
RRTPI: Policy Iteration on Continuous Domains using
Rapidly-exploring Random Trees

Manimaran Sivasamy Sivamurugan and Balaraman Ravindran

Abstract— Path planning in continuous spaces has been a
central problem in robotics. In the case of systems with complex
dynamics, the performance of sampling based techniques relies
on identifying a good approximation to the cost-to-go distance
metric. We propose a technique that uses reinforcement learn-
ing to learn this distance metric on the fly from samples and
combine it with existing sampling based planners to produce
near optimal solutions. The resulting algorithm - RRTPI can
solve problems with complex dynamics in a sample efficient
manner while preserving asymptotic guarantees. We provide
experimental evaluation of this technique on domains with
underactuated and underpowered dynamics.

I. INTRODUCTION

The problem of finding feasible trajectories from a given
starting configuration to a goal in dynamical systems is a
central problem in robotics. This problem is known to be at
least PSPACE-hard [1]. One approach to solve this problem
is to directly use numeric solutions of the Hamilton-Jacobi-
Bellman equation. Other approaches formulate the problem
as a discrete Markov Decision Process (MDP). However
these methods suffer from the curse of dimensionality.

A popular class of algorithms that are resilient to this
issue are sampling based algorithms. These algorithms are
reasonably fast and efficient in terms of space [2]. Rapidly
exploring Random Trees (RRTs) are one such method that
are widely used [3]. RRTs have good space filling properties
and possess asymptotic completeness, i.e., they eventually
find a solution if one exists. However, they do not provide
any guarantees regarding optimality. In fact, it was shown
that they almost always converge to a sub-optimal solution
[4].

Recently, RRT* an extended version of the RRT method
has been developed that also guarantees asymptotic opti-
mality, i.e., they eventually converge to an optimal solution
as more samples are drawn [4]. However, these guarantees
are only asymptotic and the performance of RRT based
algorithms is highly dependent on the distance measure
used [5]. Even solving a simple two state variable control
problem with underpowered dynamics can require an in-
ordinate amount of samples due to poor exploration. The
reason being, in complex systems that are underactuated or
underpowered, the Euclidean distance between two points is
not a good estimate of the geodesic distance or the Carnot-
Caratheodory metric on the sub-Riemannian manifold in-
duced by the system dynamics. It has been shown that

S. S. Manimaran and B. Ravindran are with The Department of Computer
Science and Engineering, Indian Institute of Technology Madras, India
{ssm,ravi}@cse.iitm.ac.in

RRTs explore space efficiently only when the distance metric
reflects the true cost-to-go [6].

Thus, recent research has concentrated on identifying the
correct domain-dependent metric for efficient exploration.
Glassman and Tedrake linearize the system dynamics and
use affine quadratic regulators to derive this metric [7]. They
show that this results in improvemed exploration. Perez et. al.
integrated this technique into the RRT* algorithm to improve
exploration while aiming to obtain optimal solutions [8].
They used linear quadratic regulation (LQR) to determine
the cost-to-go function as well the tree extension procedure.
These methods assume that the dynamics are linearizable
and available in closed form. If the robot experiences failure
of some joints or picks up new tools, then these dynamics
may even change over time. The dynamics can also be
discontinuous or too complex to represent in closed form as
in the case of an octopus arm [9]. Thus in situations where
we cannot define exact closed form dynamics, we need to
learn the domain dependent metric from experience. This
will extend the scope of existing RRT based planners to a
wide range of domains that have complex dynamics.

One field that has traditionally looked at learning domain
dependent metrics from sample data is Reinforcement Learn-
ing (RL). Most RL techniques work by estimating the value
function, which is an sample based estimate of the cost-
to-go, of states from sample trajectories through the state
space [10]. While these techniques have been well studied for
discrete domains, continuous domains are more challenging
as generalization and approximation is required to learn
the value function. Obtaining a correct estimate depends
directly on the quality of the samples. A crucial problem
that limits the applicability reinforcement learning methods
to continuous domains, is ensuring generation of sufficiently
representative samples.

In this paper we propose RRTPI a hybrid approach that
combines RL with RRT style sampling. RL techniques
estimate the cost-to-go of states with minimum domain
knowledge, but they require a principled way of generating
sufficiently representative sample trajectories in continuous
space. On the other hand, RRT based algorithms possess
good exploration properties in continuous space, but re-
quire an estimate of the cost-to-go in order to work in
underactuated and underpowered domains. Combining these
approaches enable RRTPI to handle arbitrarily complex
domains without making assumptions on the form of the
system dynamics and costs. To the best of our knowledge
this is the first such hybrid approach combining these two
paradigms.



We first construct a discrete approximation to the given
problem by drawing samples. We then estimate the cost
to go pseudo-metric (or the value function) using policy
evaluation methods. Following which, we use the estimated
value function to again generate samples and form a bet-
ter discrete approximation. The process is thus repeated,
iteratively forming better approximations and solving them
till the original problem is solved sufficiently well. This
method, is in spirit, similar to the iMDP technique of
Huynh et. al. [11]. However, they do not handle complex
dynamics and rely on Euclidean distance to explore when
sampling. Our method works on complex domains with non-
linear dynamics and retains the asymptotic completeness and
optimality properties of RRT based methods.

II. PRELIMINARIES

A. Reinforcement Learning

We model the problem of finding an optimal path as
solving a Markov Decision Process(MDP). A continuous
MDP M is described as 〈S,A,T,R〉. S ∈Rn is the domain of
states. Each state has a corresponding set of allowed actions
As. This set may be discrete or continuous. The action set A is
defined as

⋃
s As. T (s,a,s′) is the probability of transitioning

from state s ∈ S on taking action a to a state s′. If the
transitions are deterministic we may write it as T (s,a) = s′.
R(s,a,s′) is the expectation of real valued rewards(or cost)
associated with taking action, a from state s∈ S, and reaching
state s′. These rewards are generally bounded in [Rmin,Rmax].
Given some starting state s0, we pick an action a0 resulting
in a state transition to some s1 according to T and a reward
r1 sampled from R. After a fixed time step, we pick the next
action and so on so forth, resulting in a sequence of states
actions and rewards s0,a0,r1,s1,a1,r2, . . .. Our objective is
to choose actions a0,a1, . . . such that we obtain maximum
cumulative reward or return. The return is defined as

∞

∑
t=0

γ trt ,

where rt is the reward at time step t and γ ∈ (0,1) is the
discount factor.

A policy π is a mapping from the state space S to the
action space A. π : S×As → [0,1] that is, it represents the
probability of choosing some action at a given state s. A
deterministic policy is usually denoted as π(s) = a where a∈
As. The state value function of a state Jπ(s) is the expected
return obtained by following policy π starting from the state
s. When the set S is discrete, we may express the value
function for a given policy using the Bellman equations as,

∀s ∈ S, Jπ(s) = ∑
a

π(s,a)∑
s′

T (s,a,s′)[R(s,a,s′)+ γJπ(s′)]

(1)
A policy π∗ is optimal if ∀s,π Jπ∗(s)≥ Jπ(s). The optimal
value function also denoted as, J∗ can be calculated by
replacing the expectation over set of actions in equation 1
with the max operator. When the state space is continuous,
we use parametric or non-parametric function approximation
techniques to represent J.

B. Policy Evaluation using TD(λ )

Equations 1 can be solved using dynamic programming
techniques [10]. In most real world scenarios however, the
transition probabilities are not available directly or are too
complicated to be represented explicitly. A popular class of
RL algorithms solve this problem by sampling, and estimate
the value function. This is known as policy evaluation.

The TD(λ ) family of algorithms is a basic method that
uses temporal differences to estimate Jπ [12]. Consider a set
of N trajectories of the form {s0,a0,r1,s1,a1,r2, . . .sMi}N

i=1 .
the TD(0) algorithm estimates the state value function using
the following update

Ĵ(st)← (1−α)Ĵ(st)+α(rt+1 + γ Ĵ(st+1)) (2)

0≤ i≤N , 0≤ t ≤Mi. The parameter λ is a measure of how
much credit is assigned to earlier states in the trajectory. It
serves to trade off bias and variance in the estimates with λ =
0 having least variance and most bias [12]. TD(λ ) converges
provably with appropriately decaying values of α .

Methods that handle continuous states usually assume a
functional form of Jπ to estimate the value [13], [14]. We use
TD(λ ) on the discrete MDP approximation of the continuous
problem, as given by a RRT based sampling technique, to get
point estimates of J. We then generalize the point estimates
to unseen states, by using nearest neighbor methods. Details
on the sampling technique and reasoning behind our choice
of the policy estimation technique are given in section IV. We
will first describe our sampling technique in the following
section.

III. RAPIDLY EXPLORING RANDOM SAMPLE TREES

In this section we briefly introduce RRTs and describe
how we use them to generate a ‘sample tree’ of trajectories to
approximate a given problem. Given a space S, the basic RRT
construction is as follows. The algorithm randomly samples
a point in the space and calculates the nearest node in the
existing tree from the sampled point. A new point is added
to the tree by moving a fixed distance in the direction of
the sampled state. If the resulting edge from connecting the
nearest point to the new point is collision free then the vertex
and edge are added to the tree. This is known as extending
the tree. Thus the tree is stretched outwards towards lesser
explored areas. This requires a distance measure for calculat-
ing the nearest vertex and extending the tree. RRTs possess
several attractive properties in terms of exploration. Given a
RRT G of size n with set of vertices V (G) and edges E(G)
constructed in some space S, then

lim
n→∞

Pr(s ∈V (G))→ 1, ∀s ∈ S

Also the probability that a node in the tree will be expanded
is proportional to the volume of its Voronoi region. This
accounts for the rapidly-exploring property of RRTs. We will
preserve this property while generating samples.

Given a control problem formulated as an MDP M , we
would like to generate sample trajectories using a RRT-like
procedure. We assume access to a generative model M̂ as



described by Ng and Jordan [15]. Given a state s and action a,
the model returns a sample from distribution of the next state
and a sample reward corresponding to a fixed time step. In
our algorithm, we generate samples based on a metric defined
by the value function. Thus the Nearest and Extend
functions are defined as shown below based on the metric
‖ · ‖J .

Function Nearest(s,X,‖ · ‖J)

Data: Set of states X , distance measure given by ‖ · ‖J
and a state s

Result: Return xnear ∈ X such that,
xnear = argmax

x∈X
‖x− s‖J

Function Extend(s,starget ,‖ · ‖J)

Data: Given state s and a target state starget and a
distance metric ‖ · ‖J

Result: A sample (sext ,aext ,rext) such that sext can be
reached from s on performing aext and is closest
to starget as defined by the distance metric

dmin←−∞1

for every a ∈ As do2

Sample (r′,s′)← M̂ (s,a)3

if ‖s′− starget‖J > dmin then4

dmin←‖s′− starget‖J5

(sext ,aext ,rext)← (s′,a,r′)6

end7

end8

Given a real valued function J (the value function in our
case) defined on the state space S, we define

‖x− y‖J = (J(x)− J(y)) where x,y ∈ S

Note that in the Extend function, when the action space is
continuous, we simply sample some k actions uniformly and
then choose the best amongst them.

We may now define a sampling procedure that returns a
tree of samples G from the given problem based on a distance
measure ‖ · ‖J . The algorithm closely resembles the RRT
algorithm in constructing the samples. The ConstructRRST
procedure as defined in Algorithm 3, constructs a tree with
samples of the form (st ,at ,rt+1,st+1).

The tree is grown in a greedy manner with respect to
the value function J as the action that maximizes reward(or
minimizes cost) is chosen in the Extend function. Using
the value function as a distance measure preserves the
efficient exploration property of RRTs discussed above. The
probability of an edge (s,s′) being included in the tree is
given by the product of the probability of the following two
events - (i) Probability that vertex s is selected for expansion.
(ii) Probability that s′ is selected. The probability of the first
event is proportional to the volume of the Voronoi region of
s. This is a property of RRTs. The probability of the second

event is proportional to the value of the state J(s′). Given a
set of samples, we re-evaluate the value function using TD(0)
as described in the next section.

Algorithm 3: ConstructRRST(N,‖ · ‖J)

E(G)← /0,V (G)← sstart1

n← 02

while n < N do3

Sample a state snew from S4

snear← Nearest(snew,V (G),‖ · ‖J)5

(aext ,sext ,rext)← Extend(snear,snew,‖ · ‖J)6

V (G)←V (G)∪{sext}7

E(G)← E(G)∪{(snear,aext ,rext ,sext)}8

n← n+19

end10

return G11

IV. ESTIMATING THE VALUE FUNCTION

Given a sample tree G as described in the previous
section, we formulate a discrete approximation to the original
problem as follows. From every leaf node in the tree, a
path is traced back to the root. This gives us several sample
trajectories. We consider a discrete problem whose states are
the nodes of the tree V (G). We evaluate a discrete value
function Ĵ : V (G) 7→ R using the T D(0) update given in
Equation 2 on the sample trajectories. This can be thought of
as backing up values along the trajectories of the tree. T D(0)
on discrete domains with a finite set of sample trajectories
converges to a fixed value [12].

This value function is discrete and is defined only on
specific points. It has to be generalized across the entire state
space of the original problem. This a standard regression
task. We use nearest neighbor methods that build local
models around a given query point. Depending on the nature
of the model and definition of the locality there are several
variants. We use the following techniques and compare them
in experiments described later.

1) Locally constant: Here we simply take the value as
the average of the values of k-nearest-neighbors(k-nn) of x.
The distance metric used to evaluate the nearest neighbors
is Euclidean.

J(x) = ∑
si∈Nbr(x)

1
k

Ĵ(si)

For k = 1, the value of a state is generalized to its Voronoi re-
gion. By varying k we can vary the size of the neighborhood
over which we generalize. We can reduce the variance in the
estimate by learning local models, such as those discussed
by Atkeson et. al. [16].

2) Locally linear: We assume the value of the function is
linear within a neighborhood. The parameters of the function
β are learnt by minimizing the least-squared error using
simple linear regression as described below.

J(x) = βx =
n

∑
j=1

β jx j +β0



β = argmin
β

∑
si∈Nbr(x)

(β si− Ĵ(si))
2

Here the loss function is defined only within the neighbor-
hood, i.e., we use only the k-nearest-neighbors as training
for the linear regression model. In higher dimensional state
spaces, locally constant estimates tend to perform poorly
because of high variance. In such cases linear methods
tend to perform better [16]. This results in a method which
has more bias in terms of representation than simple k-nn
regression.

3) Locally linear with Gaussian weights: We employ a
Gaussian weighting scheme based on the distance of the
points in the neighborhood. Closer points are given more
weight-age [16]. We use define a Gaussian kernel

K(d) = exp(−d2)

where d is a distance measure between the input states in the
neighborhood and the target point. Here we use the Euclidean
distance. We assign weights to the inputs using this kernel
and regress. The modified error function for estimating β

becomes

β = argmin
β

∑
si∈Nbr(x)

K(‖x− si‖)(β si− Ĵ(si))
2

We will call these techniques nearest neighbor temporal
difference or NN-TD methods. We can define a procedure
NN-TD(G) that takes a tree of sample transitions G as input
and returns the generalized estimate of the value function.
Note that these techniques use a ‘lazy’ approach to estimate
the value at a given point, i.e., they do not perform any
calculations until a point is queried and just maintain the set
of input points and the corresponding values as such. Thus
in an implementation of this method, the generalization is
done only when value function is estimated as J(s) in the
Extend and Nearest functions. Such nearest neighbor
techniques are preferred as they have low bias in learning
and can approximate any arbitrary function given enough
data points. Alternatively we can evaluate the value function
directly from the set of samples by suitably modifying
Fitted Q-Iteration [14]. Here we may use parametric methods
such as support vector regression and Gaussian processes
regression. However, experimentally they did not perform
well. One reason could be the following—these methods
operate directly on the vector representation of a state from
Rn, whereas T D(0) runs on a tabular representation of states.
As the vertices of the set V (G) are actually embedded on
a manifold induced by complex dynamics of the system,
methods that run on the Rn representation perform poorly.

Our method based on T D(0) approximates the values
better as it operates on the latent space of the system.
This due to the fact that the geodesic distance along the
trajectories approximate the inherent metric of the manifold.
Moreover, the accuracy of the approximation improves as
the number of points in the trajectories increases. Given
that our sampling technique RRST is asymptotically com-
plete, T D(0) combined with nearest neighbor regression is
a favorable method to learn the value function, since it

allows us to give asymptotic guarantees on the correctness of
approximation. Comparisons between various techniques for
policy evaluation are presented in the experiments section.

Now that we have described a class of techniques for
estimating the value function from a set of samples, and
a technique for generating samples by maximizing the value
function, we can define an iterative procedure that alternates
between RRST and NN-TD to make progressively better
discrete approximations and solve the original problem. We
describe our algorithm RRTPI in the following section.

V. RRTPI

The RRTPI algorithm is described in Algorithm 5. Given
a control problem, we begin with a uniform estimate for the
cost-to-go function J0. We use this to generate a set of sample
transitions using the ConstructRRST method described in
Section III. We then estimate the value function Jn from
these samples using NN-TD. This estimate is used in the
subsequent iteration to construct another sampling tree such
that it is grown greedily w.r.t the previously evaluated value
function.

Algorithm 4: RRTPI(N)

Initialize uniformly J0← 01

n← 12

while n < N do3

Gn←ConstructRRST(Mn,‖ · ‖Jn−1)4

Jn← NN-TD(Gn)5

n← n+16

end7

As we obtain better samples, the estimate of the optimal
value function continuous to improve. This proceeds in an
iterative manner till we obtain a sufficiently optimal solution.
The size of sample set Mn can be changed for different
iterations. Typically initial iterations need more samples as
the value function might not accurately estimate the optimal
cost-to-go.

This method resembles policy iteration, which is a DP
based technique for solving discrete MDPs [10]. In policy
iteration, an optimal policy π∗ is found as follows. First begin
with an random policy π . Evaluate this policy, i.e., find the
value function Jπ using some policy evaluation technique.
Then define a new policy that is greedy w.r.t the estimated
value function. This step is called policy improvement. The
corresponding new value function is again estimated and the
steps are repeated till the policy converges to an optimal
one. The similarities with our algorithm are now apparent
and hence the name RRTPI.

The NN-TD step in our algorithm corresponds to policy
evaluation, and the constructRRST step corresponds to policy
improvement. We may think of our algorithm as extending
policy iteration to continuous domain using samples to
estimate both the policy and the value function. Also, we
do not require full knowledge of the system dynamics as in
the case of policy iteration. A generative model that allows



us to draw samples is sufficient. This is a weaker assumption
and allows us to solve a more general class of problems.

The LQR-RRT* technique [8] method describes a similar
approach of learning the optimal value function from experi-
ence, but assumes knowledge of the system dynamics in lin-
earizable form. It is found that the accuracy of LQR methods
falls rapidly as the dimensionality of the domain increases
[7]. Thus the assumptions made by LQR-RRT* hinder its
ability to model more complex problems effectively. Systems
such as the octopus arm, are easy to generate samples from
but hard to fully specify in closed form. Our method can
handle such domains as it only requires samples. It can also
handle arbitrary cost functions. Supporting results are shown
in the results section.

VI. RESULTS

We evaluate our algorithm on a variety of domains having
underpowered and underactuated dynamics - the mountain
car, the acrobot and the octopus arm. The total discounted
reward along the current best path to the goal is the evalu-
ation criterion that we use. We compare the performance of
our approach against the following baselines:

a) Fixed Discretization: We discretize the space into
uniform grids and run Dynamic Programming. The number
of discretizations is taken as the no. of samples for compar-
ison.

b) LQR based Policy Evaluation: The policy evaluation
technique NN-TD is replaced with an LQR based evaluation
technique after Perez et. al. [8].

c) RRTPI variants: We compare the three variants of
RRTPI based on the nearest neighbor techniques discussed
in section IV. kNN-RRTPI with different values of k corre-
sponds to the locally constant method. LL-RRTPI and LW-
RRTPI use the locally linear and the Gaussian weighting
scheme correspondingly. The neighborhoods for LL-RRTPI
and LW-RRTPI were defined using 5-7 nearest neighbors.

All results are averaged across 100 runs. Simulations were
run on a 3.4GHz 4 core system with 16GB of RAM.

A. Mountain Car Domain

In this domain, the goal is to drive an underpowered car
in a valley up a steep hill. The state is a 2 dimensional
continuous space consisting of the position and velocity of
the car along the hill. The actions correspond to acceleration
in the positive or negative direction. A small negative reward
is given every step, till the goal state is reached. A large
positive reward is given upon reaching the target. Detailed
descriptions of the dynamics can be found in Singh et.
al.[17]. This is an example of a underpowered domain.
Comparison of performance is shown in Figure 1.

All methods were successfully able to find feasible solu-
tions. Although the discrete algorithm reaches the optimal
performance roughly around the same time as the RRTPI
algorithms, the space requirements are much higher. This
is because at any given time, the RRTPI algorithms need
to store a maximum of Mn nodes and edges plus an addi-
tional Mn−1 values representing the value function. In this

Fig. 1. Comparison of various algorithms on the mountain car domain

experiment Mn was 2000 for all n > 1. Whereas the discrete
case needed to store 100× 100 states. This problem would
compound as the dimensionality of the problem increases.
Also all algorithms display more efficient use of samples
than plain discretization.

Using LQR gives good estimates initially but eventually
both LW-RRTPI and 1nn-RRTPI perform better with the
same number of samples. The performance of LL-RRTPI
is almost similar to LQR. Although as the complexity of
the domain increases, this is expected to change. LW-RRTPI
performs the best among the algorithms.

B. Acrobot Domain

In this task, an acrobot must be brought to a vertically
upright position. The acrobot is a two link robot with one
fixed unpowered joint and a free joint powered joint. The
system has four states consisting of the angular position and
speed of the two joints. This is an underactuated system as
only the free joint can be controlled and the robot has to learn
to swing up by building momentum. The exact dynamics
can be found in Murray and Hauser [18]. The results on this
domain are shown in Figure 2.

Fig. 2. Comparison of various algorithms Acrobot domain.

In this task, LQR performs poorly compared to the nearest
neighbor methods. This is because as the complexity of the
dynamics increases, the accuracy of the LQR estimate falls
rapidly [7]. Results from using discretization are not reported
since we ran out of memory before a solution was found. LL-
RRTPI and LW-RRTPI perform better as compare to 1nn-
RRTPI due to lower variance in higher dimensions.



C. Octopus arm

The octopus arm possesses a large number of degrees
of freedom with high redundancy. The arm is made up of
several connected compartments and it is controlled through
activations of the muscles on walls of these compartments.
We follow the model of the arm in 2-D space with 10
segments introduced by Engel et. al. [9]. The aim of the
arm is to reach a specific goal region. The state space
corresponds to the position and velocity of the point masses
on each segment. Thus the dimensionality of the state space
is 22× 4 = 88. We use a subset of 6 possible actions. The
cost associated with every action is uniform and reaching
the goal results in a positive reward. Each segment has its
own dynamics leading to complicated dynamics for the entire
arm. This is a case where it is much easier to generate
samples for the next state using a one step model of the
arm. LQR based methods cannot work because the of the
complexity involved in linearizing the dynamics. RRTPI
is able to solve such complex high dimensional problems
with relatively small number of samples. We show the
performance of 1nn-RRTPI and LW-RRTPI on the octopus
domain in Figure 3.

Fig. 3. Comparison of RRTPI algorithms on the octopus arm domain.

VII. CONCLUSION AND FUTURE WORK

We present RRTPI the first algorithm that combines RRT
style sampling with Reinforcement Learning to solve con-
tinuous space control problems with complex dynamics. By
estimating the domain dependant distance measure from
samples, our algorithm is able to work with complex, under-
actuated and underpowered systems. The algorithm is able
to solve a wider class of problems as compared to previous
techniques as it works using only samples and does not make
any assumtions on the form of the system dynamics.

The iterative nature of the RRTPI algorithm can be used
to interleave planning and actual execution in a real robot.
For instance, we may plan for a few iterations and once a
satisfactory policy and value function are obtained, the robot
can execute the resulting trajectory in real-time. This can be
simply done by selecting actions greedily according to the
value function. We may then use the resulting trajectory as
samples for further iterations. If the same task is repeated
several times this allows us to constantly improve perfor-
mance. It can also be used to improve the accuracy of the
one step model.

Transfer learning allows us to use knowledge from solving
one particular task in solving a new but related task [19]. The
value function estimate can serve as a good representation
for transfer learning [20]. From the experiments we can see
that RRTPI is sample efficient as compared to discretization
and showing sample comlexity bounds on these algorithms
would be an interesting direction for future research.

REFERENCES

[1] J. T. Schwartz and M. Sharir, “On the piano movers problem:II. Gen-
eral techniques for computing topological properties of real algebraic
manifolds”, Advances in Applied Mathematics, vol. 4, pp. 298-351,
1983

[2] S. Lavalle, Planning Algorithms. Cambridge University Press, 2006.
[3] S. M. LaValle and J. J. Kuffner,“ Randomized kinodynamic planning”,

International Journal of Robotics Research, vol. 20, no. 5, pp. 378-
400, May 2001.

[4] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for
optimal motion planning”. International Journal of Robotics Research,
30(7):846-894, June 2011.

[5] S. M. Lavalle, “From dynamic programming to RRTs: Algorithmic
design of feasible trajectories,” in Control Problems in Robotics.
Springer-Verlag, 2002.

[6] P. Cheng and S. M. Lavalle, “Reducing metric sensitivity in ran-
domized trajectory design”, in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, 2001, pp. 43-48.

[7] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic
for rapidly exploring state space”, in Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, May 2010, pp.
5021-5028.

[8] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-
Perez,“LQR-RRT : Optimal sampling-based motion planning with
automatically derived extension heuristics”, in Proceedings of the
IEEE International Conference on Robotics and Automation, May
2012, pp. 2537-2542.

[9] Engel, Y., Szabo, P., Volkinshtein, D.: “Learning to control an octopus
arm with gaussian process temporal difference methods”. Advances in
Neural Information Processing Systems 18, 347-354 (2006)

[10] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction,
volume 28. MIT press, 1998.

[11] V. A. Huynh, S. Karaman, and E. Frazzoli, “An incremental sampling-
based algorithm for stochastic optimal control”, in Proceedings of the
IEEE International Conference on Robotics and Automation, 2012,
pp. 2865-2872

[12] R. S. Sutton. “Learning to predict by the methods of temporal
differences”. Machine Learning, 3, 1988.

[13] Justin Boyan. “Least-squares temporal difference learning”, in The
Proceedings of the Sixteenth International Conference on Machine
Learning, pp. 49-56. Morgan Kaufmann, 1999.

[14] D. Ernst, P. Geurts, and L. Wehenkel. “Tree-based batch mode rein-
forcement learning”. Journal of Machine Learning Research, 6:503-
556, 2005

[15] Andrew Ng and Michael Jordan. “Pegasus: A policy search method for
large mdps and pomdps.” In Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence, pages 406-415, 2000

[16] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal.
“Locally Weighted Learning”. Artificial Intelligence, Rev. 11, 1-5
(February 1997), 11-73

[17] Satinder Singh, Richard S. Sutton, and P. Kaelbling. “Reinforcement
learning with replacing eligibility traces.” In Machine Learning, pages
123-158, 1996.

[18] R. Murray and J. Hauser, “A case study in approximate lineariza-
tion:The acrobot example”, EECS Department, University of Califor-
nia,Berkeley, Tech. Rep. UCB/ERL M91/46, 1991

[19] Matthew E. Taylor and Peter Stone. “Transfer Learning for Reinforce-
ment Learning Domains: A Survey.” Journal of Machine Learning
Research, 10(1):1633-1685, 2009.

[20] Matthew E. Taylor and Peter Stone. “Behavior Transfer for Value-
Function-Based Reinforcement Learning.”In The Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems, pp.
53-59, ACM Press, New York, NY, July 2005.


