured camera centre.  
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Fig. 6.3: 2PP Experimental result – 1. (a) Actual image in 2PP consisting of a robot, 

chairs and a table. (b) Constructed Floor map (2D map). Our method was able 

to construct other shapes (like the pentagonal chair) apart from the regular 

cuboid construction. (c) 3D reconstruction (d) Another clear 3D view 

 

Fig. 6.4: 2PP Experimental result – 2. (a) Actual image in 2PP (b) Constructed floor 

map (c) 3D reconstruction (d) Another clear 3D view  
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Fig. 6.5: 2PP Experimental result – 3. (a) Actual image in 2PP (b) Constructed floor 

map (c) 3D reconstruction (d) Another clear 3D view 

 

Fig. 6.6: 2PP Experimental result – 4. (a) Actual image in 2PP (b) Constructed floor 

map (c) 3D reconstruction (d) Another clear 3D view  
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Fig. 6.7: 2PP Experimental result – 5. (a) Actual image in 2PP with one partially 

occluded table in the scene. (b) Constructed floor map (c) 3D reconstruction 

(d) Another clear 3D view 

Following set of graphs (Figures 6.8−6.13) illustrates the error results for 2PP images, 

considering nine example image set. All the error plots are done in the form of box plots 

to visualize the error ranges for each example image. Note that in each experiment there 

are multiple objects. Figure 6.8 shows the boxplot of centroid shift error (percentage 

shift of centroid) for each experiment considering several objects.  

 

Fig. 6.8: Box plot of percentage deviation of centroids. 
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For example, experiment 1 consists of three objects. Worst case error in centroid shift 

of the modelled object compared with the actual centroid position of the scaled object 

is within ±9.5%. Figure 6.9 shows the boxplot results showing the error ranges of 

distance to centroid of the modelled object from the view point in comparison with 

distance to centroid of the actual ground truth object positons, scaled by 𝑆𝑘. Boxplot 

results shows that the errors are within the range of ±5%.  

 

Fig. 6.9: Box plot of percentage reductions in distances to centroids. 

 

 

Fig. 6.10: Box plot of percentage area of overlap. 
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Results of the boxplot shown in Fig. 6.10 is very interesting. It shows the percentage 

area overlap between the modelled objects and the actual ground truths. In most cases, 

the worst case mismatch was around 55% while the best case match showing the correct 

overlap was around 95%, which is very good approximation from the model.  

 

Fig. 6.11: Box plot of percentage error in area measurement. 

 

Fig. 6.12: Box plot of percentage error in angular pose of the centroids. 

Figures 6.11−6.13 show the boxplots for percentage error in numerical area 

measurement (considering dimensions), percentage error in angular pose of the 
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centroids relative to world coordinate system and finally percentage error in skew 

angles (orientation between actual and modelled object angle w.r.t. reference coordinate 

system). Their error ranges are within ±9%, ±6% and ±20% respectively. 

 

Fig. 6.13: Box plot of percentage error in skew angles. 

It's worth mentioning here that the differences in measurements arise because of several 

factors. The possible sources of error are: 

1. Human errors occurred while taking physical measurements of the objects and 

their distances using error-prone (erroneous) tools.  

2. It's never accurate to measure the exact position of the camera centre and so 

there might be errors in height and distance measurements relative to the 

camera/view point. 

3. During experiments and as time progresses there are chances that the camera 

got tilted from its previous orientation which would have resulted in some pitch 

angle and also in change of height. 

4. Similarly, vanishing point detection is quite challenging owing to the chances 

of inaccurate edge detection.  Even a small variation in vanishing point positions 

would result in drastic errors in ground height, object dimensions, angles (𝜃1
 , 𝜃2

  

and 𝜃3
 ) and also in distance dp measuring the distance of the new image plane 

from the original image plane. This might be the first reason because of which 

percentage errors for some of the object's parameters reached around 5%, 

especially for ground height and d estimations. 
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5. Distortion due to cone of view of the camera. From the experimental results, it 

was observed that the farther the objects are (along the boundaries of the 

imaginary camera cone), more was the distortion. 

6.1.3 Results for 3PP Images 

Just like in 2PP case, as part of 3PP experiments also, several scenarios with different 

objects had been considered. Some of the images included unclear-edged tables as 

shown in Fig. 6.14. The Camera was given a pitch angle of up to 45 degrees (since most 

of the CCD camera won’t have much tilt) and the height of the camera was varied from 

0.2 meters to 2 meters from the ground level. In other words, experiments had been 

carried out on real world room-sized scenarios as well as on small sized table-top 

setups. In all the cases, results turned out to be interesting, with minimal distortion 

errors. Similar to 2PP case, non-parallelepiped bounding objects in one of the example 

images for 3PP were considered. Interesting part of the experiments included capturing 

images with partially occluded objects - with non-clear view of edges and also corners. 

In all the experiments, accurate results with acceptable error ranges were observed. 

Figures 6.14 to 6.17 show some of the experimental results. 

 

Fig. 6.14: 3PP experimental result – 1. (a) Actual image with five objects in 3PP (b) 

Constructed floor map (c) 3D reconstruction (d) Another clear 3D view 
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Fig. 6.15: 3PP experimental result – 2. (a) Actual image with five objects in 3PP (b) 

Constructed floor map (c) 3D reconstruction (d) Another clear 3D view 

 

Fig. 6.16: 3PP experimental result – 3. (a) Actual image in 3PP including a Robot, 

chairs and a table (b) Constructed floor map (c) 3D reconstruction (d) 

Another clear 3D view 
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Fig. 6.17: 3PP experimental result – 4. (a) Actual image in 3PP, with one table being 

occluded by the other table - covering important features (corners and edges). 

(b) Constructed floor map (c) 3D reconstruction (d) Another clear 3D view 

Following set of graphs (Figures 6.18−6.23) illustrates the error results for 3PP images, 

considering eight sets of example images. For example, experiment 1 consists of five 

objects. 

 

Fig. 6.18: Box plot of percentage deviation of centroids. 
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Worst case error in centroid shift of the modelled object compared with the actual 

centroid position of the scaled object is within +6%. Figure 6.19 shows the percentage 

reductions in distances to centroids of the modelled objects from their actual positions. 

Boxplot results show that the errors are within the range of ±3%. Results in Fig. 6.20 

shows the percentage area overlap between the modelled object and the actual ground 

truth object. 

 

Fig. 6.19: Box plot of percentage reductions in distances to centroids. 

 

Fig. 6.20: Box plot of percentage area of overlap. 
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The areas off overlap directly defines the space occupied by the actual object. In most 

examples, just like we noted in 2PP case, the worst case mismatch was around 55% 

while the best case match showing the correct overlap was around 95% which is very 

good approximation from the model.  Figures 6.21−6.23 show the boxplot for 

percentage error in numerical area measurement (considering dimensions), percentage 

error in angular pose of the centroids relative to world coordinate system and finally 

percentage error in skew angles (orientation between actual and modelled object w.r.t. 

reference coordinate system). Their error ranges are within ±25%, ±4% and ±20% 

respectively. 

 

Fig. 6.21: Box plot of percentage error in area measurement. 

 

Fig. 6.22: Box plot of percentage error in angular pose of the centroids. 
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Fig. 6.23: Box plot of percentage error in skew angles. 

6.2 MBPP SIMULATION RESULTS 

MBPP algorithm has been coded in Python. For comparison purpose the formal post-

smoothed A* (A* PS) algorithm (Hart et al., 1968) has been considered with some 

changes for realistic path planning, which was also coded in Python. A* is known for 

its optimal path finding capability and the algorithm is complete, meaning it finds path 

if one exists, else terminate reporting that. Post smoothing for A* is an attempt to 

minimize unnecessary heading changes as is usually observed in standard A* 

algorithm. Further, for better evaluation purposes, optimized A* PS has also been 

optimized in some best possible ways.  

Figure 6.24 shows an implementation of MBPP algorithm on a constructed 2D map, 

obtained from the 3PP single image, shown in Fig. 6.14. The input to the MBPP 

algorithm is an occupancy grid map, start position of the robot and the goal state as 

shown in Fig. 6.24(b). MBPP finds all feasible paths from the start to the goal state as 

shown in Fig. 6.24(c). The algorithm finally outputs the best feasible path that turns out 

to be optimal, as shown in Fig. 6.24(d). 
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Fig. 6.24: MBPP implementation on a 3PP map. (a) Original 2D map (b) Occupancy 

grid mapping and implementation of MBPP (c) Possible paths (d) Optimal 

path chosen by MBPP algorithm 

Apart from considering the map results, like the example shown in Fig. 6.24, several 

other environments had been considered as part of the experiments. Environments 

considered include real life home maps, work and office maps, game maps, including 

environments that are free (with no obstacles) and environments with no path (blocked 

way). For each world considered, ten trials were run for both MBPP and A* PS and the 

simulation results (path length and run time) were taken for all the trials. Figures 6.25 

and 6.26 shows the mean runtime and path length results for fifteen such maps.  

 

Fig. 6.25: MBPP Vs A* (runtime). 
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Fig. 6.26: MBPP Vs A* (path length). 

As can be seen, path lengths found by MBPP is same as that found by A* PS in almost 

all the cases. But for some environments, MBPP found shorter paths compared to A* 

PS.  Runtime results for MBPP are better (lesser computation time) than A* PS in all 

the example cases.  Thus, MBPP is shown to have advantage over the most used A* 

algorithm with post smoothing. 

The experimental results provided above for map building confirms that the proposed 

generalized method is suitable for building free space maps that are well applicable for 

real time robot navigation tasks. Because the errors are less, the generated map from a 

single image can thus be fed directly to the robot for path planning purpose. The results 

of the proposed path planning algorithm are optimal in all the cases and have the added 

advantage of giving all feasible paths. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1 SUMMARY 

Methods for building scaled 2D and 3D maps using single 2PP/3PP image were 

introduced in the first part of this thesis work. Proposed methods are based on the 

geometry of images using the concept of vanishing point. Although the methods employ 

construction of top views using geometrical projections, mathematical relations derived 

in this paper would ease the process of finding the required parameters from the images. 

The derived relations are minimal in number, are simple, and are easy to implement. 

The common approach proposed for both the cases (2PP and 3PP) uses the concept of 

simple geometrical shifting of all objects such that they measure same ground depth as 

measured by a reference object in the same image; thus, demonstrating robustness of 

the approach. The process of camera resectioning (also called camera calibration) for 

finding the camera’s intrinsic and extrinsic properties are thus eliminated using simple 

mathematical relations developed in this paper.  

The proposed methods are likely to be best fit for applications where camera calibration 

process needs to be eliminated or when calibration is not at all possible. Given an image, 

the methods can literally find the objects’ relative placement in the world, provided that 

the world is captured in perspective, with provision for establishing vanishing points.  

Although the methods are initially developed for robotic applications to implement 

planning algorithms to plan a path for navigation tasks, due to the flexibility of the 

approach, it can also be implemented for the more general single view metrology 

problems.  

3D reconstruction was shown possible using the methods proposed in this work. The 

idea/method will be useful in many applications like surveillance, image understanding, 

motion planning, outdoor autonomous vehicle navigations, architecture, augmented 

reality, virtual reality etc. Theorem 1 proved that 2PP is a special case of 3PP, thus, the 

mathematical procedure stated for 3PP can be considered as a generalized one, helping 

in a higher chance of consideration for future applications. A new path planning 

algorithm (MBPP) had been introduced in this thesis which was implemented on the 

constructed maps. 
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7.2 CONCLUSIONS  

The following list provides the conclusions deduced from the research on single image 

metrology for map building and the new path planning algorithm as well. 

1. It is possible to generate 2D and 3D maps using single image, captured using 

monocular cameras. Free space map construction is possible for images either in 

2PP or 3PP images. A generalized algorithm has been developed. 

2. The proposed method for map construction eliminates the need for camera 

calibration and use of costly stereo vision cameras for map reconstruction. 

3. Experimental results showed that the generated maps are matching well with the 

ground truths. Images taken with cameras that are positioned at higher heights 

(more than 2 meters) showed lesser errors and the area coincidence percent of the 

modelled objects compared with the actual scaled objects’ positions showed very 

good overlap. So, the methods are very well applicable for scenarios like CCD 

cameras.  

4. Table top experiments with small objects (positions and angles accurately 

measured) and with very less height of the cameras (as low as 20 cm) also gave 

good results, thus helping in supporting the hypothesis that the proposed methods 

are applicable for all sizes of the scenes.   

5. Observations from most of the experiments showed that construction of the objects 

which are near to the camera exhibited lesser mismatch with minimal errors, relative 

to the objects that are positioned farther from the camera. Farthest objects showed 

some mismatch (within the ranges mentioned in the plots) due to some reasons. One 

possibility could be distortions (optical, perspective or even image distortions), 

which appears more prominent for farther objects than nearest objects.  

6. Careful selection of vanishing points resulted in very accurate map with minimal 

errors in area as well as angular poses. Percentage match went up to 96%. But 

careless selection resulted in mismatch up to 50%. In any case, the deviations in 

centroid shift are not that high and are within the error ranges as shown in the plots 

for both the cases.  

7. MBPP algorithm proposed here was found to be better than the existing algorithms 

for path planning.  
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7.3 FUTURE SCOPE 

Although the methods are initially developed for robotic applications of using the built 

map to implement planning algorithms to plan a path for navigation tasks, because of 

flexibility of the approach and by observing the results from the experiments, it can 

clearly be stated that the methods can best be implemented for the more general single 

view metrology problems. 3D reconstruction was also shown possible using the 

methods proposed in this work. We therefore suggest the methods for several 

applications that includes: surveillance, motion planning, outdoor autonomous vehicle 

navigations, Architecture, image understanding, Augmented reality, Virtual reality, 

Mixed or even Modulated reality etc. As part of the experiments it was assumed that 

the position of vanishing points and objects’ corners were known and supplied to the 

algorithm as raw inputs. Incorporating a method for automatic detection of vanishing 

points and objects' corners along with the developed map building methods would make 

the whole process a complete package. This could be potential future work in making 

the proposed algorithm much more user friendly. Further, the combination of data-

driven methods (especially for programmatical evaluation of raw inputs to supply to 

the proposed single image geometric metrology) could be foreseen as an interesting 

extension of this work. 

As part of MBPP algorithm, the initial focus of the work was to develop an algorithm 

that could possibly be employed for both offline and online cases with minor changes 

such that whenever robot encounters changes in the given environment, it could switch 

from offline mode to online mode, in order to plan near optimal paths. While in this 

paper, we experimented and proved the applicability of MBPP algorithm for offline 

environments, the adaptability and usage of this algorithm for online mode is left for 

future research. Optimization of bug travel lengths, minimization of bug generations 

and smoothing of paths at all heading changes (by incorporating Bezier or spline 

curves) are three more concerns for future works. 
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APPENDICES 

A     PSEUDOCODES  

A.1    Algorithm 1: Generalized algorithm for Single Image Metrology of 2PP and 3PP 

A.1(a): Main Algorithm  
 

Algorithm 1: Generalized Algorithm for Single Image Metrology of 2PP and 3PP Images  

1. Main () 

2. { 

3. Initialize n = No. of objects (of interest) in the image 

4. Bottom left corner of the Image frame as origin for the reference coordinate system in (x, y) 

5. imgcor = coordinates of top right corner point of the image frame 

6. Inputs: 

7. p = vector of base nearest corners of all n objects = {(𝑥1 , 𝑦1)
𝑃 , (𝑥2 , 𝑦2)

𝑃 , ……(𝑥𝑛 , 𝑦𝑛)
𝑃} 

8. q = vector of base right most corners of all n objects = {(𝑥1 , 𝑦1)
𝑞 , (𝑥2 , 𝑦2)

𝑞 , ……(𝑥𝑛 , 𝑦𝑛)
𝑞} 

9. r = vector of base left most corners for all n objects = {(𝑥1, 𝑦1)
𝑟 , (𝑥2 , 𝑦2)

𝑟 , ……(𝑥𝑛 , 𝑦𝑛)
𝑟} 

10. v = vector of top nearest corners of all n objects = {(𝑥1, 𝑦1)
𝑣 , (𝑥2 , 𝑦2)

𝑣 , ……(𝑥𝑛 , 𝑦𝑛)
𝑣} 

11. s = vector of top left corners of all n objects = {(𝑥1 , 𝑦1)
𝑠 , (𝑥2 , 𝑦2)

𝑠 , ……(𝑥𝑛 , 𝑦𝑛)
𝑠} 

12. 𝜒 =  
2 𝑓𝑜𝑟 2𝑃𝑃 𝑐𝑎𝑠𝑒
3 𝑓𝑜𝑟 3𝑃𝑃 𝑐𝑎𝑠𝑒

 

13. Repeat for all k 

𝑣𝑝[𝑘] = {(𝑥1 , 𝑦1)1
𝑘 , … . . (𝑥1 , 𝑦1)†

𝑘} 

14. until (k = 1 to n) 

15. box_topview(i=1) 

16. if (𝜒 == 2) then 

a. imcenter = imgcor/2 

b. ht[1] = EuclideanDistance(v[1], p[1]) 

c. d = perpendicular distance from view point vpoint[1] to the line joining VP’s;  

           vp[1][1] and vp[1][2] 

d. for all (i = 2 to n) do 

ht[i] = euclid(v[i], p[i]) 

hd = perpendicular distance between parallel lines through p[i] and p[1],  

       both  at an angle 𝜃𝑟𝑜𝑙𝑙  to the horizontal 

h2 = perpendicular distance from base point p[i] to the line joining VP’s;  

        vp[1][1] and vp[1][2]  

dp[𝑖] =
hd . d

h2
 

box_topview(i) 

17. if (𝜒 == 3) then 

a. imcenter =  Point of intersection of altitudes of the triangle formed by three  

                       VP’s; vp[i], where i = 1, 2, 3 

b. 𝑑 =  √𝑂𝐺. 𝑂𝐶 

c. 𝜃 =  tan−1 (
𝑑

𝑂𝐶
) 
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                      d. for all i = 1 to n do 

k1 = perpendicular distance from base point p[i] to the line joining VP’s;  

        vp[1][1] and vp[1][2]  

           ℎ[𝑖] =  𝑘1. cos𝜃 

k2 = perpendicular distance between parallel lines through imcenter and  

        p[i],  both at an angle 𝜃𝑟𝑜𝑙𝑙  to the horizontal 

                                 𝛽[𝑖] =  𝑡𝑎𝑛−1 (
𝑘2

𝑑
) 

i. if (i == 1) then 

                                          𝑏[1] = ℎ[𝑖]/ 𝑡𝑎𝑛(𝜃 + 𝛽[1]) 

campos = point on a line through vpoint[1] perpendicular to line   

                 joining vp[1][1] and vp[1][2] at a distance b[1] from it  

                 towards vpoint 

ke[1] = perpendicular distance between parallel lines through v[1]  

             and p[1],  both at an angle 𝜃𝑟𝑜𝑙𝑙  to the horizontal 

k2 = perpendicular distance between parallel lines through  

        imcenter and v[1],  both at an angle 𝜃𝑟𝑜𝑙𝑙  to the horizontal  

if imcenter
y
 < v[1]

y
 then k3 = ‒k3 

𝛾[1] =  𝑡𝑎𝑛−1 (
𝑘3

𝑑
) 

ℎ𝑡[1] =  𝑘𝑒[1] ∗ cos(𝜃) + 𝑘𝑒[1] ∗ sin(𝜃) ∗ tan(𝜃 + 𝛾[1]) 

ii.  else 

𝑞𝑝𝑒[𝑖] = (ℎ[1] − ℎ[𝑖])/ 𝑡𝑎𝑛(𝜃 + 𝛽[1])  

𝑝𝑞[𝑖] = (ℎ[1] − ℎ[𝑖])/ 𝑡𝑎𝑛 𝜃 

bnew[i] = b[1] + pq[i] + qpe[i] 

box_topview(i) 

𝑘𝑒[𝑖] = (ℎ[1] −  ℎ[𝑖]) ∗ cos(𝛽[𝑖])/sin(𝜃 + 𝛽[𝑖]) 

k2= perpendicular distance between parallel lines through v[i] and  

        p[i],  both at an angle 𝜃𝑟𝑜𝑙𝑙  to the horizontal 

k3 = perpendicular distance between parallel lines through  

        imcenter and v[i],  both at an angle 𝜃𝑟𝑜𝑙𝑙  to the horizontal  

if imcenter
y
 < v[i]

y
 then k3 = ‒k3 

𝛾[𝑖] =  𝑡𝑎𝑛−1 (
𝑘3

𝑑
) 

𝐿[𝑖] =  𝑘2 +  𝑘𝑒[𝑖] ∗ tan(𝛽[𝑖]) − 𝑘𝑒[1] ∗ tan(𝛾[𝑖]) 

ℎ𝑡[𝑖] = 𝐿[𝑖] ∗ cos(𝜃) + 𝐿[𝑖] ∗ sin(𝜃) ∗ tan(𝜃 + 𝛾[𝑖]) 

iii.  show box[i] in a reference coordinate map for all (i = 1 to n) 

       18. if (𝜒 == 2) then 

                    show vpoint in the above coordinate image 

       19. elseif (𝜒 == 3) 

                    show campos in the above coordinate image 

       20. } 

       21. End of Main() 
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A.1(b): Function : box_topview() 
 

Function : box_topview(i) 

1. box_topview(i) 

2. { 

3. vpoint[i] = Point of intersection of vertical line through O inclined at (90
0
‒𝜃𝑟𝑜𝑙𝑙 )  

                  AND vanishing circle through vp[i][1] and vp[i][2] 

4. Γ1= slope/angle between line joining vp[i][2]and vpoint[i] with horizontal 

5. Γ2= slope/angle between line joining vp[i][1] and vpoint[i] with horizontal 

6. P[i]1 = Point of intersection of line through p[i] making angle (90
0
‒𝜃𝑟𝑜𝑙𝑙 ), AND  

            horizon line joining vp[i][1] and vp[i][2] 

7. Q[i]1 = Point of intersection of line through q[i] making angle (90
0
‒𝜃𝑟𝑜𝑙𝑙 ), AND  

            horizon line joining vp[i][1] and vp[i][2]  

8. R[i]1 = Point of intersection of line through r[i] making angle (90
0
‒𝜃𝑟𝑜𝑙𝑙 ), AND  

            horizon line joining vp[i][1] and vp[i][2] 

9. if (i == 1) then 

a. Pe[i]1 = P[i]1 

10. else 

a. if (𝜃𝑟𝑜𝑙𝑙  == 0) then 

if (𝜒 == 2) then 

Pe[i]
y
 = dp[i] + vp[i]

y 

elseif (𝜒 == 3) 

Pe[i]
y
 = campos + bnew[i] 

Pe[i] = point of intersection of line through vpoint[i], P[i]1 with    

            horizontal line y = Pe[i]
y 

      b. else 

if (𝜒 == 2) then 

dummy = {𝑃{𝑖}1
𝑥 − 𝑑𝑝[𝑖]. sin(𝜃𝑟𝑜𝑙𝑙 ), 𝑃{𝑖}1

𝑦
+ 𝑑𝑝[𝑖]. cos(𝜃𝑟𝑜𝑙𝑙 )}  

elseif (𝜒 == 3) 

      dummy = {𝑐𝑎𝑚𝑝𝑜𝑠𝑥 − 𝑏𝑛𝑒𝑤[𝑖]. sin(𝜃𝑟𝑜𝑙𝑙 ), 

                        𝑐𝑎𝑚𝑝𝑜𝑠𝑦 + 𝑏𝑛𝑒𝑤[𝑖]. cos(𝜃𝑟𝑜𝑙𝑙 )} 

Pe[i] = point of intersection of line through dummy having slope 𝜃𝑟𝑜𝑙𝑙          

   AND line through vpoint[i] and P[i]1 

11. Qe [i] = point of intersection of line through dummy having slope 𝜃𝑟𝑜𝑙𝑙  AND line    

            through vpoint[i] and Q[i]1 

12. Re [i] = point of intersection of line through dummy having slope 𝜃𝑟𝑜𝑙𝑙  AND line  

             through vpoint[i] and R[i]1 

13. box[i] = rectangle formed using Pe[i], Qe[i] and Re[i] 

14. Return box[i], vpoint[i] 

15. } 
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A.2     Algorithm 2: Multi-Bug Path Planning Algorithm  

A.2(a): Main Algorithm 

Algorithm 2 MBPP Algorithm pseudocode 

1: Main () 

2: Initialize 𝑆𝑆, repetiotion = True 

3: while repetiotion == True do 

4:  Initialize:  

 bug =1, rr, m_line, 𝑆𝑔 , v_list = [𝑆𝑆], hit_list = [], leave_list = [𝑆𝑆] 

5:  repeat ∀ bugs 

6:     Snew = action(S, bug); satisfying C4  

7:      if Snew == 𝑆𝑔then 

8:  v_list.append(Snew) 

9:  Terminate this bug 

10:      else if Oi NOT in neigh(Snew) then  

11:   Continue 

12:      else 

13:  if bug hits Oi first time then 

14:       Generate new bug ∀𝑝 ∈ (bug, bug+1) 

15:       hit_list[p].append(Snew) 

16:       v_list[bug +1] = v_list[bug] 

17:  else 

18:        if condition C4 True then 

19:   Terminate the bug 

20:         else if not LOS(v_list, Snew) then 

21:    v_list.append(Sn) where Sn ∈ neighb(S,Snew), Sn is visible to latest   

                                state in v_list 

22:         else if condition C3 True then  

23:   leave_list.append(Snew); Add bug to wait_list  

24:        else if condition C2 True then 

25:   Stop wall following 

26:         else Continue 

27:  S = Snew 

28:      until  No bug  is left for iteration 

29:      n = no. of live bugs 

30:      if Sg not in all(v_list[i]) ∀ i ∈ (1,…n) then 

31:   Return no path found 

32:   break 

33:      else if Sg not in any(v_list[i]) ∀ i ∈ (1,…n) then 

34:  Append states to waiting bugs based on their leave_list 

35:      else  Continue 

36:      for all bugs do  

37:  dist = Sum of euclidian distance between successive elements of v_list[bug] 

38:      select_path = {v_list: v_list has least dist} 

39:      for all successive states in select_path do 

40:    LOS  and Path_smooth check 

41:    if NOT visible then 

42:         S = Pre-state to obstacle identified state 

43:          repetiotion = True  

44:          remove select_list from v_list 

45:  else 

46:         repetiotion = False 

47:         return shortest path is found  
   



94 
 

A.2(b): Function : line_of_sight Algorithm 
 

Algorithm 2 LOS(S1,S2) 

  1:  Initialize LOS = True 

  2:  (x1,y1) are S1 state coordinates; (x2,y2) are S2 state coordinates   

  3:  Rd = (x2 − x1); Cd = (y2 − y1); xk = x1; yk = y1   

  4:  diff = abs(Rd) − abs(Cd);   n =  abs(Rd) + abs(Cd) 

  5:  xinc = 1 if (x2 >  x1) else −1 

  6:  yinc = 1 if (y2 >  y1) else −1 

  7:  for all i ∀ (1,n) do 

  8:     if diff > 0 then 

  9:  xi = x1 + xinc; diff = abs(Cd)*2;  xj = (x1 + xi)/2 

10:  if (xj,yk) occupied then 

11:        return False; note = (xj,yk) 

12:   else  xj = xi; xk = xj 

13:      else 

14:  yi = y1 + yinc; diff −= abs(Rd)*2; xj = (y1 + yi)/2 

15:  if (xk,yj) occupied then 

16:        return False; note = (xk,yj) 

17:   else  y1 = yi; yk = yj    

18:  if i = n; return True 

 

 

 

 

 

 

 

 

     

    

A.2(c): Function :  path_smooth Algorithm 

Algorithm 3 Path_smooth(select_list) 

1:  K = select_list 

2:  S = K[1]; j = 1; SE = K[len(K) + 1] 

3:  while S ≠ SE  do 

4:      if LOS(S, K[j+1]) then 

5:   Remove states between (S, K[j]) from K 

6:  S = K[j] 

7:     j = j +1 

8:  return(K) 

 

B     PROCEEDURE FOR 2PP TOP VIEW CONSTRUCTION 

In this section, we brief the basic steps usually involved in finding view point of the 

camera in 2PP (Hart, 2009) as well as the procedure for constructing top view of the 

object (Ching, 36), given a perspective image with two vanishing points. For 

understanding and evaluation of the proposed method, we considered images with 

rectangular cuboid shaped objects. Given an image with vanishing points determined 

or marked on it, we can construct a vanishing circle with diameter equal to the distance 

between the two vanishing points.  
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Figure B.1 shows an object in perspective along with the terminology used in this thesis. 

This configuration/layout will be used as reference for explanation throughout this 

section. The two vanishing points (VP1 and VP2) lie on a horizontal straight line termed 

'horizon' as mentioned in section 2.1.  

   

Fig. B.1: Procedure for station point determination. 

The first step is to find the position of the view point on the vanishing circle. It has to 

be noted that the vanishing circle represents the trajectory (circle) along which viewing 

was done for the given configuration such that viewing from any position along the 

circle will result in two fixed vanishing points VP1 and VP2. The only difference is that 

the top view will change in terms of dimensions and orientation. A simple method has 

been discussed in (Hart, 2009) for finding the position of the view point. The method 

basically requires the image centre of the given image, procedure of which is outlined 

below: 

1. Find the intersection of the diagonals of the given image; image being in rectangular 

or square shape. This intersection represents the image centre denoted as O in Fig. 

B.1. 
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2. Draw a chord (horizontal line) that meets the vanishing circle on either side, denoted 

by C1C2 in Fig. B.1. Construct a semicircle with this chord length as diameter. 

3. Project O vertically until it meets this semicircle at say O'. This represents the view 

point of the camera (or a person viewing) with the viewing direction being 

perpendicular to the horizon line in top view.  

4. The vertical distance d between the image centre O and this newly drawn semicircle 

represents the distance of the camera/viewer to be stationed perpendicular from O 

away from the paper (considering the paper as our image plane). 

We now see the procedure for constructing top view of a single object given that we 

have found the view point (or projection point) O'. The horizon line VP1‒VP2 is usually 

considered as the image plane in top view. Position the view point O' from the image 

plane such that the perpendicular distance from the image plane is d and lies vertically 

along the line through O, the image centre. This will usually lie on the vanishing circle 

introduced as O' earlier. Join O' with VP1 and VP2. It should be noted that O'VP1 and 

O'VP2 are perpendicular to each other. In actual, these two lines indicate the sides of 

the object's perpendicular surfaces and extension of these surfaces to infinity which 

meets at vanishing points on either side (in top view).  

According to Thales theorem in mathematics, for any point on the circle, joining the 

diameter points with it will always make 90° angle. Our next step will be finding the 

dimensions of the object which are scaled by a scaling factor (say Sk) to the actual 

dimensions of the object in the real world. Dimensions are obtained by constructing top 

view from the given perspective image of the object. This is done in usual way as is 

done in arts/architecture. Figure B.2 illustrates the process.  

The procedure is outlined as follows (MacEvoy, 2015): 

1. Project the vertical edges of the bounding box onto the horizon line; i.e., Project the 

vertices r, p, q vertically until it meets horizon line at rh, ph and sh respectively. 

2. Join O' with vanishing points (VP1 and VP2). Note the angles 𝜃1 and 𝜃2 made by 

O'VP1 and O'VP2 with the horizontal at O'. Also, draw construction lines from O' to 

rh and sh. Extend the lines beyond rh and sh. 

3. Now, with one vertex of the object at ph, draw two lines such that they make same 

angles 𝜃1 and 𝜃2 with the horizon. The reason is simple, when stationed at O', object 



97 
 

will make 𝜃1 and 𝜃2 with the horizontal and hence the top view should also be 

aligned to the same angles with the image plane. 

4. Mark the intersections of these two lines with the construction lines drawn earlier 

(from O' passing through rh and sh). Mark these intersections as rp and sp as shown 

in Fig. B.2.  

5. Construct a parallelogram with phrp and phsp as sides. For the considered example 

in Fig. B.2, construction is shown as a rectangle (since it is a box) in red colour. The 

dimensions of the rectangular box (top view) can thus be obtained. 

 

Fig. B.2: 2PP object top view construction procedure. 

At this juncture, it's worth mentioning the important properties that we got so far: 

1. Scaled dimensions of the object given by phsp and phrp. 

2. Orientations of the object w.r.t. the camera view position given by 𝜃1, 𝜃2 and 𝜃3.  

3. Distance of the object measured between the object’s nearest corner ph to the camera 

position. 

4. Scaled height of the object given by the measure pq as shown in Fig. B.2. 

5. Scaled height of the camera axis from the ground plane that is measured by the 

distance pph.  
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