
Instructing a Reinforcement Learner

Abstract
In reinforcement learning (RL), rewards have been con-
sidered the most important channel for understanding
an environment’s dynamics and have been very effec-
tively used as a feedback mechanism. However, recently
there have been interesting forays into other modes of
understanding the environment. Using sporadic super-
visory inputs is one such alternative. This brings into the
learning process rich information about the world of in-
terest. In this paper, we model these supervisory inputs
as instructions, provide a mathematical formulation for
the same and propose a framework to incorporate them
into the learning process.

Introduction
Reinforcement Learning (RL) is a machine learning
paradigm that closely resembles the human way of learning.
It is a control based learning approach that tunes its con-
trol system based on evaluative feedback received from the
environment. The learner interacts with the environment by
taking actions. It receives feedback from the environment in
the form of rewards and observations(states). The goal of the
controller is to maximize the rewards collected in the long
run. Unlike supervised learning, this feedback is partial. If
the feedback was complete, the controller would be told the
best action in a given state. Instead, a reinforcement learner
explores the various actions it can perform, estimates the ex-
pected reward of choosing the action and accordingly learns
the set of optimal state-action pairs.

Even though the trial-and-error approach of RL seems
similar to the human learning process, there are important
differences between the two. Humans benefit from prior
knowledge of the environment, past experiences and in-
puts from other humans. An RL agent is devoid of ac-
cess to any of these, resulting in inordinate amounts of ex-
ploration and long learning periods. There have been var-
ious approaches to speed up learning such as using deixis
(Chapman 1991), hierarchical learning (Barto and Mahade-
van 2003) and learning from humans (Rosenstein and Barto
2004; Atkeson and Schaal 1997; Maclin and Shavlik 1998;
Clouse and Utgoff 1992).

In this paper, we concentrate on a specific technique
of learning from humans called learning through instruc-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tions(Chapman 1991). Earlier methods either imitate the hu-
man in some manner or observe the human for prolonged
durations in order to learn more about the regular domain
dynamics . We propose a novel framework which allows the
learner to understand the domain beyond rewards and transi-
tions and facilitates exploitation of the implicit information
such as structure in the state space and underlying patterns
governing the domain. Additionally, our approach can learn
well even with minimal interaction with humans.

Consider a human learning to throw a ball into a basket.
The evaluative feedback will depend on how far the ball
misses the target by. Whereas, instructive feedback will be
a coach instructing him to throw harder or slower. Instruc-
tions could be of various forms. For example, consider the
agent searching for a key. The agent could be instructed to
“look in the key stand”. The effect of this instruction is to re-
duce the agent’s search space considerably. Take the case of
an agent navigating an obstacle course. When it is obstructed
by a puddle of water, the agent is instructed to “jump”. This
instruction can then be reused by generalizing it over pud-
dles of various locations,liquids, colors, shapes, etc. Thus
efficiently using the information in the instruction.

In this paper, we incorporate learning from such instruc-
tions into traditional RL methods. We give a mathematical
formulation for instructions and outline two kinds of instruc-
tions, π-instructions and Φ-instructions. We also provide al-
gorithms that utilize both instructive and evaluative feed-
back. These are then empirically shown to perform better
than traditional RL methods.

In the next section, we discuss some existing literature
that have similar motivations. We then present the necessary
notations and background required to define instructions.
We then introduce instructions mathematically and discuss
two types of instructions. In subsequent sections, we give
a framework for exploiting these two types of instructions
along with the experimental evaluation. The experiments are
performed on two domains, one for each type of instruction.
Finally we analyze our approach paying attention to inter-
esting facets of our approach and presenting directions of
future research.

Related Work
In this section, we discuss those approaches that we feel are
closely related to our work.

Inverse Reinforcement Learning Informally, the Inverse
Reinforcement Learning (IRL) Problem (Ng and Russell
2000) can be considered as the task of determining the re-
ward function being optimized given measurements of the
agent’s behavior over time in various situations, measure-
ments of its sensory inputs if necessary, and a model of the
world, if available. Motivation for this approach lies in the
presupposition that the reward function is the most precise
and transferable definition of the task and that the reward
functions of most real world problems cannot be modeled
completely resulting in the need to observe experts.

Implicit Imitation Accelerating Reinforcement Learning
through Implicit Imitation (Price and Boutilier 2003) pro-
poses the Implicit Imitation model. This model allows the
agent to observe an expert’s behavior and use the observed
state transitions to update its estimates of state values and ac-
tions. The agent does not explicitly imitate the trajectory of
the expert. In addition to learning the domain dynamics, the
agent can also take cues from the expert in terms of regions
of state space worth exploring etc.

Unlike in IRL and Implicit Imitation, the approach we
propose does not require the agent to observe an expert’s
behavior over several episodes. Instead the expert gives oc-
casional inputs in the form of instructions only. Neither do
we look to optimize an agent’s behavior based on an esti-
mated reward function as in IRL, nor do we incorporate ob-
served dynamics of another agent as in Implicit Imitation.
Instead, we generalize the information contained in an in-
struction over the entire search space. We carefully make
use of this generalization to speed up learning. In general,
we look beyond the traditional reward function and transi-
tion dynamics as will be explained in later sections.

In spirit, our approach is similar to the above two since
all three approaches attempt to model an expert in their own
way and use this model whenever necessary.

Notation
Problems in RL are generally modeled as Markov Decision
Processes (MDPs). The MDP framework forms the basis of
our definition of instructions.

A MDP is a tuple 〈S,A, ψ, P,R〉, where S is a finite set
of states, A is a finite set of actions, ψ ⊆ SXA is the set of
admissible state-action pairs, P : ψ → [0, 1] is the transition
probability function with P (s, a, s′) being the probability of
transition from state s to state s′ by performing action a.
R : ψ → IR is the expected reward function with R(s, a)
being the expected reward for performing action a in state s
(this sum is known as return). As = {a|(s, a) ∈ ψ} ⊆ A be
the set of actions admissible in state s. We assume that As
is non-empty for all s ∈ S. π : ψ → [0, 1] is a stochastic
policy, such that ∀s ∈ S

∑
a∈As

π(s, a) = 1. ∀(s, a) ∈ ψ,
π(s, a) gives the probability of executing action a in state s.

The value of a state-action pair conditioned on policy π,
Qπ(s, a), is the expected value of a sum of discounted fu-
ture rewards of taking action a, stating from state s, and
following policy π thereafter. The optimal value functions
assign to each state-action pair, the highest expected return
achievable by any policy. A policy whose value function is

optimal is an optimal policy π∗. Conversely, for any sta-
tionary MDP, any policy greedy with respect to the opti-
mal value functions must be an optimal policy : π∗ (s) =
argmaxaQ

∗ (s, a)∀s ∈ S, where Q∗ (s, a) is the opti-
mal value function. If the RL agent knew the MDP, it
could be able to compute the optimal value function, and
from it extract the optimal policy. However, in the regu-
lar setting, the agent is only aware of ψ, the state-action
space and must learn Q∗ by exploring. The Q-learning al-
gorithm learns the optimal value function by updating its
current estimate,Qk(s, a), of Q∗(s, a) using this simple up-
date (Barto and Mahadevan 2003),

Qk+1(s, a) = Qk(s, a)+α
[
r+γmaxa′Qk(s′, a′)−Qk(s, a)

]
(1)

α is the learning rate of the algorithm, γ ∈ [0, 1] is the
discounting factor and a′ is the greedy action in s′.

An option (or a temporally extended action)(Barto and
Mahadevan 2003) is described by the tuple O = 〈I, π, β〉,
where the I ⊆ S is an initiation set, π is the option policy,
and β : S → [0, 1] is the termination function. An option
can be invoked in any state s ∈ I , following which, the agent
will execute the policy π until it terminates as modeled by
β(s).

Q-learning applies to options too and is referred to as
SMDP Q-learning (Barto and Mahadevan 2003).

Qk+1(s, o) = (1−α)Qk(s, o)+α
[
R+γτmaxo′Qk(s′, o′)

]
(2)

where R is the sum of the time discounted rewards accumu-
lated while executing the option and τ is the time taken for
execution.

Structured States
Understanding the effect of instructions is easy if the states
are structured. In the next section, we motivate the use of
such instructions using simple operations on the structured
state space explained here.

The set of states S is structured by representing it as a
cross-product of an indexed family {Sα|α ∈ D}, where D
is the set of state features (Zeigler 1972). In general α ∈ D is
referred to as the coordinate and Sα is its state set. The struc-
ture assignment is a one-one mapping from S to

∏
α∈D Sα.

Thus, a state s ∈ S is represented as (sα1
, sα2

, . . . , sαi
, . . .)

where sαi is a value of the feature set Sαi .
Let f be a set of indexed functions such that {fi : S →

Bi|i ∈ E}, where E is a different set of coordinates and
Bi is the corresponding state set. The cross product func-
tion

∏
i∈E fi : S →

∏
i∈E Bi is defined by

∏
i∈E fi(s) =

(f1(s), f2(s), . . .). In this paper we use this cross product
function which is a special case of a structured function.

A special class of indexical functions operating
on the structured set S are coordinate projections
{ρα|α ∈ D} where ραi

: S → Sαi
such that

ραi
(sα1

, sα2
, . . . , sαi

, . . .) = sαi
. Extending the above

cross product function to projections of S : For D′ ⊆
D, ρD′ : S →

∏
α∈D′ Sα is given by ρD′ =

∏
α∈D′ ρα.

For example, ρ{α2,α4} (sα1
, sα2

, . . .) = (sα2
, sα4

).

Every subset D′ ⊆ D induces a partition KD′ on S such
that two states s, s′ ∈ S belong to the same block Bi only
if: ρD′ (s) = ρD′ (s′) and is denoted by

[s]KD′ = [s′]KD′ (3)

Instructions
In general, any external input to the RL agent, that it can use
to make decisions or direct its exploration or modify its be-
lief in a policy can be called advice. If the advice is inviolate
i.e., the learner cannot override it, it is called an Instruction.
For example, an agent that is learning to cut vegetable can
be instructed to use the sharp edge of the knife.

Instructions have also been used to specify regions of the
state space or objects of interest. For example, in his thesis
(Chapman 1991), Chapman gives Sonja, a game player, the
instruction, Get the top most amulet from that room. This in-
struction binds the region of search and the object of interest
without divulging any information about how to perform the
task.

Mathematical Formulation
The policy π (s, a) can be represented as :

π(s, a) = G(Φ(s), a) (4)

where Φ(s) models operations on the state space. G (.) is
a mapping from (Φ(s), a) to the real interval [0, 1]. Φ(s)
can either model mappings to a subspace of the current state
space or model projections of the state s onto a subset of
features. This representation of the policy makes it easy to
understand the two types of instructions explained below.

π-Instructions Instructions of this type are in the form
of action or option to be performed at the current state :
Iπ(s) = a, where a ∈ As. The effect of these instructions is
to directly modify the policy π (s, a) = 1. As an example,
consider an RL agent learning to maneuver through a farm
and is in a state with a puddle in front (spuddle). The instruc-
tion jump is incorporated as π (spuddle, jump) = 1. We use
such instructions in the experiments on the Transporter do-
main.

Φ-Instructions Instructions of this type are given as struc-
tured functions denoted by IΦ. In this paper, we only use
structured functions that are projections. Such an instruction,
IΦ would be captured by Φ(s) as ρD′ (s) , D′ ⊆ D. D is the
set of features representing the state set S and ρD′ is the pro-
jection operation mentioned in section . D′ ⊆ D captures
the possibility that some features in a state representation
are redundant or uninfluential. For example, consider an RL
agent learning to throw balls. The instruction, “Ignore the
ball’s color” will be incorporated asD′ = D−{ballcolor}.
We use similar instructions in the experiments on the Deictic
Game domain.

Transporter Domain
In this domain we provide the learner with π-instructions
as described in the previous section and give a framework
for exploiting these instructions. The layout of the domain

Figure 1: Transporter Domain

is shown in Fig 1. The task of the RL agent is to transport
an object from the starting position to the goal position. The
object can be a sphere, a cube or a cylinder weighing be-
tween 0 and 15 pounds. The path to the goal is 15 feet long.
The first and last 5 feet are on level floor and the remaining
are on a slope. The agent can transport an object by invok-
ing 1 of 3 options. The options are carry using 1 arm, carry
using 2 arms and push. All options move the agent towards
the goal for a maximum of 5 feet.

The dynamics of the options depend on the shape and
weight of the object as well as the slope of the floor. Heav-
ier objects take longer time to be transported. Carry using 1
arm is faster than carry using 2 arms, which in turn is faster
than push along the floor. All options take more time on
the ramp. Pushing a sphere or cylinder is faster than push-
ing a cube. Also, the time taken to pick up an object on the
floor is proportional to its weight. An option may not exe-
cute to completion always. The agent might drop the object
halfway, depending on the object properties and the slope of
the floor. For example, a heavy object is dropped more easily
than a light object. Similarly, carrying a cube using 2 arms
is safer than carrying a cube with 1 arm. Also, the probabil-
ity of dropping an object is greater on the slope. The exact
dynamics of the domain along with the implementation will
be made available at the online RLGlue repository at a later
date.

A learner would optimally carry light objects using 1
arm, push heavy objects, carry cubes using 2 arms, push
a sphere or a cylinder and carry objects using 2 arms on the
slope. The state features observed by the agent are 〈obj −
shape, obj−weight, current−position, obj−in−arm〉,
where obj − in− arm indicates whether the object is being
carried or is on the floor.

Learning Algorithm
The standard RL approach uses SMDP-Q learning with an
ε greedy exploration policy. The reward function used is the
minimally informative and is described simply as reward =
−1 till termination. Our algorithm is present in Algorithm 1.

Occasionally(with some probability ζ), we provide the
agent with π - instructions i.e., tell the agent the best option
to perform in a given state. The agent generalizes over these
instructions by using a standard classifier. This classifier out-
puts an option based on the given state. The set of all π - in-
structions seen so far forms the training data for this classi-
fier. In this particular implementation we have used a k-NN
classifier. Every time an instruction is given, {s, Iπ(s)} is
added to the dataset DI . The flow of instructions is cut-off

after a fixed number of episodes. Regular Q function updates
continue to take place on the side as in a standard Q-learner.

At every decision point , the agent chooses between the
option recommended by the k-NN model and the Q-learner
by comparing their confidences. The confidence of the k-NN
model is computed as the inverse squared distance between
the given state and its nearest neighbor (of the same class as
predicted by the k-NN). The variance in the Q function is
used to represent the confidence measure of the Q-learner. If
the variance in the value of a particular state-option pair is
very low, it implies that the value has converged to the final
value defined by the policy. In other words, the confidence
of the Q-learner in an option is inversely proportional to the
variance of the Q function at that state-option pair.

Whenever the confidence of the k-NN model is high (as
decided by a threshold) and the confidence of the Q-learner
is low, it performs the action suggested by the k-NN model.
Otherwise, it follows the policy represented by Q(s, a). We
assume that eventually the Q-learner might become more
optimal than the k-NN model. This might be due to errors
in generalization or a faulty instructor. Hence the Q-learner
is given the benefit of the doubt. The threshold parameters
Qthresh and Cthresh have to then be tuned.

Algorithm 1 LearnWithπInstructions(DI)
while episode not terminated do
s is the current state
if Iπ(s) available then
a← Iπ(s)
DI ← DI ∪ {s, Iπ(s)}

else
if conf(Q(s, arg maxbQ(s, b)) < Qthresh and
conf(kNN(s)) > Cthresh then
a← kNN-Classify(s;DI)

else
a← arg maxbQ(s, b)

end if
Perform option a
Update Q(s, a)

end if
end while

Analysis
Learning the optimal policy on this domain is hard due to
the complex dynamics and variety in the objects. The per-
formance of our approach is shown in Fig 21. Our approach
converges at around 2000 episodes, whereas standard SMDP
Q learning takes more than 10000 episodes to show simi-
lar performance. In order to make the comparison fair, the
SMDP Q learner follows the same set of instructions when-
ever available. This large speedup is due to the general-
ization achieved by the instruction model. The parameter
ζ is the probability of receiving an instruction at any de-
cision point. Thus a larger ζ implies more number of in-
structions overall and also faster convergence. This is seen

1List of parameters used : ε = 0.07, α = 0.1, k = 3,
CThresh = 50, QThresh = 0.5

Figure 2: Comparison of SMDP Q learning with the instruc-
tion framework for various ζ

clearly in Fig 2. Approaches that employ function approx-
imators (FAs) for the value function, proved to be difficult
to setup for this domain. Using FAs such as a neural net-
work and tile coding on this domain resulted in much longer
learning periods than standard Q learning. Choosing options
purely based on the k-NN classifier results in poorer per-
formance than the above approach. This points out that our
method is better than both generalizations of the policy and
generalizations of the value function.

Game Domain2

This domain is well suited to showcase the advantages in
using Φ-instructions. Solving this task requires the agent to
carefully choose relevant features of the state space, which
is one of the motivations for designing Φ-instructions. The
agent uses these instructions to learn a pattern, if it exists,
in this selection of features and exploits this knowledge to
solve the task more efficiently.

The layout of the game is shown in Fig 3a. The environ-
ment has the usual stochastic gridworld dynamics and the
SLIP parameter accounts for noise. The RL agent’s goal is
to collect the only diamond in the one room of the world
and exit it. The agent collects a diamond by occupying the
same square as the diamond. Possession of the diamond is
indicated by a boolean variable, have.

The room is also populated by 8 autonomous adversaries.
They are of three types - benign, delayer or retriever. Of
the 8, only one is a delayer and another one is a retriever,
the other 6 are benign. If the RL agent occupies the same
square as the delayer it is considered captured and is pre-
vented from making a move for a random number of time

2Some of the results for this domain have been reported else-
where.

(a) (b)

Figure 3: (a) The Game domain. (b) Projections from the
game world to the option world.

steps determined by a geometric distribution with parameter
HOLD. When in a different square from the agent, the de-
layer pursues the agent with probability CHASE. The benign
adversaries execute random walks and behave as mobile ob-
stacles. The retriever behaves like the benign adversary as
long as the diamond is not picked by the agent. Once the
agent picks up the diamond, the retriever behaves like a de-
layer. The important difference is that once the retriever and
the agent occupy the same square, the diamond is returned to
its original position and the retriever reverts to being benign.
The retriever also returns to being benign if the delayer has
“captured” the agent. None of the adversaries can leave the
room, and hence it is possible for the agent to “escape” from
the room by exiting to the corridor. The agent is not aware of
the types of the individual adversaries, nor is it aware of their
CHASE and HOLD parameters. In every episode, a new pair
of adversaries are chosen by the environment as the delayer
and retriever. The RL agent can observe its own coordinates,
the 8 adversaries’ coordinates and the have variable.

Instruction Framework
Among the eight adversaries in the gameworld, only one
is the delayer and one is the retriever. It is enough for
the agent to observe these two adversaries to retrieve
the diamond effectively. In other words, there are state
features that can be ignored. Hence, we make projec-
tions of the states onto a subset of features resulting
in a reduced world. A state in the game world is given
by s = 〈have, (x, y)agent, (x, y)adv1, . . . , (x, y)adv8〉.
The required state is given by so =
〈have, (x, y)agent, (x, y)del, (x, y)ret〉. The projections
used here are given by

∏
i∈D′ fi(s), where fi : S → Si and

D′ is the reduced feature set. The agent uses Q-learning to
learn the optimal policy on the reduced world.

The delayer and retriever change every episode and hence
the corresponding projections also change. The agent does
not know the true delayer and retriever. Φ type instruc-
tions are applicable here. We occasionally use these instruc-
tions to inform the agent about the indices of the adver-
saries that are the true delayer and true retriever. Suppose
advk is the true delayer and advl is the true retriever for
the current episode. The instruction Φ(s) gives the agent the
D′ = {have, (x, y)agent, (x, y)advk , (x, y)advl}. When in-
structions are absent, the agent learns the correct (k, l) using
a Bayesian weight update given by Ravindran et al. (2003).

Bayesian Weight Update Consider the set of
cross product functions f characterized by D′ =
{have, (x, y)agent, (x, y)advi , (x, y)advj}. There are 8

possibilities for both advi and advj resulting in a set of
64 cross product functions fm. The likelihood of any fm
being the required cross product function is maintained
using a factored weight vector 〈w1

n(·, ·), w2
n(·, ·)〉, with one

component each for the delayer and retriever. The retriever
component captures the dependence of the retriever on the
delayer.

wln(fm, ψ(s)) =
P l((ρJm(s), a, ρJm(s′)).wln−1(fm, ψ(s))

K
(5)

where ψ(s) is a function of s that captures the fea-
tures of the states necessary to distinguish the particu-
lar sub-problem under consideration, s′ is the next state
in the gameworld, Ji is the corresponding subset of fea-
tures to be used for projecting onto the reduced MDP.
P l(s, a, s′) = max(ν, P l(s, a, s′)). K is the normalizing
factor. P l(s, a, s′) is the “projection” of P (s, a, s′) onto
the subset of features Jm required in the computation of
wln(fm, ψ(s)). For details about the “projection”, refer to
(Ravindran, Barto, and Mathew 2007).

Exploiting Instructions
In this section, we report additional experiments in which
the agent exploits instructions in estimating CHASE and
HOLD of the adversaries. The agent identifies the delayer
and retriever assignment pattern in the environment based
on these parameters. It uses this to reduce the number of up-
dates required to identify the true delayer and retriever in the
absence of instructions.

When the correct delayer-retriever pair is given as an
instruction, the agent estimates the CHASE of the adver-
sary that is the true delayer for the current episode. Simi-
larly it can estimate the delayer’s HOLD too. After a few
such instructions, it would have good estimates of every
adversaries’ parameters. In order to show that this addi-
tional knowledge can be exploited effectively, we modify
the game such that, for a given episode, only an adversary
with CHASE ≤ 0.7 is chosen by the environment to be the
delayer. A retriever is chosen from those adversaries with
CHASE more than 0.7. A classifier is used to learn this
model as more and more instructions are received. Possi-
ble retrievers and delayers are predicted using this model.
This prediction is used to reduce the number of updates
the agent needs to perform. For example, let the CHASE
of the adversaries be {0.5, 0.9, 0.6, 0.7, 0.4, 0.35, 0.8, 0.73}.
An episode’s delayer will be selected only from adversaries
1, 3, 4, 5 and 6 and the retriever from the rest. Once this
classification is learnt, we can avoid updating the weights
for {1, 3, 4, 5, 6} while learning the correct retriever and
{2, 7, 8} while learning the correct delayer. Overall, the
agent converges to the true likelihoods in lesser updates as
shown for the delayer in Fig 4d. S

Analysis
We compare the performance of our approach (labeled IF)
with the DOS approach proposed by Ravindran et al. (2007).
In the DOS approach, the RL agent prelearns an optimal
policy in a reduced MDP (training MDP) with feature set
D′ = {have, (x, y)agent, (x, y)advdel , (x, y)advret}. This is

shown in Fig 3b. It lifts this optimal policy onto the game-
world MDP by choosing fm according to the Bayesian
weight updates. In this approach, fi is ρD′(s), where the
projections are onto the option MDP. Learning takes place
only in the training phase.

Estimating CHASE and HOLD parameters using the DOS
approach is not straight forward. The likelihood estimates
for the delayer and retriever fluctuate heavily initially and
we do not have a bound on when they converge. Thus the
agent would not know when to start estimating the CHASE
of the delayer.

DOS (Ravindran, Barto, and Mathew 2007) trains in the
option MDP over 60000 episodes. IF does not have an ex-
clusive learning phase, instead, depending on the availabil-
ity of instructions, it alternates between learning using in-
structions and learning using the weight update. Hence all
the weight updates shown for DOS occur after the learning
phase. The graphs comparing the performance of Instruction
Framework (IF) and DOS are shown in Fig 4.

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 20000 40000 60000 80000 100000

P
a
th

le
n
g
th

Runs

IF
DOS

IF Greedy

(a) Pathlengths

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500

N
o.

of
W

ei
gh

tU
pd

at
es

Runs

IF
chase

(b) Exploiting Instructions

Figure 4: Graphs comparing IF and DOS. The graphs have
been Beizer smoothed only for visibility purposes. The
trends in data are evident even in the non-smoothed plots.
All results have been averaged over 50 independent runs.

Fig 4a shows the no. of time steps taken by each algorithm
to solve the task successfully (collect the diamond and exit
the room). It can be noticed that even though DOS performs
well during the training phase, its performance drops in the
game world. This is because of the differences in the train-
ing world and the game world in terms of obstacles, CHASE
and HOLD parameters of adversaries. A major factor is the
time taken to identify the true delayer and true retriever, un-
til which the agent has an incomplete understanding of the
game world. The figure suggests that IF does not face this
problem. Even though IF does not suffer from losses due to
differences in worlds, it is affected by time taken to identify
true delayer and retriever. This is masked in the plot as the
episodes have been averaged over independent runs during
which the same episode would have received instructions in
some runs and would not have in other runs. In order to show
that IF outperforms DOS, IFgreedy has been plotted.

At regular intervals, the IF algorithm was made to imi-
tate DOS in the sense that IF behaved greedily based on the
knowledge of the game world it had at that moment. In addi-
tion to this, there were no instructions available to IF during
these episodes resulting in time being spent identifying the
true delayer and the true retriever. It can be seen in the figure
that even IFgreedy performs better than DOS proving that IF
outperforms DOS.

The no. of weight updates required by IF to identify the

true delayer and retriever are comparable to DOS. In Fig 4b,
the no. of weight updates required to identify the true delayer
using the classifier based on CHASE (plotted as chase) and
without (plotted as IF) are shown. chase does not consider
those adversaries classified as retrievers in identifying the
delayer. Hence instead of updating the likelihood of 8 adver-
saries, it only updates 5. This implies lesser no. of weights to
update and hence an earlier convergence to the true delayer.
It can be seen that the no. of updates required is nearly half
that required when we do not make use of CHASE values
based classification.

Conclusion and Future work
We have proposed a new framework to integrate in-
structions and showed with experimental validation that
our approaches perform better in comparison to evalua-
tion based learning methods. We have also discussed two
types of instructions with mathematical formulations. Our
framework is able to exploit the structural regularities
in the domain either through indirect specifications (π −
instructions - Transporter domain) or direct specifications
(Φ − instructions - Game domain). Also, we have shown
that our approach performs better than other standard ap-
proaches.

Note that the representation of the policy in the Game
domain is implicit via the Q function and hence the Φ-
instructions are in effect used to derive an abstract repre-
sentation for the value function.

One direction of extending our work, would be to con-
sider instructions that translate to more complicated opera-
tions on the state space. Another interesting direction of fu-
ture work would be to generalize over both instructions and
value functions. It would be interesting to look at combining
Φ-instructions and π-instructions.

References
Atkeson, C. G., and Schaal, S. 1997. Robot learning from demon-
stration. ICML ’97, 12–20. Morgan Kaufmann Publishers Inc.
Barto, A. G., and Mahadevan, S. 2003. Recent advances in hier-
archical reinforcement learning. Discrete Event Dynamic Systems
13:341–379.
Chapman, D. 1991. Vision, instruction, and action. MIT Press.
Clouse, J. A., and Utgoff, P. E. 1992. A teaching method for rein-
forcement learning. ICML92, 92–101. Morgan Kaufmann
Maclin, R., and Shavlik, J. W. 1998. Creating advice-taking re-
inforcement learners. In S.Thrun, and L.Pratt., eds., Learning to
Learn, 22, 251–281. Kluwer Academic Publishers.
Ng, A. Y., and Russell, S. 2000. Algorithms for inverse reinforce-
ment learning. ICML00, 663–670. Morgan Kaufmann.
Price, B., and Boutilier, C. 2003. Accelerating reinforcement learn-
ing through implicit imitation. JAIR 19:569–629.
Ravindran, B.; Barto, A. G.; and Mathew, V. 2007. Deictic option
schemas. IJCAI07, 1023–1028. AAAI Press.
Rosenstein, M. T., and Barto, A. G. 2004. Supervised actor-critic
reinforcement learning. In Learning and Approximate Dynamic
Programming: Scaling Up to the Real World, 359–380. John Wiley
and Sons.
Zeigler, B. P. 1972. Toward a formal theory of modeling and sim-
ulation: Structure preserving morphisms. J. ACM 19:742–764.

