
Encode-Attend-Refine-Decode:

Enriching Contextual Representations for Natural

Language Generation

A Thesis

submitted by

PREKSHA NEMA

for the Award of the Degree

of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

April 2021

THESIS CERTIFICATE

This is to certify that the thesis titled Encode-Attend-Refine-Decode: Enriching Con-

textual Representations for Natural Language Generation, submitted by Preksha

Nema (CS15D201), to the Indian Institute of Technology, Madras, for the award of the

degree of Doctor of Philosophy, is a bonafide record of the research work done by her

under our supervision. The contents of this thesis, in full or in parts, have not been

submitted to any other Institute or University for the award of any degree or diploma.

Mitesh M. Khapra
Research Guide
Associate Professor
Department of Computer Science and Engineering
IIT-Madras, 600 036

Balaraman Ravindran
Research Co-Guide
Professor
Department of Computer Science and Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 1-05-2021

ACKNOWLEDGEMENTS

My Ph.D. journey, like any other, has been filled with ups and downs. Many roadblocks

in between kept on testing my perseverance and patience, but because of the continuous

support from my advisors, colleagues, friends, and family, I am writing these last two

pages of my Ph.D. thesis.

Little did I know back then, while doing M.Tech, that I will be doing a Ph.D. But

thanks to my guide Dr. Mitesh M. Khapra, to whom I will always be grateful for making

me realize that I had the potential of pursuing the same. He helped me at various stages

of this journey and paved the way whenever I was deviating. He always had my best

interest at heart, be it at the very early stage, where he helped me with my Google Ph.D.

Fellowship application, which has been a massive boost for my Ph.D., or at the very

end stages where he was very supportive at such uncertain times and patiently helped

me shape my thesis. Working with him in several research works and TAing for his

courses, I learned how to ask the right questions while pursuing a project. His attention

to detail and passion while teaching a concept, presenting some ideas, or writing papers

are inspirational. I will always be grateful to him for helping, inspiring, and supporting

me to pass this crucial milestone of my life.

I am very thankful for the opportunity that Prof. Balaraman Ravindran was my co-

advisor. He was very supportive throughout my Ph.D. The discussion with him and his

inquisitive questions always enriched our research projects. During my initial phase

of research, he encouraged me to take up my MTP on abstractive summarization and

always connected me to the right set of scholars who eventually helped in understanding

the basics of deep learning. When Prof. Mitesh joined IITM, Prof. Ravi introduced me

to him to collaborate for a similar project on summarization, which eventually turned

out to be my first paper. I have learnt from him that it is equally important to be proud

of your work and increase visibility, as it is to work on exciting ideas, to be a successful

researcher.

i

I am also thankful to Dr. Hema A. Murthy, Dr. Sutanu Chakraborti, and Dr.C.Chandra

Sekhar for being so passionate about their courses and introduced me to interesting con-

cepts in Machine Learning and NLP, which eventually formed the basis of my thesis. I

am also thankful to Dr. P. Sreenivasa Kumar, Dr. N.S. Narayanaswamy, Dr. Kaushik

Mitra, and Dr. Sutanu Chakraborti for serving on my Doctoral Committee and provid-

ing helpful feedback in my Doctoral Committee meetings.

I was fortunate to have research collaborations with Anirban Laha, Parag Jain and

Dr. Balaji Vasan Srinivasan, and Dr. Pratyush Kumar Panda. Several fruitful discus-

sions helped in witnessing how the same problem can be viewed from different angles.

Working on my research projects would not have been so thrilling and exciting if

it was not for my research collaborators: Shreyas, Soham, Ananya, Madhura, Aakriti,

Sahana, Akash, Deep, and Sharan. Thank you all for sharing the same passion and

curiosity on getting things to work, which made the numerous night-outs and endless

discussions worth it.

I would also like to thank Annie Louis, Alexandros Karatzoglou, Filip Radlinski,

and Pauline Anthonysamy for being such great mentors during my Google Internships

and helping me get through the initial Covid lockdown period in London.

I am grateful to Ayushi, Sai, Manisha, Sonam, Disha, Abhirut, Mayuresh, Abhinay,

and Saksham for all their love and support. During these six years, I have been aloof

and not been around most of the time, but you still were there to lend me your ear

whenever I was overwhelmed or anxious.

This journey would not have been so memorable if it wasn’t for Sakshee, Rimpa,

Madhura, Snehal, KV, Naman, and Siddharth. I was scared and skeptical when I had

joined the M.Tech program after having worked for three years, but you guys made this

transition very easy. In my next phase, The mundane routine of working at the lab be-

came enjoyable with Gargi, PK, Rahul, Arjun, Vishvesh, Vinod, Nikita, Tarun, Suman,

Nitesh, Pritha, Jaya, and Shubham. I thank you all for the numerous chai sessions in the

department and IRCTC. Also, I absolutely cherished sharing our shared love for food

with Madhura (M.Tech), Priyesh, Rahul, Madhura (M.S.), Aakriti, Vishvesh, Vinod,

Anmol, and Gargi.

ii

I will always be indebted to my parents for being so encouraging during my Ph.D.

I always have and will look up to my father for being so rigorous and passionate about

even a small task that he does, and to my mother for teaching me to take things one step

at a time and to always smile and be patient in dealing with anything that comes our

way. I have always tried to learn a little of both qualities from them. I think that had

played a significant role in successfully achieving this milestone. I thank my younger

brother Tejaswi who always motivates me to sit back and relax and enjoy and always

cherish what has been achieved.

iii

iv

ABSTRACT

Natural Language Generation (NLG) refers to the process of automatically generating

human-understandable text from a given context. It includes a wide variety of tasks

such as machine translation, abstractive summarization, automatic question generation,

structured data to text generation, etc. In the past decade, the field of NLG has rapidly

evolved from statistical models to large scale transformer based models. In this thesis,

we focus on Recurrent Neural Network (RNN) based NLG models, popularly known

as sequence-to-sequence models (seq2seq). These models are also known as encode-

attend-decode models as they typically contain three modules, viz., (i) encoder (ii) at-

tention network and (iii) decoder. The encoder computes a contextual representation

for the tokens in the input sequence. The attention network computes a weighted sum

of the token representations, giving more weight to important tokens. The decoder uses

this weighted representation to generate the output, one token at a time.

While these models are very popular, several studies have highlighted their lim-

itations. In this work, we focus on three such limitations: (i) the inability to avoid

repeating phrases in the output, (ii) the inability to track previously covered fields in

the input sequence, and (iii) the inability to use task-specific rewards, which improve

generation quality. The first limitation is task-agnostic and has been reported for several

tasks such as machine translation, dialogue generation, abstractive summarisation, etc.

In particular, it has been observed that seq2seq models generate non-fluent output con-

taining repeating phrases such as “China Germany Germany Germany at world youth

championship”. To alleviate this problem, we propose a refine module which ensures

that the context vectors fed to the decoder at each time step are orthogonal to the context

vectors at previous time steps. We also introduce a learnable soft-orthogonalization pa-

rameter, γ which ensures that the context vectors are not orthogonalized when it is not

desirable to do so (e.g., for generating an output such as “He kept talking and talking

and talking.”, which is natural in certain contexts). We evaluate the proposed refine-

v

ment on the task of query-based abstractive summarization and show quantitative gains

over the existing state-of-the-art models.

The second limitation is task-specific and is observed in the context of generating

descriptions from structured data, i.e., a table of facts containing information organized

in different fields (rows). Existing seq2seq models are too generic and hence fail to

capture certain task-specific requirements. For example, while writing a description

of a table a human would continue attending to a field for a few timesteps till all the

information from that field has been rendered and then never return back to this field

(because there is nothing left to say about it). To capture this behavior, we use a gated

orthogonalization mechanism to ensure that a field is remembered for a few time steps

and then forgotten. In effect, we refine the representations computed by the attention

network before feeding them to the decoder. We evaluate our model on a publicly

available dataset and show that the proposed refinement improves the quality of the

generated description.

The third limitation arises from the inability of seq2seq models to use task-specific

rewards. For example, consider the Automatic Question Generation (AQG) task where

given a passage and an answer, the task is to generate the corresponding question. It is

desired that the generated question should be (i) grammatically correct, (ii) answerable

from the passage, and (iii) specific to the given answer. An analysis of existing seq2seq

models showed that they produce questions that do not adhere to one or more of the

aforementioned qualities. To capture the desired properties, we first propose a new

metric for AQG, which gives weightage to answerability in addition to fluency. We

then propose a method that tries to mimic the human process of generating questions

by first creating an initial draft and then refining it based on the reward/penalty given

by the above metric. We evaluate our model on multiple datasets and show that it

outperforms existing state-of-the-art methods.

A common theme across all the solutions proposed in this work for the three limi-

tations described above is a refine module. The specifics of the refine module depend

on the task and limitation being addressed. We believe that it can also be extended to

other tasks and the recent transformer based models giving rise to a new paradigm, viz.,

encode-attend-refine-decode as opposed to encode-attend-decode.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT v

LIST OF TABLES xv

LIST OF FIGURES xix

NOTATION xxi

1 Introduction 1

1.1 Limitations of Sequence to Sequence Models 3

1.2 Objectives of the Thesis . 6

1.3 Contributions of this Thesis . 7

1.4 Outline of the Thesis . 9

2 Background 11

2.1 Relevant NLG Tasks . 11

2.1.1 Abstractive Summarization 11

2.1.2 Query-Based Abstractive Summarization 11

2.1.3 Structured Data to Text Generation 13

2.1.4 Question Generation . 13

2.2 An overview of Neural Networks 14

2.2.1 Artificial Neuron . 14

2.2.2 Artificial Neural Networks 15

2.2.3 Training ANNs . 16

2.3 Recurrent Neural Networks . 17

2.3.1 Learning Algorithms for RNNs 18

2.4 Long Short Term Memory . 19

vii

2.5 Sequence-to-Sequence Models . 21

2.5.1 Encoder Module . 21

2.5.2 Decoder Module . 22

2.6 Attention Mechanisms . 23

2.7 Evaluation Metrics . 25

2.7.1 BLEU . 25

2.7.2 NIST . 26

2.7.3 METEOR . 27

2.7.4 ROUGE . 28

2.8 Summary . 29

3 Related Work 30

3.1 State of the art models for different tasks considered in this thesis . . 32

3.1.1 Task: Structured data-to-text generation 32

3.1.2 Automatic Question Generation 37

3.1.3 Query Based Abstractive Summarization 43

3.2 Works addressing the same limitations in Seq2Seq models as identified
in this thesis . 49

3.2.1 Avoiding Repeating Phrases 49

3.2.2 Better Transition among fields for Structured data to Text Gen-
eration . 54

3.2.3 Improving answerability for Question Generation 55

3.2.4 Other Limitations . 56

3.3 Works using similar techniques as proposed in this thesis 58

3.3.1 Using Orthogonalization to Diversify Context Vectors . . . 58

3.3.2 Using explicit reward signals for improving NLG 59

3.3.3 Generating multiple drafts 60

3.4 Summary . 61

4 Avoiding Repeating Phrases in NLG 62

4.1 Introduction . 62

4.2 Model Architecture . 65

4.2.1 Encode . 66

viii

4.2.2 Attend . 66

4.2.3 Refine . 68

4.2.4 Decode . 70

4.3 Baseline Methods . 70

4.4 Query Based Abstractive Summarization Dataset 71

4.5 Experimental Setup . 73

4.5.1 Implementation Details . 75

4.6 Results and Discussions . 77

4.7 Summary . 79

5 Exploiting Task Specific Characteristics for improving Adequacy 80

5.1 Introduction . 80

5.2 Proposed model . 83

5.2.1 Encode . 84

5.2.2 Attend . 86

5.2.3 Refine . 87

5.2.4 Decode . 89

5.2.5 Copying Mechanism . 89

5.3 Experimental setup . 90

5.3.1 Datasets . 90

5.3.2 Models compared . 91

5.3.3 Hyperparameter tuning . 91

5.4 Results and Discussions . 92

5.4.1 Comparison of different models 92

5.4.2 Human Evaluation . 94

5.4.3 Performance on different languages 94

5.4.4 Visualizing Attention Weights 95

5.4.5 Out of domain results . 98

5.5 Summary . 101

6 Designing Task Specific Metric for improving Answerability 102

6.1 Introduction . 102

ix

6.1.1 Q-Metric: A better metric for AQG 103

6.1.2 Using Q-Metric to improve AQG systems 105

6.2 Human Judgments For Answerability 106

6.2.1 Creating Noisy Questions 107

6.2.2 Instructions provided to human annotators 109

6.2.3 Human-Human Correlation 110

6.2.4 Correlation between human scores and existing evaluation met-
rics . 112

6.3 Modifying existing metrics for AQG 113

6.3.1 Tuning the weights wi’s and δ 114

6.3.2 Correlation between Human scores and different Q-METRICs 115

6.3.3 Qualitative Analysis . 116

6.4 Extrinsic evaluation . 116

6.5 Encode-Attend-Refine-Decode Model for AQG 120

6.5.1 Encode Module . 120

6.5.2 Attend Module . 122

6.5.3 Decode Module . 124

6.5.4 Refine Module . 124

6.5.5 Training Objective . 125

6.6 Experimental Details . 126

6.6.1 Datasets for AQG . 126

6.6.2 Implementation Details . 126

6.7 Results and Discussions . 127

6.7.1 EARD’s performance across datasets 127

6.7.2 Human Evaluations . 128

6.7.3 Analysis of Refined Draft and Initial Draft 129

6.7.4 Analysis of Reward Based Training Objective 131

6.7.5 Impact of character and positional embeddings 133

6.7.6 Case Study: Originality of the Questions 134

6.8 Summary . 135

7 Conclusion and Future Work 137

x

7.1 Future Directions . 139

LIST OF PAPERS BASED ON THESIS 161

xi

xii

LIST OF TABLES

1.1 Samples of erroneous output produced by encode-attend-decode mod-
els for various NLG tasks. The generated outputs have been taken from
the respective mentioned works. * refers to the encode-attend-decode
models taken as baselines in this thesis. 4

2.1 Example of a document and different possible manually generated sum-
maries for the given document. 12

2.2 Example of a summary for document in Table 2.1 which is specific to
the given query. 12

2.3 Example of a Wikipedia Infobox (structured data) and different possible
descriptions of the Infobox. 13

2.4 Example of a document and different questions that can be generated
from it. These examples are taken from SQuAD dataset (Rajpurkar
et al., 2016). 14

2.5 Example of a question corresponding to the given (document, answer)
pair from SQuAD dataset (Rajpurkar et al., 2016). 14

3.1 Existing RNN-based seq2seq models for question generation given a
text. Such models broadly consist of answer-aware module, and other
features such as CM: Copying Mechanism, PL: Paragraph Level In-
formation, LF: Linguistic Features. The last column enumerates the
datasets used to validate the proposed model. 41

4.1 Examples showing repeated words in the output of encoder-decoder
models. 65

4.2 Average length of passages/queries/summaries in the dataset. 73

4.3 Performance of various models using full-length ROUGE metrics. . 75

4.4 Summaries generated by different models. In general, we observed that
the baseline models which do not use a diversity based attention model
tend to produce more repetitions. Notice that the last example shows
that our model is not very aggressive in dealing with the history and is
able to produce valid repetitions (treated ... treated) when needed. . 76

4.5 Generated Samples where our best model, EARD-SD2:, does not re-
store the semantic meaning or does not generate the summary specific
to the given query. 77

xiii

4.6 The number of sentences with repeated unigrams across generated sum-
maries from various models. We average out the total number of sen-
tences across 10 folds. We can infer that the model with hard orthog-
onalization in Diversity LSTM generates summaries with least number
of repetitions. 78

5.1 Examples of generated descriptions from baseline model. The first
example is incoherent. In the second example, the model hops be-
tween “Name” and “Governer-General” fields. For the last example,
the nationality is incorrect generated by a baseline model is incorrect. 82

5.2 Dataset Statistics for Wikipedia Infoboxes for generating descriptions
in various languages. Note that the structured data is also present in the
corresponding language. 90

5.3 Comparison of different models on the English WIKIBIO dataset. . 92

5.4 Examples of generated descriptions from different models. For the last
two examples, name generated by the basic seq2seq model is incorrect
because it attended to the preceded by field. 93

5.5 Qualitative Comparison of Model A (Seq2Seq) and Model B (our model). 94

5.6 Comparison of different models on the French WIKIBIO dataset. . . 95

5.7 Comparison of different models on the German WIKIBIO dataset. . 95

5.8 In this table, we focus on the shift in the performance when the model
does not see any training samples from the corresponding domain, to
samples being added gradually. We report the BLEU-4 scores for Wikipedia
Infoboxes from two domains: Arts and Sports. We can infer that with-
out the target domain samples the performance drops significantly. How-
ever, the performance recovers quickly through fine-tuning the model
on 5K samples. 98

6.1 Samples of generated questions from Baseline (EAD), Encode-Attend-
Refine-Decode (EARD), and Reward-EARD model on the SQuAD dataset.
Answers are shown in blue. 105

6.2 Some examples to highlight that the generated questions from Baseline
(EAD) models are difficult to be analyzed systematically. 107

6.3 Instructions along with the examples. The words that are strike out were
removed from the original question to create a noisy question. . . . 109

6.4 Interpretation for the inter-annotator agreement score using Cohen’s κ. 111

6.5 Inter annotator agreement, Pearson and Spearman coefficients between
Human Scores. 111

6.6 Correlation between existing metrics and human judgments. The values
with ∗ are not statistically significant (p-value > 0.01). 112

xiv

6.7 Coefficients learnt for Q-BLEU1 from human judgments across differ-
ent datasets. 115

6.8 Correlation between proposed Q-Metric and human judgments. All the
correlations have a p-value < 0.01 and hence statistically significant. 116

6.9 Human (Gold) and Q-Metric scores for some of the examples from the
collected human-evaluation data. 117

6.10 Performance obtained by training on different types of noisy questions
(WikiMovies). 118

6.11 Performance obtained by training on different types of noisy questions
(SQuAD). 118

6.12 Performance obtained by training on different types of noisy questions
(VQA). 118

6.13 Comparsion of EARD model with existing approaches and EAD model.
Here * denotes our implementation of the corresponding work. . . . 128

6.14 An example where EAD model was better than EARD. The ground
truth answers are shown in blue. 129

6.15 Comparison between Preliminary and Refinement decoders in EARD
Model for SQuAD Sentence Level QG. 129

6.16 Generated samples by Preliminary and Refinement Decoders in our pro-
posed EARD model. We observe that the Refinement Decoder im-
proves the draft by adding relevant phrases ”{causes cervical cancer,
terrible headaches}”. 130

6.17 Generated samples by Preliminary and Refinement Decoders in our pro-
posed EARD model. We observe that the Refinement Decoder im-
proves the draft by correcting question types/function words in the ini-
tial draft. 132

6.18 Impact of Reward-EARD on various datasets when fluency and answer-
ability are used as reward signals. 133

6.19 An example of question with significant overlap with the passage. The
answer is shown in blue. 133

6.20 An example where Reward-EARD(Originality) is better than EARD. 134

xv

xvi

LIST OF FIGURES

1.1 A basic seq2seq model consisting of encode-attend-decode modules.
The encoder is responsible for learning meaningful contextual repre-
sentations for words in the input. The decoder then predicts one word
at a time by attending to relevant words in the input using the attend
module. 2

1.2 Seq2seq architecture with proposed refine module. The refine module
enriches the attended input representations computed from attend mod-
ule and then passes it to the decode module. 6

2.1 An artificial neuron (left) and a biological neuron (right). 14

2.2 A simple feed-forward neural network with two hidden layers. . . . 15

2.3 Backward flow of error for weight w for a sample feedforward network
with two hidden layers. 17

2.4 Recurrent Neural Network . 17

2.5 The computations in one timestep of a Long Short Term Memory Cell. 20

2.6 An RNN-based sequence to sequence model. It consists of encode,
attend, and decode modules. 24

3.1 An overview of the existing works. across three dimensions: Tasks:
QBAS (Query based Abstractive Summarization); AQG (Automatic
Question Generation); SD2T (Structured Data to Text Generation); Lim-
itations: Avoiding Repeating Phrases, Better Transitions among fields,
Improving Answerability; Strategies. We highlight the works based on
this thesis in red. Note that the enlisted works are specific to RNN-
based seq2seq models. 31

3.2 Taxonomy of models proposed for the task of Structured Data to Text
Generation . 32

3.3 Taxonomy of models proposed for the task of Automatic Question Gen-
eration . 38

3.4 Taxonomy of models proposed for the task of Query Based Abstractive
Summarization . 43

3.5 Taxonomy for works that avoid repeating phrases in the output . . . 50

xvii

4.1 Our proposed model is based on encode-attend-refine-decode paradigm.
The attend module generates a context vector ct, by attending on to the
passage word representations based on the decoder’s hidden state st−1.
This context vector ct, is then passed to the refine module, which diver-
sifies ct with respect to the history of the context vectors d′t−1 stored in
the refine module. The diversified context vector dt is then passed to
the decode module to generate the next word. 63

4.2 Queries associated with the topic “algae biofuel”. 72

4.3 Passages and summaries for a given query. 72

5.1 The goal is to generate the following description when this infobox is
passed as an input: Karl Dykhuis born (born July 8, 1972) is a Cana-
dian former professional ice hockey defenceman who played 12 seasons
in the National Hockey League (NHL) for the Chicago Blackhawks,
Philadelphia Flyers, Tampa Bay Lightning and Montreal Canadiens. 81

5.2 Our proposed model consists of i) a hierarchical encoder that encodes
the infobox at the field and value level, ii) attend module with three sub-
components: micro, macro, and fused attention networks, iii) refine
module models the stay-on and never-look-back characteristics. Here
dt represents the history of filed level context vectors, iv) a decoder that
generates the description conditioned on value-level and refined field-
level context vectors. 84

5.3 Comparison of the attention weights and descriptions produced for In-
fobox in Figure 5.3a. 96

5.4 Wikipedia Infobox for Matthias Hagner. 96

5.5 Comparison of the attention weights and descriptions in German pro-
duced for Infobox in Figure 5.4. 97

5.6 Comparison of the attention weights and descriptions (see highlighted
boxes) produced by an out-of-domain model with and without fine tun-
ing for the Infobox in Figure 5.6a 99

5.7 Wikipedia infobox for Sheppard Dillon. 100

5.8 Comparison of the attention weights and descriptions (see highlighted
boxes) produced by an out-of-domain model with and without fine-
tuning for the Wikipedia infobox in Figure 5.7. 100

6.1 We plot the ratings given by Annotator A and B across different datasets.
From the above plots, we can infer that the ratings are linearly corre-
lated. 111

xviii

6.2 Our Proposed Model with encode-attend-refine-decode paradigm. The
decode module provides an initial draft of the question to the refine
module. The refine module then improves this initial draft by attend-
ing to the initial draft and the passage-answer representation simultane-
ously. 119

6.3 Generated Question Length Distribution for Preliminary and Refine-
ment Decoders. 131

6.4 Attention plots for a) E2P, b) E2R, c) P2R respectively Initial Draft:
“What is the name of the oncogenic virus?” Refined Draft: “What is
the name of the virus that causes cervical cancer?” 132

6.5 Originality Analysis: Plot of Q-BLEU score vs N - the number of sam-
ples selected. 135

xix

xx

NOTATION

AI Artificial Intelligence
NLP Natural Language Processing
NLG Natural Language Generation
EARD Encode-Attend-Refine-Decode
EAD Encode-Attend-Decode
AQG Automatic Question Generation
SD2T Structured Data to Text Generation
QBAS Query Based Abstractive Summarization
RNN Recurrent Neural Network
LSTM Long Short Term Memory
GRU Gated Recurrent Unit
seq2seq Sequence to Sequence Models
P2R PreliminaryDecoder-to-RefinementDecoder attention network
E2R Encoder-to-RefinementDecoder attention network
E2P Encoder-to-PreliminaryDecoder attention network
� Hadmard product
L Loss Function
η Learning rate
θ Network parameters
V Vocabulary Size
P Sequence of words in the passage
hpi Passage level contextual representation for word at position i
ct Passage-level context vector
st Decoder’s hidden state at timestep t
ew Word Embedding function
dt Refined context vector
I Wikipedia Infobox
W Number of values in a Wikipedia Infobox
cft Field-level context vector
κ Cohen’s Kappa Score
hdt Refinement Decoder’s state at timestep t
h̃dt Preliminary Decoder’s state at timestep t
h̃pi Answer-aware representation for a passage word at position i
ha Contextual representation of the answer
Q̃ Initial Draft of the question
Q Refined Draft of the question

xxi

xxii

CHAPTER 1

Introduction

Natural Language Generation (NLG) deals with the problem of automatically generat-

ing human-understandable text from a given context. This context could be a natural

language text itself, an image, a video, a structured table, etc. NLG includes a wide

variety of tasks such as machine translation, abstractive summarization, dialogue gen-

eration, structured data to text generation, image captioning, automatic question gener-

ation, etc. It has always been one of the holy grails of Artificial Intelligence (AI) and

is considered an essential trait for a machine to demonstrate Artificial General Intel-

ligence. Indeed, the Turing Test, proposed way back in 1950, requires a machine to

generate natural language text which is indistinguishable from that generated by hu-

mans. While significant progress has happened in NLG over the past 70 years, we are

still nowhere close to building a machine that can comprehensively pass the Turing Test.

Nevertheless, we have come a long way from the early rule based Machine Translation

(MT) (Hutchins et al., 1955) and summarization systems (Luhn, 1958) to the modern

large scale transformer based models, which are trained on massive amounts of data

(Radford et al., 2018, 2019; Brown et al., 2020).

Modern NLG systems are adept at a wide variety of tasks. For example, the GPT-3

model (Brown et al., 2020) which is a massive transformer based model trained on 45

TB text data taken from multiple sources on the web, is capable of writing essays, po-

ems, codes, jokes, summaries, etc. The evolution of NLG models into their modern day

avatar of large transformer based models can be divided into four broad phases. The

first phase includes the early rule based systems for translation (Hutchins et al., 1955),

summarization (Luhn, 1958) and dialogue generation (Weizenbaum, 1966). These sys-

tems relied on a few handcrafted rules and could generate responses for a limited set of

inputs. The next important phase started with the arrival of statistical models (Brown

et al., 1990; Vogel et al., 1996) which proposed a probabilistic model by casting NLG

as the problem of generating a sequence t given an input c, which maximizes P (t|c).

1

Figure 1.1: A basic seq2seq model consisting of encode-attend-decode modules. The
encoder is responsible for learning meaningful contextual representations
for words in the input. The decoder then predicts one word at a time by
attending to relevant words in the input using the attend module.

These models dominated the field of NLG for a little over two decades till the arrival of

Deep Learning. In particular, in this third phase, there was a transition from statistical

models to end-to-end trainable neural network based models. An important innova-

tion during this phase was the development of Recurrent Neural Network (RNN) based

encode-attend-decode models (Bahdanau et al., 2014). A key component of these mod-

els was an attention network which computes the importance of every token in the input

sequence at each time step. While very successful, within a span of few years, RNNs

were replaced by transformer based models, which are characterized by (i) multiple

encoder layers, (ii) multiple decoder layers, and (iii) multiple attention networks.

The work done as a part of this thesis started during the third phase of the evolution

of NLG when RNN based models with an attention network were the de facto standard

for any NLG task (Rush et al., 2015; Bahdanau et al., 2014; Sankaran et al., 2016;

Du et al., 2017; Mei et al., 2016; Lebret et al., 2016; Nallapati et al., 2016; Serban

et al., 2016b). These were also popularly known as sequence-to-sequence (seq2seq)

models or encode-attend-decode models. An encode-attend-decode model as proposed

in Bahdanau et al. (2014) contains (i) a RNN based encoder for computing contextual

2

representations of the tokens in the input sequence, (ii) a RNN based decoder that gen-

erates the output, one word at a time, and (iii) an attention network which computes

how important an input token is for decoding the output at a particular timestep. The

RNN could either be a vanilla RNN or a Gated Recurrent Unit (GRU) (Cho et al., 2014)

or a Long Short Term Memory (LSTM) unit (Hochreiter and Schmidhuber, 1997). Fig-

ure 1.1 shows the architecture of such an encode-attend-decode network for the task of

Machine Translation. Despite their popularity and success, RNN based encode-attend-

decode models have certain limitations. We focus on three such limitations in this

thesis, as discussed in the next subsection.

1.1 Limitations of Sequence to Sequence Models

In Table 1.1 we show the output produced by a typical encode-attend-decode model for

various NLG tasks and compare it with the expected gold standard output. Through

these examples, we highlight three important limitations of such models which are ad-

dressed in this thesis.

First, from rows 1 to 4, we observe that the generated sequence often contains re-

peating phrases. This problem has been reported for a wide variety of tasks such as

Abstractive Summarization (Suzuki and Nagata, 2017), Machine Translation (Sankaran

et al., 2016; Tu et al., 2016), Open Ended Generation (Welleck et al., 2019), Question

Generation (Song et al., 2017), etc. There could be several reasons for this, but in this

work, we hypothesis that this could be due to the contextual representations passed to

the decoder at every time step. In particular, at every time step, the decoder receives a

contextual representation from the attention network. This contextual representation is

a weighted sum of the representations of the tokens in the input sequence. If the decoder

produces the same word at every timestep, could it be that it receives the same or similar

contextual representations at those timesteps? We investigate this question in this thesis

and propose solutions to alleviate this problem. While we do not formally show that the

problem is due to similar representations being fed to the decoder at every time step,

we do show that explicitly ensuring that the representations fed to the decoder at every

time step are diverse, improves the quality of the generated text.

3

Repeating Phrases
Abstractive
Summarization
(Suzuki and
Nagata, 2017)

Input: China faces traditional powerhouse Germany on Tuesday in
the round of ## at soccer ’s world youth championship...
Reference: China success at youth world championship shows prepa-
ration for #### Olympics.
Generated: China germany germany germany germany and germany
at world youth championship

Query-based
Abstractive
Summarization*

Input: Passage: Fuel cell critics point out that hydrogen is flammable,
but so is gasoline... Also, gaseous hydrogen isn’t the only method of
storage under consideration–BMW is looking at liquid storage...
Query: are hydrogen fuel cell vehicles safe
Reference: hydrogen in cars is less dangerous than gasoline
Generated:hydrogen is hydrogen hydrogen hydrogen fuel energy

Machine
Translation
(Sankaran et al.,
2016)

Input: die Teilnehmer der Proteste , die am Donnerstag um 6:30 AM
morgens vor dem McDonald ’s in der 40th Street und in der Madison
Avenue begannen... .
Reference: Participants of the protest that began at 6.30 a.m. on
Thursday near the McDonald’s on 40th street and Madison Avenue...
Generated: The protests that began on Thursday at 06:30 before the
McDonald ’s at McDonald ’s at McDonald ’s on 40th Street and Madi-
son Avenue.

Open Ended
Generation
(Welleck et al.,
2019)

Input: ... Lyrically the song has excerpts of different languages in-
cluding French , Spanish
Reference: , and German . In the first verse , the protagonist sings
about being a “ girl who ’s been in love with someone else ...
Generated: ,Italian , Spanish , Italian , Spanish , Italian , Spanish ,
Spanish , Portuguese , Portuguese , Portuguese , Portuguese

Not Adequate
Structured
Data to Text
Generation*

Input: NAME <Harrison B. Wilson Jr.>, PRECEDED_BY <Lyman
Beecher Brooks>, BORN < April 21, 1925>, OCCUPATION <Edu-
cator, Professor, Coach>
Reference: Harrison B. Wilson , Jr. (born april 21 , 1925) is an amer-
ican educator , academic administrator.
Generated: Lyman Wilson Jr. (born april 21 , 1925) is an american
educator and educator.

Not Answerable

Question
Generation*

Input: Liberated by Napoleon’s army in 1806, Warsaw was made the
capital of the newly created Duchy of Warsaw.
Answer: Napoleon
Reference: Whose army liberated Warsaw in 1806 ?
Generated: What was the capital of the newly duchy of Warsaw?

Table 1.1: Samples of erroneous output produced by encode-attend-decode models for
various NLG tasks. The generated outputs have been taken from the respec-
tive mentioned works. * refers to the encode-attend-decode models taken as
baselines in this thesis.

4

The above problem was a task-agnostic problem, in the sense that it can occur for

any NLG task. We now look at two task-specific problems with RNN based encode-

attend-decode models. We first consider the task of generating natural language de-

scriptions from structured data. Here, the input is a table of facts arranged in rows.

Each row corresponds to a field, such as name, occupation, birthdate, etc. Further, each

field can have one or more fields associated with it (e.g., the occupation field can have

multiple values such as professor, coach, etc). Row 5 of Table 1.1 shows an example of

this task and highlights a potential problem with encode-attend-decode models. First,

in the generated output the decoder seems to jump from one field to another instead of

staying on just one field; e.g., it mixes Lyman and Wilson which belong to two differ-

ent fields. Second, it does not cover all values from a given field; e.g., it does not list

down all the occupations. The vanilla encode-attend-decode models are task-agnostic

and clearly do not have niche components that can capture such task specific behaviour.

We propose a refinement to the vanilla encode-attend-decode by adding special compo-

nents which capture this task specific behaviour. In particular, our components ensure

that the decoder stays on a field as long as required (i.e., till all the data from that field

is covered) and never looks back at a field once it is covered (thereby ensuring that data

from two different fields is not mixed).

Lastly, we consider another task-specific problem in the context of Automatic

Question Generation (AQG). Here, given an input passage and a specific answer, the

task is to generate a question that can not only be answered from the given passage

but also leads to the specific answer provided as input. Thus, unlike other NLG tasks

such as machine translation, dialogue generation and abstractive summarization, where

the generated text is required to be fluent, coherent, factual, etc., in AQG there is an

additional requirement that the generated question should be answerable. For example,

consider the generated question shown in row 6 of Table 1.1. It is neither answerable

from the given passage, nor does it lead to the specific answer provided as input. To

capture this task specific characteristic we first need to propose a metric which captures

answerability, i.e., given a reference question and a generated question it assigns a

score on a scale of 0 to 1, indicating how close is the the generated question in terms

of answerability to the reference question. Next, we need to ensure that the model is

rewarded for generating questions which score high on this metric. Vanilla encode-

5

attend-decode models which are trained to maximise log likelihood, clearly do not use

such task specific criteria such as answerability as objective functions. In this work, we

address this issue by proposing a two stage decoder wherein the second stage refines

the output of the first stage to maximise answerability of the generated question.

Figure 1.2: Seq2seq architecture with proposed refine module. The refine module en-
riches the attended input representations computed from attend module and
then passes it to the decode module.

1.2 Objectives of the Thesis

This thesis aims at improving the performance of seq2seq models by alleviating the

task-agnostic and task-specific problems listed above and summarised below.

• Mitigating the task agnostic problem of repeating phrases in the output: Our first

objective is to mitigate the repeating phrase problem for query-based abstractive

summarization by diversifying the contextual representations.

• Modeling task-specific characteristics for structured data to text generation: Our

second objective is to model task-specific characteristics for structure data to text

generation, to enhance the fluency and adequacy of the generated descriptions.

• Modeling task-specific characteristics for question generation: Our third objec-

6

tive is to increase the answerability of generated questions based on a given pas-

sage and a specific answer.

1.3 Contributions of this Thesis

A common theme in this thesis is that the vanilla encode-attend-decode models need

some refinement to address task specific and task agnostic problems. To do so, we in-

troduce a refine module, the specifics of which depend on the task and problem being

addressed. For example, for solving the problem of repeating phrases, the refine module

contains a component which orthogonalizes and thus diversifies the context representa-

tions passed to the decoder at each time step. On the other hand, to generate answerable

questions, the refine module contains an additional decoder which makes the outputs

of the first decoder more answerable. This gives rise to a generic framework which

we refer to as the encode-attend-refine-decode which could potentially be extended to

handle other task-specific and task-agnostic limitations of vanilla encode-attend-decode

models. In the context of this framework, we make the following contributions in this

thesis.

• As our first contribution, we address the problem of repeating phrases in the out-

put of NLG systems. To this end, we propose a refine module to diversify the

context vectors generated at each time step. In particular, we propose a Diversity

LSTM cell, a novel variant of the basic LSTM cell. It ensures that the LSTM

network’s output is orthogonal to the cell-state, which in turn ensures that the

context vector at each time step is distinct, thereby reducing repetitions in the

generated text. Further, to address situations where repetitions are naturally re-

quired (e.g., for generating an output of the form “He kept talking and talking

and talking”, we introduce a soft orthogonalization parameter which allows the

network to choose if and how much to diversify the context vectors. To evaluate

this model, we introduce a new query-based abstractive summarization dataset

based on Debatepedia. Our experiments show that with the refine module, the

proposed model outperforms vanilla encode-attend-decode models with a gain of

28%(absolute) in ROUGE-L scores.

7

• As our second contribution, we address the problem of generating natural lan-

guage descriptions from a structured table of facts containing fields (such as

nationality, occupation, etc.) and values (such as Indian, actor, director, etc.).

Previous works have adapted vanilla seq2seq models for this task, by hierarchi-

cally encoding the table. In particular, they first computed a representation for

each field by combining the representations of the values in that field, and then

computed a representation for the table by combining the representations of the

fields. An attention network then pays attention to the relevant fields and feeds

a weighted contextual representation to the decoder at each time step. However,

such models do not mimic the behaviour of humans while generating the cap-

tions. For example, a human would stay on a field until the relevant information

from that field has been written. Moreover, she will never look back to that field

while generating the rest of the description. To simulate these two behaviors:

stay-on and never-look-back, we design the refine module with a gated orthogo-

nalization mechanism. It comprises of a soft learnable gate which decides at each

timestep of the decoder whether to stay on the same field or never-look-back at

a field. If the latter behavior is preferred, then the new context vector is orthog-

onalized to the current one to ensure that the same field is not attended to again.

We experiment with a dataset released by Lebret et al. (2016) which contains

fact tables about people and their corresponding one-line biographical descrip-

tions in English and show that our model gives 2.2% relative improvement over

the encode-attend-decode paradigm based baseline. In addition, we also validate

our proposed model on similar datasets as introduced in Lebret et al. (2016) for

French and German Languages. We observe a relative improvement of 12% and

14% over the encode-attend-decode paradigm based baseline.

• As our third contribution, we address the problem of improving the answerabil-

ity of questions generated from a given passage. A key issue here is that exist-

ing metrics for evaluating AQG systems are adopted from other NLG tasks such

as Machine Translation and hence are not adequate for evaluating AQG-specific

characteristics. Hence, there is no reward for a model to generate answerable

questions. As a first step, we show that existing metrics used for evaluating AQG

systems do not focus on answerability of the generated question. In particular,

8

they do not explicitly prefer questions which contain all relevant information such

as question type (Wh-types), entities, relations, etc. and thus do not always cor-

relate well with human judgments about answerability of a question. To alleviate

this problem , we introduce a scoring function to capture answerability and show

that when this scoring function is integrated with existing metrics, they correlate

significantly better with human judgments. Having introduced this metric, we

observe that existing AQG systems often do not produce answerable questions.

In particular, the generated questions look like an incomplete draft of the desired

question with a clear scope for refinement. To alleviate this shortcoming, we pro-

pose a method which tries to mimic the human process of generating questions

by first creating an initial draft and then refining it. More specifically, we pro-

pose an encode-attend-refine-decode paradigm-based model which contains two

decoders, viz., Preliminary and Refinement Decoders. The Refinement Decoder

pays attention to both (i) the original passage and (ii) the question (initial draft)

generated by the Preliminary Decoder. In effect, it refines the question gener-

ated by the Preliminary Decoder, thereby making it more correct and complete.

We evaluate our proposed model on multiple datasets and show that it outper-

forms existing state-of-the-art methods by 7-16% on all of these datasets. Lastly,

we show that we can improve the quality of the Refinement Decoder on specific

metrics, such as fluency and answerability, by explicitly rewarding revisions that

improve on the corresponding metric during training.

1.4 Outline of the Thesis

This chapter gives a brief overview of the problems addressed and the solutions pro-

posed in this thesis. The rest of the thesis is organized as follows:

• In Chapter 2, we provide the background by introducing all the basic concepts

required to understand the work presented in this thesis. In particular, we give an

overview of neural networks, recurrent neural networks and some of its variants

and finally, vanilla sequence to sequence models.

• In Chapter 3, we first describe how vanilla seq2seq models have been adopted

9

for different tasks addressed in this work. We then discuss parallel works which

address the same limitations as discussed in this thesis. Finally, we discuss related

works that use similar concepts as used in our thesis to mitigate other problems

encountered in NLG.

• In Chapter 4, we present our encode-attend-refine-decode architecture for miti-

gating the problem of repeating phrases in the output. We then present experi-

mental results comparing our model to vanilla seq2seq models on a new dataset

for query-based abstractive summarization.

• In Chapter 5, we present an encode-attend-refine-decode architecture for the task

of structured data to text generation. We discuss our method which mimics the

stay on and never look back behaviour. We also present experimental results com-

paring our model to state of the art models for this task on a dataset comprising

of biographies taken from Wikipedia.

• In Chapter 6, we first propose a metric designed for evaluating question gener-

ation systems with a focus on answerability. We then propose a model based

on the encode-attend-refine-decode paradigm, which uses answerability as an ex-

plicit reward signal to refine the outputs of the Preliminary Decoder. We then

present experimental results comparing our model to state of the art models for

this task on a wide variety of tasks.

• In Chapter 7, we present important conclusions from our work, and highlight

some interesting future research directions.

10

CHAPTER 2

Background

In this chapter, we introduce the basic concepts required to understand the work done

as a part of this thesis. We first briefly explain the different NLG tasks that we consid-

ered in this work. We then give an overview of Neural Networks, LSTMs, Sequence-

to-Sequence Models, and Attention Mechanisms. Finally, we discuss the evaluation

metrics used in this work.

2.1 Relevant NLG Tasks

In this work, we consider three NLG tasks, viz., abstractive summarization, structured

data to text generation and automatic question generation. We describe each of these

tasks below.

2.1.1 Abstractive Summarization

Given a document, the task here is to generate a human-like summary. We show a sam-

ple document and possible summaries in Table 2.1. It is obvious that the summaries are

expected to be concise, coherent, grammatically correct, and faithful to the information

present in the given document. Further, just like any other NLG task, multiple correct

answers (summaries) exist for a given document.

2.1.2 Query-Based Abstractive Summarization

Given a document and a query, the task is to generate a summary focused on addressing

the given query. Just like abstractive summarization, we expect the summary to be

concise, coherent, and faithful to both document and the query in this task. We show an

example of this task in Table 2.2.

11

Document: Babar Azam made a total of 228 runs in Pakistan’s famous series win
against South Africa, including a century in the first match in Centurion. That
helped him move ahead of Kohli - who has been No.1 since displacing AB de Vil-
liers in October 2017 - by a point, but he dropped to 852 after his score of 31 in the
second ODI and remained at No. 2 by the time of the last weekly rankings update.
After his knock in the third ODI, he gained eight more than Kohli, to became just
the fourth Pakistan batsman to attain the top ranking after Zaheer Abbas (1983-84),
Javed Miandad (1988-89), and Mohammad Yousuf (2003).
Summaries:
1. Babar Azam becomes only fourth Pakistan player to attain top ranking as ODI

batsman, after Zaheer Abbas, Javed Miandad and Mohammad Yousuf .
2. Babar Azam displaced Kohli, who had earlier displaced AB de Villiers in

2017, to become the No.1 ranked ODI batsman.
3. Pakistan wins series against South Africa .

Table 2.1: Example of a document and different possible manually generated sum-
maries for the given document.

Document: Babar Azam made a total of 228 runs in Pakistan’s famous series win
against South Africa, including a century in the first match in Centurion. That
helped him move ahead of Kohli - who has been No. 1 since displacing AB de
Villiers in October 2017 - by a point, but he dropped to 852 after his score of 31
in the second ODI and remained at No. 2 by the time of the last weekly rankings
update. After his knock in the third ODI, he gained eight more than Kohli, to
became just the fourth Pakistan batsman to attain the top ranking after Zaheer Abbas
(1983-84), Javed Miandad (1988-89), and Mohammad Yousuf (2003).
Query:
Summary:
Babar Azam becomes only fourth Pakistan player to attain top ranking as ODI bats-
man, after Zaheer Abbas, Javed Miandad and Mohammad Yousuf .

Table 2.2: Example of a summary for document in Table 2.1 which is specific to the
given query.

12

Descriptions
1. Charles B. Winstead (May 25, 1891 – August 3, 1973) was an FBI agent in

the 1930s–40s.
2. Charles B. Winstead was famous for being one of the agents who shot and

killed John Dillinger

Table 2.3: Example of a Wikipedia Infobox (structured data) and different possible de-
scriptions of the Infobox.

2.1.3 Structured Data to Text Generation

In both the tasks that we saw earlier, the input was a natural language text (or texts). We

now consider a task where the desired output is a natural language text, but the input

is structured data, i.e., it is not a natural language text. More specifically, the input is

organized in a well-defined table with rows and columns (similar to a typical database

table or an Infobox in a Wikipedia page). The task then is to generate a natural descrip-

tion from this table of facts. Apart from being grammatically correct, the generated

description must be factually correct and faithful to the information in the structured

data. Table 2.3 shows a sample Infobox (containing structured data) and potential de-

scriptions of the Infobox.

2.1.4 Question Generation

Given a document and optionally a specific answer, the task here is to generate a ques-

tion that can be answered from the given document and leads to the given answer.

The generated question should be unambiguous, grammatically correct, and answer-

able from the given document. Table 2.4 shows examples of different questions that

can be generated from the given document when no specific answer is given as input.

13

Passage: Oxygen is used in cellular respiration and released by photosynthesis,
which uses the energy of sunlight to produce oxygen from water.
Questions
1. What life process produces oxygen in the presence of light?
2. Photosynthesis uses which energy to form oxygen from water?
3. From what does photosynthesis get oxygen?

Table 2.4: Example of a document and different questions that can be generated from
it. These examples are taken from SQuAD dataset (Rajpurkar et al., 2016).

Passage: Oxygen is used in cellular respiration and released by photosynthesis,
which uses the energy of sunlight to produce oxygen from water.
Answer: sunlight
Question: Photosynthesis uses which energy to form oxygen from water?

Table 2.5: Example of a question corresponding to the given (document, answer) pair
from SQuAD dataset (Rajpurkar et al., 2016).

On the other hand, Table 2.5 shows a specific question that can be generated when the

desired answer is also provided as input.

2.2 An overview of Neural Networks

2.2.1 Artificial Neuron

Artificial neural networks (ANN) are motivated from biological neural networks, which

are a densely connected mesh of biological neurons. The most fundamental unit of an

Figure 2.1: An artificial neuron (left) and a biological neuron (right).

14

Figure 2.2: A simple feed-forward neural network with two hidden layers.

ANN is an artificial neuron which is a mathematical model inspired by a biological

neuron as illustrated in Figure 2.1. Given a set of inputs x = {x1, . . . , xm} the output

of a neuron is given by g(x) =
∑
wixi. The weights {w1, . . . , wm} are used to weigh

the different inputs connected to the neuron. Note that g can be any function and is

typically chosen to be a non-linear function. We will further see that the weights can be

learned such that the model produces the desired output.

2.2.2 Artificial Neural Networks

An ANN is a network of artificial neurons as shown in Figure 2.2. Typically, there are

multiple layers in the network, with each layer receiving input from the previous layer

and feeding its output to the next layer. Note that the initial and final layers are referred

to as input and output layers respectively, whereas the intermediate layers are referred

to as hidden layers. The output of the i-th layer is denoted by hi and is given by

ai = Wi · hi−1 + bi (2.1)

hi = σ(ai) (2.2)

where Wi, bi denote the weight and bias in the i-th layer. Note that h0 = x, where x is

the input. σ is the activation function and is typically a non-linear function such as the

logistic function, tanh function, ReLU function (Agarap, 2018), etc.

15

2.2.3 Training ANNs

Given a training set {xi, yi}Ni=1, the goal of a neural network with parameters θ, is to

learn a function fθ(x) such that fθ(xi) is as close to yi as possible. To do so, we define

a loss function, L(θ), which captures the difference between fθ(x) and y. Two popular

loss functions that are commonly used are the mean square error for regression and the

cross entropy loss for classification as defined below.

L(θ) = 1

N

N∑
i=1

(yi − f(xi, θ))2 Mean Square Error (2.3)

L(θ) = − 1

N

N∑
i=1

yilog(f(xi, θ)) Cross-Entropy Loss (2.4)

Having defined a loss function, the goal then is to find the parameters θ which

minimize this loss function. This is thus an optimization problem, and a popular way

of finding θ is to use the gradient descent algorithm with back-propagation. This is an

iterative algorithm where starting from an initial random value for θ, at each stage a

new value is computed using the following update rule:

θ = θ − η∇θL(θ) (2.5)

where η is the learning rate and∇θ is the gradient of the loss function w.r.t. θ.

For gradients computation Rumelhart et al. (1986) proposed the back-propagation

algorithm. It allows the backward flow of information from the cost function to the

network parameters which need to be updated. Figure 2.3 illustrates one such example

of backward flow to the parameter w in the initial layer of the network. This algorithm

uses the chain rule to compute the gradients. Note that the gradient descent algorithm

is sensitive to the choice of the learning rate η. A lower learning rate can lead to slower

convergence, or a higher learning rate can lead to oscillations. Several variants of gra-

dient descent (GD) such as Momentum based GD, Nesterov Accelerated GD (Nestrov,

1983), RMSProp (Hinton, 2016), AdaGrad (Duchi et al., 2011), Adam (Kingma and

Ba, 2014), etc., are used to overcome the limitations of vanilla gradient descent. Some

16

Figure 2.3: Backward flow of error for weightw for a sample feedforward network with
two hidden layers.

Figure 2.4: Recurrent Neural Network

of these algorithms use an adaptive learning rate which leads to faster convergence and

improved performance.

2.3 Recurrent Neural Networks

In many real world applications, the input is in the form of a sequence. For example, a

text is a sequence of words, a video is a sequence of frames, and so on. More formally,

the input can be divided into T timesteps and the output at timestep t may depend on

all inputs up to that point. Such dependence between elements appearing in a sequence

can be modeled using a Recurrent Neural Network as shown in Figure 2.4. For a given

17

input sequence x = {x1, . . . , xN}, and model parameters U,V,W,bv,bw the output

at every timestep k is computed as follows:

ok = f(V · sk + bv)

sk = g(W · sk−1 +U · e(xk) + bw) (2.6)

Here e(xk) is d-dimensional representation for token xk. The output function f(·) de-

pends on the task at hand. For example, for a classification task, it could be the softmax

function. The function g is a non-linear function such as the logistic function or the

tanh function. The intermediate layer often referred to as state, s, is the associative

memory representation that is updated through the recurrent connection. Therefore, the

state at kth timestep is a function of state at the k − 1th timestep and the input at the

kth timestep. The output could either be generated at each timestep or only at the final

timestep, depending on the task. For example, if the task is to process a text and predict

the sentiment then the output, oT , only needs to be computed at the final timestep T .

On the other hand, if the task is to predict the part of speech tag of every word in the

sequence then the output, ot, will be computed at every timestep t.

2.3.1 Learning Algorithms for RNNs

Backward Propogation of error Through Time (BPTT) (Werbos, 1990) is the most

popular algorithm for training RNNs. It can be thought of as a generalization of the

back-propagation algorithm used for training feedforward neural networks and works

by temporally unrolling the network. For a given weight W, the gradient needed for

the update rule can be computed using the chain rule as shown below.

∂L(θ)
∂W

=
∂L(θ)
∂oN

∂oN
∂sN

∂sN
∂W

(2.7)

∂sk
∂W

=
∂sk
∂sk−1

∂sk−1
∂W

(2.8)

18

∂L(θ)
∂W

=
∂L(θ)
∂oN

∂oN
∂sN

∂sN
∂sN−1

. . .
∂sk
∂sk−1

. . .
∂s1
∂W

(2.9)

=
∂L(θ)
∂oN

∂oN
∂sN

N∏
i=2

∂si
∂si−1

∂s1
∂W

(2.10)

Due to the product term,
∏N

i=2
∂si
∂si−1

∂s1
∂W

, the gradients can either vanish or explode

depending on the spectral radius of the recurrent weight W. This is commonly referred

to as the problem of vanishing or exploding gradients. Needless to say, this severely

affects the training of RNNs, especially as the length of the input sequence and thus the

number of terms in the product increases. This limitation was first discussed in Bengio

et al. (1994) and then was further studied in Pascanu et al. (2012).

2.4 Long Short Term Memory

To overcome the problem of vanishing and exploding gradient, in 1997, Hochreiter

and Schmidhuber proposed Long Short Term Memory. The key idea was to have a

linear relationship between the recurrent states (si, si−1), which then allows a constant

error flow in the network, preventing the gradients from exploding or vanishing. The

gradient computation will not vanish and let the gradient flow unchanged. The gradient

flow inside and outside this cell state was restricted using learnable gates, viz., input and

output gates. These gates essentially provide read and write access to the associative

memory modeled in the LSTM cell. The LSTM cell was further modified to include a

learnable forget gate (Gers et al., 1999). The forget gate helps in resetting the LSTM

state whenever required. The architecture shown in Figure 2.5 is a vanilla LSTM model

and is widely used in various NLP tasks.

For a given input sequence x = {x1, x2, . . . , xN}, and timestep t, the gates and

19

Figure 2.5: The computations in one timestep of a Long Short Term Memory Cell.

states in an LSTM are computed using the following equations:

it = σ(Wi · e(xt) +Ui · ht−1 + bi) (2.11)

ft = σ(Wf · e(xt) +Uf · ht−1 + bf) (2.12)

ot = σ(Wo · e(xt) +Uo · ht−1 + bo) (2.13)

c̃t = tanh(Wc · e(xt) +Uc · ht−1 + bc) (2.14)

ct = ft � ct−1 + it � c̃t (2.15)

ht = ot � tanh(ct) (2.16)

Here it, ft,ot are the input, forget and output gates respectively. These gates pro-

vide read, delete and write access to the network’s cell state. Here Wi,Wf ,Wo ∈

Rm×d,Ui,Uf ,Uo,Uc ∈ Rm×m, and bi,bf ,bo,bc ∈ Rm are network parameters. Note

that e(xt) represents a d-dimensional representation for token xt, and m is the cell-state

size, often referred to as the hidden size of the LSTM cell.

Gated Recurrent Units (GRUs): GRUs combine the forget and input gate into one

20

update gate and remove the distinction between hidden and output states. The gates and

states of a GRU are computed as follows:

zt = σ(Wz · e(xt) +Uz · ht−1 + bz) (2.17)

rt = σ(Wr · e(xt) +Ur · ht−1 + br) (2.18)

h̃ = tanh(Wc · e(xt) + rt �Uc · ht−1 + bc) (2.19)

ht = zt � ht−1 + (1− zt)� h̃ (2.20)

Note that in this thesis, we use either LSTM or GRU to learn meaningful representa-

tions for the input sequence and/or generate the output sequence. Additionally, some

of our primary contributions are in modifying the basic LSTM cell, as discussed above.

Throughout the rest of the chapter, when we use the term RNN, it could be replaced by

LSTM and GRU also.

2.5 Sequence-to-Sequence Models

In general, a sequence-to-sequence model could refer to any model which takes a se-

quence as input and generates a sequence as an output. In particular, this term was

popularly used to describe RNN based models, which use an RNN to encode the input

sequence and then another RNN to decode the output, one word at a time. The model

takes as input, a sequence x = {x1, x2, . . . , xN} of length N and generates a target

sequence y = {y1, y2, . . . , yM} of length M . It contains two modules, viz., encoder and

decoder as described below.

2.5.1 Encoder Module

The encoder module in an RNN based seq2seq model typically consists of two layers,

an embedding layer and a contextual layer.

Embedding Layer

Word Level Embedding: In this layer, every word in the input sequence is converted

to a d-dimensional representation or embedding. Typically, the embedding is obtained

21

from a pretrained word embedding model, such as Glove (Pennington et al., 2014).

Throughout this thesis, we refer to this embedding function as e(.), which generates a

d-dimensional representation for a given word, wi.

Character Level Embedding: Zhang et al. (2015) proposed a mechanism to learn word

embeddings using the embeddings of the characters that compose the word. A character-

level embedding is an effective strategy to learn meaningful representations for rare

words in the training corpus or words that are out of the vocabulary. Similar to Seo

et al. (2016), in this thesis, we use Convolutional Neural Network to learn character-

level embeddings. We use 1D convolution filters with a receptive field of {2, 3, 5} to

capture character n-gram information from a word.

Contextual Layer In this layer, we encode the interaction of each word with its sur-

rounding words or context. We learn such contextual representation for every word in

the input sequence using a bidirectional LSTM.

−→
ht = LSTM(e(wt),

−→
h t−1) ∀t ∈ [1, N] (2.21)

where
−→
ht is the hidden state of the forward LSTM at time t, i.e., when the sequence

is parsed from left-to-right. Similarly, we compute hidden states
←−
ht from a backward

LSTM which processes the sequence from right-to-left. We then concatenate the for-

ward and backward hidden states as ht = [
−→
ht;
←−
ht], that gives the contextual representa-

tion of the word, wt. We represent the set of contextual representations for all words in

the input sequence as H = {h1, . . . ,hN}. The representation of the overall sequence

x is typically taken as the contextual representation of either the last or the first token

of the sequence, i.e., either h1 or hN . For ease of notation, we represent the contextual

representation of the overall context as c.

2.5.2 Decoder Module

The decoder module generates the target output sequence, one word at a time. It is

essentially a language modeling task, where the current word depends on the previously

generated words as well as the input context. The model is trained to maximize the

22

probability of generating the target sequence, y:

y∗ = argmax
y

m∏
t=1

p̃(ỹt|ỹt−1, . . . , ỹ1, c) (2.22)

Here, p̃ models the conditional probability distribution of a word at time t given the

previous words and the context. We model this distribution using an LSTM as shown

below.

s̃t, st = LSTM(st−1, [e(yt−1) : c]) (2.23)

yt = softmax(Wo · s̃t) (2.24)

Here, c is the contextual representation obtained from the encoder, as explained above.

s̃t represents the output from the LSTM cell, and st is the internal cell state of the LSTM.

Wo ∈ R|V |×l is used to linearly transform the output state to a vector whose size is the

same as the number of words in the vocabulary. This vector is then converted into a

probability distribution, yt, using the softmax function. [:] represents the concatenation

operation, and e(yt−1) represents the embedding of the word which has the highest

probability under the distribution yt1.

While seq2seq models, as described above, were successful for many NLG tasks,

several studies (Cho et al., 2014; Pascanu et al., 2012) showed that they are not ade-

quate for longer input sequences. In particular, the fixed-size representation in a RNN

or LSTM state is unable to capture all the relevant information in the longer input se-

quence. To overcome this problem, the attention mechanism was proposed, as described

below.

2.6 Attention Mechanisms

The attention mechanism was originally proposed in the context of Machine Translation

by Bahdanau et al. (2014). The key idea was that instead of using a fixed representation,

c, from the encoder, compute a new representation at every timestep. This representa-

tion would be computed by attending to those tokens from the input sequence which are

more important for generating the output word at time t. More specifically, the encoder

23

Figure 2.6: An RNN-based sequence to sequence model. It consists of encode, attend,
and decode modules.

will compute a representation, ht for every token, just as explained earlier. The attention

network will then compute a new context vector, ct, at every timestep t as a weighted

combination of contextual representations of all the words in the input sequence, i.e.,

H, as shown below:

ct =
N∑
i=1

αt,ihi (2.25)

at,i = vTa · tanh(Wa · [st : hi]) (2.26)

αt,i =
exp(at,i)∑N
i=1 exp(at,i)

(2.27)

Here, va ∈ Rl1 ,Wa ∈ Rl1×2l are learnable parameters. This context vector is then

fed to the decoder LSTM as shown below.

s̃t, st = LSTM(st−1, [e(ỹt−1) : ct]) (2.28)

The output yt is a probability distribution over the words in the vocabulary. Figure 2.6

illustrates the complete architecture for one such network with the three modules, viz.,

encoder, attention and decoder.

24

2.7 Evaluation Metrics

We now discuss the various evaluation metrics used for evaluating different NLG mod-

els proposed in this work.

2.7.1 BLEU

BLEU (Papineni et al., 2002) was one of the initial metrics proposed to automate the

evaluation of Machine Translation systems. It is a precision-based metric, which eval-

uates the generated hypotheses against the given references based on n-gram matches.

In particular, it uses a modified precision defined as follows:

pn =

∑
H∈hypotheses

∑
n-gram∈H Countclip(n-gram match with reference)∑
H∈hypotheses

∑
n-gram∈H Count(n-gram)

(2.29)

The above definition ensures that incoherent sequences such as “what what what?”

do not get unduly rewarded if the reference sequence contains the word “what” only

once. This is done by clipping the number of matches between the hypotheses and the

reference sentence by the number of occurrences of the corresponding n-gram in the

reference. Thus, for the above example, the modified 1-gram precision would be 0.33

and not 1.0. Another limitation with a precision based metric is that it could reward

a shorter hypothesis. For example, if the system only generates “what”, the modified

precision will be 1.0, stating that it is a very good question. To mitigate this, the authors

introduce a brevity penalty as given below:

BP =

 1, if h > r

e(1−
r
h
), if h ≤ r

 (2.30)

The default definition of precision inherently penalizes hypotheses that are longer than

the given reference. Thus, the brevity penalty is set to 1 for such cases. However, if

the hypothesis is shorter than the reference, then the brevity penalty is set to a value as

defined in Equation 2.30. Based on the modified precision and the brevity penalty, the

25

BLEU score is then defined as follows:

BLEU-N = BP · exp

(
N∑
n=1

wn · pn

)
(2.31)

≡ exp

{
N∑
n=1

wn · pn +max(0,
|r|
|h|
− 1)

}
(2.32)

BLEU computes the weighted geometric mean of the precision across all the n-grams

up to N . BLEU-4 is typically used for evaluating NLG systems. Over the years, several

studies (Callison-Burch et al., 2006; Callison-Burch, 2009; Wieting et al., 2019) have

shown that BLEU correlates poorly with human judgments. Despite this, it is still one

of the most widely used automated evaluation metrics for evaluating NLG systems.

2.7.2 NIST

The BLEU metric as defined above gives the same weightage to all the n-grams co-

occurring in the hypothesis and the reference. However, some n-grams may be more

informative than others. For instance, the trigram “of the following” is less informative

than the trigram “machines can learn”. The NIST (Doddington, 2002) metric was

proposed to capture the information gain of an n-gram. The information gain for a

n-gram = {w1, . . . , wn} is defined as follows:

Info(w1, . . . , wn) =
of occurrences of w1, . . . , wn−1
of occurrences of w1, . . . , wn

(2.33)

The authors further compute the arithmetic mean instead of the geometric mean to make

the metric less sensitive to low co-occurrence counts for higher N . Further, they also

change the brevity penalty not to take into account small variations in the hypotheses

length. The final metric is thus defined as follows:

NIST =
N∑
n=1

{∑
all n-grams that co-occur Info(w1, . . . , wn)∑

all n-grams in hypotheses(1)

}
exp(β · log2(min(

|h|
|r|
, 1))

(2.34)

Note that β is set such that the brevity penalty is 0.5 when the average length of hy-

potheses is two-thirds of the average length of the reference text. Also, the default

26

value of N is set to 5.

2.7.3 METEOR

There are two major limitations of the BLEU and NIST metric as defined above. First,

they only consider exact word match, and second, they only consider precision and do

not take recall into account. To overcome these limitations, Lavie et al. (2004) proposed

a new metric, METEOR, which also allows for partial matches (e.g., the word derive

in a hypothesis will be matched to the word deriving in the reference). These matched

unigrams are then used to compute the F-Score instead of precision as used in BLEU

and NIST.

P =
#mapped_unigrams

#words_in_hypotheses
(2.35)

R =
#mapped_unigrams

#words_in_reference
(2.36)

F-Score =
αP.R

α.P + (1− α).R
(2.37)

Note that in the above form, this metric only considers unigrams. To check if there are

larger n-gram matches they introduce a ‘fragmentation penalty’ as follows:

FP = 0.5 ∗
[

#chunks
#mapped_unigrams

]δ
(2.38)

A chunk refers to a contiguous matching subsequence in the hypothesis and reference. It

ranges from 1 to #mapped_unigrams, where it will be 1 if the reference and hypotheses

are an exact match (word or stem), and #mapped_unigrams if none of the matched

unigrams are in continuous order in the reference. Thus a larger chunk match leads to a

lower ‘fragmentation penalty.’ The final score is computed as follows:

METEOR Score = F-Score ∗ (1− FP) (2.39)

In this work, we use a variant of METEOR called METEOR-Universal (Denkowski

and Lavie, 2014) which uses four different kinds of matchers, viz., exact word matcher,

stemmed word matcher, synonym matcher and paraphrase matcher. It assigns a different

27

weight to each of these matches. For example, if a word in the hypothesis exactly

matches a word in the reference, it may get a higher weightage than when the stemmed

form of a word in the hypothesis exactly matches the stemmed form of a word in the

reference. Further, it gives a different weightage to content words and function words.

2.7.4 ROUGE

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) (Lin, 2004) is a set of

evaluation metrics that were proposed in the context of automatic summarization. In

contrast to BLEU, which is a precision-based metric, this metric is a recall based metric

and is computed as follows:

ROUGE-n =

∑
r∈references

∑
n-gram∈R Count(n-gram match with hypotheses)∑

all n-grams in references(1)
(2.40)

ROUGE-1 (unigram) and ROUGE-2 (bigram) are commonly used in the literature.

Another variant of ROUGE that is widely used is ROUGE-L, which is the F-measure

computed based on the Longest Common Subsequence (LCS) between the hypothesis

and the reference. Given two sequences, a common subsequence is the set of words

in both the sequences in the same order, but unlike n-grams, the common subsequence

does not need to be contiguous. LCS is the longest of such common subsequences. For

example, given the hypothesis, “the boy went home” and the reference, “the boy will

go home”, “the boy home” is the longest common subsequence even though it is not

contiguous. More formally, ROUGE-L is computed as follows:

Plcs =
|LCS(h, r)|

#words_in_hypotheses
(2.41)

Rlcs =
|LCS(h, r)|

#words_in_reference
(2.42)

ROUGE-L =
(1 + β2)PlcsRlcs

Rlcs + β2Plcs
(2.43)

28

2.8 Summary

In this chapter, we introduced the essential concepts needed to understand the work

described in this thesis. In particular, we discussed the different tasks addressed in

this work, viz., query-based abstractive summarization, structured data to text gener-

ation and automatic question generation. We then gave a quick primer on artificial

neural networks, recurrent neural networks, sequence to sequence models and attention

mechanisms. Finally, we discussed the different metrics used for evaluating the models

proposed in this work.

29

CHAPTER 3

Related Work

The work done as part of this thesis was during the third phase of the evolution of NLG

when RNN-based seq2seq models became very prominent and were being adopted for

several NLG tasks. In parallel, various works were identifying numerous limitations

in these models. Some of the limitations were seen across tasks, i.e., task-agnostic

limitations such as repeating phrases, and other limitations were task-specific such as

generated questions being unanswerable in AQG. Several strategies (e.g., additional

auxiliary losses, architectural changes) were being proposed to overcome such limita-

tions or (and) boost the performance of such systems.

We focused on different tasks: query-based abstractive summarization (QBAS),

structured data to text generation (SD2T), and automatic question generation (AQG).

We identified the following limitations: i) repeating phrases, ii) inadequate transition

among fields in SD2T, ii) limited answerability of generated questions in AQG. Lastly,

we proposed different strategies for RNN-based seq2seq models to mitigate these limi-

tations: i) diversifying context vectors, ii) providing explicit reward signals to improve

upon task-specific aspects, and iii) generating output in multiple passes. We present

a pictorial representation of where our works are placed in view of the related works

specifically for RNN-based seq2seq models. For instance, for our work (Nema et al.,

2017) we can observe that is proposed for QBAS task that focuses on avoiding re-

peating phrases by diversifying the context vectors. The other works on avoiding

repeating phrases follow a different strategy to tackle this limitation.

We organize the related works based on the following three questions: (i) What are

state of the art models for different tasks considered in this thesis? (ii) What are the

related works that propose solutions to similar limitations as identified in this thesis?

(iii) What are the related works which have proposed the same techniques in a different

context? (e.g., what are the works that have used the idea of diversifying context vectors

but not necessarily for avoiding the problem of repeating phrases? The rest of the

30

Figure 3.1: An overview of the existing works. across three dimensions: Tasks: QBAS
(Query based Abstractive Summarization); AQG (Automatic Question Gen-
eration); SD2T (Structured Data to Text Generation); Limitations: Avoid-
ing Repeating Phrases, Better Transitions among fields, Improving Answer-
ability; Strategies. We highlight the works based on this thesis in red. Note
that the enlisted works are specific to RNN-based seq2seq models.

31

chapter is organized as follows. In Section 3.1.1, we give a brief overview of the models

proposed for the tasks relevant to this thesis. In Section 3.2, we discuss the relevant

works that focus on the same limitations of existing models as identified in this thesis.

In Section 3.3, we highlight related works that use similar strategies to enhance seq2seq

models.

3.1 State of the art models for different tasks considered

in this thesis

This section gives a broad overview of various models proposed across years for the

SD2T, AQG, and QBAS tasks. For each task, we present a brief history of models pro-

posed in the pre-deep learning era and then give a detailed overview of works based on

deep learning techniques, specifically the relevant works based on RNN-based seq2seq

models.

3.1.1 Task: Structured data-to-text generation

Structured Data to Text Generation

Pre Deep Learning Era

Rule-Based

1. (Goldberg et al., 1994)

2. (Boyd, 1998)

3. (Sripada et al., 2003)

4. (Dale et al., 2003)

5. (Green, 2006)

6. (Galanis and Androutsopoulos,

2007)

7. (Turner et al., 2010)

Statistical

1. (Reiter et al., 2005)

2. (Duboue and McKeown, 2003)

3. (Barzilay and Lapata, 2005)

4. (Liang et al., 2009)

5. (Angeli et al., 2010)

6. (Konstas and Lapata, 2013b)

7. (Kim and Mooney, 2010)

8. (Konstas and Lapata, 2012)

9. (Konstas and Lapata, 2013a)

10. (Belz, 2008)

Deep Learning Era

RNN based Seq2Seq

1. (Mei et al., 2016)

2. (Lebret et al., 2016)

3. (Liu et al., 2017a)

4. (Bao et al., 2018)

5. (Liu et al., 2019a)

6. (Nema et al., 2018)

7. (Kiddon et al., 2016)

8. (Sha et al., 2017)

9. (Iso et al., 2019)

10. (Moryossef et al., 2019)

11. (Puduppully et al., 2019)

12. (Tian et al., 2019)

Transformer

Based Seq2Seq

1. (Rebuffel et al., 2020)

2. (Parikh et al., 2020)

3. (Wang et al., 2020b)

Figure 3.2: Taxonomy of models proposed for the task of Structured Data to Text Gen-
eration

Structured data to text generation (SD2T) broadly consists of three phases: i) con-

32

tent selection: selecting the information from the structured data that should be used to

generate the output, ii) sentence planning: deciding what should be generated in various

segments of the output sequence, iii) surface realization: actually writing each segment

and fusing them. This task has applicability in several domains: writing weather reports

(Goldberg et al., 1994; Mei et al., 2016), explaining biomedical reports to non-expert

users (Green, 2006), writing selective descriptions from database (Elhadad and Robin,

1996), writing game summaries from game statistics (Wiseman et al., 2017), and so on.

Given its wide applicability, several systems have been developed since the early 1990s.

Figure 3.4 shows the relevant literature for structured data to text generation. Before

deep learning, models were primarily rule-based or statistical-based. Statistical-based

models used data-driven approaches for one or more of the mentioned phases. With

deep learning, RNN-based and Transformer-based seq2seq models are being widely

adopted for SD2T. We describe some works from each of the mentioned categories

below.

Pre Deep Learning Era

Rule-Based Approaches: The Forecast Generator (FoG) system (Goldberg et al., 1994)

was one of the early automated weather report systems. The rules for content selection

were written by domain experts (meteorologists). Although the initial system modeled

some paraphrase variations at the surface realization stage, domain experts preferred di-

rect mapping to control the generated descriptions. Boyd (1998) generated descriptions

for time-series data. It primarily focused on content selection, which was mainly gov-

erned by scale-scape theory used in image processing. The authors represented the con-

tent selected as attribute-value pairs, which they passed to a highly complex rule-based

system: SURGE (Systemic Unification Realization Grammar of English) (Elhadad and

Robin, 1996) for surface realization. The SUMTIME-MOUSAM (Sripada et al., 2003)

system for generating weather reports uses data-analysis strategies for content selection

and then uses hand-crafted rules for each of the identified attributes from the data to

generate the reports. Dale et al. (2003) focused on generating descriptions for way-

routing systems. The authors used a path-based segmentation technique to identify

meaningful segments based on turns, road status, and path length of a route descrip-

33

tion. These segments were again combined using hand-crafted rules to generate the

final description. Similarly, rule-based systems in other domains (Green, 2006; Galanis

and Androutsopoulos, 2007; Turner et al., 2010) focused more on content selection and

resort to hand-crafted rules for surface realization.

Statistical Approaches: Reiter et al. (2005) focused on identifying the right set of words

to describe the segments. Through careful analysis of human written reports, the authors

found that the word choice depended on the writers’ preferences and linguistic context.

Therefore, the authors used semantic features, writers’ context, and temporal features

to construct a decision tree for choosing the appropriate phrases.

For content selection, Duboue and McKeown (2003) first classify each record as

to-be-selected or not-to-be-selected. They ensure the overall coherency of the descrip-

tion by taking some discourse features as an input to the classifier. Barzilay and Lapata

(2005) generated descriptions for sports domain from game statistics. Here, the con-

tent selection was a statistical model based on decision trees. In contrast to the above

method, all the records were collectively classified while optimizing individual label

assignments and pairwise relations. Liang et al. (2009) built on this work and mod-

eled the surface realization component as a Hierarchical Hidden Markov Model. An-

geli et al. (2010) broke the generation into macro planning (identifying the records to

be described), micro-planning (selecting the features specific to the record to be sum-

marised), and then surface realization using the model proposed in Liang et al. (2009).

Konstas and Lapata (2013a) used a probabilistic context-free grammar to repre-

sent the structured data. To this end, they enlisted hand-crafted rules to represent the

structured data in the form of hyper-graphs. The surface realization was then based

on identifying the correct hypergraph and generating the sentence using dynamic pro-

gramming. Similarly, Belz (2008) used a probabilistic context-free grammar for the

surface realization stage while generating weather reports. Konstas and Lapata (2013b)

point out that in their previous work (Konstas and Lapata, 2013a), they do not explic-

itly model ordering of the selected content, which could lead to incoherent generations.

The authors, therefore, extend their model by additionally learning discourse grammar

based on Rhetorical Structure Theory (Mann and Thompson, 1987).

34

Deep Learning Era

RNN based seq2seq models: RNN based seq2seq models were initially designed for

text-to-text generation. As the input in these cases is a simple word sequence and is un-

structured, the same architecture may not be suitable for structured data to text genera-

tion. Moreover, even if structured data is converted into a stream of words, the resulting

generation will be sub-optimal, as the model cannot exploit the inherent structure in the

input data. Various works (Mei et al., 2016; Lebret et al., 2016; Liu et al., 2017a; Bao

et al., 2018; Liu et al., 2019a) that have adopted seq2seq models for structured data to

text generation have first focused on incorporating the structure and then optimized it

for content selection and sentence planning stages.

Mei et al. (2016) was one of the first works to incorporate RNN based seq2seq

models for generating text from structured data. The authors focused on generating

weather reports using WEATHERGOV dataset and game summaries using ROBOCUP

dataset. They used an LSTM based encode module to compute representations for each

record. The authors observed that only a few records were used to write the description.

Therefore, the authors used a coarse-to-fine attention mechanism that first estimates

the probability of a record being selected and then determines a record being selected

based on the intermediate generation state or the decoder state. These two attention

distributions are then used to select the records that should be described in the output.

Earlier models were largely studied in the context of small datasets such as WEATH-

ERGOV (Liang et al., 2009), ROBOCUP (Chen and Mooney, 2008), NFL RECAPS

(Barzilay and Lapata, 2005), PRODIGY-METEO (Belz and Kow, 2009) and TUNA

Challenge (Gatt and Belz, 2010). Unlike the datasets mentioned above, Lebret et al.

(2016) proposed a new dataset to create one-line descriptions from Wikipedia Infoboxes

consisting of 700K samples. Similar to Mei et al. (2016), the authors generated the de-

scriptions conditioned on local characteristics and global characteristics. The former

represented the previously generated words (local context) that were carefully encoded

based on the records to which these words belonged. The latter referred to the over-

all infobox representation consisting of all the rows. Here, the authors generated the

descriptions using a feedforward neural network.

35

Liu et al. (2017a) proposed a novel variant of the LSTM with an additional field

gate to encode the structure of the table in the token-level encoder. While encoding the

given table, which is a sequence of {field, token} sets, they utilize the field gate that

learns how much field information for the corresponding token should be encoded in

the LSTM cell’s memory state. To represent a token in the context of a field, they used

a similar embedding model as proposed in Lebret et al. (2016). Also, the authors used

hierarchical attention at field level and word level to model global and local character-

istics while generating the description. This dual attention strategy is also used in Bao

et al. (2018).

Liu et al. (2019a) used a hierarchical encoder for encoding the hierarchy between

the fields and the entities in it. Also, the authors use several auxiliary losses to improve

the rendered descriptions. They state that the encoder module may not always capture

the fields effectively. Therefore, they design a feedforward neural network based multi-

label classifier that aims at classifying the fields based on the representations learned

by the encoder. The authors use another text-encoder module that learns a meaningful

representation for the ground-truth description. The other auxiliary task is to predict

the sequence from this one representation. The above two auxiliary tasks are jointly

trained.

Transformer-Based Models: Following our work (Nema et al., 2018), several other

advancements have been made in the field (Vaswani et al., 2017; Radford et al., 2019;

Brown et al., 2020; Yang et al., 2019). For instance, following the success of transformer-

based models, several models are now adopting transformer-based models (Wang et al.,

2020b; Rebuffel et al., 2020; Parikh et al., 2020; Xiao and Wang, 2021) for rendering

descriptions from structured data. Wang et al. (2020b) focuses on generating faithful

biography descriptions by adopting transformer based models and adding two content-

matching constraints. The first one ensures that the latent representation of the gener-

ated text is consistent with the structured data. The second one constrains keywords

from the input and the generated description to be identical. Rebuffel et al. (2020) pro-

posed a hierarchical Transformer-based seq2seq model to encode the structure of the

given input. In parallel, some works (Wang et al., 2020b; Parikh et al., 2020; Chen

et al., 2020; Xiao and Wang, 2021) have observed that the generated descriptions are

36

often not faithful to the given structured data. The authors hypothesized that this is be-

cause the training dataset is noisy. To this end, Parikh et al. (2020); Chen et al. (2020)

propose high-quality datasets as benchmarks to evaluate if the models generate faithful

descriptions. Moreover, Parikh et al. (2020) also highlights that even with the proposed

high-quality training dataset, BERT-based sequence to sequence models still generate

unfaithful descriptions. Note that these transformer based models were developed after

our work (Nema et al., 2018) and hence we do not compare with these models in our

work.

3.1.2 Automatic Question Generation

AQG systems are based on the two fundamental aspects of asking a question: what to

ask and how to ask. The former corresponds to content selection, and the latter corre-

sponds to question construction. For a given input, the content selection module selects

a question-worthy topic. In the question construction phase, the model generates a ques-

tion to this specific topic using the given context. Before deep learning, the two modules

were designed independently and primarily followed a rule-based approach. With the

advent of deep learning, AQG systems were trained using an end-to-end architecture.

We give an overview of the models proposed in both the phases below.

37

Automatic Question Generation

Pre-Deep Learning Era

1. (Wolfe, 1976)

2. (Gates, 2008)

3. (Mitkov and Ha, 2003)

4. (Kunichika et al., 2004)

5. (Ali et al., 2010)

6. (Zhao et al., 2011)

7. (Heilman and Smith, 2010)

8. (Rokhlenko and Szpektor,

2013)

9. (Mazidi and Nielsen, 2014)

10. (Lindberg et al., 2013)

11. (Yao et al., 2012)

12. (Mostow and Chen, 2009)

13. (Zheng et al., 2011)

14. (Rothe et al., 2017)

Deep Learning Era

RNN based Seq2Seq

1. (Du et al., 2017)

2. (Nema et al., 2019)

3. (Du and Cardie, 2017)

4. (Zhao et al., 2018)

5. (Zhou et al., 2017)

6. (Wang et al., 2018b)

7. (Yuan et al., 2017)

8. (Harrison and Walker,

2018)

9. (Song et al., 2017)

10. (Tang et al., 2017)

11. (Duan et al., 2017)

12. (Serban et al., 2016a)

13. (Jain et al., 2017)

14. (Reddy et al., 2017)

15. (Li et al., 2017b)

16. (Nakanishi et al., 2019)

Transformer

Based Seq2Seq

1. (Liu et al., 2020)

2. (Lopez et al., 2020)

3. (Scialom et al., 2019)

4. (Chan and Fan, 2019)

5. (Offerijns et al., 2020)

Figure 3.3: Taxonomy of models proposed for the task of Automatic Question Genera-
tion

Pre-Deep Learning Era

In earlier models, the question construction phase was either transformation-based or

template-based. In the first one, a declarative sentence is transformed into an inter-

rogative form using a rule-based approach. In template-based models, a pre-defined

question template is given, and the appropriate slots in this template are filled with

content selected from the sentence. We highlight some works in each category below.

• Transformation Based: Various works (Wolfe, 1976; Gates, 2008; Ali et al.,

2010; Kalady et al., 2010; Heilman and Smith, 2010; Varga and Ha, 2010) sim-

plified the given sentence, and then syntactically parsed it to identify potential

answer phrases. For each identified answer phrase, a corresponding question was

generated by transforming the simplified sentence into a question through a set of

hand-crafted rules. Wolfe (1976) was one of the early works proposed for AQG.

The system generated 50 (question, answer) pairs for the reading comprehen-

38

sion task following the above-mentioned approach. Heilman and Smith (2010);

Gates (2008) used Standford’s T Surgeon tool (Levy and Andrew, 2006) to trans-

form a declarative sentence to a question. As the transformations could also lead

to unacceptable questions, Heilman and Smith (2010) further ranked the gener-

ated questions through a logistic regression model that classified a question into

{acceptable, unacceptable} classes, based on question specific features such as

length features, grammatical features, negation, etc. Some other works (Mannem

et al., 2010; Mazidi and Nielsen, 2014; Yao et al., 2012) simplified the given sen-

tence and then used semantic role labeling to identify predicates in the sentence

about which a question can be generated.

• Template Based: Several works (Lindberg et al., 2013; Mostow and Chen, 2009;

Rokhlenko and Szpektor, 2013; Liu et al., 2010) generated questions from pre-

defined question templates. Labutov et al. (2015) collected high-level question

templates through a crowd-sourcing pipeline. In parallel to generating questions

from sentences, there was ongoing research on converting a given web query into

a question. This task was first proposed in Lin (2008). Follow-up works (Zhao

et al., 2011; Zheng et al., 2011) proposed template-based approaches for this task,

where the templates were learnt from a large corpus consisting of web-query and

corresponding question logs.

In the above works, we can observe that significant human effort was required in

designing the rules, templates, and features for both content selection and question con-

struction stages. The following deep learning based methods alleviated this problem.

Deep Learning Era

RNN-Based Seq2Seq Models: Seq2seq based end-to-end architectures were soon pro-

posed for question generation (Du et al., 2017) after their success in other NLG tasks.

As this task is complementary to the task of QA, several datasets such as SQuAD (Ra-

jpurkar et al., 2016), DROP (Dua et al., 2019), HOTPOTQA (Yang et al., 2018), MS-

Marco (Nguyen et al., 2016), etc., which were originally proposed for QA, also fuelled

the development of seq2seq based AQG systems.

39

1. Generating Questions given a sentence: Du et al. (2017) was the first work to

propose a seq2seq based model for generating questions from a given sentence

and its corresponding passage. The authors encode the sentence and the pas-

sage using a bidirectional-LSTM. They also attend to the relevant sentence words

while generating the question. Note that the passage encodes the context infor-

mation and is only used while initializing the decoder state. Du and Cardie (2017)

built on top of this work and proposed a preliminary step of first identifying the

question worthy sentences from a paragraph via a feedforward neural network-

based classifier. To train this classifier, the authors labeled sentences consisting

of more than one answer-span as question-worthy. The sentences predicted as

question-worthy were then used to generate a question using the model proposed

in Du et al. (2017).

2. Generating Questions given a (sentence,answer) pair: Zhou et al. (2017); Har-

rison and Walker (2018) passed the (sentence, answer) pair as an input, whereas

in previous approaches, the AQG system itself extracted a potential answer. They

proposed an RNN-based seq2seq model to generate questions assuming that the

answer is a span in the given input. They introduced a feature-rich encoder that

reads the sentence words and answer position, which helps the encoder locate

the answer while reading the sentence. It also uses other linguistic features such

as POS, NER tags to encode linguistic information. Note that only the sentence

containing the answer span is passed as an input. Also, Harrison and Walker

(2018) encode coreference labels from the passage to which the sentence belongs

to enrich the sentence representation further. The authors also introduced a ques-

tion encoder trained using a reconstruction framework with only target questions

to learn meaningful question embeddings. The representation from the sentence

encoder is constrained to be similar to this target question embedding.

Wang et al. (2018b) also generate questions specific to the given answer, but they

pass the passage containing the answer as an input. They also encode the passage

using the answer position feature and linguistic features and use a bidirectional

LSTM network to encode the passage.

Yuan et al. (2017) also generated questions given (passage, answer) pairs, assum-

40

ing the answer span is present in the given input. The authors encoded the answer

information at two stages. First, similar to the above work (Zhou et al., 2017),

they utilize the answer position feature while reading the given text. Second, they

extract the passage words’ hidden representations that correspond to the answer

span. They concatenate this representation with the answer words’ embeddings

and feed it to another LSTM network. The final answer word representation is

then utilized while attending to the passage and computing the decoder’s hidden

state. Zhao et al. (2018) observed that passing richer context as passage led to

performance degradation instead of boosting it. To mitigate this, the authors pro-

posed an additional self-attention layer in the encoder to capture the intra-passage

interaction.

S. No Work Answer-Aware Features DatasetCM PL LF
1. (Du et al., 2017) No * SQuAD
2. (Du and Cardie,

2017)
No * SQuAD

3. (Zhou et al., 2017) position-encoding * * SQuAD
4. (Harrison and

Walker, 2018)
position-encoding * * * SQuAD

5. (Yuan et al., 2017) answer-encoder * * SQuAD
6. (Wang et al., 2018b) position-encoding * * * SQuAD
7. (Zhao et al., 2018) position-encoding * * SQuAD, MS-

MARCO
8. (Nema et al., 2019) answer-encoder * * SQuAD,

DROP, HOT-
POTQA

Table 3.1: Existing RNN-based seq2seq models for question generation given a text.
Such models broadly consist of answer-aware module, and other features
such as CM: Copying Mechanism, PL: Paragraph Level Information, LF:
Linguistic Features. The last column enumerates the datasets used to validate
the proposed model.

In Table 3.1 we give a concise comparison of the works discussed till now. We ob-

serve that several works (including ours) (Zhou et al., 2017; Harrison and Walker,

2018; Yuan et al., 2017; Wang et al., 2018b; Zhao et al., 2018; Nema et al., 2019)

had adopted a copying mechanism to overcome the problem of producing rare

words which may not be in the decoder’s vocabulary. Some works Zhou et al.

(2017); Harrison and Walker (2018); Wang et al. (2018b) have also encoded lin-

guistic information for better question generation. Also, SQuAD is the most pop-

ular dataset used by all the AQG systems mentioned above.

3. QA and QG as dual tasks: Several works (Song et al., 2017; Tang et al., 2017;

41

Sachan and Xing, 2018) take the view that Question Generation (QG) and Ques-

tion Answering (QA) are complementary tasks. For example, Song et al. (2017)

proposed a unified model for QA and QG tasks. The proposed model consisted

of passage and query encoders, and the interaction between the two sequences

was captured from multiple perspectives (Wang et al., 2017). This fused repre-

sentation was then used to generate the output. Note that the network was trained

separately for QG and QA tasks, although the architecture was the same. Sim-

ilarly, Tang et al. (2017) propose RNN-based models for QA and QG tasks and

train them jointly with the constraint that the joint probability of a correct (ques-

tion, answer) pair estimated by the QA and QG models should be similar. Sachan

and Xing (2018) also do a joint training for QA and QG tasks, using self-training

algorithms.

4. Generating Questions from different modalities: Apart from generating ques-

tions from a passage, several other works focus on generating questions from a

different context: Knowledge-Graph (Serban et al., 2016a; Reddy et al., 2017),

images (Jain et al., 2017; Li et al., 2017b), dialogs (Nakanishi et al., 2019), etc.

Transformer Based Models: Similar to other NLG tasks, transformer-based models are

being adopted for QG tasks as well. Lopez et al. (2020) finetune GPT-2 language model

(Radford et al., 2019) with SQuAD and RACE datasets. Scialom et al. (2019) adopted

Transformers for QG where it did not constrain the model to generate questions spe-

cific to a given answer. Also, the authors integrated the copynet mechanism in vanilla

transformer models to mitigate the rare word problem. Chan and Fan (2019) adopted

BERT-based model for AQG. As the BERT model does not have a text generation mod-

ule, the authors modify the mechanism to generate a question. First, the representations

of the sentence and the answer are concatenated to generate an initial state based on

which the first word is generated. The representation of the generated word is then con-

catenated with the representations of the sentence and the answer, which is then used

to generate the next word, and so on. Offerijns et al. (2020) focused on generating

distractors for multiple-choice questions, which used GPT-2 model.

Based on the above discussion, we can infer that AQG is a growing field, and apart

from generating questions given a context, several works are now focusing on gener-

42

ating clarification questions (Xu et al., 2019), generating question-answer pairs (Lee

et al., 2020), unanswerable questions (Zhu et al., 2019) using deep learning based mod-

els.

3.1.3 Query Based Abstractive Summarization

Query Based Abstractive Summarization

Pre-Deep

Learning Era

Graph-Based

1. (Mani and Bloedorn, 1997)

2. (Wei et al., 2008)

3. (Nastase, 2008)

4. (Bosma, 2005)

5. (Otterbacher et al., 2005)

6. (Wan, 2008)

7. (Wan and Zhang, 2014)

Statistical

1. (Conroy and O’leary, 2001)

2. (Tang et al., 2009)

3. (Schilder and Kondadadi,

2008)

4. (Fuentes et al., 2007)

5. (Wang et al., 2013)

6. (Daumé III, 2009)

7. (Feigenblat et al., 2017)

8. (Wang et al., 2013)

Deep Learning Era

Extractive

1. (Liu et al., 2010)

2. (Ma et al., 2016)

3. (Cao et al., 2016)

4. (Deng et al., 2020)

5. (Li et al., 2017a)

Abstractive

1. (Nema et al., 2017)

1. (Kulkarni et al., 2020)

2. (Laskar et al., 2020)

3. (Baumel et al., 2018)

4. (Hasselqvist et al., 2017)

5. (Xie et al., 2020)

Figure 3.4: Taxonomy of models proposed for the task of Query Based Abstractive
Summarization

Automatic Text Summarization systems have been explored since the early 1950s

(Luhn (1958); Edmundson (1969)). These works can be classified across 3 axes (i) ex-

tractive versus abstractive summarization, (ii) generic versus query-based summariza-

tion, (iii) single document versus multi document. In extractive summarization, the goal

is to identify salient sentences in the document that best represent its central idea. On

the other hand, abstractive summarization refers to writing the summary from scratch

based on the inferences drawn from the document. Next, in generic summarization,

the summary corresponds to the central idea of the document, whereas in query-based

summarization, the summary is specific to a given query. Lastly, in single document

summarisation, the summary is generated from a single document, whereas in multi-

ple document summarisation, the summary is generated from multiple documents. In

this thesis, we primarily focus on query-based abstractive summarization for a single

document, and we briefly discuss the literature specific to it.

43

Pre Deep Learning Era

Earlier models focused on generating query (topic) based extractive summaries from

multiple documents. The approaches mainly were graph-based or statistical-based. We

briefly describe some works for both the approaches below.

Graph-based Models: One of the early works (Mani and Bloedorn, 1997) focused on

generating extractive summaries for multiple documents for a given topic or perspec-

tive. The authors first created a graph by detecting relevant entities and relations using

information extraction techniques. The graph was then traversed using spreading acti-

vation algorithm through which topic-relevant nodes were identified. The authors then

detected the sentences that best covered such nodes, and these sentences were then

ranked using TF-IDF scores. Note that the above model used the query to identify only

the salient nodes in the graph. However, Wei et al. (2008) showed that incorporat-

ing query in measuring sentence-sentence similarity boosted the performance. Nastase

(2008) first expanded the query using external knowledge sources such as Wikipedia

and then used spreading activation algorithm to identify the relevant sentences. Bosma

(2005) used Rhetorical Structure Theory (Mann and Thompson, 1987) to convert the

discourse structure of the text into a graph, where the relevant sentences are identified

using a graph search algorithm. Otterbacher et al. (2005) proposed a Lexrank method,

which represented text as a graph of passages, where the edges were weighted based

on their pairwise lexical similarity. The authors first identified the passages relevant

to the query using TF-IDF scores and then performed a random walk on this graph to

recursively extract similar passages. Similarly, Wan (2008) proposed a topic-sensitive

Pagerank algorithm that performs random walk while taking sentence relevance with

respect to the topic into account. Wan and Zhang (2014) use information certainty

to identify relevant sentences while summarizing news articles for a given event/topic.

The authors first predict the certainty scores using the Support Vector Regression (SVR)

model for each sentence in the article and then incorporate certainty scores in the tran-

sition probability matrix, which is fed to a graph-based algorithm to identify relevant

sentences.

Statistical Models: Here, we first discuss some approaches which use generative mod-

els.

44

Generative models: Conroy and O’leary (2001) proposed a Hidden Markov model

for query-based summarization. The authors first extracted the relevant sentences based

on surface-level features and query terms and then used a pivoted QR algorithm to

remove redundancy from the selected sentences. Tang et al. (2009) observed that docu-

ments are often a mixture of topics and could be related to multiple topics mentioned in

the query. Therefore, they proposed a query-based Latent Dirichlet Allocation (LDA)

model, which estimated a mixture of a document-specific topic distribution and a query-

specific topic distribution. An importance score for each sentence was computed using

the learnt topic model, and the most salient sentences were extracted as a summary.

Daumé III (2009) proposed BayesSum model that focuses on the following question:

“why a particular document is relevant, and others are not ?” The authors deploy a

Bayesian Statistical Model, where they hypothesize that each word in the document

generated from a mixture of these three language models: i) an English filler word (En-

glish language model), ii) relevant to the query (query-specific language model), iii)

depicts some background information about the document which is irrelevant to the

query (document model). A saliency score is then assigned to each sentence based on

the learnt generative model to rank the sentences.

Other approaches: Schilder and Kondadadi (2008) propose a fast summarization

technique where the authors use only word frequency-based features of document clus-

ters, given query and query description. The authors then extracted relevant sentences

through an SVR model based on the derived word-frequency features. Fuentes et al.

(2007) used SVM to select the relevant sentences, where sentence-based features were

designed to capture (i) the similarity between sentence and query, (ii) cohesion between

the sentence and other sentences, and (iii) surface-level information about a sentence.

Feigenblat et al. (2017) posed the extraction of relevant sentences as a constrained

global optimization problem. The authors proposed an unsupervised approach based

on the cross-entropy method, where the objective was to maximize a quality target

function. The quality target function was based on features such as the similarity be-

tween query and sentences, sentence length, the relevant position of the sentence in the

document, etc. This work was extended in a follow-up work (Roitman et al., 2020),

where the authors decouple the process of identifying salient sentences and generating

a topic-focused summary and instead proposed a cascaded optimization approach. Few

45

works (Wang et al., 2013; Zajic et al., 2006) focus on adopting sentence compression

technique to condense the extracted salient sentences.

Deep Learning Era

We describe some relevant Deep Learning based techniques for both extractive and

abstractive query-based summarization below.

Extractive Summarization: Liu et al. (2012) proposed an unsupervised approach based

on Restricted Boltzman machines. The model consisted of modules for (i) concept ex-

traction: which extracts sentences relevant to the query, (ii) reconstruction validation:

which reconstructs the document from the latent representation, and (iii) summary gen-

eration: which extracts the most informative segments in the shortlisted sentences using

dynamic programming. The query is incorporated by penalizing the reconstruction loss

more for words that match the query. Ma et al. (2016) pointed that the above meth-

ods did not take the global semantics of the documents into account. They proposed a

reconstruction framework DocRebuild which used neural networks to compute a docu-

ment representation using the whole document. Another document representation was

constructed by selecting salient sentences as a summary. The goal was to select salient

sentences to minimize the gap between these two representations.

Cao et al. (2016) modeled the task of extracting the relevant sentences using Con-

volutional Neural Networks (CNNs) with an attention mechanism. The query and sen-

tence in the documents are embedded using CNNs. The attention network learns the

relevance score for each sentence with respect to the query. These relevance scores are

used to compute a document embedding which is a weighted aggregation of sentence

embeddings. A sentence similar to the learnt document embedding is classified as a

salient sentence.

Li et al. (2017a) introduced an unsupervised approach with a cascaded attention

mechanism that estimates the topic-specific salient information from the given set of

documents. The cascaded attention model is trained through a reconstruction frame-

work. The authors add sparsity constraints so that condensed salient information is

retrieved. Moreover, the authors use fine-grained and coarse-grained sentence com-

46

pression strategies to generate a compressed summary.

Singh et al. (2018) proposed an unsupervised approach to extract relevant sentences.

The authors state that the previous unsupervised approaches identify the relevant sen-

tences using short-range language models. They mitigate this shortcoming by propos-

ing a novel variant of LSTMs with an additional memory state to track sentence-level

information. The authors first use this to compute relevance ordering. The sentences

are then selected using integer linear programming (ILP) approach to increase diversity

and reduce redundancy.

Deng et al. (2020) proposed a hierarchical model to capture the interaction between

the query and the document at word level and sentence level. Each sentence is sequen-

tially labeled as being relevant to the query or not by passing this aggregated informa-

tion through an LSTM network. Ya et al. (2020) also utilizes word and sentence level

attention and bridges the gap between query and document using external knowledge.

Abstractive Summarization: Before our work, abstractive summarization approaches

were mainly focused on summarizing the given document’s central idea. Therefore, we

first highlight some of the abstractive summarization models that focus on generating

generic summaries. We then briefly describe some of the works that followed our work

for query-based abstractive summarization.

• Generic Summarization: Rush et al. (2015) was one of the early works that

adopted the RNN-based seq2seq model for abstractive summarization, where

the authors validated their model on the GigaWord and DUC corpus. Similarly,

Lopyrev (2015) used neural networks to generate news headlines from short news

stories. Chopra et al. (2016b) extended the work of Rush et al. (2015) and re-

ported further improvements on the two datasets. Hu et al. (2015) introduced

a dataset for Chinese short text summarization and evaluated a similar RNN

encoder-decoder model on it. With the potential seq2seq models showcased for

abstractive summarization, many models have been proposed to generate abstrac-

tive summaries. Some of the recent models use a wide variety of techniques such

as (i) using hierarchical attention (Nallapati et al., 2016), (ii) using a coverage-

mechanism (See et al., 2017; Suzuki and Nagata, 2017; Chen et al., 2016), (iii)

47

training via explicit reward signals (Paulus et al., 2018), (iv) using a module to

cover all salient points (Gehrmann et al., 2018), (v) combining extractive and ab-

stractive strategies, and (vi) using a copy mechanism (Gu et al., 2016; See et al.,

2017). Recently, transformer-based models (Liu and Lapata, 2019; Dong et al.,

2019; Lewis et al., 2019) have replaced RNN-based seq2seq models for abstrac-

tive summarization as well.

• Query-based Summarization: In parallel to our work, Hasselqvist et al. (2017)

also proposed a seq2seq model for query-based abstractive summarization. How-

ever, it used CNN/Dailymail dataset (Hermann et al., 2015), a large-scale cloze-

style question answering dataset on news articles. Each news had some short

highlights associated with it, and each highlight was written for some entities.

The authors mapped this dataset to QBAS as follows: the highlight was taken as

a summary, the document was taken as it is, the entity in the highlight was marked

as topic/query.

Baumel et al. (2018) point out that it is difficult to train a query-based multi-

document summarization system efficiently due to the lack of a large-scale dataset.

To this end, the authors used a pre-trained seq2seq model for generic summariza-

tion and augmented a query-relevance model. The authors first identify query-

specific passages based on the unigram overlap between query and passages, TF-

IDF scores, and word2vec encodings. The relevant passages are passed to the

pre-trained seq2seq model. This procedure is repeated for other documents until

the summary length does not exceed 250 words.

To tackle the lack of large-scale datasets for query-based multi-document summa-

rization, Laskar et al. (2020) introduced a novel approach to train such systems

using weakly-supervised learning. The proposed model consists of RoBERTa

(Liu et al., 2019b) and BERTSUM (Liu, 2019). RoBERTa is primarily used to

augment document-level relevant sentences in summary along with the overall

summary. BERTSUM, a BERT-based seq2seq model, is then fine-tuned using

this augmented dataset, which then generates a summary. To address the lack

of large-scale datasets, recently Kulkarni et al. (2020) used large-scale Question

Answering datasets such as Google Natural Questions and Common Crawl to

48

automatically create a query-based multi-document dataset for extractive and ab-

stractive summaries. Xie et al. (2020) also proposed a transformer-based archi-

tecture for query-based abstractive summarization, where the authors modified

the computed self-attention in each layer based on the matching score between

the query and a sentence. They validated the proposed model on the Debate-

pedia dataset proposed in our work and HOTPOT-QA, which was tweaked for

query-based summarization.

3.2 Works addressing the same limitations in Seq2Seq

models as identified in this thesis

This section discusses related works that focus on addressing similar limitations of

seq2seq models as considered in this thesis, viz., i) avoiding repeating phrases, ii) bet-

ter transitions among fields for structured data to text generation, and iii) improving

answerability for automatic question generation.

3.2.1 Avoiding Repeating Phrases

We further divide the existing works that address the problem of repeating phrases into

two categories: explicit and implicit approaches. The explicit approaches are the ones

where generating outputs with fewer repeating phrases is a stated goal of the work.

This category has been further divided based on how repetitions have been alleviated.

The majority of the relevant approaches mitigated repetitions by tracking the previ-

ously attended tokens. The other category refers to miscellaneous works that address

this problem by using additional auxiliary losses or by using better decoding strategies.

On the other hand, the implicit approaches refer to the models that focused on improv-

ing the overall generation quality, such as increasing fluency and/or adequacy of the

generated text. The primary aim here was not to mitigate the repetitions, however as

fluent/adequate descriptions will have fewer repetitions in general, this problem also

gets alleviated to some extent. Some of the relevant works in each of the mentioned

categories have been listed in Figure 3.5.

49

Avoiding Repeating Phrases

Implicit Approaches

1. (Tu et al., 2017a)

2. (Tu et al., 2017b)

3. (Su et al., 2018)

4. (Holtzman et al., 2019)

Explicit Approaches

Tracking attended tokens

1. (Nema et al., 2017)

2. (Chen et al., 2016)

3. (See et al., 2017)

4. (Tu et al., 2016)

5. (Mi et al., 2016)

6. (Sankaran et al., 2016)

7. (Paulus et al., 2018)

Miscellaneous Approaches

1. (Gehrmann et al., 2018)

2. (Suzuki and Nagata,

2017)

3. (Chorowski and Jaitly,

2017)

4. (Zhao et al., 2018)

Figure 3.5: Taxonomy for works that avoid repeating phrases in the output

Explicit Approaches

Tracking attended tokens: Several works (Tu et al., 2016; Mi et al., 2016; See et al.,

2017; Tu et al., 2017b; Chen et al., 2016) claimed that one of the primary reasons

for incoherent generations in NLG systems is the inability of attention mechanisms

to track what has been attended to in the previous decoder timesteps. Consequently,

similar contexts or phrases may be attended to repeatedly. As the decoder module is

conditioned on the attended input representation, this could lead to either similar words

being predicted (repeating phrases) by the decoder module or missing some phrases in

the target sequence corresponding to the unattended source phrases (limited coverage).

Tu et al. (2016) observed the issues mentioned above in Machine Translation. The

authors hypothesized that limited coverage leads to either over-translation (repeating

phrases) of some source words or under-translation (some source words being left out

in the translated sentence). Therefore, they focused on increasing the coverage of the

model. Their approach is motivated by the strategy used in statistical machine trans-

lation models to keep track of source words that have been generated (Koehn, 2004;

Koehn et al., 2003). The authors associated a learnable coverage scalar for each source

word to track if it was entirely translated, i.e., if the coverage value is close to 1. The

coverage scalar is modeled using a GRU to keep track of the previous attention distri-

50

butions. These coverage values were also fed to the attention mechanism so that in the

attention distribution predicted at the current step, the source words attended to in the

past get less attention. Additionally, to ensure that the whole sentence is translated, it

is required that the coverage value associated with all the source words become 1. The

authors use this constraint as an auxiliary loss in the training objective.

Mi et al. (2016) also followed a similar strategy to increase coverage to mitigate

repeating phrases. However, they associated a coverage embedding rather than a scalar

with each source word to track if it has been entirely translated. Note that previous

attention weights are incorporated in coverage vector and coverage embeddings through

a GRU in both these models.

Sankaran et al. (2016) followed a simple approach to restrict the attention mecha-

nism on again attending on the previously attended tokens. They aggregated the atten-

tion scores given to a source word. These aggregated scores modulated the score given

to the corresponding source word at the current timestep.

For extractive document summarization, Chen et al. (2016) focused on diversifying

the context vectors by subtracting the aggregated history of context vectors from the

current context vector. This was primarily done to ensure that all the salient points in

the document were being covered and no point was being repeated while identifying

the relevant sentences.

See et al. (2017) observed repeating phrases in abstractive summarization. The au-

thors adopted the technique from Tu et al. (2016) to ensure that the same source words

are not attended to again. Note that instead of using a GRU to model the history of

attention weights, the authors aggregate the attention distribution from the past time

steps. Although they have used the auxiliary loss as given in Tu et al. (2016) to in-

crease coverage, they acknowledge that full coverage is not needed for summarization.

Therefore, they weigh the coverage loss with a parameter λ and use it to avoid repeated

attention on the words which were attended to earlier.

Paulus et al. (2018) focused on abstractive summarization to tackle several issues

prevalent in existing models: exposure bias, repeating phrases, and incoherent phrases.

For the latter two, the authors utilize the method proposed in Sankaran et al. (2016) to

51

modulate the attention given to the source words based on the previous attention distri-

butions. Additionally, they hypothesized that the repetitions could be due to similar de-

coder states in longer summaries. Therefore, the authors also introduced intra-decoder

attention with temporal attention (Sankaran et al., 2016). Along with these architectural

changes, at inference time, they restricted the repetitions of tri-grams.

Note that in contrast to the above works, the primary focus of our proposed method

in Chapter 4 is on avoiding repeating phrases rather than increasing coverage. For

query-based abstractive summarization, it is not crucial to focus on all the parts of the

input document. Instead, it is essential only to highlight the information relevant to the

query. Therefore increasing coverage will hinder this end goal. Secondly, constraining

the attention distribution to be different at each time step will not solve the purpose

if the contextual representations associated with each source word are similar to each

other. Therefore, we focus on diversifying the context vectors rather than the attention

distributions.

Miscellaneous Approaches: Several other works (Gehrmann et al., 2018; Chorowski

and Jaitly, 2017; Suzuki and Nagata, 2017; Zhao et al., 2018) also focus on the problem

of avoiding repeating phrases. However, the strategy used in such works is different

from tracking the attention on tokens. We give a brief overview of the strategies used in

these works below.

Gehrmann et al. (2018) adopted a trick at the decoding stage, where they penalized

the candidate generations if some source token is given a total attention score of more

than 1, i.e., coverage. Chorowski and Jaitly (2017) also adds the coverage term as a

penalty in scoring the top-k outputs from beam search.

In contrast to making architectural changes in seq2seq models to avoid repeating

phrases, Suzuki and Nagata (2017) avoids repeating phrases in abstractive summariza-

tion by predicting an upper bound on the frequency of each word in the target vocab-

ulary while generating each summary. This upper bound is then taken into account

during the decoding. Similarly, for question generation, Zhao et al. (2018), constrained

the probability score coming from the copy network to a maximum of the number of

occurrences of that word from the paragraph. The authors here hypothesized that the

repetitions in the generated question are due to recurring words in the passage and thus

52

the solution.

Implicit Approaches

Several works (Tu et al., 2017a,b; Su et al., 2018) started focusing on overall generation

quality, which indirectly alleviated the problem of repeating phrases.

Tu et al. (2017a) observed that the generation of any word depends on the attended

input representation (source context) and the previously generated words (decoder state

or target context). The authors hypothesized that a generated sequence’s adequacy de-

pends more on the source context, and fluency depends more on the previous words or

target context. They observed that repeating phrases in machine translation occurred be-

cause the target context was not being taken into account adequately while generating

the output. Thus, the authors propose a learnable gate that is modeled using a feed-

forward neural network and depends on the source and target context. It dynamically

weighs the contribution of target and source context in the final decoder state, which

is then used to predict the next word. Note that this work assumes that source and

target representations are appropriate, and the problem lies in efficiently fusing them.

However, in this thesis, our focus is to improve upon the source context by diversifying

it.

Tu et al. (2017b) added another module in the vanilla seq2seq model: encode-

attend-decode-reconstruct, where the reconstruct model is responsible for predicting

the source sentence from the generated output sequence. This constrained the model

to translate all the words only once in the source sentence, to reconstruct it back, thus

ensuring fewer repetitions and good coverage. The authors also used a context gate (Tu

et al., 2017a) and coverage vector (Tu et al., 2016) alongside their model and saw that

the performance improves. Note that it is difficult to adopt the reconstruct model for

summarization, as it will be challenging to generate the whole document from a concise

summary.

Su et al. (2018) proposed a Variational Recurrent Neural Networks based model

for machine translation to improve the overall generation. The authors introduced a

series of latent variables to capture complex dependencies among the translated words

53

at different timesteps and observed fewer repetitions in the translated sentences.

Recent works (Holtzman et al., 2019; Jiang et al., 2020) observed that this issue is

still persistent in transformer-based seq2seq models and also for an open-ended gener-

ation. However, there has been a shift in the kind of approaches for transformer-based

seq2seq models. The new strategies focus more on better auxiliary loss and decoding

strategies than on architectural changes. One of the recent works concentrates on max-

imizing the negative samples’ unlikelihood along with maximizing the likelihood for

positive samples (Li et al., 2019; Welleck et al., 2019). Holtzman et al. (2019); Basu

et al. (2021) ensure that the decoding strategies are adaptive and do not cause the gener-

ation to degenerate. Jiang et al. (2020) give a theoretical framework for understanding

why repeating phrases is a prevalent problem. They suggest that the inherent repetition

in any language is one reason for repetitions in the generated output.

3.2.2 Better Transition among fields for Structured data to Text

Generation

A smooth transition between the fields is necessary to generate coherent descriptions

from structured data. Hence, various models were proposed (Sha et al., 2017; Iso et al.,

2019; Puduppully et al., 2019), similar to ours, (Nema et al., 2018), that ensured a better

transition between the fields. We describe some of them below.

Sha et al. (2017) focus on deciding the order of the fields that should be incorporated

in the description. Along with the dual attention mechanism, they had a link-based at-

tention mechanism that captured the interaction between the fields. These pairwise

interactions acted as a transition matrix. These two kinds of attention were then com-

bined using an adaptive gate. Kiddon et al. (2016) explored the use of checklists to

track previously visited ingredients while generating recipes from ingredients.

Iso et al. (2019) keep track of fields that have already been mentioned. The authors

focus on generating descriptions for NBA games from given game statistics. The aver-

age description length is 384 tokens. The model consists of two components: one for

tracking saliency and the other for generating the text. The former is responsible for

updating the state if the generation will transition to another entity, else the same state

54

is used for the entity that is being explained currently. As the output is lengthy, the

same entity can be referred to multiple times. Therefore, they ensure that if the same

entity is referred again, then the memory state of the last appearance is then passed to

the decoder.

Puduppully et al. (2019) also focuses on generating game summaries from game

statistics. The authors focus on content selection and content planning using two dif-

ferent modules. The content selection is modeled using intra-record level attention. It

helps highlight corresponding fields that might be relevant while talking about an entity.

For content planning, they first generate the order in which the entities will occur in a

sequence. This ordered sequence is then passed to the text generation module, which

renders the game description conditioned on this ordered sequence.

3.2.3 Improving answerability for Question Generation

Several works have observed that even if the answer is passed as an input, the generated

question is (i) not specific to the given answer type (Sun et al., 2018; Zhou et al., 2019;

Wang et al., 2020a; Kim et al., 2018) or (ii) copies irrelevant context from the source

(Sun et al., 2018), or (iii) copies the answer itself in the question (Kim et al., 2018). This

degrades the answerability of the question, and thus the following works have proposed

different ways to mitigate this problem.

In addition to the question not being specific to the answer, Sun et al. (2018) ob-

served that the question type did not match the answer type. To this end, the authors

used a separate classifier to predict only the question type using the answer embed-

ding. Also, the authors observed that irrelevant content words were often copied in the

question. Therefore, they used a position-aware attention mechanism that constrained

the model to copy words only from the surrounding context of the answer. Zhou et al.

(2019) observed that even with passing answer as an input, the question type of the gen-

eration question still did not match the answer. To this end, the authors use a classifier

to predict the question type using the answer representation. The classification loss was

used as an auxiliary loss to train the network to predict the correct question type.

Kim et al. (2018) observed that answer keywords often get generated in the question.

55

Therefore, the authors mask the answer in the given passage and encode it separately.

They further use the attention mechanism at both the passage and answer levels. The

passage and answer-level context vectors are then used to generate the next word of the

question. Wang et al. (2020a) also observed that the question type and answer type

are different. To this end, they proposed a fusion gate to combine passage and answer

representation, which in turn is used to initialize the decoder state. The authors also

introduced a graph encoder based on GCNs, which encoded the dependency graph of

the passage. The learnt graph-based representations are passed semantic rich fusion at-

tention to encode the semantics of the passage. Similar to our work, they also used the

REINFORCE algorithm with BLEU as a reward function to fine-tune the model. Ma

et al. (2020a) believed that lack of global question semantics and inability to encode

answer positions effectively leads to incoherent questions. This work also uses a fusion

gate to initialize the decoder state. Moreover, they hypothesize that the generic ques-

tions are generated whenever the encoder reads the same sentence while generating two

different questions. The authors mitigated this by introducing a sentence-level matching

module that learns sentence-level semantics in both the encoder and the decoder.

3.2.4 Other Limitations

Apart from the above limitations, there are various other limitations of NLG models

that have been explored in the existing literature. Below, we discuss some works which

focus on these additional limitations observed in seq2seq models.

Hallucinations refer to the problem of generating words or phrases which are not sup-

ported by the source. This limitation has also been observed in several NLG tasks such

as: structured data to text generation (Tian et al., 2019; Nie et al., 2019), abstractive

summarization (Maynez et al., 2020), Image Captioning (Rohrbach et al., 2018), etc.

Tian et al. (2019) hypothesize that the irrelevant content is generated when the input is

not given enough attention. The authors propose a confidence score that ensures that the

model assigns high attention weights to the input words when the content is copied. On

the other hand, Nie et al. (2019) observed that hallucinations could occur if the model

is trained on loosely tied (structured data, description) pairs. Therefore, they refine the

training data using an NLU component and iterative self-training. Maynez et al. (2020)

56

assess hallucinations in abstractive summarization by conducting human evaluations at

a large scale. They distinguish hallucinations in two categories: intrinsic, i.e., manip-

ulating information present in the input (e.g., “a mayoral candidate” in the source is

referred to as “mayor” in target), and extrinsic, i.e., irrelevant context with respect to

the source. The authors show that large pre-trained models like BERT based seq2seq

models were more faithful and factually correct as compared to RNN based seq2seq

models.

In automatic question generation, apart from generating questions specific to the

answers, some works have focused on generating difficult questions. Gao et al. (2018)

propose an AQG framework that generates a question corresponding to a given diffi-

culty level (hard or easy). Similar to the above work, Kumar et al. (2019) also focuses

on generating difficult questions. However, the input is a knowledge graph instead of

text. Here, the authors estimate the difficulty level using named-entity popularity, which

is used to generate a question. Ma et al. (2020b) focuses on generating complex multi-

hop questions instead of generating simple questions. To this end, the authors construct

an answer-centric graph from the given passage and then encode it using Graph Convo-

lutional Networks (GCNs). Pan et al. (2020) focus on generating deep questions, such

that answering such questions would require reasoning over multiple pieces of infor-

mation. To this end, the authors create a semantic graph for the given passage, encode

it using both GCNs and RNNs, and then select the appropriate context to generate the

question. The authors conduct a human study to validate that the generated questions

were indeed complex.

For abstractive summarization, it is important that all the salient information present

in the document should be summarized. Several works (Gehrmann et al., 2018; Chen

and Bansal, 2018; Saito et al., 2020) point out that although models generate fluent

summaries, they often do not select all the salient sentences before generating the sum-

maries. Thus, the above works add an intermediate step of selecting the sentences and

tokens that should be summarized and then pass the selected sentences to the decoder to

generate an abstractive summary. Gehrmann et al. (2018) use a supervised approach to

classify whether a token is salient. Chen and Bansal (2018) select the salient informa-

tion at sentence-level using policy gradient algorithm, with ROUGE score as the reward

57

signal. Saito et al. (2020) combine the extraction approach from Gehrmann et al. (2018)

with a large pre-trained model (Lewis et al., 2019) to select salient sentences.

3.3 Works using similar techniques as proposed in this

thesis

To mitigate the three main limitations discussed above, we propose techniques that use

(i) orthogonalization to diversify context vectors, (ii) explicit reward signals to improve

generation, and (iii) multiple decoders to generate refined drafts. These techniques are

generic and have been used for other purposes also as discussed below.

3.3.1 Using Orthogonalization to Diversify Context Vectors

To avoid repeating phrases and simulate the never look back aspect in generating de-

scriptions from structured data, we resort to diversifying context vectors by orthogonal-

izing the current context vector to the history of context vectors. This strategy was later

adopted in other NLG tasks.

For Question Answering based on Reading Comprehension, Parikh et al. (2018)

adopt a similar strategy for answering multiple-choice questions. The authors follow

the elimination strategy to arrive at the correct option. To this end, the authors iteratively

eliminate the options by subtracting the eliminated option’s projection from the passage

representation. They observed that this strategy was effective for RACE (Lai et al.,

2017) compared to simply predicting the correct option in one pass.

For various NLP tasks, there has been an ongoing debate (Bastings and Filippova,

2020) on whether the attention distributions learnt are faithful to the model’s predic-

tions. Mohankumar et al. (2020) identified that one of the reasons for the attention dis-

tributions not being faithful is that the underlying contextual representations of different

input tokens are very similar. To this end, one of the solutions proposed was to orthogo-

nalize the next token’s representation to the representations of the previous tokens. This

helped in making the attention mechanism more transparent and interpretable.

58

3.3.2 Using explicit reward signals for improving NLG

Seq2seq models are typically trained by maximizing the log-likelihood. At training

time, the model predicts the next word conditioned on the words given in the corre-

sponding ground truth sequence. On the other hand, at test time, the next word is based

on the words previously predicted by the model. This discrepancy in decoding at train-

ing and testing time leads to the exposure bias problem (Ranzato et al., 2016).

Several works (Ranzato et al., 2016; Rennie et al., 2017; Paulus et al., 2018; Song

et al., 2017; Pasunuru and Bansal, 2018; Yuan et al., 2017) approached this problem

by training the models with a combined objective function: a weighted objective of

maximizing the log likelihood and rewarding the decoder using external reward signals

through REINFORCE with baseline algorithm (Williams, 1992). The typical rewards

used in these works (Ranzato et al., 2016; Rennie et al., 2017; Pasunuru and Bansal,

2018; Paulus et al., 2018; Song et al., 2017) are n-gram based metrics (BLEU, ROUGE,

CIDeR). These works cover a wide variety of tasks such as image captioning (Rennie

et al., 2017), abstractive summarization (Paulus et al., 2018), question generation (Song

et al., 2017; Yuan et al., 2017), etc.

However, only a few works have utilized this approach to improve upon task-specific

aspects. For example, Song et al. (2017) use BLEU as a reward for question generation,

although it only improves the fluency of a question, and not other aspects such as an-

swerability, difficulty level, etc. On the other hand, Yuan et al. (2017) design the reward

as a combination of the QA performance on the generated question and perplexity of

the generated question. One limitation of this work is that the QA model’s performance

may not always be the right indicator of the quality of the question. For example, Jia

and Liang (2017); Weissenborn et al. (2017) point out that deep learning based QA

systems achieve high performance by identifying the right keywords in the question.

However, the question could still be incoherent.

Parallel to our work, Pasunuru and Bansal (2018) use task-specific aspects in the

reward function for abstractive summarization. The authors propose some modifica-

tions in the ROUGE metric to better reward the model for saliency by weighing some

keyphrases more than the others. Second, they use a state-of-the-art entailment model

59

to quantify the entailment of the generated summary from the ground summary. These

two rewards are then utilized with REINFORCE algorithm to train the model.

3.3.3 Generating multiple drafts

Seq2seq models typically predict the target sequence in a single pass. Consequently,

small mistakes at the start of the sequence can adversely impact the rest of the generated

output. Xia et al. (2017) was one of the initial works that proposed generating the

target sequence in multiple passes for machine translation. The authors generated the

target sequence in two passes. They use Monte Carlo based training method to train the

network. In contrast, we maximize the log-likelihood of both the initial and final draft

independently.

Wang et al. (2018a) proposed a slightly different approach to write and edit the

generated draft. This approach was mainly proposed for writing abstracts from a title.

The first pass was generated using a standard decoder. The generated abstract was then

passed through a bidirectional LSTM network, and a learnable gate was used to adap-

tively attend to the generated abstract and the title. This new attended representation,

which is a fusion of the initial draft of the abstract and the title, is again passed to the

decoder to generate the second draft.

Zhang et al. (2018) emphasized that current seq2seq models only take left-to-right

context while generating a sentence. To also account for the right-to-left context, the

authors generate the first draft from right to left. This reverse draft and the source in-

put are then taken into account while generating the second draft from left to right.

Similarly, Geng et al. (2018) point out that one pass decoding does not take the global

information into account while generating the sequence in the case of Machine Transla-

tion. To this end, the authors propose a multi-pass decoder that keeps refining the draft

based on source and the last generated output until the BLEU score keeps increases.

The decision to whether generate a new draft or stop refining is modeled using a policy

network. The reward for the same is the BLEU score between the final generated output

and the ground truth.

60

3.4 Summary

This chapter gave a brief overview of other works related to the tasks addressed in this

thesis, the limitations addressed in this thesis, and the techniques used in this thesis.

In particular, we discussed several models proposed in the pre-deep learning and deep

learning eras for different tasks addressed in this work, viz., structured data to text

generation, question generation, and query-based abstractive summarization. We then

gave a quick primer on relevant works that also mitigate the limitations considered in

this work, viz., avoiding repeating phrases, better transition among fields in structured

data to text generation, and improving answerability in question generation. Finally, we

discussed works that also use similar techniques as those proposed in our works, viz.,

orthogonalization for diversifying context vectors, explicit reward signals for training

seq2seq models, and generation in multiple drafts.

61

CHAPTER 4

Avoiding Repeating Phrases in NLG

In this chapter, we describe how the REFINE module is designed to avoid the problem

of repeating phrases in the context of Query Based Abstractive Summarization.

4.1 Introduction

As mentioned earlier, seq2seq models have lead to significant improvements across

a wide variety of NLG tasks. However, these models are still limited and generate

incoherent sentences (as illustrated in Chapter 1). One of the recurring problems is that

the generated outputs contain repeating phrases. Such repetitions are not specific to any

particular NLG task. Instead, they have been observed across a wide variety of tasks,

such as Machine Translation (Sankaran et al., 2016), Abstractive Summarization (See

et al., 2017), and open-ended generation (Holtzman et al., 2019).

When we, as humans, generated a description or a summary, we keep track of the

information that we have already conveyed and avoid repeating it. Such a module that

explicitly prevents the information from being repeated is missing in existing encode-

attend-decode models. More specifically, a typical encode-attend-decode model first

computes a vectorial representation for the passage and the query and then produces

a contextual summary one word at a time. Each word is produced by feeding a new

context vector to the decoder at each time step by attending to different parts of the

passage and query. If the decoder produces the same word or phrase repeatedly, then

it could mean that the context vectors fed to the decoder at these time steps are very

similar. A similar hypothesis is also proposed in Sankaran et al. (2016) where they say

that the repeating phrases could be due to the decoder state being similar at different

timesteps while generating lengthy summaries.

To alleviate this problem, we propose a model which explicitly prevents this by

ensuring that successive context vectors are orthogonal to each other. Specifically, we

62

Figure 4.1: Our proposed model is based on encode-attend-refine-decode paradigm.
The attend module generates a context vector ct, by attending on to the pas-
sage word representations based on the decoder’s hidden state st−1. This
context vector ct, is then passed to the refine module, which diversifies
ct with respect to the history of the context vectors d′t−1 stored in the re-
fine module. The diversified context vector dt is then passed to the decode
module to generate the next word.

subtract out any component that the current context vector has in the direction of the

previous context vector. Notice that we do not require the current context vector to

be orthogonal to all previous context vectors but just its immediate predecessor. This

enables the model to attend to words repeatedly if needed later in the process. To

account for the complete history (or all previous context vectors) we also propose an

extension of this idea where we pass the sequence of context vectors through a LSTM

network (Hochreiter and Schmidhuber, 1997) and ensure that the current state produced

by the LSTM is orthogonal to the history. We refer to this as the Diversity LSTM cell.

At each time step, the state of the Diversity LSTM cell is then fed to the decoder to

produce one word in the summary.

Note that in some situations, completely orthogonalizing the current context vector

to the previous context vector(s) may not be ideal. For example, in machine translation,

one word in the source could be aligned to multiple words in the target. In such cases,

it is crucial that we attend to the corresponding source word and do not diversify until

the whole phrase in the target has been generated. Hence, it is essential to dynamically

63

decide the amount of previous context vector that should be subtracted from the current

attended context vector. For this, we introduce a learnable gate that allows for soft or-

thogonalization, i.e., it ensures that the new context vector is not completely orthogonal

to the previous context vector(s). Figure 4.1 shows the complete architecture of our

model containing the refine module.

We evaluate the proposed refinements in the context of query-based abstractive sum-

marization. This task was not much explored when we started this work. As opposed to

abstractive summarization, where the goal is to cover all the salient points in a passage,

in query based summarization, the focus is on generating a summary that is relevant to

the query. Thus given a passage on “the super bowl”, the query “How was the half-time

show?” would result in a summary that would not cover the actual game itself. Note

that there had been some work on query-based extractive summarization (Cao et al.,

2016; Ma et al., 2016; Liu et al., 2012) earlier where the aim was to extract the most

salient sentence(s) from a passage specific to the given query and treat these as a sum-

mary. There is no natural language generation involved. Since we were interested in

abstractive (as opposed to extractive) summarization, we created a new dataset based

on Debatepedia. This dataset contains triplets of the form (query, passage, summary).

Further, each summary is abstractive and not extractive, i.e., the summary does not nec-

essarily comprise of a sentence/phrase simply copied from the original passage. Note

that, for this task as well, we observed the problem of repeating phrases in the outputs

of existing NLG systems (as illustrated in Table 4.1).

Our contributions, as discussed in this chapter, can be summarized as follows: (i) We

propose a new model based on encode-attend-refine-decode paradigm to avoid repeat-

ing phrases; (ii) We propose a new dataset for query-based abstractive summarization;

(iii) We study the problem of repeating phrases in NLG in the context of this dataset. We

show that our method outperforms a vanilla sequence-to-sequence model with a gain

of 28% (absolute) in ROUGE-L score;(iv) We also demonstrate that our method clearly

outperforms a parallel method proposed for handling the problem of repeating phrases

with a gain of 7% (absolute) in ROUGE-L scores (v) We do a qualitative analysis of the

results and demonstrate that our model indeed produces outputs with fewer repetitions.

64

Passage Snippet: The “natural death” alternative to euthanasia is not keeping someone
alive via life support until they die on life support. That would, indeed, be unnatural.
The natural alternative is, instead, to allow them to die off of life support.
Query: Is euthanasia better than withdrawing life support (non-treatment)?
Ground Truth Summary: The alternative to euthanasia is a natural death without life
support.
Predicted Summary: the large to euthanasia is a natural death life life use
Passage Snippet: Legalizing same-sex marriage would also be a recognition of basic
American principles and represent the culmination of our nation’s commitment to equal
rights. Some have said, the last major civil-rights milestone yet to be surpassed in our
two-century struggle to attain the goals we set for this nation at its formation.
Query: Is gay marriage a civil right?
Ground Truth Summary: Gay marriage is a fundamental equal right.
Predicted Summary: gay marriage is a appropriate right right

Table 4.1: Examples showing repeated words in the output of encoder-decoder models.

4.2 Model Architecture

This section describes the design for all the modules: encode, attend, refine, and decode

used in our proposed model to avoid repeating phrases for Query Based Abstractive

Summarization.

Given a passage P = {wp1, . . . , wpn} containing nwords, and a query Q = {wq1, . . . , w
q
k}

containing k words, the task of generating a summary y = {y1, y2, . . . , ym} for the

given (passage,query) pair can be modeled as the problem of finding a y∗ that maxi-

mizes the probability p(y|Q,P) which can be further decomposed as:

y∗ = argmax
y

m∏
1=1

p(yt|y1, . . . , yt−1,P,Q) (4.1)

We now describe a way of modeling p(yt|y1, . . . , yt−1,P,Q) using the proposed

encode-attend-refine-decode paradigm. The proposed model contains the following

components: (i) an encoder RNN for the query and the passage (iii) attention mech-

anism for the query and the passage and (iii) a refine module to modify the contextual

representations and (iv) a decoder RNN to generate the output, one word at a time. All

the RNNs use a GRU cell.

65

4.2.1 Encode

The encode module is responsible for learning contextual representation for both pas-

sage and query. Our encode module consists of two layers:

Embedding Layer: Each word in the passage and the query is embedded in a d-

dimensional space using word-level embeddings.

Contextual Layer: To encode the contextual information for each word in the pas-

sage and query, we pass the word embeddings through a bidirectional LSTM network.

This ensures that the context before and after the word is encoded in the learnt repre-

sentation.

−→
hpi = LSTM(e(wpi),

−→
h p
i−1) (4.2)

←−
hpi = LSTM(e(wpi),

←−
h p
i−1) (4.3)

−→
hqi = LSTM(e(wqi),

−→
h q
i−1) (4.4)

←−
hqi = LSTM(e(wqi),

←−
h q
i−1) (4.5)

where e(.) ∈ Rd is the d-dimensional word embedding for the given word. The passage

contextual representations are denoted using Hp = {hp1, . . . ,hpn} , and query Hq =

{hq1, . . . ,h
q
k}

4.2.2 Attend

We know that attend module helps the decode module generate the next word by select-

ing the next relevant context from the passage. However, for query-based abstractive

summarization, the relevant context must be specific to the given query. To account for

this, we propose a dual attention mechanism.

Attention mechanism for the query: At each time step, the decoder produces

an output word by focusing on different portions of the query (passage) with a query

(passage) attention model. We first describe the query attention model, which assigns

66

weights αqt,i to each word in the query at each decoder time step t as follows:

aqt,i = vTq · tanh(Wq · st +Uq · hqi) (4.6)

αqt,i =
exp(aqt,i)∑k
j=1 exp(aqt,j)

(4.7)

where st is the current state of the decoder at time step t (we will see an exact formula

for this soon). Wq ∈ Rl2×l1 , Uq ∈ Rl2×l2 , vq ∈ Rl2 are parameters. l1 is the size of

the decoder’s hidden state, l2 is both the size of hqi and also the size of the final query

representation at time step t, which is computed as:

qt =
k∑
i=1

αqt,ih
q
i (4.8)

Attention mechanism for the passage : We now describe the passage attention model,

which assigns weights to each word in the passage using the following attention model.

apt,i = vTd · tanh(Wd · st +Ud · hpi + Zd · qt) (4.9)

αpt,i =
exp(apt,i)∑n
j=1 exp(apt,j)

where st is the current state of the decoder at time step t (we will introduce an exact

formula for this soon). Wd ∈ Rl4×l1 , Ud ∈ Rl4×l4 , Zd ∈ Rl4×l2 , vd ∈ Rl2 , l4 is the

size of hpi and also the size of the final passage representation ct which is passed to the

decoder at time step t as:

ct =
n∑
i=1

αpt,ih
p
i (4.10)

Note that ct now encodes the relevant information from the passage as well as the query

(refer Equation (4.9)) at time step t. We refer to this as the context vector for the

decoder.

67

4.2.3 Refine

As hypothesized earlier, if the decoder produces the same phrase/word multiple times,

then the context vectors being fed to the decoder at consecutive time steps may be very

similar. The goal of the refine module is to diversify the context vector based on the

prior context vector. It is designed as follows:

dt = refine(ct,dt−1) (4.11)

where ctis the passage context vector generated from the attend module. dt is the output

from the refine module and is the final context vector seen by the decoder at timestep t.

We propose four variants of the refine module as discussed below.

• D1: In this variant, we simply make context vector ct orthogonal only to its

immediate predecessor, i.e. dt−1 :

dt = refine(ct,dt−1)

= ct −
cTt dt−1
dTt−1dt−1

dt−1 (4.12)

• SD1: The above variant imposes a hard orthogonality constraint on the context

vector , that could potentially affect the generation quality in some situations. We

therefore propose a relaxed version of the above variant which uses a learnable

gate. This gate can dynamically decide what fraction of the previous context

vector should be subtracted from the current context vector using the following

equations:

γt = Wg · dt−1 + bg (4.13)

dt = refine(ct,dt−1) ≡ ct − γt
cTt dt−1
dTt−1dt−1

dt−1 (4.14)

where Wg ∈ Rl4×l4 , bg ∈ Rl4 are learnable parameters and l4 is the dimension

of dt.

• D2: In our preliminary analysis, we observed that in some cases a phrase can

repeat after some interval, i.e., after a few words have been generated in between.

68

Therefore, it is important to ensure that the current context vector is also diverse

to all the previous context vectors. The above two proposed refinements do not

take the history into account. To account for the history, we pass the successive

context vectors as a sequence through a novel variant of LSTM. We refer to this

proposed variant as the Diversity LSTM cell. Along with learning a meaningful

representation of the context vector sequence, it ensures that the new state of the

Diversity LSTM cell is orthogonal to the maintained cell state. Specifically, we

use the following set of equations to compute a diverse context vector at time t:

it = σ(Wi · ct +Ui · d′t−1 + bi) (4.15)

ft = σ(Wf · ct +Uf · d′t−1 + bf) (4.16)

ot = σ(Wo · ct +Uo · d′t−1 + bo) (4.17)

d̂t = tanh(Wd · ct +Ud · d′t−1 + bd) (4.18)

d′t = it � d̂t + ft � d′t−1 (4.19)

ddiverset = d′t −
d′t

Td′t−1
d
′T
t−1d

′
t−1

d′t−1 (4.20)

dt = ot � tanh(ddiverset) (4.21)

where Wi,Wf ,Wo,Wc ∈ Rl5×l4 , UiandUf ,Uo,Ud ∈ Rl5×l4 are learnable pa-

rameters. The vector ct is the l4-dimensional output of Equation (4.10) and l5 is

the number of hidden units in the Diversity LSTM cell. This final dt from Equa-

tion (4.21) is then passed on to the decoder. Note that Equation (4.20) ensures

that the state of the LSTM at time step t is orthogonal to the previous history, i.e.,

d′t−1. Figure 4.1 shows a pictorial representation of the model with a diversity

LSTM cell.

• SD2: Here, we again introduce a learnable gate which controls the fraction of

the component along d′t−1 that should be subtracted from d′t. Specifically, we

define a gating parameter gt and replace (4.20) above by (4.23) as define below:

γt = σ(Wg · ct +Ug · d′t−1 + bo) (4.22)

ddiverset = d′t − γt
d′t

Td′t−1

d′Tt−1d
′
t−1

d′t−1 (4.23)

69

where Wg ∈ Rl5×l4 , Ug ∈ Rl5×l4 are learnable parameters.

4.2.4 Decode

The decoder generates the output sequence one word at a time.The hidden state of the

decoder st at each time t is again computed using a GRU as follows:

st = GRUdec(st−1, [e(yt−1),dt−1]) (4.24)

where, e(yt−1) is the d-dimensional of the word yt, which has the highest probability

under the following distribution over the vocabulary words at timestep t− 1 computed

as:

p̃(yt) = softmax(Wo · f(Wdec · st +Vdec · dt)) (4.25)

where Wo ∈ RN×l1 , Wdec ∈ Rl1×l1 , Vdec ∈ Rl1×l4 , V is the vocabulary size. The

above output is exactly the quantity defined in Equation (4.1) that we wanted to model

(p(yt|y1, ..., yt−1,P,Q)). Also [e(yt−1),dt−1] means a concatenation of the vectors

e(yt−1),dt−1. We chose f to be the identity function.

4.3 Baseline Methods

We compared our proposed model with a parallel work by Chen et al. (2016). This

work focused on the task of extractive document summarization. They used the encode-

attend-decode paradigm, where the authors distracted the context vector to ensure that

the whole passage is taken into account for a better summary. Although the motivation

is slightly different as they focus on coverage and not repetition, the method to distract

the context vector is similar. The encode, attend and decode module is similar to the

one described in this chapter. The authors model the distraction at two levels: (i) they

ensure that the new context vector is different from the ones generated previously. In

contrast to our method of orthogonalization, they use subtraction to ensure each context

vector is different. (ii) they ensure that the attention paid to a token t is less if it has

70

been attended to in the past. We describe the two variants proposed by them below:

M1: This model accumulates all the previous context vectors as
∑t−1

j=1 dj and in-

corporates this history while computing a diverse context vector:

dt = tanh(Wc · ct −Uc ·
t−1∑
j=1

dj) (4.26)

where Wc,Uc ∈ Rl4×l4 are diagonal matrices. We then use this diversity driven context

dt in Equation (4.24) and (4.25).

M2: In this model, in addition to computing a diverse context as described in Equa-

tion (4.26), the attention weights at each time step are also forced to be diverse from the

attention weights at the previous time step.

α′t,i = vTa · tanh(Wa · st +Ua · ct − ba ·
t−1∑
j=1

α′j,i) (4.27)

where Wa ∈ Rl1×l1 , Ua ∈ Rl1×l4 , ba,va ∈ Rl1 are learnable parameters and l1 is

the number of hidden units in the decoder GRU. Once again, they maintain a history of

attention weights and compute a diverse attention vector by subtracting the history from

the current attention vector. To have a fair comparison with the above two approaches,

we adopt the above design in our refine module, keeping the other modules the same as

described earlier.

4.4 Query Based Abstractive Summarization Dataset

As mentioned earlier, we primarily focused on the task of Query Based Abstractive

Summarization. However, at the time of this work, there were no datasets that are

specifically designed for query-based abstractive summarization. Therefore, we first

create one such dataset from Debatepedia. Debatepedia is an encyclopedia of pro and

con arguments and quotes on critical debate topics. There are 663 debates in the corpus

(we considered only those debates which have at least one query with one passage).

These 663 debates belong to 53 overlapping categories: {Politics, Law, Crime, Environ-

ment, Health, Morality, etc.} A given topic can belong to more than one category. For

71

Figure 4.2: Queries associated with the topic “algae biofuel”.

Figure 4.3: Passages and summaries for a given query.

72

Average number of words per
Passage Summary Query

66.4 11.16 9.97

Table 4.2: Average length of passages/queries/summaries in the dataset.

example, the topic “Eye for an Eye philosophy” belongs to both “Law” and “Moral-

ity”. The average number of queries per debate is five, and the average number of

passages per query is four.

For example, Figure 4.2 shows the queries associated with the topic “Algae Bio-

fuel”. Figure 4.3 shows one sample query and the abstractive summary for some pas-

sages related to this query. Each passage is preceded by a crisp summary for the argu-

ment presented in it. We adopt the same as the summary for the passage. As is evident

from the example, the summary is abstractive in nature and not extracted directly from

the passage. We crawled 12, 695 such {query, passage, summary} triples from Debate-

pedia (these were all the available triples). Table 4.2 reports the average length of the

query, summary, and passages in this dataset.

We used ten-fold cross-validation for all our experiments. Each fold uses 80% of

the passages for training, 10% for validation, and 10% for testing.

4.5 Experimental Setup

We evaluate our models on the dataset described in Section 4.4. Note that there were

no prior baselines on query-based abstractive summarization, so we could only com-

pare the models described above with different variants. Specifically, we compare the

performance of the following models:

• EAD: This is the vanilla encode-attend-decode paradigm adapted for the task of

abstractive query summarization. The encode and decode module has the same

design as mentioned in Section 4.2.1 and Section 4.2.4 respectively. The attend

module is minimal and only contains “Attention Mechanism for the passage”

without taking the query into account in Equation 4.9. Along with helping us

73

understand the importance of the refine module, evaluating this model would also

help us understand the importance of using a separate query attention mechanism.

• EAD-Query: This model is similar to the one described above, with the only

addition of adding qt in Equation 4.9. Note that it still does not contain an

“Attention Mechanism for the query”.

• EAD-Queryatt: This model contains the encode, attend and decode modules as

described in Section 4.2, but it does not contain the refine module. In particular,

instead of passing dt−1,dt to the decoder in Equation (4.24) and Equation (4.25)

respectively, we simply pass the unrefined ct−1 and ct as computed in Equation

(4.10) to the decoder in Equations (4.24) and (4.25).

• EARD-D1: This is our proposed model, with the refine module designed based

on Equation 4.12, where the context vector is diversified only based on the im-

mediate predecessor and is strictly orthogonal to it. Note that the other modules

encode, attend, decode are the same as in EAD-Queryatt.

• EARD-D2: This is another variant of our proposed model. The refine module

here is Diversity LSTM cell with hard orthogonality, as described in Equation

4.15.

• EARD-SD1: This is similar to EARD-D1 with a learnable gate for soft orthog-

onalization as mentioned in 4.14.

• EARD-SD2: This is similar to EARD-D2 with a learnable gate for soft orthog-

onalization as mentioned in 4.23.

• EARD-B1: This baseline is based on the encode-attend-refine-decode paradigm.

However, here we replace Diversity LSTM cell with a basic LSTM cell (i.e.,

ddiverset = d′t instead of using Equation (4.20). This helps us understand whether

simply using an LSTM to track the history of context vectors (without imposing

a diversity constraint) is sufficient or not.

• EARD-M1: This baseline model is again based on the encode-attend-refine-

decode paradigm. We adopt the distraction based design to diversify the context

vector (as mentioned in Section 4.3).

74

S.No. Models ROUGE-1 ROUGE-2 ROUGE-L
encode-attend-decode based models

1. EAD 13.73 2.06 12.84
2. EAD-Query 20.87 3.39 19.38
3. EAD-Queryatt 29.28 10.24 28.21

Baselines with encode-attend-refine-decode paradigm
4. EARD-B1 23.18 6.46 22.03
5. EARD-M1 33.06 13.35 32.17
6. EARD-M2 18.42 4.47 17.45

Ours
7. EARD-D1 33.85 13.65 32.99
8. EARD-SD1 31.36 11.23 30.5
9. EARD-D2 38.12 16.76 37.31
10. EARD-SD2 41.26 18.75 40.43
11. + Beam Search (k=5) 42.12 19.01 40.83
12. SOTA Su et al. (2021) 59.02 44.59 57.44

Table 4.3: Performance of various models using full-length ROUGE metrics.

• EARD-M2: This baseline model is similar to the above model. Additionally, it

also operates on the attention weights and the context vector described in the M2

model in Section 4.3.

4.5.1 Implementation Details

We used 80% of the data for training, 10% for validation, and 10% for testing. We

create 10 such folds and report the average ROUGE-1, ROUGE-2, ROUGE-L scores

across the 10 folds. The hyperparameters (batch size and GRU cell sizes) of all the

models are tuned on the validation set. We tried the following batch sizes: {32, 64} and

the following GRU cell sizes {200, 300, 400}. We used Adam (Kingma and Ba, 2014)

as the optimization algorithm with the initial learning rate set to 0.0004, β1 = 0.9,

β2 = 0.999. We used pre-trained publicly available Glove word embeddings1 and fine-

tuned them during training. The same word embeddings are used for the query words

and the passage words.

1http://nlp.stanford.edu/projects/glove/

75

Source:Although cannabis does indeed have some harmful effects, it is no more harmful than
legal substances like alcohol and tobacco. As a matter of fact, research by the British Medical
Association shows that nicotine is far more addictive than cannabis. Furthermore, the consump-
tion of alcohol and the smoking of cigarettes cause more deaths per year than does the use of
cannabis (e.g. through lung cancer, stomach ulcers, accidents caused by drunk driving etc.). The
legalization of cannabis will remove an anomaly in the law whereby substances that are more
dangerous than cannabis are legal whilst the possession and use of cannabis remains unlawful.
Query: is marijuana harmless enough to be considered a medicine
Grount Truth: marijuana is no more harmful than tobacco and alcohol
Generated Summaries:
EAD-Query: marijuana is no the drug drug for tobacco and tobacco
EARD-D1: marijuana is no more harmful than tobacco and tobacco
EARD-SD1: marijuana is more for evidence than tobacco and health
EARD-D2: marijuana is no more harmful than tobacco and use
EARD-SD2: marijuana is no more harmful than tobacco and alcohol
Source:Fuel cell critics point out that hydrogen is flammable, but so is gasoline. Un-
like gasoline, which can pool up and burn for a long time, hydrogen dissipates rapidly.
Gas tanks tend to be easily punctured, thin-walled containers, while the latest hydrogen
tanks are made from Kevlar. Also, gaseous hydrogen isn’t the only method of stor-
age under consideration–BMW is looking at liquid storage while other researchers are
looking at chemical compound storage, such as boron pellets.
Query: safety are hydrogen fuel cell vehicles safe
Ground Truth: hydrogen in cars is less dangerous than gasoline
Generated Summaries:
EAD-Query: hydrogen is hydrogen hydrogen hydrogen fuel energy
EARD-D1:hydrogen in cars is less natural than gasoline
EARD-SD1:hydrogen in cars is reduce risk than fuel
EARD-D2:hydrogen in waste is less effective than gasoline
EARD-SD1: hydrogen in cars is less dangerous than gasoline
Source:The basis of all animal rights should be the Golden Rule: we should treat them
as we would wish them to treat us, were any other species in our dominant position.
Query: do animals have rights that makes eating them inappropriate
Ground Truth: animals should be treated as we would want to be treated
Generated Summaries:
EAD-Query : animals should be treated as we would protect to be treated
EARD-D1: animals should be treated as we most individual to be treated
EARD-SD1: animals should be treated as we would physically to be treated
EARD-D2: animals should be treated as we would illegal to be treated
EARD-SD2: animals should be treated as those would want to be treated

Table 4.4: Summaries generated by different models. In general, we observed that the
baseline models which do not use a diversity based attention model tend to
produce more repetitions. Notice that the last example shows that our model
is not very aggressive in dealing with the history and is able to produce valid
repetitions (treated ... treated) when needed.

76

Source: Education is used to inculcate values that the society believes in and to promote social
and civic awareness . Religious schools promoting anti-female policies for example should
not be receiving taxpayer funding in the form of vouchers . This violates the constitutional
separation of church and state . State funds can not be separated from state control . It matters
not whether the state is not directly making the choice to fund religious schools . Taxpayer funds
should not be allowed to be directed toward religious schools .
Query: Do vouchers rightly/wrongly support religious schools ?
Grount Truth: Vouchers for religious schools violates church / state separation
EARD-SD2: religious vouchers violates religious schools.
Source: The White House insists the treaty doesn’t affect it but the Kremlin’s takes a
different view : “Can operate and be viable only if the United States of America refrains
from developing its missile-defense capabilities quantitatively or qualitatively. ”
Query: Does new start preserve missile defense capabilities ?
Ground Truth: New start restricts us missile defense options
EARD-SD2: the missile house treaty can be viable .

Table 4.5: Generated Samples where our best model, EARD-SD2:, does not restore
the semantic meaning or does not generate the summary specific to the given
query.

4.6 Results and Discussions

In this section, we discuss the results of the experiments reported in Table 4.3. Note that

Row 12 is the current state-of-the-art result for this dataset, and it has been added for

completeness. Su et al. (2021) is a BART based model proposed for the task of query

focused abstractive summarization.

1. Effect of Query: Comparing rows 1 and 2 we observe that adding an encoder for

the query and allowing it to influence the outputs of the decoder indeed improves the

performance. This is expected as the query contains some keywords that could sharpen

the summary’s focus.

2. Effect of Query attention model: Comparing rows 2 and 3, we observe that using

an attention model to compute the query representation at each time step improves

the results. This suggests that the attention model indeed learns to focus on relevant

portions of the query at different time steps.

3. Effect of Diversity models: All the diversity models introduced in the paper (rows

7, 8, 9, 10) significantly improve over the non-diversity models. In particular, the

77

Model #summaries with repeated unigrams
EAD-Queryattn 498
EARD-SD1 352
EARD-SD2 344
EARD-D1 191
EARD-D2 179

Table 4.6: The number of sentences with repeated unigrams across generated sum-
maries from various models. We average out the total number of sentences
across 10 folds. We can infer that the model with hard orthogonalization in
Diversity LSTM generates summaries with least number of repetitions.

Diversity-LSTM model gives the best results. This is indeed very encouraging, and

Table 4.4 shows some sample summaries comparing different models’ performance.

Moreover, with beam search decoding with beam width as 5, we observe an additional

2% relative improvement in the performance over our best performing model.

4. Comparison with baseline diversity models: The baseline diversity model EARD-

M1 (row 5) performs at par with our models EARD-D1 and EARD-SD1 but not as

good as EARD-D2 and EARD-SD2. However, the model EARD-M2 (row 6) performs

very poorly. We believe that simultaneously adding a constraint on the context vectors

and attention weights (as is indeed the case with EARD-M2) is a bit too aggressive.

This could lead the model to diversify even when the models need to attend to similar

content to complete the summary and thus could be leading to poor performance.

5. Quantitative Analysis: In addition to the qualitative analysis reported in Table 4.4

we also did a quantitative analysis by counting the number of sentences containing

repeated words generated by different models. Specifically, for the 1268 test instances

we counted the number of sentences containing repeated words as generated by different

modes. Table 4.6 summarizes this analysis. We observed that the number of repeated

words indeed decreases with our models. We also present a few samples where our

model EARD-SD2 does not generate semantically correct summary (Example 1 in

Table 4.5). Also, there are instances where the generated summary is not specific to the

given query (Example 2 in Table 4.5). This shows that there is still scope for improving

systems for query based abstractive summarization.

78

4.7 Summary

In this work, we proposed a method for query-based abstractive summarization. The

unique feature of the model is a novel diversification mechanism based on successive

orthogonalization. This gives us the flexibility to (i) provide diverse context vectors at

successive time steps and (ii) pay attention to words repeatedly if need be later in the

summary (as opposed to existing models which aggressively delete the history). We

also introduced a new dataset and empirically verified that we perform significantly

better with a gain of 28% (absolute) in the ROUGE-L score when compared to a vanilla

encode-attend-decode model. We observe that adding an attention mechanism to the

query string gives significant improvements. We also compare with a state-of-the-art

diversity model and outperform it with a gain of 7% (absolute) in the ROUGE-L score.

79

CHAPTER 5

Exploiting Task Specific Characteristics for improving

Adequacy

RNN based sequence-to-sequence models with an attention network have been adopted

for the task of structured data to text generation (Mei et al., 2016). However, these

models do not capture any of the task specific characteristics such as the necessity to

cover all/most fields in a sequential order. In this chapter, we discuss some of these task

specific characteristics and then propose a refine module to handle these characteristics.

5.1 Introduction

Rendering natural language descriptions from structured data is required in a wide vari-

ety of commercial applications, such as generating descriptions of products, hotels, fur-

niture, etc., from a corresponding table of facts about the entity. Such a table typically

contains {field, value} pairs where the field is a property of the entity (e.g., color) and

the value is a set of possible assignments to this property (e.g., color = red). Another

example of this is the well-known task of generating one line biography descriptions

from a given Wikipedia infobox (Lebret et al., 2016). The Wikipedia infobox serves

as a table of facts about a person, and the first sentence from the corresponding article

serves as a one line description of the person. Figure 5.1 illustrates an example input

infobox which contains fields such as {Born, Position, Played For, National team, and

Playing career}. Each field further contains some words (e.g., Defence, Canada, 1991-

2006, Chicago Blackhawks, etc.). The corresponding description is coherent with the

information contained in the infobox.

Note that the number of fields in the infobox and the ordering of the fields within

the infobox vary from person to person. Given the large size (700K examples) and het-

erogeneous nature of the dataset, which contains biographies of people from different

80

Figure 5.1: The goal is to generate the following description when this infobox is passed
as an input: Karl Dykhuis born (born July 8, 1972) is a Canadian former
professional ice hockey defenceman who played 12 seasons in the National
Hockey League (NHL) for the Chicago Blackhawks, Philadelphia Flyers,
Tampa Bay Lightning and Montreal Canadiens.

backgrounds (sports, politics, arts, etc.), it is hard to come up with simple rule-based

templates for generating natural language descriptions from infoboxes, thereby making

a case for data-driven models. Based on the recent success of data-driven neural models

for various other NLG tasks (Bahdanau et al., 2014; Rush et al., 2015; Yao et al., 2015;

Chopra et al., 2016a), several works (Lebret et al., 2016; Mei et al., 2016; Liu et al.,

2019a) have adapted seq2seq models for this task. These models incorporate the tab-

ular structure of the infobox by using a hierarchical encoder and/or attention network.

However, as we observe from Table 5.1, the generated descriptions are still sometimes

incoherent (Example 1) and misrepresent some of the information (Examples 2 and 3)

present in the given input table. We hypothesize that is because such a model still does

not exploit other crucial specific characteristics of this task, as explained below.

We observe that while rendering the output, once the model pays attention to a field

(say, occupation), it needs to stay on this field for a few timesteps (till all the occupations

are produced in the output). We refer to this as the stay on behavior. Further, we note

that once the tokens of a field are referred to, they are usually not referred to later. For

example, once all the occupations have been listed in the output, we will never revisit

the occupation field because nothing is left to say about it. We refer to this as the never

81

Reference: David Axelrod (born April 17 , 1933) is an American composer, arranger,
and producer .
Mei et al. (2016) David Axelrod is an American composer , producer , arranger , and
arranger

Reference: Sir Lester Bryant Bird , KNH (born 21 February 1938) was the second
Prime Minister of Antigua and Barbuda from 1994 to 2004 and a well-known athlete .
Mei et al. (2016): Sir James Lester Bird (born 21 February 1938) is a former politician
from the United States of Canada .

Reference: Brad Turner is a Canadian film director , television director and photogra-
pher .
Mei et al. (2016): Brad Turner is an American film and television director .

Table 5.1: Examples of generated descriptions from baseline model. The first example
is incoherent. In the second example, the model hops between “Name” and
“Governer-General” fields. For the last example, the nationality is incorrect
generated by a baseline model is incorrect.

82

look back behavior.

In this chapter, we focus on these two specific characteristics (stay-on and never-

look-back) behavior and model them in our refine module. To elaborate, we introduce

a learnable forget (or remember) gate, which acts as a signal to decide when to forget

the current field (or equivalently to decide till when to remember the current field). To

model the never look back behavior, we introduce a gated orthogonalization mechanism

which ensures that once a field is forgotten, subsequent field context vectors fed to the

decoder are orthogonal to (or different from) the previous field context vectors.

We validate that our encode-attend-refine-decode paradigm is better than encode-

attend-decode paradigm on the WIKIBIO dataset (Lebret et al., 2016) which contains

around 700K {infobox, description} pairs and has a vocabulary of around 400K words.

We show that our model gives a relative improvement of 21% and 20% as compared

to the current state-of-the-art models (Lebret et al., 2016; Mei et al., 2016) on this

dataset. The proposed model also gives a relative improvement of 10% as compared to

the basic seq2seq model. Further, we also show that our model outperforms state-of-

the-art methods mentioned above on French and German WIKIBIO datasets proposed

in Shetty M (2018).

5.2 Proposed model

As input we are given an infobox I = {(gi, ki)}Ni=1, which is a set of pairs (gi, ki) where

gi corresponds to field names and ki is the sequence of corresponding values and N is

the total number of fields in I. For example, (g = occupation, k = actor, writer, director)

could be one such pair in this set. Given such an input, the task of generating a descrip-

tion y = {y1, y2, . . . , ym} for the given infobox can be modeled as the problem of

finding a y∗ that maximizes the probability p(y|I) which can be written as:

y∗ = argmax
y

m∏
1=1

p(yt|y1, . . . , yt−1, I) (5.1)

We now describe a way of modeling p(yt|y1, . . . , yt−1, I) using the proposed encode-

attend-refine-decode paradigm. The proposed model contains the following compo-

83

Figure 5.2: Our proposed model consists of i) a hierarchical encoder that encodes
the infobox at the field and value level, ii) attend module with three sub-
components: micro, macro, and fused attention networks, iii) refine module
models the stay-on and never-look-back characteristics. Here dt represents
the history of filed level context vectors, iv) a decoder that generates the de-
scription conditioned on value-level and refined field-level context vectors.

nents: (i) a hierarchical encoder RNN for the Infobox as described in Shetty M (2018)

(iii) a bifocal attention mechanism which attends to information at the micro and macro

level as described in Shetty M (2018) (iii) a refine module to modify the contextual

representations and (iv) a decoder RNN to generate the output, one word at a time.

5.2.1 Encode

Representation of a field: Our goal is to compute a representation for the input, an

infobox i.e., a table. As a table can be viewed as an aggregation of fields, the represen-

tation of the infobox can be derived by applying a function g over the field representa-

tions. Thus, we first focus on computing the representation for each field in the table.

84

Note that a field itself contains many values. For example, the field occupation for Ben

Affleck may contain the values actor, writer, director. Hence, a field’s representation

can either be (i) the word embedding of the field name or (ii) some function f of the

the representations of the values in the field or a concatenation of (i) and (ii). We found

that concatenating the representation of the field name with the aggregated represen-

tation of the values in the field works best. Further, using a bidirectional GRU cell to

take contextual information from neighboring fields also helps. Hence, we compute the

representation of the j-th field, hfj as follows:

hfj = BiGRU(hfi−1, [e(x
f
i) : h

r]) (5.2)

where e(xfi) represents the word embedding for the field name, xfi , and hr is an ag-

gregated representation of the values in the field. This aggregated representation of the

values in the field is computed as described below.

Representation of a value within a field: Let hrj be the representation of the j-th value

in a given field. This representation could again either be (i) simply the embedding of

this value (ii) or a contextual representation computed using a function f , which also

considers the other values in the field. For example, if (xr1, x
r
2, ..., x

r
l) are the values in a

field, then these values can be treated as a sequence, and the representation of the j-th

value can be computed using a bidirectional GRU over this sequence. Once again, we

found that using a bidirectional GRU works better than simply using the embedding of

the value. Thus, we compute the representation of the i-th value in the field as:

hri = BiGRU(hri−1, e(x
r
i)) (5.3)

Note that the representation hr in Equation (5.2) refers to the contextual representation

of the last value hrl in the sequence (which in turn contains information from all the

other values in the field).

85

5.2.2 Attend

While understanding and generating a description from structured data, a human would

keep track of information at two levels. Specifically, at a macro level, she would first

decide which field to mention next and then at a micro level, decide which of the values

in the field needs to be mentioned next. For example, she first decides that the field

occupation needs attention at the current step. She then decides which is the next ap-

propriate occupation to attend to from the set of occupations (actor, director, producer,

etc.). To enable this, we use a hierarchical encoder and a bifocal attention mechanism

which computes attention over fields at a macro level and values at a micro level. We

then fuse these attention weights such that the attention weight for a field also influ-

ences the attention over the values within it, as discussed below. This idea of fusing the

macro level attention with a micro level attention as described below is the same as that

proposed in Shetty M (2018).

Macro Attention: Let hfj be the representation of the jth field in the infobox. Given

these representations {hfj }Nj=1 for all the N fields we compute an attention over the

fields (macro level).

bft,j = vTf · tanh(Uf · st−1 +Vf · hfj) (5.4)

βt,j =
exp(bft,j)∑N
i=1 exp(bft,i)

(5.5)

cft =
N∑
i=1

βt,jh
f
j (5.6)

where st−1 is the state of the decoder at time step t− 1. Uf ,Vf and vf are parameters,

N is the total number of fields in the input and cft is the macro (field level) context

vector at the t-th time step of the decoder.

Micro Attention: Once we have computed a representation for all values across all the

fields as described earlier, we compute the attention over these values (micro level) as

86

shown below :

art,i = vTr · tanh(Ur · st−1 +Vr · hri) (5.7)

αrt,i =
exp(art,i)∑W
i=1 exp(art,i)

(5.8)

where st−1 is the state of the decoder at time step t− 1. Ur,Vr and vr are parameters,

W is the total number of values across all the fields.

Fused Attention: Intuitively, the attention weights assigned to a field should have an in-

fluence on all the values belonging to the particular field. To ensure this, we reweigh the

micro-level attention weights based on the corresponding macro-level attention weights.

In other words, we fuse the attention weights at the two levels as:

α
′

t,i =
αt,iβt,F (i)∑W
j=1 αt,jβt,F (j)

(5.9)

crt =
W∑
j=1

α
′

t,ih
r
i (5.10)

where F (j) is the field corresponding to the i-th value and crt is the macro level context

vector.

5.2.3 Refine

We now describe the design of the refine module to model the stay-on and never-look-

back behavior.

Stay-On: We first begin with the stay-on property, which essentially implies that if we

have paid attention to the field i at timestep t, we are likely to pay attention to the same

field for a few more time steps. For example, suppose we are focusing on the occupation

field at this timestep. In that case, we tend to focus on it for the next few timesteps until

all relevant values in this field have been included in the generated description. In other

words, we want to remember the field context vector cft for a few timesteps. One way of

ensuring this is to use a remember (or forget) gate as given below, which remembers the

87

previous context vector when required and forgets it when moving on from that field.

ft = σ(Ug · cft +Vg · dt−1 + bg) (5.11)

dt = (1− ft)� cft + ft � dt−1 (5.12)

where Ug,Vg,bg are parameters to be learned The job of the forget gate is to en-

sure that ct is similar to ct−1 when required (i.e., by learning ft → 1 when we want

to continue focusing on the same field) and different when it is time to move on (by

learning that ft → 0).

Never look back: Next, the never look back property implies that once we have moved

away from a field, we are unlikely to pay attention to it again. For example, once we

have rendered all the occupations in the generated description, there is no need to return

to the occupation field. In other words, once we have moved on (ft → 0), we want the

successive field context vectors to be very different from the previous field vectors. One

way of ensuring this is to orthogonalize successive field vectors using:

d′t = cft − γt �
< dt−1, c

f
t >

< dt−1,dt−1 >
dt−1 (5.13)

where < a,b > is the dot product between vectors a and b. The above equation

essentially subtracts the component of cft along dt−1. γt is a learned parameter that

controls the degree of orthogonalization, thereby allowing a soft orthogonalization (i.e.,

the entire component along dt−1 is not subtracted but only a fraction of it). The above

equation only ensures that cft is soft-orthogonal to dt−1. Alternately, we could pass

the sequence of context vectors, {d1,d2, . . . ,dt} generated so far through a GRU cell.

The state of this GRU cell at each time step would thus be aware of the history of the

field vectors till that timestep. Now instead of orthogonalizing cft to dt−1 we could

orthogonalize cft to the hidden state of this GRU at time-step t − 1. We found this to

work better in practice as it accounts for all the field vectors in the history instead of

only the previous field vector.

In summary, Equation (5.12) provides a mechanism for remembering the current

field vector when appropriate (thus capturing stay-on behavior) using a remember gate.

On the other hand, Equation 5.13 explicitly ensures that the field vector is very different

88

(soft-orthogonal) from the previous field vectors once it is time to move on (thus cap-

turing never look back behavior). The value of d′t computed in Equation (5.13) is then

used in Equation (5.12) in place of cft . More formally the stay-on and never-look-back

properties are combined as:

dt = (1− ft)� d′t + ft � dt−1 (5.14)

, where ft is the remember gate introduced in Equation (5.11). The dt (macro) thus

obtained is then concatenated with crt (micro) and fed to the decoder (refer to Figure

5.2).

5.2.4 Decode

The hidden state of the decoder st at each time t is computed using a GRU as follows:

st = GRU(st−1, [e(yt−1);dt−1; c
r
t−1]) (5.15)

where, e(yt−1) is the d-dimensional of the word yt, which has the highest probability

under the following distribution over the vocabulary words at timestep t− 1 computed

as:

p̃(yt) = softmax(Wo · f(Wdec · st +Vdec · dt +Udec · crt)) (5.16)

where Wo ∈ RV×l1 , Wdec ∈ Rl1×l1 , Vdec ∈ Rl1×l2 , Udec ∈ Rl1×l3 , l1 is the size of

decoder’s hidden state, l2 is the size of dt, l3 is the size of crt , V is the vocabulary

size. he above output is exactly the quantity defined in Equation (5.1) that we wanted

to model (p(yt|y1, ..., yt−1, I). Also [e(yt−1),dt−1, c
r
t−1] means a concatenation of the

vectors e(yt−1),dt−1, crt−1. We chose f to be the identity function.

5.2.5 Copying Mechanism

To deal with the large vocabulary (∼400K words) due to the presence of named enti-

ties, we use a copying mechanism as a post-processing step. Specifically, we identify

89

Language Train Test Valid Vocabulary
Size

Average sentence
length

English 582,659 72,831 72,831 426,910 26.11
German 44,064 5,518 5,403 143,108 32.29
French 141,524 18,101 18,049 297,130 36.49

Table 5.2: Dataset Statistics for Wikipedia Infoboxes for generating descriptions in var-
ious languages. Note that the structured data is also present in the corre-
sponding language.

the time steps at which the decoder produces unknown words (denoted by the special

symbol UNK). For each such time step, we look at the attention weights on the input

words and replace the UNK word by that input word that has received the maximum

attention at this timestep. This process is similar to the one described in Luong et al.

(2015). Even Lebret et al. (2016) have a copying mechanism tightly integrated with

their model.

5.3 Experimental setup

In this section we describe our experimental setup.

5.3.1 Datasets

We use the WIKIBIO dataset introduced in Lebret et al. (2016) It consists of 728, 321

biography articles from English Wikipedia. A biography article corresponds to a per-

son (sportsman, politician, historical figure, actor, etc.) Each Wikipedia article has an

accompanying infobox which serves as the structured input, and the task is to generate

the first sentence of the article (which typically is a one-line description of the person).

We used the same train, valid, and test sets made publicly available by Lebret et al.

(2016). We also use a similar dataset in French and German language containing bi-

ographies and infoboxes from Wikipedia (Shetty M, 2018). The dataset statistics are

presented in Table 5.2. For German and French Wikibio datasets, we use the same

mechanism to split the data into train, valid, and test split as mentioned in Lebret et al.

(2016). Note that the English dataset is better in terms of the number of samples and the

90

vocabulary size (400K) in comparison to German (143K) and French (297K) datasets.

However, the descriptions are longer in the German and French datasets as compared

to the English dataset.

5.3.2 Models compared

We compare our encode-attend-refine-decode model with the following models:

1. Lebret et al. (2016) is a conditional language model which uses a feed-forward

neural network to predict the next word in the description conditioned on local charac-

teristics (i.e., words within a field) and global characteristics (i.e., overall structure of

the infobox).

2. Mei et al. (2016) was proposed in the context of the WEATHERGOV and ROBOCUP

datasets, which have a much smaller vocabulary. They use an improved attention model

with additional regularizer terms, that influence the weights assigned to the fields.

3. Basic EAD: This is the vanilla encode-attend-decode model (Bahdanau et al., 2014)

as described in Chapter 2. Here, the infobox is flattened to produce the following input

sequence (the words in bold are field names that act as delimiters).

[Name] John Doe [Birth_Date] 19 March 1981 [Nationality] Indian

4. Hierarchical EAD: The above encode-attend-decode paradigm does not take the in-

put structure into account while encoding the infobox or generating the description. To

strengthen our baseline, we use the encode and attend modules as described in Sections

5.2.1 and 5.2.2. We refer to this as the hierarchical encode-attend-decode model.

5.3.3 Hyperparameter tuning

We tuned the hyperparameters of all the models using a validation set. As mentioned

earlier, we used a bidirectional GRU cell as the function f for computing the represen-

tation of the fields and values (see Section 5.2.1). For all the models, we experimented

with GRU state sizes of 128, 256, and 512. The total number of unique words in the

corpus is around 400K (this includes the words in the infobox and the descriptions).

91

Of these, we retained only the top 20K words in our vocabulary (same as Lebret et al.

(2016)). We initialized the embeddings of these words with 300 dimensional Glove

embeddings (Pennington et al., 2014). Based on the validation set results, we found

that fine-tuning the word embeddings does not benefit our final models, so we did not

fine-tune the word embeddings. We used Adam (Kingma and Ba, 2014) with a learning

rate of 0.0004, β1 = 0.9 and β2 = 0.999. We trained the model for a maximum of 20

epochs and used early stopping with the patience set to 5 epochs. We also use beam

search with the beam size set to 5.

5.4 Results and Discussions

In this section, we discuss the results and the main observations from our experiments.

5.4.1 Comparison of different models

Model BLEU-4 NIST-4 ROUGE-4
Lebret et al. (2016) 34.70 7.98 25.80
Mei et al. (2016) 35.10 7.27 30.90
Basic EAD 38.20 8.47 34.28
Hierarchical EAD 41.22 8.96 38.71
Ours (EARD) 42.03 9.17 39.11
+Beam Search (k=5) 42.97 9.26 40.24
SOTA Liu et al. (2017b) 44.89 - 41.21

Table 5.3: Comparison of different models on the English WIKIBIO dataset.

Following Lebret et al. (2016), we used BLEU-4, NIST-4 and ROUGE-4 as the

evaluation metrics as described in Section 2.7. We first make a few observations based

on the results on the English dataset (Table 5.3). The basic encode-attend-decode model

and the model proposed by Mei et al. (2016) perform better than the model proposed

by Lebret et al. (2016). Our final model with the refine module gives the best perfor-

mance and does 10% (relative) better than the closest baseline (basic seq2seq) and 21%

(relative) better than the state of the art results (Lebret et al., 2016). Note that the last

row in Table 5.3 represents the current state of the art result for this dataset. In Table

5.4, we show some qualitative examples of the output generated by different models.

92

Reference: Samuel Smiles (23 December 1812 — 16 April 1904), was a Scottish au-
thor and government reformer who campaigned on a Chartist platform.
Basic EAD: samuel smiles (23 december 1812 – 16 april 1904) was an english books
and author.
Hierarchical EAD: samuel smiles (23 december 1812 - 16 april 1904) was a british
books and books.
EARD: samuel smiles (23 december 1812 - 16 april 1904) was a british biographies
and author.
Reference: Thomas Tenison (29 September 1636 — 14 December 1715) was an En-
glish church leader, Archbishop of Canterbury from 1694 until his death.
Basic EAD: thomas tenison (14 december 1715 - 29 september 1636) was an english
roman catholic archbishop.
Hierarchical EAD: thomas tenison (29 september 1636 - 14 december 1715) was an
english clergyman of the roman catholic church.
EARD thomas tenison (29 september 1636 - 14 december 1715) was archbishop of
canterbury from 1695 to 1715.
Reference: Guy F. Cordon (April 24, 1890 — June 8, 1969) was a U.S. politician and
lawyer from the state of Oregon.
Basic EAD: charles l. mcnary (april 24 , 1890 8 , 1969) was a united states senator
from oregon.
Hierarchical EAD: guy cordon (april 24 , 1890 – june 8 , 1969) was an american
attorney and politician.
EARD: guy cordon (april 24 , 1890 – june 8 , 1969) was an american attorney and
politician from the state of oregon.
Reference: Dr. Harrison B. Wilson Jr. (born April 21, 1925) is an American educa-
tor and college basketball coach who served as the second president of Norfolk State
University from 1975-1997.
Basic EAD: lyman beecher brooks (born april 21 , 1925) is an american educator and
educator.
Hierarchical EAD: harrison b. wilson , jr. (born april 21 , 1925) is an american
educator and academic administrator.
EARD: harrison b. wilson , jr. (born april 21 , 1925) is an american educator , academic
administrator , and former president of norfolk state university.

Table 5.4: Examples of generated descriptions from different models. For the last two
examples, name generated by the basic seq2seq model is incorrect because
it attended to the preceded by field.

93

5.4.2 Human Evaluation

Metric A <B A == B A >B
Adequacy 186 208 106
Fluency 244 108 148

Preference 207 207 86

Table 5.5: Qualitative Comparison of Model A (Seq2Seq) and Model B (our model).

To make a qualitative assessment of the generated sentences, we conducted a human

study on 500 Infoboxes sampled from the English dataset. The annotators for this task

were undergraduate and graduate students. For each of these infoboxes, we generated

summaries using the baseline EAD model and our proposed EARD model. For each

description and for each model, we asked three annotators to rank the output of the sys-

tems based on i) adequacy (i.e. does it capture relevant information from the infobox),

(ii) fluency (i.e. grammar), and (iii) relative preference (i.e., which of the two outputs

would be preferred). The average fluency/adequacy (on a scale of 5) was 4.04/3.6 and

for the EAD model and 4.19/3.9 for our model. Note that the 5-point scale is the stan-

dard scaling as used in Papineni et al. (2002) where 1 maps to (very bad) and 5 maps

to (very good) for both fluency and adequacy. We computed Fliess Kappa score to

compute the inter annotator agreement among the three models. We achieved moderate

agreement with Kappa score of 0.62 and 0.65 for fluency and adequacy scores.

The results from Table 5.5 suggest that in general our EARD model performs better

than the EAD model. Additionally, annotators were asked if the generated summaries

look natural (i.e, as if humans generated them). In 423 out of 500 cases, the annotators

said “Yes” suggesting that EARD model indeed produces good descriptions.

5.4.3 Performance on different languages

The results on the French and German datasets are summarized in Tables 5.6 and 5.7

respectively. Note that the code of Lebret et al. (2016) is not publicly available, hence

we could not report numbers for French and German using their model. We observe

that our final model gives the best performance - although the Hierarchical-EAD model

performs poorly compared to the basic seq2seq model on French. However, the overall

94

Model BLEU-4 NIST-4 ROUGE-4
Mei et al. (2016) 10.40 2.51 7.81
EAD 14.50 3.02 12.22
Hierarchical EAD 13.80 2.86 12.37
Ours EARD 15.52 3.30 12.80
+ Beam Search (k=5) 16.21 3.51 13.23

Table 5.6: Comparison of different models on the French WIKIBIO dataset.
Model BLEU-4 NIST-4 ROUGE-4
Mei et al. (2016) 9.30 2.23 5.85
EAD 17.05 3.09 12.16
Hierarchical-EAD 20.38 3.43 14.89
Ours EARD 23.33 4.24 16.40
+ Beam Search (k=5) 23.91 4.47 17.11

Table 5.7: Comparison of different models on the German WIKIBIO dataset.

performance for French and German is much lower than that for English. There could

be multiple reasons for this. First, the amount of training data in these two languages

is smaller than that in English. Specifically, the amount of training data available in

French (German) is only 24.2 (7.5)% of that available for English. Second, on average,

the descriptions in French and German are longer than that in English (EN: 26.0 words,

FR: 36.5 words, and DE: 32.3 words). Finally, a manual inspection across the three

languages suggests that the English descriptions have a more consistent structure than

French ones. For example, most English descriptions start with name followed by date

of birth, but this is not the case in French. However, this is only a qualitative observa-

tion, and it is hard to quantify this characteristic of the French and German datasets.

5.4.4 Visualizing Attention Weights

If the proposed model indeed works well, we should see attention weights consistent

with the stay on and never look back behavior. To verify this, we plotted the attention

weights in cases where our EARD model does better than the Hierarchical EAD model.

Figure 5.3 shows the attention weights corresponding to the infobox in Figure 5.3a.

Notice that the EAD model has attention on both the name field the and article title

field while rendering the name. Our EARD model, on the other hand, stays on the name

field for as long as it is required but then moves and never returns to it (as expected).

Along with improving the generated descriptions, the crisp attention boundaries among

95

(a) Wikipedia Infobox for Samuel Smiles

(b) Without Refine Module (EAD) (c) With Refine Module (EARD)

Figure 5.3: Comparison of the attention weights and descriptions produced for Infobox
in Figure 5.3a.

Figure 5.4: Wikipedia Infobox for Matthias Hagner.

96

(a) Without Refine Module (EAD)

(b) With Refine Module (EARD)

Figure 5.5: Comparison of the attention weights and descriptions in German produced
for Infobox in Figure 5.4.

97

fields help in better understanding which words are being attended to while generating

each output word.

We observed a similar trend for German and French also. As an example, we plotted

the attention weights for the infobox in Figure 5.4 for German. We observe that while

predicting the birth-date, the hierarchical EAD pays more attention to “jahre (years)”,

which leads to a wrong birth-month in the output. On the contrary, our model EARD

pays attention to the birth-date field consistently until the whole birth date is generated.

5.4.5 Out of domain results

Training data Performance on Target (test) data
Arts Sports

Entire dataset 33.6 52.4
Without target domain data 24.5 29.3
+5k target domain data 31.2 41.8
+10k target domain data 32.2 43.3

Table 5.8: In this table, we focus on the shift in the performance when the model does
not see any training samples from the corresponding domain, to samples be-
ing added gradually. We report the BLEU-4 scores for Wikipedia Infoboxes
from two domains: Arts and Sports. We can infer that without the target
domain samples the performance drops significantly. However, the perfor-
mance recovers quickly through fine-tuning the model on 5K samples.

What if the model sees a different type of a person at test time? For example, what if

the training data does not contain any sportspersons, but we encounter a sportsperson’s

infobox at test time. This instance is the same as seeing out-of-domain data at test

time. Such a situation is expected in the e-commerce domain, where new products with

new features (fields) get frequently added to the catalog. We were interested in three

questions here. First, we wanted to see if testing the model on out-of-domain data leads

to a drop in performance. For this, we compared the performance of our best model

in two scenarios (i) trained on data from all domains (including the target domain) and

tested on the target domain (sports, arts) and (ii) trained on data from all domains except

the target domain and tested on the target domain. Comparing rows 1 and 2 of Table

5.8 we observed a significant drop in the performance. Note that the numbers for the

Sports domain in row 1 are much better than the Arts domain because roughly 40% of

the WIKIBIO training data contains sportspersons.

98

(a) Wikipedia Infobox for Mark Tobey.

(b) Without fine tuning.

(c) With fine tuning with 5K in-domain data (Arts).

Figure 5.6: Comparison of the attention weights and descriptions (see highlighted
boxes) produced by an out-of-domain model with and without fine tuning
for the Infobox in Figure 5.6a .

99

Figure 5.7: Wikipedia infobox for Sheppard Dillon.

(a) Without fine tuning.

(b) With fine-tuning with 5K in-domain data (Sports).

Figure 5.8: Comparison of the attention weights and descriptions (see highlighted
boxes) produced by an out-of-domain model with and without fine-tuning
for the Wikipedia infobox in Figure 5.7.

.100

Next, we wanted to see if we can use a small amount of data from the target domain

to fine-tune a model trained on the out-of-domain data. We observe that even with

minimal amounts of target domain data, the performance improves significantly (see

rows 3 and 4 of Table 5.8). Note that if we train a model from scratch with only limited

data from the target domain instead of fine-tuning a model trained on a different source

domain, the performance is very poor. In particular, training a model from scratch

with 10K training instances, we get a BLEU score of 16.2 and 28.4 for arts and sports,

respectively. Finally, even though the actual words used for describing a sportsperson

(footballer, cricketer, etc.) would be very different from the words used to describe

an artist (actor, musician, etc.) they might share many fields (for example, date of

birth, occupation, etc.). As seen in Figure 5.6 (attention weights corresponding to the

infobox in Figures 5.6a), the model predicts the attention weights correctly for common

fields (such as name, occupation). However, it is unable to use the right vocabulary to

describe the occupation for Figure 5.6 (since it has not seen such words frequently in the

training data). Once we fine-tune the model with limited data from the target domain,

we see that it picks up the new vocabulary and produces an accurate description of the

occupation. Furthermore, we also illustrate in Figure 5.8 for the Sports domain, that

with fine-tuning, our model is more confident in attending to the new relevant fields

specific to this domain.

5.5 Summary

In this chapter, we described a model for generating natural language descriptions from

structured data. To incorporate task-specific characteristics such as, stay-on and never-

look-back behaviors, we propose a refine module which contains use gated orthogonal-

ization to refine the context vectors generated at each timestep. We also use a hierar-

chical encoder with bifocal attention to capture the hierarchical structure in the input.

Our final model outperforms an existing state-of-the-art model on a large scale WIK-

IBIO dataset by 21%. We also demonstrate that our model gives state-of-the-art results

on the French and German WikiBio datasets. Finally, we perform experiments with an

out-of-domain model and show that if such a model is fine-tuned with small amounts

of in-domain data, it can improve the target domain.

101

CHAPTER 6

Designing Task Specific Metric for improving

Answerability

In this chapter, we discuss our contributions for the task of Automatic Question Gen-

eration (AQG). Current AQG systems based on the encode-attend-decode paradigm do

not explicitly ensure that the systems generate answerable questions. We first discuss

our proposed metric, which captures answerability. We then discuss our refine module,

which uses this as a reward signal to generate better questions.

6.1 Introduction

Over the past few years, there has been a growing interest in Automatic Question Gen-

eration (AQG) - the task of generating a question from a given context (a passage, a

knowledge-graph, an image, a video, etc.) and optionally an answer. AQG is used in

creating Question Answering datasets (Li et al., 2018; Sun et al., 2019; Sultan et al.,

2020; Zhang and Bansal, 2019), enhancing user experience in conversational AI sys-

tems (Gu et al., 2021; Gao et al., 2019) and for creating educational material (Heilman

and Smith, 2010; Kurdi et al., 2020). For the above applications, it is essential that

the questions are (i) grammatically correct, (ii) answerable from the passage, and (iii)

specific to the given answer.

Given the practical importance of AQG, it is not surprising that there has been pro-

lific work in this field in recent years (Jain et al., 2017; Li et al., 2017b; Zhang et al.,

2017; Du et al., 2017; Duan et al., 2017). However, when we started this work, there

was no AQG specific evaluation metric that allowed us to compare the output of dif-

ferent systems. Instead, most works relied on existing n-gram based metrics such as

BLEU, NIST, ROUGE, etc. to report their performance. However, as these metrics

were not originally designed to evaluate questions, they are not adequate for capturing

102

the idiosyncrasies of this task (e.g., they cannot evaluate whether the generated question

is answerable or not. As our first step, we focus on designing a better evaluation metric

for AQG which quantifies the answerability of the generated questions.

Next, we note that existing approaches based on the encode-attend-decode paradigm

focus on encoding the passage, the answer, and the relationship between them using

complex functions, and then generate the question in a single pass. However, by care-

fully analyzing the generated questions, we observe that these approaches tend to miss

one or more essential aspects of the question. For instance, in Table 6.1, the question

generated by the baseline model for the first passage is grammatically correct but is not

specific to the answer. In the second example, the generated question is both syntacti-

cally incorrect and incomplete. To overcome these limitations, as our second contribu-

tion, we propose a new AQG system using the encode-attend-refine-decode paradigm

to explicitly improve the answerability of the generated questions.

We briefly introduce the two main contributions discussed in the chapter in the fol-

lowing two subsections.

6.1.1 Q-Metric: A better metric for AQG

To begin with, we discuss a few examples below to illustrate that answerability depends

on the presence of relevant information such as question type (Wh-types), entities, re-

lations, etc. Further, we show that it is possible that a generated question has a high

BLEU score but is still unanswerable and hence not useful.

Consider the task of answering questions from a Knowledge Base. Let us assume

that the intended (gold standard) question is “Who was the director of Titanic?” and

two different AQG systems generate the following questions “S1: director of Titanic?”

and “S2: Who was the director of?”. Any n-gram based evaluation metric would assign

a higher score to S2 (BLEU3: 81.9) than S1 (BLEU3: 36.8) as S2 has a high overlap

with the reference question. However, as should be obvious, S1 contains all the rel-

evant information, and most humans would be easily able to understand and answer

this question. A good evaluation metric should capture this notion of answerability and

give more importance to relevant words in the question. This brings us to the following

103

question, “Which are the most relevant words in a question?”

The above example might give the impression that named entities are essential, but

other words are not. However, this is misleading and may not always be the case.

For example, consider these questions, which need to be answered from an image:

“Are the cats drinking milk?” versus “How many cats are drinking milk?”. These two

questions have very different meanings indicating that even words like are and how

are also crucial. Similarly, consider the task of answering questions from a passage

titled “Matt Damon”. In this case, most humans will answer the question “What is

the birthdate of ” even though the named entity is missing given that the passage only

talks about “Matt Damon”. Thus, in some cases, depending on the source (document,

knowledge base, image), different portions of the question may be more relevant.

To concretize the intuitions developed with the help of the above examples, we

first collect human judgments. Specifically, we take questions from existing datasets

for document QA, knowledge base QA and visual QA and add systematic noise to

these questions. We show these questions to humans and ask them to assign scores to

these questions based on the answerability and hence the usefulness of these questions

(i.e., whether the question contains enough information for them to be able to answer

it correctly). We also compute various n-gram similarity metrics (BLEU, METEOR,

NIST) comparing the noisy questions to the original questions and show that these

metrics do not correlate well with human judgments. Similar studies (Callison-Burch

et al., 2006; Liu et al., 2016) have already shown that these metrics do not correlate

well with adequacy, coherence, etc., but here, we focus on answerability.

Based on the human evaluations, we propose a novel variant of existing metrics to

focus on answerability in addition to n-gram similarity. The idea is to make these met-

rics flexible. If needed, the weight assigned to answerability and n-gram similarity can

be adjusted depending on the task (document QA, Knowledge-Base QA, Visual QA).

Furthermore, for capturing answerability, we propose additional weights for different

components of the question (question type, content words, function words, and named

entities). These weights can be learned from a small amount of human-annotated data

and may differ from task to task.

104

6.1.2 Using Q-Metric to improve AQG systems

Passage 1: Liberated by Napoleon’s army in 1806, Warsaw was made the capital
of the newly created Duchy of Warsaw.
Generated Questions
Baseline (EAD) What was the capital of the newly duchy of Warsaw?
EARD Who liberated Warsaw in 1806?
Reward-EARD Whose army liberated Warsaw in 1806?

Passage 2: To fix carbon dioxide into sugar molecules in the process of photosyn-
thesis, chloroplasts use an enzyme called rubisco
Generated Questions
Baseline (EAD) What does chloroplasts use?
EARD What does chloroplasts use to fix carbon dioxide into sugar

molecules?
Reward-EARD What do chloroplasts use to fix carbon dioxide into sugar

molecules?

Table 6.1: Samples of generated questions from Baseline (EAD), Encode-Attend-
Refine-Decode (EARD), and Reward-EARD model on the SQuAD dataset.
Answers are shown in blue.

We saw that encode-attend-decode-based AQG systems tend to miss one or more

of the essential aspects of the question in Table 6.1. The examples shown in Table 6.1

indicate that there is clear scope for improving the general quality of the questions.

Additionally, the quality can be improved explicitly in terms of fluency (Example 2),

answerability (Example 1), and other such aspects. One way to approach this is by re-

visiting the passage and answer to refine the initial draft by generating a better question

in the second pass and then improving it for a particular aspect. We can draw a compar-

ison between this process and how humans tend to write a rough initial draft first and

then refine it over multiple passes, where the later revisions focus on improving the draft

aiming at certain aspects like fluency or completeness. With this motivation, we propose

a new model using the encode-attend-refine-decode paradigm. A small exception here

is that the order of refine and decode modules is interchanged. More specifically, we

first generate an initial draft and then refine it using a task-specific reward signal. The

decode module generates an initial draft of the question using the passage and desired

answer as inputs. The refine module then performs a second pass to generate a refined

question by attending to both the passage and the initial draft (using a dual attention

network).

105

From Table 6.1, we infer that our model (EARD) can generate better questions in the

second pass by fixing the errors in the initial draft. We then fine-tune our model using

explicit reward signals through REINFORCE with a baseline algorithm to explicitly

improve the answerability (fluency) of the refined draft as compared to the initial draft.

This leads to more answerable (see Reward-EARD example for first passage in Table

6.1) and fluent (see Reward-EARD example for second passage in Table 6.1) questions

as compared to vanilla EARD model.

Our experiments show that the proposed model outperforms existing state-of-the-art

models on the SQuAD dataset by 12.3% and 3.7% (on BLEU) given the relevant sen-

tence and passage, respectively. We observe similar gains on the QBLEU-4 metric as

well, 10.9%, and 9.91% on SQuAD sentence and passage level, respectively. We also

achieve state-of-the-art results on HOTPOT-QA and DROP datasets with an improve-

ment of 7.57% and 15.25% (on BLEU-4), 9.54% and 5.66% (on QBLEU-4) respec-

tively over the single-decoder baseline . Our human evaluations further validate these

results and show that questions generated by Reward-EARD have better fluency and

answerability as compared to the questions generated by EARD. Finally, we present an

interesting case study on the originality of the questions and show that Reward-EARD

can improve the model’s performance in generating questions with high originality.

The remainder of this chapter is organized as follows. In Section 6.2 we explain

the process of collecting human judgments for answerability. In Section 6.3 we show

how we modified existing metrics to incorporate answerability. In Section 6.4, we do

an extrinsic evaluation to show that the questions ranked higher using the proposed

metric lead to better QA systems when used for training. In Section 6.5 we discuss our

proposed model for improve both fluency and answerability of the generated questions

using our encode-attend-refine-decode paradigm. In Section 6.7 we discuss the results

and the main observations from our experiments.

6.2 Human Judgments For Answerability

As mentioned earlier, for AQG, in addition to n-gram similarity, we also need to focus

on the answerability of the generated questions. As illustrated in Section 6.1.1, the

106

answerability of a question depends on whether it contains all relevant information,

such as question type (Wh-types), named entities, and content words (often relations).

Further, depending on the task (document QA, knowledge-base QA, or visual QA), the

importance of these words may vary. We perform human evaluations to ascertain the

importance of each of these components across different QA tasks. These evaluations

allow us to independently analyze the importance of each of these components for the 3

QA tasks. In the remainder of this section, we describe (i) the process of creating noisy

questions, (ii) the instructions given to the evaluators, and (iii) the inferences drawn

from human evaluations.

6.2.1 Creating Noisy Questions

Generated Question Reference Question
what does the ’ mean ? What is the goal of the capabilities

approach ?
what is the Discovery Museum of
the discovery museum ?

what does the Discovery Museum
draw attention to ?

When was Saint Victoria founded ? When was the Victoria and Albert
museum founded ?

what is the purpose of the red phy-
coerytherin pigment being red ?

what is the benefit of red algae be-
ing red ?

Table 6.2: Some examples to highlight that the generated questions from Baseline
(EAD) models are difficult to be analyzed systematically.

One way of collecting human judgments would have been to take the output of

existing AQG systems and ask humans to assign answerability scores to these questions

based on the presence/absence of the above-mentioned relevant information. However,

when we requested human evaluators to analyze 200 questions generated by an existing

AQG system (Du et al., 2017)1, they reported that the quality was often poor. We

list a few sample questions used in our analysis in Table 6.2. We can see that the

first two samples are not well-formed. The last two questions are well-formed, but

they will lead to a very different answer as some of the keywords are incorrect or not

present. In particular, after having discussions with annotators, we found that using this

output would be very difficult to conduct a systematic study to assess the importance of

different words in the question. Hence, we chose to use systematically simulated noisy

1We implemented the system based on the experimental setup given in this work

107

questions as discussed below.

We took 1000 questions each from 3 popular QA datasets, viz., SQuAD, Wiki-

Movies, and VQA. SQuAD (Rajpurkar et al., 2016) is a reading comprehension dataset

consisting of around 100K questions based on passages from around 500 Wikipedia

articles. The WikiMovies dataset (Miller et al., 2016) contains around 100K questions

which can be answered from a movie knowledge graph containing 43K entities and 9

relations (director, writer, actor, etc.). The VQA dataset (Antol et al., 2015) is an image

QA dataset containing 265, 016 images with around 5.4 questions on average per im-

age. We then created noisy versions of these questions using one of the following four

methods:

Dropping function words: We refer to the list of English function words as defined

in NLTK (Loper and Bird, 2002) and drop all such words from the question. Note that

a noisy question with all function words dropped will have a very low score for n-gram

based metrics compared to the original question.

Dropping Named Entities: In our setup, identifying named entities in questions

was straightforward because the questions were well-formed, and all named entities

were capitalized. Alternately, we could have used the Stanford NER. However, on

manual inspection, we found that marking the capitalized words as named entities were

sufficient. We randomly dropped at most three named entities per question. This allows

us to study how humans rate the output of an AQG system that does not contain the

correct named entities.

Dropping Content Words: Words other than function words and named entities

are also crucial for answerability. For example, “Who killed Jane?" and “Who married

Jane?" lead to totally different answers. The word “killed/married" is very relevant

to ascertain the correct answer. These words typically capture the relation between

the entities involved (for example, killed (John, Jane)). We identify such important

(content) words which are neither question types (7-Wh questions) nor named entities

nor stop words. This perturbation allows us to study how humans rate an AQG system

that does not produce the correct content (often relation) words.

Changing the Question type: Changing the question type can lead to a different

108

answer altogether or can make the question incoherent. For example, the answers to

“Who killed Jane?” and “What killed Jane?” are entirely different. We create a noisy

question by randomly changing the type of the question (for example. replace “who”

with “what”). These question types are well defined (7-Wh questions including “how”),

and hence it is easy to identify and replace them. This allows us to study the importance

of having the correct question type in the output of an AQG system.

6.2.2 Instructions provided to human annotators

Rating Description Examples
1 All important information is miss-

ing and it is impossible to answer
the question

“What is against the sign ?”, “Why
is using O2 instead of CO2 less ef-
ficient?”

2 Most of the important information
is missing and I can’t infer the an-
swer to the question

“Which films did Lee H.
Katzin direct ?”, “Low doses
of anti-inflammatories are some-
times used with what classes of
drugs?”

3 Some important information is
missing leading to multiple answers

“What Harvard Alumni was the
Palestine Prime Minister?”, “What
country is the teaching subject dis-
cussing?”

4 Most of the important information
is present and I can infer the answer

“How far from the Yard is the Quad
located?”,“what films did Melvin
Van Peebles star in?”

5 All important information is present
and I can answer the question

“What globally popular half
marathon began in 1981?”, “What
kind of vehicle is parked the
sidewalk?”

Table 6.3: Instructions along with the examples. The words that are strike out were
removed from the original question to create a noisy question.

Once we generated the noisy questions, we asked human annotators to rate the an-

swerability of these noisy questions on a scale of 1-5. The annotators were clearly told

whether the questions were created from documents or knowledge bases, or images. In

our initial evaluations, we also tried showing the actual source (image or document) to

the annotators. However, we realized that this did not allow us to do an unbiased evalu-

ation of the quality of the questions. The annotators inferred missing information from

the document or image and marked the question as answerable (even though a relevant

109

entity was missing in the question). For example, consider the image of a cat drinking

milk and the question, “What is the drinking ?” If a human is shown the image, she can

easily infer that the missing information is “cat” and mark the question as answerable.

This biases the study, and therefore we did not show the source to the evaluators.

A total of 25 in-house annotators participated in our study, and we got each question

evaluated by 2 annotators. The annotators were Computer Science graduates competent

in English. We did an initial pilot using the instructions mentioned in Table 6.3, but due

to the subjective nature of the task, it was difficult for the annotators to agree on the

notion of important information. In particular, we found that the annotators disagreed

between most important information and all important information (i.e., they were con-

fused between rating 1 v/s 2 and 4 v/s 5). We, therefore, did a small pilot with a group

of 10 annotators and asked them to evaluate around 30 questions from each dataset and

help us refine the guidelines to define the notion of importance clearly. Based on group

discussions with the annotators, we arrived at additional example based guidelines to

help them distinguish between cases where “all the”, “most of the” and “some of the”

important information is present.

The original instructions and various examples (shown in Table 6.3) were then

shared and explained to all the annotators, and they used these to provide their judg-

ments.

6.2.3 Human-Human Correlation

To quantify the inter-annotator agreement, we use Cohen’s kappa (κ) score (Cohen,

1968) which is defined as follows:

κ =
po − pe
1− pe

, pe =

∑5
k=1 nk1 · nk2

N2

where p0 is similar to accuracy, i.e., the ratio of the number of samples where both

annotators gave the same rating to the total number of samples in the study. pe is the

probability of both the annotators agreeing by chance. nk1, nk2 denotes the number of

times annotators 1 and 2 gave a rating k, and N is the total number of samples in the

study. Since each question can have five ratings, k can take on values from 1 to 5. The

110

κ score Interpretation
< 0 No agreement
0.0− 0.20 Slight agreement
0.21− 0.40 Fair agreement
0.41− 0.60 Moderate agreement
0.61− 0.80 Substantial agreement
0.81− 1.0 Perfect agreement

Table 6.4: Interpretation for the inter-annotator agreement score using Cohen’s κ.
Dataset κ Pearson Spearman
SQuAD 0.63 0.823 0.795

WikiMovies 0.81 0.934 0.927
VQA 0.70 0.842 0.822

Table 6.5: Inter annotator agreement, Pearson and Spearman coefficients between Hu-
man Scores.

κ score can range from −1 to 1. Based on the guidelines in McHugh (2012), the range

of κ scores can be interpreted as given in Table 6.4.

(a) SQuAD (b) WikiMovies (c) VQA

Figure 6.1: We plot the ratings given by Annotator A and B across different datasets.
From the above plots, we can infer that the ratings are linearly correlated.

In Table 6.5, we report the Cohen’s kappa (κ) score for rating the noisy questions

created from SQuAD, WikiMovies, and VQA. We can infer from Table 6.4 and Ta-

ble 6.5 that we have an almost perfect inter-annotator agreement for WikiMovies and

a substantial agreement for SQuAD and VQA. Apart from reporting kappa scores, we

also report the correlation between the ratings provided by the two annotators. Figure

6.1 indicates that there is a linear correlation between the two ratings for each question,

and hence we measured the correlation using the Pearson coefficient. For completeness,

we also measure the monotonic correlation using the Spearman coefficient. The Spear-

man coefficient is slightly lower than the Pearson coefficient because the inter-annotator

agreement is more substantial at the tail of the distribution i.e. when the question is ei-

111

ther terrible (Rating: 1) or very good (Rating: 5).

We also observe that the correlation is good for the noisy questions created from

WikiMovies, slightly lower for the questions created from VQA, and even lower for

SQuAD. We investigated this further and found that in WikiMovies, it was straightfor-

ward for most annotators to figure out that named entities and relations are the most

important components of the question. Hence, there was little disagreement between

the ratings. However, for SQuAD, there was some bias in the judgments depending on

the extent and manner in which different humans use their background knowledge for

deciding whether a given question is answerable. For example, consider the question

“When did Obama Kenya?”. One annotator felt that Obama and Kenya are the most

important pieces of information. However, the question is still ambiguous, and hence it

should be given a rating of 3. In contrast, another annotator felt that the missing verb

(visit, criticize, leave, etc.) was as important as Kenya and Obama and hence gave it a

rating of 1. Of course, both the evaluators agreed that the question was not answerable,

but they disagreed on the extent to which it was unanswerable.

6.2.4 Correlation between human scores and existing evaluation

metrics

Metric SQuAD WikiMovies VQA
Pearson Spearman Pearson Spearman Pearson Spearman

BLEU1 0.167 0.165 0.179 0.144 -0.025* -0.048*
BLEU2 0.100* 0.103* 0.072* 0.087* -0.075* -0.091*
BLEU3 0.080* 0.086* 0.036* 0.001* -0.126 -0.114
BLEU4 0.065* 0.067* -0.020* -0.011* -0.086* -0.127
ROUGE-L 0.165 0.158 0.091* 0.043* -0.009* -0.053*
METEOR 0.107 0.124 0.198 0.214 -0.035* 0.009*
NIST 0.173 0.158 0.088* -0.033* 0.158 0.169

Table 6.6: Correlation between existing metrics and human judgments. The values with
∗ are not statistically significant (p-value > 0.01).

We now compare the annotator ratings to the scores assigned by various n-gram

metrics, such as BLEU, METEOR, NIST, and ROUGE-L as described in Section 2.7.

We first compute BLEU, METEOR, NIST, and ROUGE-L scores for each noisy ques-

tion by comparing it to the original question. We then compute the correlation of each

112

of these scores with annotator ratings. Note that the annotator ratings are combined to

obtain a gold score to compute the correlation. The ratings are normalized using the

normalization method mentioned in Blatz et al. (2004) and then averaged to obtain the

gold score.

For SQuAD and VQA, we observe that NIST, which gives more weightage to in-

formative n-grams, correlates better than other metrics. For WikiMovies, METEOR,

which even allows non-exact word matches correlates better than other metrics. For

SQuAD and WikiMovies, the correlation of human scores with the simple unigram-

based BLEU1 score is higher than that with other metrics. This is in line with the

observation we made earlier that humans can understand and answer questions that are

not well-formed, e.g., “What birth-date Damon?”. However, overall, the correlation

between human ratings and these automatic metrics is low. This suggests that it is not

prudent to use these metrics for the task of AQG, given that they were originally not

proposed for this task.

6.3 Modifying existing metrics for AQG

The above study suggests that existing metrics do not correlate well with human judg-

ments about answerability. We propose modifications to these metrics so that in ad-

dition to n-gram similarity they also account for answerability. Based on the human

evaluations, we found that answerability mainly depends on the presence of 4 types

of elements, viz., relevant content words, named entities, question types and function

words.

As outlined in Section 6.2.1, it is easy to identify these elements in the question. Let

c(Sr), c(Sn), c(Sq) and c(Sf) be the number of relevant words, named entities, question

words and function words respectively in the noisy question which have corresponding

matching words in the gold standard reference question. We then compute the weighted

113

average of the precision and recall of each of these elements as

Pavg =
∑
i

wi
c(Si)

|li|
(6.1)

Ravg =
∑
i

wi
c(Si)

|ri|
(6.2)

where i ∈ {r, n, q, f},
∑

iwi = 1 and |li| , |ri| is the number of the words belonging

to the ith type of element in the noisy question and the reference question respectively.

Just to be clear r, n, q, f stand for relevant content words, named entities, question types

and function words respectively. Note thatwi’s are tunable weights and in Section 6.3.1,

we explain how to tune these weights.

Answerability = 2.
PavgRavg

Pavg +Ravg

(6.3)

We can combine this answerability score with any existing metric (say, BLEU4) to

derive a modified metric for AQG as shown below:

Q-BLEU4 = δAnswerability + (1− δ)BLEU4 (6.4)

such that δ ∈ {0, 1} to make sure that Q-Metric ranges between 0 to 1. Similarly, we

can derive Q-NIST, Q-METEOR and so on.

6.3.1 Tuning the weights wi’s and δ

We tuned the weights (wi’s and δ) using the human annotation data. For each source

(document, knowledge-base, and images), annotators evaluated 1000 noisy questions.

The annotator scores were first scaled between 0 to 1 using the normalization method

in Blatz et al. (2004), and the normalized scores were averaged to obtain the final gold

score. We used 300 of these annotations for each source and used bagging to find

the optimal weights. In particular, we drew 200 samples randomly from the given set of

300 samples and did a grid search to find wi’s and δ such that theQ-METRIC computed

using Equation 6.4 had a maximum correlation with human scores. We repeated this

process for k = 20 times and computed the optimal wi’s and δ each time.

114

We found that for any given weight (wi), the standard deviation was very low across

these k experiments. For each wi and δ, we obtained the final value by taking an av-

erage of the values learned across k experiments. We also observed that the weights

did not change much even when we used more data for tuning. We also tuned these

weights separately for each metric (i.e., Q-BLEU4, Q-NIST, Q-METEOR, and so on).

For illustration, we report these weights for Q-BLEU1 in Table 6.7. As expected, the

weights depend on the source from which the question was generated. Specifically, for

WikiMovies, named entities have the highest weight. For VQA, content words are most

important, as they provide information about the entity being referred to in the question.

Note that for SQuAD and VQA, the original base metric also gets weightage compara-

ble to other components, indicating that a fluent question makes it easier to understand,

thus making it answerable. The overall trend for the values of wi’s was similar for other

Q-METRICs also (i.e., for Q-NIST, Q-METEOR, etc.).

Also, for new datasets with similar context (text/image/knowledge graph) and similar

question constructions, same wis and δ values can be used. However, if the dataset is

significantly different from SQuAD/WikiMovies/VQA, then one could collect a small

set of annotations using the same instructions, and utilize those to find new values for

wis and δ.

n-gram metric Datasets wner wimp wsw wqt δ

BLEU-1
SQuAD 0.41 0.36 0.03 0.20 0.66

WikiMovies 0.55 0.31 0.02 0.11 0.83
VQA 0.04 0.59 0.15 0.21 0.75

Table 6.7: Coefficients learnt for Q-BLEU1 from human judgments across different
datasets.

6.3.2 Correlation between Human scores and differentQ-METRICs

Once the weights are tuned, we fix these weights and compute the Q-METRIC for the

remaining 600-700 examples and report the correlation with human judgments for the

same set of examples (see Table 6.8). For a fair comparison, the correlation scores

reported in Table 6.6 are also on the same 600-700 examples. The correlation scores

obtained for different Q-METRICs are indeed encouraging. In particular, we observe

115

Q-Metric SQuAD WikiMovies VQA
Pearson Spearman Pearson Spearman Pearson Spearman

Q-BLEU1 0.258 0.255 0.828 0.841 0.405 0.384
Q-BLEU2 0.244 0.243 0.825 0.835 0.390 0.360
Q-BLEU3 0.239 0.240 0.824 0.837 0.374 0.331
Q-BLEU4 0.233 0.232 0.826 0.837 0.373 0.311

Q-ROUGE-L 0.253 0.249 0.821 0.841 0.402 0.385
Q-METEOR 0.158 0.157 0.821 0.837 0.402 0.378

Q-NIST 0.246 0.248 0.824 0.845 0.384 0.346

Table 6.8: Correlation between proposed Q-Metric and human judgments. All the cor-
relations have a p-value < 0.01 and hence statistically significant.

that while the correlation of existing metrics with human judgments was very low (Ta-

ble 6.6), the correlation of the modified metrics is much higher. This high correlation

suggests that adding the learnable component for answerability and tuning its weights

indeed leads to a better-correlated metric. Note that for VQA and SQuAD, the cor-

relations are not as high as human-human correlations, but the correlations are still

statistically significant.

6.3.3 Qualitative Analysis

We have listed some examples in Table 6.9, highlighting some strengths and weak-

nesses of Q-METRIC. We categorize examples as positive/negative depending on the

similarity between human scores for answerability and the Q-BLEU score. For the ex-

amples marked as positive, the Q-BLEU score is very close to the answerability score

given by humans.

6.4 Extrinsic evaluation

So far, we have shown that existing metrics do not always correlate well with human

judgments. We have also shown that it is possible to design metrics that correlate better

with human judgments by including a learnable component to focus on answerability.

We would now like to propose an extrinsic way of evaluating the usefulness of the

proposed metric. The motivation for this extrinsic evaluation comes from the fact that

one of the intended purposes of the modified metrics is to use them for training QA

116

Dataset Original Question Modified Question Human
Scores QBLEU

SQuAD
Positive What is another type of ac-

countant other than a CPA?
What is another type of ac-
countant other than a ?

0.10 0.47

In addition to schools, where
else is popularly based au-
thority effective?

In addition schools, where
else popularly based authority
effective?

0.85 0.83

Negative When did Tesla begin work-
ing for the Continental Edi-
son Company?

When did begin working for
the Continental Edison Com-
pany?

0.10 0.84

What famous person congrat-
ulated him?

What person congratulated
him?

0.85 0.17

VQA
Positive What color is the monster

truck?
What color monster truck? 0.92 0.81

What is in the polythene ? What is in the ? 0.10 0.14

Negative Why there are no leaves on
the tree?

Why are leaves the tree? 0.35 0.73

How are the carrots prepared
in the plate?

How carrots prepared plate? 0.10 0.68

WikiMovies
Positive what films does Ralf Harolde

appear in ?
what films Ralf Harolde ap-
pear ?

0.97 0.91

what is a film directed by Ed-
die Murphy ?

Which a film directed by Ed-
die Murphy ?

0.91 0.88

Negative what films does Gerard Butler
appear in ?

how does Gerard Butler ap-
pear in ?

0.15 0.89

John Conor Brooke appears
in which movies ?

appears in which movies ? 0.03 0.44

Table 6.9: Human (Gold) and Q-Metric scores for some of the examples from the col-
lected human-evaluation data.

systems. Suppose we use a particular metric for evaluating the quality of an AQG

system and suppose this metric suggests that the questions generated by this system are

poor. We would obviously discard this system and not use the questions generated by it

to train a QA system. However, if the metric itself is questionable, then it is possible that

the questions were good enough, but the metric was not good to evaluate their quality.

To study this effect, we create a noisy version of the training data of SQuAD, Wiki-

Movies, and VQA using the same methods outlined in Section 6.2.1. We then train a

state-of-the-art model for each of these tasks on this noisy data and evaluate the trained

model on the original test set of each of these datasets. The models that we considered

were Seo et al. (2016) for SQuAD, Miller et al. (2016) for WikiMovies and Ben-younes

et al. (2017) for VQA.

The results of our experiments are summarized in Tables 6.10 - 6.12. The first col-

umn for each table shows how the noisy training data was created. The second column

shows the BLEU4 score of the noisy questions compared to the original reference ques-

tions (thus, it tells us the perceived quality of these questions under the BLEU4 metric).

117

Type of Noise BLEU QBLEU Hit 1
None 100 100 76.5
Stop Words 25.4 84.0 75.6
Question Type 74.0 79.3 73.5
Content Words 29.4 64.3 54.7
Named Entity 41.9 48.5 17.97

Table 6.10: Performance obtained by training on different types of noisy questions
(WikiMovies).

Noise BLEU QBLEU F1
None 100 100 76.5
Question Type 80.1 66.1 69.0
Stop Words 24.2 61.0 70.4
Content Words 60.7 57.1 64.1
Named Entity 77.0 56.0 73.8

Table 6.11: Performance obtained by training on different types of noisy questions
(SQuAD).

Noise BLEU QBLEU Acc(%)
None 100 100 64.4
Content Words 49.4 58.2 60.21
Question Type 63.7 50.9 59.81
Stop Words 10.8 37.7 57.37

Table 6.12: Performance obtained by training on different types of noisy questions
(VQA).

Similarly, the third column tells us the perceived quality of these questions under theQ-

BLEU4 metric. Ideally, we would want that the model’s performance should correlate

better with the perceived quality of the training questions as identified by a given metric.

We observe that the general trend is better w.r.t. the Q-BLEU4 metric than the BLEU4

metric (i.e., in general, higher Q-BLEU4 indicates better performance, and lower Q-

BLEU4 indicates poor performance). In particular, we notice that BLEU4 gives much

importance to stop words, but these words hardly influence the final performance of

the QA system. We believe that such an extrinsic evaluation should also be used while

designing better metrics to help get better insights.

118

Figure 6.2: Our Proposed Model with encode-attend-refine-decode paradigm. The de-
code module provides an initial draft of the question to the refine module.
The refine module then improves this initial draft by attending to the initial
draft and the passage-answer representation simultaneously.

119

6.5 Encode-Attend-Refine-Decode Model for AQG

Having designed a metric that captures task-specific characteristics, we now propose a

model based on our encode-attend-refine-decode paradigm, which also uses this met-

ric to improve the answerability of the generated questions. As mentioned earlier, a

small exception here is that the order of the refine and decode modules is interchanged.

More specifically, we first generate an initial draft and then refine it using task-specific

reward signals. One could also see this as encode-attend-decode-refine-decode where

the refinement happens due to (i) the extra information that the second decoder receives

from the preliminary decoder and (ii) the reward signal obtained using the proposed

Q-Metric.

For a given passage P = {wp1, . . . , wpm} of length m and answer A = {wa1 , . . . , wan}

of length n, we first obtain answer-aware latent representation, U = {h̃p1, . . . , h̃pm},

for every word of the passage and an answer representation ha (as described in Section

6.5.1). We then generate an initial draft Q̃ = {q̃1, . . . , q̃T} by computing q̃t as

q̃t = argmax
q̃

l∏
t=1

p̃(q̃t|q̃t−1, . . . , q̃1,U,h
a) (6.5)

Here p̃(.) is a probability distribution modeled using the Preliminary Decoder. We

then refine the initial draft Q̃ using the Refinement Decoder to obtain the refined draft

Q = {q1, . . . qT}:

qt = argmax
q

l∏
t=1

p(qt|qt−1, . . . , q1, Q̃,U,h
a) (6.6)

We then use explicit rewards to enforce refinement on the desired metric, such as an-

swerability and fluency. In the subsequent subsections, we will describe the different

components of our model and our reward mechanism.

6.5.1 Encode Module

Our encode module consists of three layers: (i) Embedding, (ii) Contextual, and (iii)

Passage-Answer Fusion layers. To capture the interaction between passage and answer,

120

we ensure that the passage and answer representations are fused at every layer.

Embedding Layer: We compute a d-dimensional embedding for every word in the

passage and the answer in this layer. This embedding is obtained by concatenating the

word’s Glove embedding (Pennington et al., 2014) with its character-level embedding

as discussed in Seo et al. (2016). Additionally, for passage words, we also compute a

positional embedding based on the relative position of the word w.r.t. the answer span

as described in Zhao et al. (2018). For every passage word, this positional embedding is

also concatenated to the word-level and character-level embeddings. For answer words,

we use only word-level and character-level embeddings. We discuss the impact of char-

acter embeddings and answer tagging in later sections. In the subsequent sections, we

will refer to the embedding of the i-th passage word wpi as e(wp
i) and the j-th answer

word waj as e(wa
j).

Contextual Layer: In this layer, we compute a contextualized representation for every

word in the passage by passing the word embeddings (as computed above) through a

bidirectional-LSTM network:

−→
hpt = LSTM(e(wp

t),
−→
hpt−1) ∀t ∈ [1,m]

where
−→
hpt is the hidden state of the forward LSTM at time t. We then concatenate the

forward and backward hidden states as hpt = [
−→
hpt ;
←−
hpt].

The answer could correspond to a span in the passage. Let j + 1 and j + n be

the start and end indices of the answer span in the passage respectively. We can thus

refer to {hpj+1, . . . ,h
p
j+n} as the representation of the answer words in the context of

the passage. We then obtain contextualized representations for the n answer words by

passing them through an LSTM as follows:

−→
hat = LSTM([e(wa

t),h
p
j+t],
−→
hat−1) ∀t ∈ [1, n]

Passage-Answer Fusion Layer: In this layer, we refine the representations of the pas-

121

sage words based on the answer representation as follows:

h̃pi = tanh (Wu [h
p
i ; h

a; hpi � ha]) ∀i ∈ [1,m]

Here Wu ∈ Rl×3l and l is the size of the hidden state of the LSTM. This is similar to

how Seo et al. (2016) capture interactions between passage and question for QA. We

use U = {h̃p1, . . . , h̃pm} as the fused passage-answer representation which is then used

by our decoder(s) to generate the question Q.

6.5.2 Attend Module

The attend module typically assists the decoder select relevant context from passage/input

to generate the next word. In this chapter, the generation of questions happens in two

passes: a Preliminary Decoder generates an initial draft followed by a Refinement De-

coder that generates a revised draft. For the revised draft, the Refinement Decoder

should attend to both the initial draft and the passage. If the Refinement Decoder at-

tends to only one of them, it may fail to improve upon the initial draft. To this end, our

attend module consists of three sub-components as listed below.

Encoder-to-PreliminaryDecoder attention network (E2P): This network computes

an attention weighted sum of the contextualized passage word representations U, which

is then passed to the Preliminary Decoder to predict the next word at timestep t. This

representation is computed as follows:

c̃t =
m∑
i=1

αith̃
p
i (6.7)

where αit is a parameterized and normalized attention weight computed as:

at,i = vTp · tanh(Wp · h̃dt +Vp · h̃pi) (6.8)

αt,i =
exp(at,i)∑n
j=1 exp(at,j)

(6.9)

where h̃dt is the hidden state of the Preliminary Decoder’s LSTM at timestep t, and

vp,Wp,Vp are network parameters.

122

PreliminaryDecoder-to-RefinementDecoder attention network (P2R): This network

computes an attention weighted sum of the embeddings gt of the words generated by

the Preliminary Decoder, which is then passed to the Refinement Decoder to predict the

next word at timestep t. gt is computed as follows:

gt =
T∑
i=1

βtiew(q̃i) (6.10)

where βti is a parameterized and normalized attention weight computed as:

bt,i = vTr · tanh(Wr · hdt +Vr · ew(q̃i)) (6.11)

βt,i =
exp(bt,i)∑n
j=1 exp(bt,j)

(6.12)

where hdt is the hidden state of the Refinement Decoder at timestep t, {vr,Wr,Vr} are

network parameters and ew(q̃i) refers to the word embedding of the word q̃i generated

in the initial draft.

Encoder-to-RefinementDecoder attention network (E2R): Since the initial draft could

be erroneous or incomplete, we obtain additional information from the passage instead

of only relying on the output of the Preliminary Decoder. We do so by computing a

context vector ct, which is then passed to the Refinement Decoder. It is computed as

follows:

ct =
m∑
i=1

γti h̃
p
i (6.13)

where γti is computed as:

dt,i = vTd · tanh(Wd · hdt +Vd · h̃pi) (6.14)

γt,i =
exp(dt,i)∑n
j=1 exp(dt,j)

(6.15)

where hdt is the hidden state of the Refinement Decoder at timestep t, {vd,Wd,Vd} are

network parameters.

123

6.5.3 Decode Module

The Preliminary Decoder generates an initial draft, one word at a time using an LSTM

network as follows:

h̃dt = LSTM([ew(q̃t−1); c̃t−1;h
a], h̃dt−1) (6.16)

where h̃dt is the hidden state of the LSTM at timestep t, ha is the answer representation

as computed above, c̃t−1 is context vector obtained through the E2P attention network

as given in Equation 6.7. ew(q̃t) is the embedding of the word q̃t.

We estimate the probability distribution as defined in Equation (6.5), over the output

vocabulary to obtain q̃t at timestep t as follows:

p̃(q̃t) = softmax(Wo · [Wc · [h̃dt ; c̃t]), (6.17)

where Wc is network parameter and Wo is the output matrix which projects the final

representation to RV where V is the vocabulary size. q̃t is the word which has the

highest probability under the above estimated distribution.

6.5.4 Refine Module

Once the Preliminary Decoder generates the entire question, the Refinement Decoder

uses it to generate an updated version of the question. The hidden state of the Refine-

ment Decoder at time t is computed as follows:

hdt = LSTM([ew(qt−1); ct−1;gt−1;h
a],hdt−1) (6.18)

We estimate the probability distribution as defined in Equation (6.6), over the output

vocabulary to obtain qt at timestep t as follows:

p(qt) = softmax(Wo · [W′
c · [hdt ; ct;gt]) (6.19)

124

where W′
c is a network parameter and Wo is the output matrix which is shared with the

Preliminary Decoder (Equation 6.17). qt is the word which has the highest probability

under the above estimated distribution. Note that our model generates two variants of

the question : initial draft Q̃ and refined draft Q. We compare these two versions of the

generated questions in Section 6.7.

6.5.5 Training Objective

The objective function commonly used by the decoder is the negative log-likelihood of

the generated sequence. As we saw in Table 6.1, this does not necessarily ensure that

the generated question is better in terms of answerability or fluency.

The primary goal of our proposed model of generating two drafts is to improve the

second draft in terms of desired qualities of a question, such as : answerability and

fluency as compared to the initial draft. To this end, we use “REINFORCE with a base-

line” algorithm (Williams, 1992). We first compute the reward r(Q̃,Q∗) and r(Q,Q∗)

for the question generated by the Preliminary and Refinement Decoders respectively.

We reward Refinement Decoder using the Preliminary Decoder’s reward r(Q̃,Q∗) as

the baseline. More specifically, given the Preliminary Decoder’s generated word se-

quence Q̃ = {q̃1, q̃2, . . . , q̃T} and Refinement Decoder’s generated word sequence

Q = {q1, q2, . . . , qT} obtained from the distribution p(qt|qt−1, . . . , q1, Q̃,U,h
a), the

training loss is defined as follows

L(Q) =(r(Q,Q∗)− r(Q̃,Q∗))·
T∑
t=1

log p(qt| qt−1, . . . , q1, Q̃,U,ha)

where r(Q) and r(Q̃) are the rewards obtained by comparing with the reference ques-

tion Q∗. As mentioned, this reward r(.) is the answerability score as defined in Section

6.1.1. We can even focus on increasing the fluency of the refined draft by using BLEU

as the reward function.

Note that to handle out of the vocabulary words in generated questions, we adopt

the same strategy as given in Section 5.2.5.

125

6.6 Experimental Details

This section gives a brief description of the datasets used to compare our models with

baseline models. We also provide implementation details of for our model as well as

the baselines.

6.6.1 Datasets for AQG

SQuAD (Rajpurkar et al., 2016): As described earlier, it contains 100K (question, an-

swer) pairs obtained from 536 Wikipedia articles, where the answers are a span in the

passage. For SQuAD, AQG has been tried from both sentences and passages. In the for-

mer case, only the sentence which contains the answer span is used as input, whereas in

the latter case, the entire passage is passed as an input. We use the same train-valid-test

splits as used in Zhao et al. (2018).

Hotpot QA (Yang et al., 2018) : Hotpot-QA is a multi-document and multi-hop QA

dataset. Along with the triplet (passage, answer, question), the authors also provide

supporting facts that potentially lead to the answer. We concatenate these supporting

facts to form the passage. The answers here are either yes/no or an answer span in

passage. We use 10% of the training data for validation and use the original dev set as

test set. This average length of the questions in this dataset is around 17 words, which

is relatively higher than the other two datasets.

DROP (Dua et al., 2019): This is a reading comprehension benchmark that requires

discrete reasoning over the passage. It contains 96K questions which require discrete

operations such as addition, counting, or sorting to obtain the answer. We use 10% of

the original training data for validation and use the original dev set as the test set.

6.6.2 Implementation Details

We use 300 dimensional pre-trained Glove word embeddings, which are fixed during

training. For character-level embeddings, we initially use a 20 dimensional embedding

for the characters, which is then projected to 100 dimensions. For answer-tagging, we

126

use an embedding size of 3. The hidden size for all the LSTMs is fixed to 512. We use

2-layer, 1-layer, 2-layer, and 2-layer stacked BiLSTM in passage-level RNN, answer-

level RNN, Preliminary Decoder’s RNN, and Refinement Decoder’s RNN, respectively.

We take the top 30, 000 frequent words as the vocabulary. We use Adam optimizer with

a learning rate of 0.0004 and train our models for 10 epochs using cross-entropy loss.

For the Reward-EARD model, we fine-tune the pre-trained model with the loss function

mentioned in Section 6.5.5 for 3 epochs. The best model is chosen based on the BLEU

(Papineni et al., 2002) score on the validation split. For all the results, we use beam

search decoding with a beam size of 5.

6.7 Results and Discussions

This section presents the results and analysis of our proposed model, which we refer

to as EARD (Encode-Attend-Refine-Decode). We compare our model to the vanilla

Encode-Attend-Decode model that we refer to as EAD. Note that the performance of

this model is comparable to our implementation of the model proposed in Zhao et al.

(2018). We evaluate our models based on n-gram similarity metrics BLEU, ROUGE-L,

and METEOR. We also quantify the answerability of our models using our proposed

metric, QBLEU-4.

In this section, we (i) compare EARD’s performance with EAD and existing models

across all the datasets mentioned above (ii) report human evaluations to compare EARD

and EAD (iii) analyze initial and refined draft generated from Preliminary Decoder and

Refinement Decoder respectively, and (iv) present the performance of Reward-EARD

with two different reward signals (fluency and answerability).

6.7.1 EARD’s performance across datasets

In Table 6.13, we compare the performance of EARD with existing models and EAD

across different datasets. We also report the current state of the art result for SQuAD

sentence level dataset which uses a transformer-based sequence-to-sequence model

Xiao et al. (2020). Note that for a fair comparison, we train our EARD model us-

127

Model n-gram
BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR QBLEU4

SQuAD (Sentence Level)
Sun et al. (2018) 43.02 28.14 20.51 15.64 - - -
Zhao et al. (2018) 44.51 29.07 21.06 15.82 44.24 19.67 -
Kim et al. (2018) - - - 16.17 - - -
EAD 44.74 29.79 22.00 16.84 44.78 20.60 24.7
EARD 47.27 31.88 23.65 18.16 47.14 23.40 27.4
SOTAXiao et al. (2020) - - - 25.40 26.92 52.84 -

SQuAD (Passage Level)
Zhao et al. (2018) 45.07 29.58 21.60 16.38 44.48 20.25 -
EAD 44.61 29.37 21.50 16.36 43.95 20.11 24.2
EARD 46.41 30.66 22.42 16.99 45.03 21.10 26.6

HOTPOT-QA
Zhao et al. (2018)* 45.29 32.06 24.43 19.29 40.40 19.29 25.7
EAD 46.00 32.47 24.82 19.68 41.52 23.27 26.2
EARD 45.45 33.13 26.05 21.17 43.12 25.81 28.7

DROP
Zhao et al. (2018)* 39.56 29.19 22.53 18.07 45.01 19.68 31.4
EAD 39.21 29.10 22.65 18.42 45.07 19.56 31.8
EARD 42.81 32.63 25.78 21.23 47.49 22.25 33.6

Table 6.13: Comparsion of EARD model with existing approaches and EAD model.
Here * denotes our implementation of the corresponding work.

ing only cross-entropy loss, and in later sections we present the results obtained using

the training objective described in Section 6.5.5. On BLEU-4 metric, EARD beats

the existing state-of-the-art model by 12.30%, 9.74%, 17.48%, and 3.71% respectively

on SQuAD (sentence), HOTPOT-QA, DROP and SQuAD (passage) dataset. Also it

outperforms EAD by 7.83%, 7.57%, 15.25% and 3.85% respectively on SQuAD (sen-

tence), HOTPOT-QA, DROP and SQuAD (passage). In general, EARD is consistently

better than existing models across all n-gram scores (BLEU, ROUGE-L, and ME-

TEOR). Along with n-gram scores, we observe improvements on Q-BLEU4 as well,

which, as described earlier, gives a measure of both answerability and fluency.

6.7.2 Human Evaluations

We conducted human evaluations to analyze the quality of the questions produced by

EAD and EARD. We randomly sampled 500 questions generated from the SQuAD

(sentence level) dataset and asked the annotators to compare the quality of the generated

questions. The annotators were shown a pair of questions, one generated by EAD and

a revised draft generated by EARD from the same sentence, and were asked to choose

which one was better in terms of fluency, completeness, and answerability. Note that

128

Passage: Before the freeze ended in 1952, there were only 108 existing television
stations in the United States; a few major cities (such as Boston) had only two television
stations, ...
Questions
EAD: how many television stations existed in boston ?
EARD: how many television stations did boston have in the united ?

Table 6.14: An example where EAD model was better than EARD. The ground truth
answers are shown in blue.

Model Decoder BLEU-4 QBLEU-4
EAD - 16.84 24.70

without P2R attention Refinement Decoder 17.16 25.80
Preliminary Decoder 17.59 26.00

with P2R attention Refinement Decoder 18.37 27.40
Preliminary Decoder 17.89 26.00

Table 6.15: Comparison between Preliminary and Refinement decoders in EARD
Model for SQuAD Sentence Level QG.

this required the annotators to annotate in a comparative setting rather than giving an

absolute score. They were allowed to skip the question pairs where they could not

make a clear choice. Three annotators rated each question, and the final label was

calculated based on majority voting. We observed that the EARD model outperforms

the EAD model across all three metrics. Over 68.6%, 66.7% and 64.2% of the generated

questions from EARD were respectively more fluent, complete and answerable when

compared to the EAD model. However, there are some cases where EAD does better

than EARD. For example, in Table 6.14, we show that while trying to generate a more

elaborate question, EARD introduces an additional phrase “in the united” which is not

required. Due to such instances, annotators preferred the EAD model in around 30% of

the instances.

6.7.3 Analysis of Refined Draft and Initial Draft

The Preliminary and Refinement Decoders impact each other through two paths: (i) in-

direct path, where they share the encoder and the output projection to the vocabulary V ,

(ii) direct path, via the P2R attention network, where the Refinement Decoder attends

to the initial draft of the question. When EARD has only an indirect path, we can infer

from rows 1 and 3 of Table 6.15 that the performance of Preliminary Decoder improves

129

Sample
Sentence: The antigens expressed by tumors have several sources ; some
are derived from oncogenic viruses like human papillomavirus , which
causes cervical cancer , while others are the organism ’s own proteins that
occur at low levels in normal cells but reach high levels in tumor cells
Reference Question: What is the virus in humans that causes cervical
cancer ?

Generated
Questions

Refined Draft: What is the name of the virus that causes cervical cancer?
Initial Draft: What is the name of the oncogenic virus?

Sample Sentence: Tesla considered the winter of 1886/1887 as a time of “ terrible
headaches and bitter tears . ”
Reference: which years did tesla refer to as a time of terrible headaches
and bitter tears ?

Generated
Questions

Refined Draft: what year did tesla consider the winter of “ terrible
headaches and bitter tears ” ?
Initial Draft: what year did tesla consider the winter of bitter tears ?

Table 6.16: Generated samples by Preliminary and Refinement Decoders in our pro-
posed EARD model. We observe that the Refinement Decoder improves
the draft by adding relevant phrases ”{causes cervical cancer, terrible
headaches}”.

when compared to the EAD model (16.84 v/s 17.59 BLEU). This suggests that gener-

ating two variants of the question improves the performance of the initial draft as well.

This is perhaps due to the additional feedback that the shared encoder and output layer

get from the Refinement Decoder. When we add the direct path (P2R attention net-

work) between the two decoders, the performance of the Refinement Decoder, as well

as the Preliminary Decoder, improves as shown in rows 4 and 5 of the Table 6.15.

Comparison on Answerability: We also evaluate both the initial and refined draft us-

ing QBLEU4. We observe that the increase in Q-Metric for refined questions is because

the EARD model can correct/add the relevant Named Entities in the question. In par-

ticular, we observe that the Named Entity component score in Q-Metric increases from

32.42 for the first draft to 37.81 for the refined draft.

Qualitative Analysis: Figure 6.3 shows that the Refinement Decoder indeed generates

more detailed questions when compared to the initial draft generated from the Prelimi-

nary Decoder. As shown in Table 6.16, the quality of the refined questions is better than

the initial drafts of the questions. For Example 1, Refinement Decoder adds the phrase

“causes cervical cancer” to make the question more specific to the answer. In the case

of Example 2, Refinement Decoder makes the question more complete by adding phrase

130

Figure 6.3: Generated Question Length Distribution for Preliminary and Refinement
Decoders.

“terrible headaches”

Apart from adding phrases to make the initial draft more specific or complete, the

Refinement Decoder is also able to make certain corrections in the initial draft. For

instance in 6.17, we have enumerated instances where the Refinement Decoder corrects

the question types and function words in the refined draft.

Visualization of Attention plots from all three attention networks We plot the ag-

gregated attention given to the passage and the initial draft of the generation question

across the Refinement Decoder’s various time-steps in Figure 6.4 for Example 1 in Ta-

ble 6.16. Although both the questions are specific to the answer, the initial question

is very generic. E2R attention network pays attention to the context surrounding the

answer, which leads to a complete question by adding the phrase “causes cervical can-

cer”. Also, note that in the P2R attention network, while attending to the initial draft,

the word “oncogenic” is not paid attention to, which allows the Refinement Decoder to

generate a better question.

6.7.4 Analysis of Reward Based Training Objective

In this section, we analyze the impact of employing different reward signals in EARD.

As discussed earlier in section 6.5.5, we use answerability and fluency scores as reward

signals. As shown in Table 6.18, when answerability score is used as a reward signal,

there is an improvement in QBLEU-4 scores of Reward-EARD as compared to the

131

Sample
Sentence: Any member can put their name forward to be First Minister ,
and a vote is taken by all members of Parliament .
Reference Question: Who is eligible to toss their name in the hat to be
First Minister ?

Generated
Questions

Refined Draft: who can put their name to be first minister ?
Initial Draft: what can put their name forward to be first minister ?

Sample Sentence: Downtown San Diego is the central business district of San
Diego , though the city is filled with business districts .
Reference: What is the central business district of San Diego ?

Generated
Questions

Refined Draft: what is the central business district of san diego ?
Initial Draft: how is the central business district of san diego located ?

Sample Sentence: The further decline of Byzantine state-of-affairs paved the road
to a third attack in 1185 , when a large Norman army invaded Dyrrachium
, owing to the betrayal of high Byzantine officials .
Reference: When did the Normans attack Dyrrachium ?

Generated
Questions

Refined Draft: in what year did the norman army attack Dyrrachium ?
Initial Draft: in what year did a norman army attack Dyrrachium ?

Table 6.17: Generated samples by Preliminary and Refinement Decoders in our pro-
posed EARD model. We observe that the Refinement Decoder improves
the draft by correcting question types/function words in the initial draft.

(a) E2P attention plot

(b) E2R attention plot

(c) P2R attention plot

Figure 6.4: Attention plots for a) E2P, b) E2R, c) P2R respectively
Initial Draft: “What is the name of the oncogenic virus?”
Refined Draft: “What is the name of the virus that causes cervical cancer?”

132

Datasets Model BLEU-4
Reward Signal

Answerability
Reward Signal

SQuAD
(Sentence Level)

EARD 18.37 36.9
Reward-EARD 18.52 37.5

SQuAD
(Passage Level)

EARD 16.99 26.6
Reward-EARD 17.11 27.3

HOTPOT-QA EARD 21.17 28.7
Reward-EARD 21.32 29.2

DROP EARD 21.23 33.6
Reward-EARD 21.60 34.3

Table 6.18: Impact of Reward-EARD on various datasets when fluency and answer-
ability are used as reward signals.

Passage: Cost engineers and estimators apply expertise to relate the work and materials
involved to a proper valuation
Questions
Generated: Who apply expertise to relate the work and materials involved to a proper
valuation ?
True: Who applies expertise to relate the work and materials involved to a proper valu-
ation ?

Table 6.19: An example of question with significant overlap with the passage. The
answer is shown in blue.

EARD model across all datasets. We validated these results through human evaluations

across 200 samples for SQuAD (sentence level) dataset. Annotators prefer the Reward-

EARD model in 70% of the cases for answerability. Similarly, when we use the BLEU-

4 score as a reward signal, fluency improves for the model, and annotators prefer the

Reward-EARD in 67% of the cases for fluency.

6.7.5 Impact of character and positional embeddings

We perform an ablation study to identify the impact of various word embeddings used in

EARD. When character embedding is not used in EARD, the performance on SQuAD

sentence-level drops from 18.16 to 17.97 (BLEU-4 scores). Similarly, when positional

embeddings are dropped, the performance decreases from 18.16 to 17.87 (BLEU-4

scores).

133

Passage: McLetchie was elected on the Lothian regional list and the Conservatives
suffered a net loss of five seats , with leader Annabel Goldie claiming that their support
had held firm, nevertheless, she too announced she would step down as leader of the
party.
Questions
True: Who announced she would step down as leader of the Conservatives ?
EARD: who claiming that their support had held firm ?
Reward-EARD: who was the leader of the conservatives?

Table 6.20: An example where Reward-EARD(Originality) is better than EARD.

6.7.6 Case Study: Originality of the Questions

We observe that current state-of-the-art models perform very well in BLEU/QBLEU

scores when the actual question significantly overlaps with the passage. For example,

consider a passage from the SQuAD dataset in Table 6.19, where except the question

word who, the model sequentially copies everything from the passage and achieves a

QBLEU score of 92.4. However, the model performs poorly in situations where the

true question is novel and does not contain many words from the passage itself. To

quantify this, we first sort the reference questions based on their BLEU-2 overlap with

the passage in ascending order. We then select the first N reference questions and

compute the QBLEU score with the generated questions. The results are shown in

orange in Figure 6.5. Towards the left, where there are reference questions with low

overlap with the passage, the performance is poor, but it gradually improves as the

overlap increases.

The task of generating questions with high originality (where the model phrases the

question in its own words) is a challenging aspect of AQG since it requires a complete

understating of the semantics and syntax of the language. As a first step to improve

questions generated on originality, we explicitly reward our model for having a low n-

gram score with the passage compared to the initial draft. As a result, we observe that

with Reward-EARD(Originality), there is an improvement in the performance where

the overlap with the passage was less (as shown in blue in Figure 6.5). As shown

in Table 6.20, although both questions are answerable given the passage, the question

generated from Reward-EARD(Originality) is better.

134

Figure 6.5: Originality Analysis: Plot of Q-BLEU score vs N - the number of samples
selected.

6.8 Summary

The main aim of this chapter was to enhance the answerability of the questions gener-

ated by seq2seq based AQG systems. To this end, we took the first step of objectively

examining the utility of existing metrics for AQG regarding answerability. Specifically,

we wanted to see if existing metrics account for the answerability of the generated

questions. To do so, we took noisy generated questions from three different tasks, viz.,

document QA, knowledge base QA and visual QA, and showed that the answerability

scores assigned by humans did not correlate well with existing metrics. Based on these

studies, we proposed modifying the existing metrics and showed that the proposed Q-

Metrics correlate better with human judgments. The proposed Q-Metric involves learn-

able weights which can be tuned (depending on the source) using human judgments.

Finally, we propose an extrinsic evaluation to assess the end utility of these metrics in

selecting good AQG systems for creating training data for QA systems.

We then focused on enhancing AQG systems with our proposed encode-attend-

refine-decode paradigm to improve specific aspects of the questions: answerability,

originality, and fluency. Our proposed model outperforms the existing state-of-the-

art models on the SQuAD, HOTPOT-QA, and DROP datasets. Along with automated

evaluations, we also conducted human evaluations to validate our findings. We further

showed that using Reward-EARD improves the initial draft on desired properties, such

135

as fluency, answerability, and originality.

136

CHAPTER 7

Conclusion and Future Work

In this thesis, we focused on certain limitations in NLG systems that surfaced in the

RNN-based seq2seq models during the third phase of the evolution of NLG. Specif-

ically, we focused on i) repeating phrases, which were a common occurrence across

NLG tasks, ii) rendering inadequate descriptions from structured data, and iii) generat-

ing questions with limited answerability from a given context.

We hypothesized that across these limitations, a common solution of enriching the

contextual representations can be beneficial. To this end, we proposed the encode-

attend-refine-decode paradigm for RNN-based seq2seq models, where the refine mod-

ule enriches contextual representations. For each of the limitations mentioned above,

we propose a seq2seq model based on encode-attend-refine-decode paradigm and ob-

serve improvements as compared to the respective baseline models based on the encode-

attend-decode paradigm.

Our first model focused on avoiding repeating phrases for the task of query-based

abstractive summarization. We enrich the contextual representation in the refine module

by diversifying the context vector computed by the attend module. The diversification

is achieved by orthogonalizing the context vector to either its immediate predecessor or

the history of context vectors. Moreover, we add a learnable gate that computes the frac-

tion of previous context vectors to be removed from the corresponding context vector.

Additionally, as there was no large-scale dataset for query-based abstractive summa-

rization available prior to our work, we introduced a new dataset for this task. The

new dataset is based on Debatepedia, and consists of 12, 695 {passage,query,summary}

triplets. We empirically verify that our proposed model leads to higher gains as com-

pared to several baselines. Our model gives an absolute improvement of 12.62 points on

the ROUGE-L score compared to its corresponding encode-attend-decode based model.

Our model also outperforms the baseline method based on the encode-attend-refine-

decode paradigm by 8.66 points on the ROUGE-L score.

137

Our second model focused on improving the adequacy of the rendered descriptions

from structured data. We observed that certain task-specific aspects such as stay-on and

never-look-back properties exhibited by a human while writing a description were not

explicitly modeled in vanilla seq2seq models. Therefore, we model these task-specific

aspects in our refine module by introducing a learnable gate that learnt to toggle be-

tween stay-on and never-look-back properties while generating the next word at time

step t. Second, the never-look-back is modeled using a gated orthogonalization mech-

anism. We thus enrich the context vector generated from the attend module by model-

ing these two aspects. We validated our model on a large scale WIKIBIO dataset for

English (Lebret et al., 2016), French and German languages (Shetty M, 2018). We

empirically verified that our model outperforms a model based on the encode-attend-

decode paradigm giving 1.96%, 12.46%, 14.47% relative improvement on BLEU-4 for

English, French and German, respectively. Further, through human evaluations, we ob-

served that encoding such task-specific characteristics indeed improved the adequacy

and fluency of the models.

Our third model focused on improving the answerability of automatically generated

questions. We observed that before improving an AQG system with respect to answer-

ability, it is crucial to quantify the answerability of a question. Thus, as a first step,

we conducted a thorough human study and examined the current n-gram based eval-

uation metrics used for evaluating AQG systems. Based on these studies, we inferred

that these metrics do not correlate with the answerability scores assigned by human

annotators. Therefore, we proposed a new Q-metric with learnable weights, which are

tuned using the human judgments collected as a part of our study. We showed that

the proposed Q-metric correlates better with human judgments as compared to the n-

gram metrics. Based on the above proposed metric, we focused on improving AQG

systems to generate more answerable questions. More specifically, we generate the

question in two passes. Our Preliminary Decoder generates an initial draft which our

Refinement Decoder then refines. Our attention module consists of three networks:

Encoder-to-PreliminaryDecoder, PreliminaryDecoder-to-RefinementDecoder, and

Encoder-to-RefinementDecoder to assist the generation in two passes. The former

one assists the Preliminary Decoder in generating an initial draft. The remaining two

assist the Refinement Decoder in generating the refined version while attending to the

138

initial draft and the passage simultaneously. Also, to explicitly improve the answer-

ability of the question in the revised draft, we further fine-tune our model using REIN-

FORCE algorithm with a baseline (Williams, 1992) and provide explicit feedback on

answerability using our proposed Q-metric. Our proposed model outperforms the cor-

responding baselines based on encode-attend-decode by 10.9, 9.54, 5.66% (Q-BLEU-4)

and 7.83, 7.57, 15.25 % (BLEU-4) on SQuAD, HOTPOT-QA, and DROP datasets, even

when no explicit reward is given for answerability. With further fine-tuning, our model’s

performance increases by approximately 2% on Q-BLEU4 across these datasets.

7.1 Future Directions

This section presents some of the future directions that could be pursued based on our

work.

Tackling other limitations: Apart from the limitations highlighted in this thesis, there

are other limitations, such as hallucinations (Tian et al., 2019; Nie et al., 2019; Maynez

et al., 2020; Rohrbach et al., 2018) in generated text, incomplete summaries in abstrac-

tive summarization (Gehrmann et al., 2018; Chen and Bansal, 2018; Saito et al., 2020),

shallow questions being generated in question generation (Gao et al., 2018; Ma et al.,

2020b; Pan et al., 2020), etc. It is obvious that basic seq2seq models are not explicitly

designed to address such limitations. As a future direction, various strategies could be

adopted in the refine module to enrich the contextual representations to overcome these

limitations.

Fusing solutions for task-agnostic and task-specific problems: In this thesis, we pro-

posed different models, to avoid the task-agnostic problem of repeating phrases in

Chapter 4, and task-specific characteristics in Chapters 5 and 6. However, repeating

phrases could still occur while rendering descriptions from structured data and while

generating questions. It is not straightforward to combine the refine modules proposed

for individually addressing these limitations as our solution of diversifying the con-

text vector will affect the stay-on property for rendering descriptions from structured

data. One solution could be to add another module in the encode-attend-refine-decode

paradigm that further optimizes the representations to avoid task agnostic problems such

139

as repeating phrases, hallucinations, etc.

Adopting encode-attend-refine-decode paradigm for Transformer based seq2seq mod-

els: Although the limitations highlighted in this thesis were discussed in the context

of RNN-based seq2seq models, some of these problems, such as repeating phrases (Li

et al., 2019; Welleck et al., 2019; Jiang et al., 2020) and inadequate descriptions (Parikh

et al., 2020; Puduppully and Lapata, 2021; Rebuffel et al., 2020; Xiao and Wang, 2021)

from structured data are still observed in transformer based seq2seq models also. As a

future direction, the proposed strategies could be adopted and validated for transformer-

based seq2seq models also.

Proposing task-specific metrics for other NLG tasks: In this work, we proposed a metric

for the task of AQG. Similar metrics could also be proposed for other NLG tasks instead

of adopting metrics that were developed for MT. A recent survey Sai et al. (2020) also

highlights the need for such task-specific metrics. In particular, they point out that it is

not prudent to blindly adopt metrics that were developed for MT for other NLG tasks as

such metrics may not focus on certain aspects of the generated output which are specific

to that task (e.g., BLEU does not capture coverage which is important for the task of

generating descriptions from structured data).

140

REFERENCES

1. Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375.

2. Ali, H., Y. Chali, and S. A. Hasan, Automation of question generation from sentences.
In Proceedings of QG2010: The Third Workshop on Question Generation. Citeseer,
2010.

3. Angeli, G., P. Liang, and D. Klein, A simple domain-independent probabilistic ap-
proach to generation. In Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, EMNLP ’10. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 2010. URL http://dl.acm.org/citation.cfm?
id=1870658.1870707.

4. Antol, S., A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh,
VQA: Visual Question Answering. In International Conference on Computer Vision
(ICCV). 2015.

5. Bahdanau, D., K. Cho, and Y. Bengio (2014). Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

6. Bao, J., D. Tang, N. Duan, Z. Yan, Y. Lv, M. Zhou, and T. Zhao (2018). Table-to-text:
Describing table region with natural language. Proceedings of the AAAI Conference
on Artificial Intelligence, 32(1). URL https://ojs.aaai.org/index.php/
AAAI/article/view/11944.

7. Barzilay, R. and M. Lapata, Collective content selection for concept-to-text genera-
tion. In Proceedings of the Conference on Human Language Technology and Empiri-
cal Methods in Natural Language Processing, HLT ’05. Association for Computational
Linguistics, Stroudsburg, PA, USA, 2005. URL http://dx.doi.org/10.3115/
1220575.1220617.

8. Bastings, J. and K. Filippova (2020). The elephant in the interpretability room: Why
use attention as explanation when we have saliency methods?

9. Basu, S., G. S. Ramachandran, N. S. Keskar, and L. R. Varshney (2021). Mirostat:
A neural text decoding algorithm that directly controls perplexity.

10. Baumel, T., M. Eyal, and M. Elhadad (2018). Query focused abstractive summariza-
tion: Incorporating query relevance, multi-document coverage, and summary length
constraints into seq2seq models. CoRR, abs/1801.07704.

11. Belz, A. (2008). Automatic generation of weather forecast texts using comprehensive
probabilistic generation-space models. Nat. Lang. Eng., 14(4), 431–455. ISSN 1351-
3249. URL http://dx.doi.org/10.1017/S1351324907004664.

141

http://dl.acm.org/citation.cfm?id=1870658.1870707
http://dl.acm.org/citation.cfm?id=1870658.1870707
https://ojs.aaai.org/index.php/AAAI/article/view/11944
https://ojs.aaai.org/index.php/AAAI/article/view/11944
http://dx.doi.org/10.3115/1220575.1220617
http://dx.doi.org/10.3115/1220575.1220617
http://dx.doi.org/10.1017/S1351324907004664

12. Belz, A. and E. Kow, System building cost vs. output quality in data-to-text genera-
tion. In Proceedings of the 12th European Workshop on Natural Language Generation,
ENLG ’09. Association for Computational Linguistics, Stroudsburg, PA, USA, 2009.
URL http://dl.acm.org/citation.cfm?id=1610195.1610198.

13. Ben-younes, H., R. Cadene, M. Cord, and N. Thome, Mutan: Multimodal tucker fu-
sion for visual question answering. In The IEEE International Conference on Computer
Vision (ICCV), volume 1. 2017.

14. Bengio, Y., P. Simard, and P. Frasconi (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

15. Blatz, J., E. Fitzgerald, G. Foster, S. Gandrabur, C. Goutte, A. Kulesza, A. San-
chis, and N. Ueffing, Confidence estimation for machine translation. In Proceedings of
the 20th international conference on Computational Linguistics. Association for Com-
putational Linguistics, 2004.

16. Bosma, W. (2005). Query-based summarization using rhetorical structure theory. LOT
Occasional Series, 4, 29–44.

17. Boyd, S., Trend: A system for generating intelligent descriptions of time-series data. In
In Proceedings of the IEEE International Conference on Intelligent Processing Systems
(ICIPS-1998. 1998.

18. Brown, P. F., J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. Laf-
ferty, R. L. Mercer, and P. S. Roossin (1990). A statistical approach to machine trans-
lation. Computational Linguistics, 16(2), 79–85. URL https://www.aclweb.
org/anthology/J90-2002.

19. Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. Mc-
Candlish, A. Radford, I. Sutskever, and D. Amodei (2020). Language models are
few-shot learners.

20. Callison-Burch, C., Fast, cheap, and creative: Evaluating translation quality using
amazon’s mechanical turk. In Proceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 1 - Volume 1, EMNLP ’09. Association
for Computational Linguistics, Stroudsburg, PA, USA, 2009. ISBN 978-1-932432-59-
6.

21. Callison-Burch, C., M. Osborne, and P. Koehn, Re-evaluation the role of bleu in
machine translation research. In EACL. The Association for Computer Linguistics,
2006.

22. Cao, Z., W. Li, S. Li, F. Wei, and Y. Li, Attsum: Joint learning of focusing and sum-
marization with neural attention. In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics: Technical Papers. The COLING
2016 Organizing Committee, Osaka, Japan, 2016. URL http://aclweb.org/
anthology/C16-1053.

142

http://dl.acm.org/citation.cfm?id=1610195.1610198
https://www.aclweb.org/anthology/J90-2002
https://www.aclweb.org/anthology/J90-2002
http://aclweb.org/anthology/C16-1053
http://aclweb.org/anthology/C16-1053

23. Chan, Y.-H. and Y.-C. Fan, A recurrent bert-based model for question generation. In
Proceedings of the 2nd Workshop on Machine Reading for Question Answering. 2019.

24. Chen, D. L. and R. J. Mooney, Learning to sportscast: A test of grounded language
acquisition. In Proceedings of the 25th International Conference on Machine Learning,
ICML ’08. ACM, New York, NY, USA, 2008. ISBN 978-1-60558-205-4. URL http:
//doi.acm.org/10.1145/1390156.1390173.

25. Chen, Q., X. Zhu, Z. Ling, S. Wei, and H. Jiang, Distraction-based neural networks
for modeling documents. In Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence (IJCAI-16). 2016.

26. Chen, Y.-C. and M. Bansal (2018). Fast abstractive summarization with reinforce-
selected sentence rewriting.

27. Chen, Z., W. Chen, H. Zha, X. Zhou, Y. Zhang, S. Sundaresan, and W. Y. Wang
(2020). Logic2text: High-fidelity natural language generation from logical forms.

28. Cho, K., B. van Merrienboer, D. Bahdanau, and Y. Bengio (2014). On the properties
of neural machine translation: Encoder-decoder approaches. CoRR, abs/1409.1259.
URL http://arxiv.org/abs/1409.1259.

29. Chopra, S., M. Auli, and A. M. Rush, Abstractive sentence summarization with atten-
tive recurrent neural networks. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational Linguistics, San Diego, California,
2016a. URL http://www.aclweb.org/anthology/N16-1012.

30. Chopra, S., M. Auli, A. M. Rush, and S. Harvard (2016b). Abstractive sentence sum-
marization with attentive recurrent neural networks. Proceedings of NAACL-HLT16,
93–98.

31. Chorowski, J. and N. Jaitly, Towards better decoding and language model integration
in sequence to sequence models. 2017. URL https://arxiv.org/abs/1612.
02695.

32. Cohen, J. (1968). Weighted kappa: nominal scale agreement with provision for scaled
disagreement or partial credit. Psychological bulletin, 70(4), 213—220. ISSN 0033-
2909.

33. Conroy, J. M. and D. P. O’leary, Text summarization via hidden markov models. SI-
GIR ’01. Association for Computing Machinery, New York, NY, USA, 2001. ISBN
1581133316. URL https://doi.org/10.1145/383952.384042.

34. Dale, R., S. Geldof, and J.-P. Prost, Coral : Using natural language generation for
navigational assistance. In M. J. Oudshoorn (ed.), Twenty-Sixth Australasian Com-
puter Science Conference (ACSC2003), volume 16 of CRPIT . ACS, Adelaide, Aus-
tralia, 2003.

35. Daumé III, H. (2009). Bayesian query-focused summarization. CoRR, abs/0907.1814.

143

http://doi.acm.org/10.1145/1390156.1390173
http://doi.acm.org/10.1145/1390156.1390173
http://arxiv.org/abs/1409.1259
http://www.aclweb.org/anthology/N16-1012
https://arxiv.org/abs/1612.02695
https://arxiv.org/abs/1612.02695
https://doi.org/10.1145/383952.384042

36. Deng, Y., W. Zhang, Y. Li, M. Yang, W. Lam, and Y. Shen, Bridging hierarchical
and sequential context modeling for question-driven extractive answer summarization.
SIGIR ’20. Association for Computing Machinery, New York, NY, USA, 2020. ISBN
9781450380164. URL https://doi.org/10.1145/3397271.3401208.

37. Denkowski, M. and A. Lavie, Meteor universal: Language specific translation evalua-
tion for any target language. In Proceedings of the EACL 2014 Workshop on Statistical
Machine Translation. 2014.

38. Doddington, G., Automatic evaluation of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the Second International Conference on Human
Language Technology Research, HLT ’02. 2002.

39. Dong, L., N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H. Hon
(2019). Unified language model pre-training for natural language understanding and
generation. CoRR, abs/1905.03197.

40. Du, X. and C. Cardie, Identifying where to focus in reading comprehension for neural
question generation. In EMNLP. Association for Computational Linguistics, 2017.

41. Du, X., J. Shao, and C. Cardie, Learning to ask: Neural question generation for read-
ing comprehension. In ACL (1). Association for Computational Linguistics, 2017.

42. Dua, D., Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner, DROP: A
reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proc. of NAACL. 2019.

43. Duan, N., D. Tang, P. Chen, and M. Zhou, Question generation for question answer-
ing. In EMNLP. Association for Computational Linguistics, 2017.

44. Duboue, P. A. and K. R. McKeown, Statistical acquisition of content selection rules
for natural language generation. In Proceedings of the 2003 Conference on Empirical
Methods in Natural Language Processing. 2003. URL https://www.aclweb.
org/anthology/W03-1016.

45. Duchi, J., E. Hazan, and Y. Singer (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7).

46. Edmundson, H. P. (1969). New methods in automatic extracting. Journal of the ACM
(JACM), 16(2), 264–285.

47. Elhadad, M. and J. Robin, An overview of SURGE: a reusable comprehensive syntac-
tic realization component. In Eighth International Natural Language Generation Work-
shop (Posters and Demonstrations). 1996. URL https://www.aclweb.org/
anthology/W96-0501.

48. Feigenblat, G., H. Roitman, O. Boni, and D. Konopnicki, Unsupervised query-
focused multi-document summarization using the cross entropy method. In Proceed-
ings of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’17. Association for Computing Machinery, New York,
NY, USA, 2017. ISBN 9781450350228. URL https://doi.org/10.1145/
3077136.3080690.

144

https://doi.org/10.1145/3397271.3401208
https://www.aclweb.org/anthology/W03-1016
https://www.aclweb.org/anthology/W03-1016
https://www.aclweb.org/anthology/W96-0501
https://www.aclweb.org/anthology/W96-0501
https://doi.org/10.1145/3077136.3080690
https://doi.org/10.1145/3077136.3080690

49. Fuentes, M., E. Alfonseca, and H. Rodríguez, Support vector machines for query-
focused summarization trained and evaluated on pyramid data. In Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics Companion Vol-
ume Proceedings of the Demo and Poster Sessions. Association for Computational
Linguistics, Prague, Czech Republic, 2007. URL https://www.aclweb.org/
anthology/P07-2015.

50. Galanis, D. and I. Androutsopoulos, Generating multilingual descriptions from lin-
guistically annotated owl ontologies: The naturalowl system. In Proceedings of the
Eleventh European Workshop on Natural Language Generation, ENLG ’07. Asso-
ciation for Computational Linguistics, Stroudsburg, PA, USA, 2007. URL http:
//dl.acm.org/citation.cfm?id=1610163.1610188.

51. Gao, Y., P. Li, I. King, and M. R. Lyu, Interconnected question generation with coref-
erence alignment and conversation flow modeling. In ACL (1). Association for Compu-
tational Linguistics, 2019.

52. Gao, Y., J. Wang, L. Bing, I. King, and M. R. Lyu (2018). Difficulty controllable
question generation for reading comprehension. CoRR, abs/1807.03586.

53. Gates, D., Generating look-back strategy questions from expository texts. In The Work-
shop on the Question Generation Shared Task and Evaluation Challenge, NSF, Arling-
ton, VA. http://www. cs. memphis. edu/˜ vrus/questiongeneration//1-Gates-QG08. pdf .
2008.

54. Gatt, A. and A. Belz (2010). Introducing shared tasks to nlg: The tuna shared task
evaluation challenges, 264–293.

55. Gehrmann, S., Y. Deng, and A. M. Rush (2018). Bottom-up abstractive summariza-
tion. CoRR, abs/1808.10792.

56. Geng, X., X. Feng, B. Qin, and T. Liu, Adaptive multi-pass decoder for neural machine
translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, Brussels, Belgium,
2018. URL https://www.aclweb.org/anthology/D18-1048.

57. Gers, F. A., J. Schmidhuber, and F. Cummins, Learning to forget: continual predic-
tion with lstm. In 1999 Ninth International Conference on Artificial Neural Networks
ICANN 99. (Conf. Publ. No. 470), volume 2. 1999.

58. Goldberg, E., N. Driedger, and R. I. Kittredge (1994). Using natural-language pro-
cessing to produce weather forecasts. IEEE Expert, 9(2), 45–53.

59. Green, N., Generation of biomedical arguments for lay readers. In Proceedings of the
Fourth International Natural Language Generation Conference, INLG ’06. Association
for Computational Linguistics, Stroudsburg, PA, USA, 2006. ISBN 1-932432-72-8.
URL http://dl.acm.org/citation.cfm?id=1706269.1706292.

60. Gu, J., Z. Lu, H. Li, and V. O. Li, Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers). Association for Com-
putational Linguistics, Berlin, Germany, 2016. URL http://www.aclweb.org/
anthology/P16-1154.

145

https://www.aclweb.org/anthology/P07-2015
https://www.aclweb.org/anthology/P07-2015
http://dl.acm.org/citation.cfm?id=1610163.1610188
http://dl.acm.org/citation.cfm?id=1610163.1610188
https://www.aclweb.org/anthology/D18-1048
http://dl.acm.org/citation.cfm?id=1706269.1706292
http://www.aclweb.org/anthology/P16-1154
http://www.aclweb.org/anthology/P16-1154

61. Gu, J., M. Mirshekari, Z. Yu, and A. Sisto (2021). Chaincqg: Flow-aware conversa-
tional question generation.

62. Harrison, V. and M. Walker (2018). Neural generation of diverse questions using
answer focus, contextual and linguistic features. arXiv preprint arXiv:1809.02637.

63. Hasselqvist, J., N. Helmertz, and M. Kågebäck (2017). Query-based abstractive sum-
marization using neural networks. CoRR, abs/1712.06100.

64. Heilman, M. and N. A. Smith, Good question! statistical ranking for question genera-
tion. In HLT-NAACL. The Association for Computational Linguistics, 2010.

65. Hermann, K. M., T. Kociský, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman,
and P. Blunsom, Teaching machines to read and comprehend. In Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada. 2015.

66. Hinton, G. (2016). Root mean square error propogation.

67. Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural Comput.,
9(8), 1735–1780. ISSN 0899-7667.

68. Holtzman, A., J. Buys, M. Forbes, and Y. Choi (2019). The curious case of neural
text degeneration. CoRR, abs/1904.09751.

69. Hu, B., Q. Chen, and F. Zhu (2015). Lcsts: A large scale chinese short text summa-
rization dataset. arXiv preprint arXiv:1506.05865.

70. Hutchins, W. J., L. Dostert, and P. Garvin, The georgetown-i.b.m. experiment. In In.
John Wiley Sons, 1955.

71. Iso, H., Y. Uehara, T. Ishigaki, H. Noji, E. Aramaki, I. Kobayashi, Y. Miyao,
N. Okazaki, and H. Takamura, Learning to select, track, and generate for data-to-
text. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Florence, Italy, 2019. URL
https://www.aclweb.org/anthology/P19-1202.

72. Jain, U., Z. Zhang, and A. G. Schwing, Creativity: Generating diverse questions using
variational autoencoders. In CVPR. IEEE Computer Society, 2017.

73. Jia, R. and P. Liang (2017). Adversarial examples for evaluating reading comprehen-
sion systems. CoRR, abs/1707.07328.

74. Jiang, S., T. Wolf, C. Monz, and M. de Rijke (2020). Tldr: Token loss dy-
namic reweighting for reducing repetitive utterance generation. arXiv preprint
arXiv:2003.11963.

75. Kalady, S., A. Elikkottil, and R. Das, Natural language question generation using
syntax and keywords. In Proceedings of QG2010: The Third Workshop on Question
Generation, volume 2. questiongeneration. org, 2010.

76. Kiddon, C., L. Zettlemoyer, and Y. Choi, Globally coherent text generation with neu-
ral checklist models. In EMNLP. The Association for Computational Linguistics, 2016.

146

https://www.aclweb.org/anthology/P19-1202

77. Kim, J. and R. J. Mooney, Generative alignment and semantic parsing for learning
from ambiguous supervision. In Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, COLING ’10. Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 2010. URL http://dl.acm.org/citation.
cfm?id=1944566.1944628.

78. Kim, Y., H. Lee, J. Shin, and K. Jung (2018). Improving neural question generation
using answer separation. CoRR, abs/1809.02393.

79. Kingma, D. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

80. Koehn, P., Pharaoh: a beam search decoder for phrase-based statistical machine transla-
tion models. In Conference of the Association for Machine Translation in the Americas.
Springer, 2004.

81. Koehn, P., F. J. Och, and D. Marcu, Statistical phrase-based translation. In Pro-
ceedings of the 2003 Human Language Technology Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics. 2003. URL https:
//www.aclweb.org/anthology/N03-1017.

82. Konstas, I. and M. Lapata, Unsupervised concept-to-text generation with hyper-
graphs. In Proceedings of the 2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies. As-
sociation for Computational Linguistics, Montréal, Canada, 2012. URL https:
//www.aclweb.org/anthology/N12-1093.

83. Konstas, I. and M. Lapata (2013a). A global model for concept-to-text generation. J.
Artif. Int. Res., 48(1), 305–346. ISSN 1076-9757.

84. Konstas, I. and M. Lapata, Inducing document plans for concept-to-text genera-
tion. In EMNLP. ACL, 2013b. ISBN 978-1-937284-97-8. URL http://dblp.
uni-trier.de/db/conf/emnlp/emnlp2013.html#KonstasL13.

85. Kulkarni, S., S. Chammas, W. Zhu, F. Sha, and E. Ie (2020). Aquamuse: Automati-
cally generating datasets for query-based multi-document summarization.

86. Kumar, V., Y. Hua, G. Ramakrishnan, G. Qi, L. Gao, and Y.-F. Li, Difficulty-
controllable multi-hop question generation from knowledge graphs. In C. Ghidini,
O. Hartig, M. Maleshkova, V. Svátek, I. Cruz, A. Hogan, J. Song, M. Lefrançois,
and F. Gandon (eds.), The Semantic Web – ISWC 2019. Springer International Publish-
ing, Cham, 2019.

87. Kunichika, H., T. Katayama, T. Hirashima, and A. Takeuchi, Automated question
generation methods for intelligent english learning systems and its evaluation. In Proc.
of ICCE. 2004.

88. Kurdi, G., J. Leo, B. Parsia, U. Sattler, and S. Al-Emari (2020). A systematic review
of automatic question generation for educational purposes. International Journal of
Artificial Intelligence in Education, 30(1), 121–204.

147

http://dl.acm.org/citation.cfm?id=1944566.1944628
http://dl.acm.org/citation.cfm?id=1944566.1944628
https://www.aclweb.org/anthology/N03-1017
https://www.aclweb.org/anthology/N03-1017
https://www.aclweb.org/anthology/N12-1093
https://www.aclweb.org/anthology/N12-1093
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2013.html#KonstasL13
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2013.html#KonstasL13

89. Labutov, I., S. Basu, and L. Vanderwende, Deep questions without deep understand-
ing. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Computational Linguistics, Beijing, China,
2015. URL https://www.aclweb.org/anthology/P15-1086.

90. Lai, G., Q. Xie, H. Liu, Y. Yang, and E. H. Hovy, RACE: large-scale reading com-
prehension dataset from examinations. In EMNLP. Association for Computational Lin-
guistics, 2017.

91. Laskar, M. T. R., E. Hoque, and J. X. Huang (2020). Wsl-ds: Weakly supervised
learning with distant supervision for query focused multi-document abstractive sum-
marization.

92. Lavie, A., K. Sagae, and S. Jayaraman, The significance of recall in automatic metrics
for mt evaluation. In AMTA. 2004.

93. Lebret, R., D. Grangier, and M. Auli, Neural text generation from structured data
with application to the biography domain. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Austin, Texas, 2016. URL https://aclweb.org/anthology/
D16-1128.

94. Lee, D. B., S. Lee, W. T. Jeong, D. Kim, and S. J. Hwang, Generating diverse and con-
sistent QA pairs from contexts with information-maximizing hierarchical conditional
VAEs. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational Linguistics, Online, 2020. URL
https://www.aclweb.org/anthology/2020.acl-main.20.

95. Levy, R. and G. Andrew, Tregex and tsurgeon: tools for querying and manipulat-
ing tree data structures. In Proceedings of the Fifth International Conference on
Language Resources and Evaluation (LREC’06). European Language Resources As-
sociation (ELRA), Genoa, Italy, 2006. URL http://www.lrec-conf.org/
proceedings/lrec2006/pdf/513_pdf.pdf.

96. Lewis, M., Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoy-
anov, and L. Zettlemoyer (2019). BART: denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. CoRR,
abs/1910.13461.

97. Li, M., S. Roller, I. Kulikov, S. Welleck, Y. Boureau, K. Cho, and J. Weston
(2019). Don’t say that! making inconsistent dialogue unlikely with unlikelihood train-
ing. CoRR, abs/1911.03860.

98. Li, P., W. Lam, L. Bing, W. Guo, and H. Li, Cascaded attention based unsupervised
information distillation for compressive summarization. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Copenhagen, Denmark, 2017a. URL https://www.
aclweb.org/anthology/D17-1221.

99. Li, Y., N. Duan, B. Zhou, X. Chu, W. Ouyang, and X. Wang (2017b). Visual question
generation as dual task of visual question answering. CoRR, abs/1709.07192.

148

https://www.aclweb.org/anthology/P15-1086
https://aclweb.org/anthology/D16-1128
https://aclweb.org/anthology/D16-1128
https://www.aclweb.org/anthology/2020.acl-main.20
http://www.lrec-conf.org/proceedings/lrec2006/pdf/513_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/513_pdf.pdf
https://www.aclweb.org/anthology/D17-1221
https://www.aclweb.org/anthology/D17-1221

100. Li, Y., N. Duan, B. Zhou, X. Chu, W. Ouyang, X. Wang, and M. Zhou, Visual
question generation as dual task of visual question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018.

101. Liang, P., M. I. Jordan, and D. Klein, Learning semantic correspondences with less
supervision. In Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP: Volume 1 - Volume 1, ACL ’09. Association for Computational Linguistics,
Stroudsburg, PA, USA, 2009. ISBN 978-1-932432-45-9. URL http://dl.acm.
org/citation.cfm?id=1687878.1687893.

102. Lin, C.-Y., Rouge: A package for automatic evaluation of summaries. In Proc. ACL
workshop on Text Summarization Branches Out. 2004.

103. Lin, C.-Y., Automatic question generation from queries. Citeseer, 2008.

104. Lindberg, D., F. Popowich, J. Nesbit, and P. Winne, Generating natural language
questions to support learning on-line. In Proceedings of the 14th European Workshop
on Natural Language Generation. Association for Computational Linguistics, Sofia,
Bulgaria, 2013. URL https://www.aclweb.org/anthology/W13-2114.

105. Liu, B., H. Wei, D. Niu, H. Chen, and Y. He, Asking questions the human way: Scal-
able question-answer generation from text corpus. In Proceedings of The Web Confer-
ence 2020, WWW ’20. Association for Computing Machinery, New York, NY, USA,
2020. ISBN 9781450370233. URL https://doi.org/10.1145/3366423.
3380270.

106. Liu, C., R. Lowe, I. Serban, M. Noseworthy, L. Charlin, and J. Pineau, How NOT
to evaluate your dialogue system: An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In EMNLP. The Association for Computational
Linguistics, 2016.

107. Liu, M., R. A. Calvo, and V. Rus, Automatic question generation for literature review
writing support. In V. Aleven, J. Kay, and J. Mostow (eds.), Intelligent Tutoring Sys-
tems. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-13388-6.

108. Liu, T., F. Luo, Q. Xia, S. Ma, B. Chang, and Z. Sui (2019a). Hierarchical en-
coder with auxiliary supervision for neural table-to-text generation: Learning better
representation for tables. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 33(01), 6786–6793. URL https://ojs.aaai.org/index.php/AAAI/
article/view/4653.

109. Liu, T., K. Wang, L. Sha, B. Chang, and Z. Sui (2017a). Table-to-text generation by
structure-aware seq2seq learning. CoRR, abs/1711.09724.

110. Liu, T., K. Wang, L. Sha, B. Chang, and Z. Sui (2017b). Table-to-text generation by
structure-aware seq2seq learning. CoRR, abs/1711.09724. URL http://arxiv.
org/abs/1711.09724.

111. Liu, Y. (2019). Fine-tune BERT for extractive summarization. CoRR, abs/1903.10318.

112. Liu, Y. and M. Lapata (2019). Text summarization with pretrained encoders. CoRR,
abs/1908.08345.

149

http://dl.acm.org/citation.cfm?id=1687878.1687893
http://dl.acm.org/citation.cfm?id=1687878.1687893
https://www.aclweb.org/anthology/W13-2114
https://doi.org/10.1145/3366423.3380270
https://doi.org/10.1145/3366423.3380270
https://ojs.aaai.org/index.php/AAAI/article/view/4653
https://ojs.aaai.org/index.php/AAAI/article/view/4653
http://arxiv.org/abs/1711.09724
http://arxiv.org/abs/1711.09724

113. Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov (2019b). Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

114. Liu, Y., S.-h. Zhong, and W. Li, Query-oriented multi-document summarization via
unsupervised deep learning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 26. 2012.

115. Loper, E. and S. Bird, Nltk: The natural language toolkit. In Proceedings of the ACL-
02 Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics - Volume 1, ETMTNLP ’02. 2002.

116. Lopez, L. E., D. K. Cruz, J. C. B. Cruz, and C. Cheng (2020). Transformer-based
end-to-end question generation. arXiv preprint arXiv:2005.01107.

117. Lopyrev, K. (2015). Generating news headlines with recurrent neural networks. arXiv
preprint arXiv:1512.01712.

118. Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of
research and development, 2(2), 159–165.

119. Luong, T., I. Sutskever, Q. Le, O. Vinyals, and W. Zaremba, Addressing the rare
word problem in neural machine translation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers). Association
for Computational Linguistics, Beijing, China, 2015. URL http://www.aclweb.
org/anthology/P15-1002.

120. Ma, S., Z.-H. Deng, and Y. Yang, An unsupervised multi-document summarization
framework based on neural document model. In Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical Papers. The
COLING 2016 Organizing Committee, Osaka, Japan, 2016. URL https://www.
aclweb.org/anthology/C16-1143.

121. Ma, X., Q. Zhu, Y. Zhou, and X. Li (2020a). Improving question generation with
sentence-level semantic matching and answer position inferring. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(05), 8464–8471. URL https://ojs.
aaai.org/index.php/AAAI/article/view/6366.

122. Ma, X., Q. Zhu, Y. Zhou, X. Li, and D. Wu (2020b). Asking complex questions with
multi-hop answer-focused reasoning.

123. Mani, I. and E. Bloedorn (1997). Multi-document summarization by graph search and
matching. CoRR, cmp-lg/9712004.

124. Mann, W. C. and S. A. Thompson, Rhetorical structure theory: A theory of text orga-
nization. University of Southern California, Information Sciences Institute Los Ange-
les, 1987.

125. Mannem, P., R. Prasad, and A. Joshi (2010). Question generation from paragraphs at
upenn: Qgstec system description.

150

http://www.aclweb.org/anthology/P15-1002
http://www.aclweb.org/anthology/P15-1002
https://www.aclweb.org/anthology/C16-1143
https://www.aclweb.org/anthology/C16-1143
https://ojs.aaai.org/index.php/AAAI/article/view/6366
https://ojs.aaai.org/index.php/AAAI/article/view/6366

126. Maynez, J., S. Narayan, B. Bohnet, and R. McDonald (2020). On faithfulness and
factuality in abstractive summarization.

127. Mazidi, K. and R. D. Nielsen, Linguistic considerations in automatic question gen-
eration. In Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Association for Computational Linguistics,
Baltimore, Maryland, 2014. URL https://www.aclweb.org/anthology/
P14-2053.

128. McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica:
Biochemia medica, 22(3), 276–282.

129. Mei, H., M. Bansal, and M. R. Walter, What to talk about and how? selective genera-
tion using lstms with coarse-to-fine alignment. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Computational Linguistics, San Diego,
California, 2016. URL http://www.aclweb.org/anthology/N16-1086.

130. Mi, H., B. Sankaran, Z. Wang, and A. Ittycheriah, Coverage embedding models
for neural machine translation. In Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing. Association for Computational Lin-
guistics, Austin, Texas, 2016. URL https://www.aclweb.org/anthology/
D16-1096.

131. Miller, A. H., A. Fisch, J. Dodge, A. Karimi, A. Bordes, and J. Weston, Key-value
memory networks for directly reading documents. In EMNLP. The Association for
Computational Linguistics, 2016.

132. Mitkov, R. and L. A. Ha, Computer-aided generation of multiple-choice tests. In
Proceedings of the HLT-NAACL 03 Workshop on Building Educational Applications
Using Natural Language Processing. 2003. URL https://www.aclweb.org/
anthology/W03-0203.

133. Mohankumar, A. K., P. Nema, S. Narasimhan, M. M. Khapra, B. V. Srinivasan,
and B. Ravindran, Towards transparent and explainable attention models. In ACL.
Association for Computational Linguistics, 2020.

134. Moryossef, A., Y. Goldberg, and I. Dagan, Step-by-step: Separating planning from
realization in neural data-to-text generation. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers). Associa-
tion for Computational Linguistics, Minneapolis, Minnesota, 2019. URL https:
//www.aclweb.org/anthology/N19-1236.

135. Mostow, J. and W. Chen, Generating instruction automatically for the reading strategy
of self-questioning. In AIED. 2009.

136. Nakanishi, M., T. Kobayashi, and Y. Hayashi, Towards answer-unaware conversa-
tional question generation. In Proceedings of the 2nd Workshop on Machine Read-
ing for Question Answering. Association for Computational Linguistics, Hong Kong,
China, 2019. URL https://www.aclweb.org/anthology/D19-5809.

151

https://www.aclweb.org/anthology/P14-2053
https://www.aclweb.org/anthology/P14-2053
http://www.aclweb.org/anthology/N16-1086
https://www.aclweb.org/anthology/D16-1096
https://www.aclweb.org/anthology/D16-1096
https://www.aclweb.org/anthology/W03-0203
https://www.aclweb.org/anthology/W03-0203
https://www.aclweb.org/anthology/N19-1236
https://www.aclweb.org/anthology/N19-1236
https://www.aclweb.org/anthology/D19-5809

137. Nallapati, R., B. Zhou, C. N. dos Santos, Ç. Gülçehre, and B. Xiang, Abstractive
text summarization using sequence-to-sequence rnns and beyond. In Proceedings of
the 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL
2016, Berlin, Germany, August 11-12, 2016. 2016. URL http://aclweb.org/
anthology/K/K16/K16-1028.pdf.

138. Nastase, V., Topic-driven multi-document summarization with encyclopedic knowl-
edge and spreading activation. In Proceedings of the 2008 Conference on Empiri-
cal Methods in Natural Language Processing. Association for Computational Linguis-
tics, Honolulu, Hawaii, 2008. URL https://www.aclweb.org/anthology/
D08-1080.

139. Nema, P., M. Khapra, A. Laha, and B. Ravindran, Diversity driven attention model
for query-based abstractive summarization. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics. Association for Computational
Linguistics, Vancouver, Canada, 2017.

140. Nema, P., A. K. Mohankumar, M. M. Khapra, B. V. Srinivasan, and B. Ravindran,
Let’s ask again: Refine network for automatic question generation. In EMNLP/IJCNLP
(1). Association for Computational Linguistics, 2019.

141. Nema, P., S. Shetty, P. Jain, A. Laha, K. Sankaranarayanan, and M. M. Khapra,
Generating descriptions from structured data using a bifocal attention mechanism and
gated orthogonalization. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans,
Louisiana, 2018.

142. Nestrov, Y. E. (1983). A method for solving the convex programming problem with
convergence rate o(1/k2). Dokl. Akad. Nauk SSSR, 269, 543–547. URL https:
//ci.nii.ac.jp/naid/10029946121/en/.

143. Nguyen, T., M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng,
MS MARCO: A human generated machine reading comprehension dataset. In Pro-
ceedings of the Workshop on Cognitive Computation: Integrating neural and symbolic
approaches 2016 co-located with the 30th Annual Conference on Neural Information
Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016.. 2016.

144. Nie, F., J.-G. Yao, J. Wang, R. Pan, and C.-Y. Lin, A simple recipe towards reducing
hallucination in neural surface realisation. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. Association for Computational Lin-
guistics, Florence, Italy, 2019. URL https://www.aclweb.org/anthology/
P19-1256.

145. Offerijns, J., S. Verberne, and T. Verhoef (2020). Better distractions: Transformer-
based distractor generation and multiple choice question filtering. arXiv preprint
arXiv:2010.09598.

146. Otterbacher, J., G. Erkan, and D. Radev, Using random walks for question-focused
sentence retrieval. In Proceedings of Human Language Technology Conference and
Conference on Empirical Methods in Natural Language Processing. Association for

152

http://aclweb.org/anthology/K/K16/K16-1028.pdf
http://aclweb.org/anthology/K/K16/K16-1028.pdf
https://www.aclweb.org/anthology/D08-1080
https://www.aclweb.org/anthology/D08-1080
https://ci.nii.ac.jp/naid/10029946121/en/
https://ci.nii.ac.jp/naid/10029946121/en/
https://www.aclweb.org/anthology/P19-1256
https://www.aclweb.org/anthology/P19-1256

Computational Linguistics, Vancouver, British Columbia, Canada, 2005. URL https:
//www.aclweb.org/anthology/H05-1115.

147. Pan, L., Y. Xie, Y. Feng, T.-S. Chua, and M.-Y. Kan, Semantic graphs for generating
deep questions. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computational Linguistics, Online, 2020. URL
https://www.aclweb.org/anthology/2020.acl-main.135.

148. Papineni, K., S. Roukos, T. Ward, and W. Zhu, Bleu: a method for automatic evalu-
ation of machine translation. In ACL. ACL, 2002.

149. Parikh, A., X. Wang, S. Gehrmann, M. Faruqui, B. Dhingra, D. Yang, and D. Das,
ToTTo: A controlled table-to-text generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP). Association
for Computational Linguistics, Online, 2020. URL https://www.aclweb.org/
anthology/2020.emnlp-main.89.

150. Parikh, S., A. Sai, P. Nema, and M. Khapra, Eliminet: A model for eliminating
options for reading comprehension with multiple choice questions. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18.
International Joint Conferences on Artificial Intelligence Organization, 2018. URL
https://doi.org/10.24963/ijcai.2018/594.

151. Pascanu, R., T. Mikolov, and Y. Bengio (2012). Understanding the exploding gradient
problem. CoRR, abs/1211.5063.

152. Pasunuru, R. and M. Bansal, Multi-reward reinforced summarization with saliency
and entailment. In Proceedings of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers). Association for Computational Linguistics, New Orleans,
Louisiana, 2018. URL https://www.aclweb.org/anthology/N18-2102.

153. Paulus, R., C. Xiong, and R. Socher (2018). A deep reinforced model for abstractive
summarization. CoRR, abs/1705.04304.

154. Pennington, J., R. Socher, and C. D. Manning, Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Language Processing (EMNLP). 2014.

155. Puduppully, R., L. Dong, and M. Lapata (2019). Data-to-text generation with con-
tent selection and planning. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 33(01), 6908–6915. URL https://ojs.aaai.org/index.php/AAAI/
article/view/4668.

156. Puduppully, R. and M. Lapata (2021). Data-to-text generation with macro planning.

157. Radford, A., K. Narasimhan, T. Salimans, and I. Sutskever (2018). Improving lan-
guage understanding by generative pre-training.

158. Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever (2019). Lan-
guage models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

153

https://www.aclweb.org/anthology/H05-1115
https://www.aclweb.org/anthology/H05-1115
https://www.aclweb.org/anthology/2020.acl-main.135
https://www.aclweb.org/anthology/2020.emnlp-main.89
https://www.aclweb.org/anthology/2020.emnlp-main.89
https://doi.org/10.24963/ijcai.2018/594
https://www.aclweb.org/anthology/N18-2102
https://ojs.aaai.org/index.php/AAAI/article/view/4668
https://ojs.aaai.org/index.php/AAAI/article/view/4668

159. Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang, Squad: 100, 000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, Novem-
ber 1-4, 2016. 2016.

160. Ranzato, M., S. Chopra, M. Auli, and W. Zaremba, Sequence level training with
recurrent neural networks. In ICLR (Poster). 2016.

161. Rebuffel, C., L. Soulier, G. Scoutheeten, and P. Gallinari, A hierarchical model for
data-to-text generation. In ECIR (1), volume 12035 of Lecture Notes in Computer
Science. Springer, 2020.

162. Reddy, S., D. Raghu, M. M. Khapra, and S. Josh, Generating natural language
question-answer pairs from a knowledge graph using a RNN based question genera-
tion model. In EACL (1). Association for Computational Linguistics, 2017.

163. Reiter, E., S. Sripada, J. Hunter, J. Yu, and I. Davy (2005). Choos-
ing words in computer-generated weather forecasts. Artif. Intell., 167(1-2),
137–169. URL http://dblp.uni-trier.de/db/journals/ai/ai167.
html#ReiterSHYD05.

164. Rennie, S. J., E. Marcheret, Y. Mroueh, J. Ross, and V. Goel (2017). Self-critical
sequence training for image captioning. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 1179–1195.

165. Rohrbach, A., L. A. Hendricks, K. Burns, T. Darrell, and K. Saenko, Object hal-
lucination in image captioning. In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing. Association for Computational Linguis-
tics, Brussels, Belgium, 2018. URL https://www.aclweb.org/anthology/
D18-1437.

166. Roitman, H., G. Feigenblat, D. Cohen, O. Boni, and D. Konopnicki, Unsupervised
dual-cascade learning with pseudo-feedback distillation for query-focused extractive
summarization. In Proceedings of The Web Conference 2020. 2020.

167. Rokhlenko, O. and I. Szpektor, Generating synthetic comparable questions for news
articles. In Proceedings of the 51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Association for Computational Lin-
guistics, Sofia, Bulgaria, 2013. URL https://www.aclweb.org/anthology/
P13-1073.

168. Rothe, A., B. M. Lake, and T. M. Gureckis, Question asking as program genera-
tion. In Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, NIPS’17. Curran Associates Inc., Red Hook, NY, USA, 2017. ISBN
9781510860964.

169. Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning representations
by back-propagating errors. nature, 323(6088), 533–536.

170. Rush, A. M., S. Chopra, and J. Weston, A neural attention model for abstractive
sentence summarization. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, Lisbon,
Portugal, 2015. URL http://aclweb.org/anthology/D15-1044.

154

http://dblp.uni-trier.de/db/journals/ai/ai167.html#ReiterSHYD05
http://dblp.uni-trier.de/db/journals/ai/ai167.html#ReiterSHYD05
https://www.aclweb.org/anthology/D18-1437
https://www.aclweb.org/anthology/D18-1437
https://www.aclweb.org/anthology/P13-1073
https://www.aclweb.org/anthology/P13-1073
http://aclweb.org/anthology/D15-1044

171. Sachan, M. and E. Xing, Self-training for jointly learning to ask and answer questions.
In Proceedings of the 2018 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). Association for Computational Linguistics, New Orleans, Louisiana, 2018.
URL https://www.aclweb.org/anthology/N18-1058.

172. Sai, A. B., A. K. Mohankumar, and M. M. Khapra (2020). A survey of evaluation
metrics used for nlg systems.

173. Saito, I., K. Nishida, K. Nishida, and J. Tomita (2020). Abstractive summarization
with combination of pre-trained sequence-to-sequence and saliency models.

174. Sankaran, B., H. Mi, Y. Al-Onaizan, and A. Ittycheriah (2016). Temporal attention
model for neural machine translation. arXiv preprint arXiv:1608.02927.

175. Schilder, F. and R. Kondadadi, FastSum: Fast and accurate query-based multi-
document summarization. In Proceedings of ACL-08: HLT, Short Papers. Associa-
tion for Computational Linguistics, Columbus, Ohio, 2008. URL https://www.
aclweb.org/anthology/P08-2052.

176. Scialom, T., B. Piwowarski, and J. Staiano, Self-attention architectures for answer-
agnostic neural question generation. In Proceedings of the 57th annual meeting of the
Association for Computational Linguistics. 2019.

177. See, A., P. J. Liu, and C. D. Manning, Get to the point: Summarization with pointer-
generator networks. In ACL. 2017.

178. Seo, M. J., A. Kembhavi, A. Farhadi, and H. Hajishirzi (2016). Bidirectional atten-
tion flow for machine comprehension. CoRR, abs/1611.01603.

179. Serban, I. V., A. García-Durán, Ç. Gülçehre, S. Ahn, S. Chandar, A. C. Courville,
and Y. Bengio, Generating factoid questions with recurrent neural networks: The 30m
factoid question-answer corpus. In ACL (1). The Association for Computer Linguistics,
2016a.

180. Serban, I. V., A. Sordoni, Y. Bengio, A. Courville, and J. Pineau, Building end-to-
end dialogue systems using generative hierarchical neural network models. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16. AAAI
Press, 2016b. URL http://dl.acm.org/citation.cfm?id=3016387.
3016435.

181. Sha, L., L. Mou, T. Liu, P. Poupart, S. Li, B. Chang, and Z. Sui (2017). Order-
planning neural text generation from structured data.

182. Shetty M, S. (2018). Natural Language Generation from Structured Data. Master’s
thesis, Indian Institute of Technology Madras.

183. Singh, M., A. Mishra, Y. Oualil, K. Berberich, and D. Klakow, Long-span language
models for query-focused unsupervised extractive text summarization. In European
Conference on Information Retrieval. Springer, 2018.

184. Song, L., Z. Wang, and W. Hamza (2017). A unified query-based generative model
for question generation and question answering. CoRR, abs/1709.01058.

155

https://www.aclweb.org/anthology/N18-1058
https://www.aclweb.org/anthology/P08-2052
https://www.aclweb.org/anthology/P08-2052
http://dl.acm.org/citation.cfm?id=3016387.3016435
http://dl.acm.org/citation.cfm?id=3016387.3016435

185. Sripada, S. G., E. Reiter, and I. Davy (2003). Sumtime-mousam: Configurable marine
weather forecast generator.

186. Su, D., T. Yu, and P. Fung (2021). Improve query focused abstractive summarization
by incorporating answer relevance. CoRR, abs/2105.12969. URL https://arxiv.
org/abs/2105.12969.

187. Su, J., S. Wu, D. Xiong, Y. Lu, X. Han, and B. Zhang (2018). Variational recurrent
neural machine translation. CoRR, abs/1801.05119.

188. Sultan, M. A., S. Chandel, R. F. Astudillo, and V. Castelli, On the importance of
diversity in question generation for qa. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 2020.

189. Sun, X., J. Liu, Y. Lyu, W. He, Y. Ma, and S. Wang, Answer-focused and position-
aware neural question generation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics,
Brussels, Belgium, 2018.

190. Sun, Y., D. Tang, N. Duan, T. Qin, S. Liu, Z. Yan, M. Zhou, Y. Lv, W. Yin, X. Feng,
et al. (2019). Joint learning of question answering and question generation. IEEE
Transactions on Knowledge and Data Engineering, 32(5), 971–982.

191. Suzuki, J. and M. Nagata, Cutting-off redundant repeating generations for neural
abstractive summarization. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short Papers.
Association for Computational Linguistics, Valencia, Spain, 2017. URL https:
//www.aclweb.org/anthology/E17-2047.

192. Tang, D., N. Duan, T. Qin, and M. Zhou (2017). Question answering and question
generation as dual tasks. CoRR, abs/1706.02027.

193. Tang, J., L. Yao, and D. Chen, Multi-topic based query-oriented summarization. In
Proceedings of the 2009 SIAM international conference on data mining. SIAM, 2009.

194. Tian, R., S. Narayan, T. Sellam, and A. P. Parikh (2019). Sticking to the facts:
Confident decoding for faithful data-to-text generation. CoRR, abs/1910.08684.

195. Tu, Z., Y. Liu, Z. Lu, X. Liu, and H. Li (2017a). Context gates for neural machine
translation. Transactions of the Association for Computational Linguistics, 5, 87–99.
URL https://www.aclweb.org/anthology/Q17-1007.

196. Tu, Z., Y. Liu, L. Shang, X. Liu, and H. Li (2017b). Neural machine translation
with reconstruction. Proceedings of the AAAI Conference on Artificial Intelligence,
31(1). URL https://ojs.aaai.org/index.php/AAAI/article/view/
10950.

197. Tu, Z., Z. Lu, Y. Liu, X. Liu, and H. Li, Modeling coverage for neural machine
translation. In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Association for Computational Linguis-
tics, Berlin, Germany, 2016. URL https://www.aclweb.org/anthology/
P16-1008.

156

https://arxiv.org/abs/2105.12969
https://arxiv.org/abs/2105.12969
https://www.aclweb.org/anthology/E17-2047
https://www.aclweb.org/anthology/E17-2047
https://www.aclweb.org/anthology/Q17-1007
https://ojs.aaai.org/index.php/AAAI/article/view/10950
https://ojs.aaai.org/index.php/AAAI/article/view/10950
https://www.aclweb.org/anthology/P16-1008
https://www.aclweb.org/anthology/P16-1008

198. Turner, R., S. Sripada, and E. Reiter, Generating approximate geographic descrip-
tions. In E. Krahmer and M. Theune (eds.), Empirical Methods in Natural Lan-
guage Generation, volume 5790 of Lecture Notes in Computer Science. Springer,
2010. ISBN 978-3-642-15572-7. URL http://dblp.uni-trier.de/db/
conf/eacl/enlg2010.html#TurnerSR10.

199. Varga, A. and L. A. Ha (2010). Wlv: a question generation system for the qgstec 2010
task b. Boyer & Piwek (2010), 80–83.

200. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin, Attention is all you need. In Advances in Neural Informa-
tion Processing Systems. 2017.

201. Vogel, S., H. Ney, and C. Tillmann, HMM-based word alignment in statistical transla-
tion. In COLING 1996 Volume 2: The 16th International Conference on Computational
Linguistics. 1996. URL https://www.aclweb.org/anthology/C96-2141.

202. Wan, X. (2008). Using only cross-document relationships for both generic and topic-
focused multi-document summarizations. Information Retrieval, 11(1), 25–49.

203. Wan, X. and J. Zhang, Ctsum: Extracting more certain summaries for news articles.
In Proceedings of the 37th International ACM SIGIR Conference on Research Devel-
opment in Information Retrieval, SIGIR ’14. Association for Computing Machinery,
New York, NY, USA, 2014. ISBN 9781450322577. URL https://doi.org/10.
1145/2600428.2609559.

204. Wang, L., H. Raghavan, V. Castelli, R. Florian, and C. Cardie, A sentence compres-
sion based framework to query-focused multi-document summarization. In Proceedings
of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Linguistics, Sofia, Bulgaria, 2013. URL
https://www.aclweb.org/anthology/P13-1136.

205. Wang, L., Z. Xu, Z. Lin, H. Zheng, and Y. Shen, Answer-driven deep question gen-
eration based on reinforcement learning. In Proceedings of the 28th International Con-
ference on Computational Linguistics. International Committee on Computational Lin-
guistics, Barcelona, Spain (Online), 2020a. URL https://www.aclweb.org/
anthology/2020.coling-main.452.

206. Wang, Q., Z. Zhou, L. Huang, S. Whitehead, B. Zhang, H. Ji, and K. Knight, Paper
abstract writing through editing mechanism. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers). Association
for Computational Linguistics, Melbourne, Australia, 2018a. URL https://www.
aclweb.org/anthology/P18-2042.

207. Wang, Z., W. Hamza, and R. Florian (2017). Bilateral multi-perspective matching for
natural language sentences. CoRR, abs/1702.03814.

208. Wang, Z., A. S. Lan, W. Nie, A. E. Waters, P. J. Grimaldi, and R. G. Baraniuk, Qg-
net: a data-driven question generation model for educational content. In Proceedings
of the Fifth Annual ACM Conference on Learning at Scale. 2018b.

157

http://dblp.uni-trier.de/db/conf/eacl/enlg2010.html#TurnerSR10
http://dblp.uni-trier.de/db/conf/eacl/enlg2010.html#TurnerSR10
https://www.aclweb.org/anthology/C96-2141
https://doi.org/10.1145/2600428.2609559
https://doi.org/10.1145/2600428.2609559
https://www.aclweb.org/anthology/P13-1136
https://www.aclweb.org/anthology/2020.coling-main.452
https://www.aclweb.org/anthology/2020.coling-main.452
https://www.aclweb.org/anthology/P18-2042
https://www.aclweb.org/anthology/P18-2042

209. Wang, Z., X. Wang, B. An, D. Yu, and C. Chen, Towards faithful neural table-to-text
generation with content-matching constraints. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 2020b. URL https://www.aclweb.org/anthology/
2020.acl-main.101.

210. Wei, F., Y. He, W. Li, and Q. Lu, A query-sensitive graph-based sentence ranking
algorithm for query-oriented multi-document summarization. In 2008 International
Symposiums on Information Processing. 2008.

211. Weissenborn, D., G. Wiese, and L. Seiffe, Making neural QA as simple as possible
but not simpler. In Proceedings of the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017). Association for Computational Linguistics, Vancouver,
Canada, 2017. URL https://www.aclweb.org/anthology/K17-1028.

212. Weizenbaum, J. (1966). Eliza—a computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9(1), 36–45.

213. Welleck, S., I. Kulikov, S. Roller, E. Dinan, K. Cho, and J. Weston (2019). Neural
text generation with unlikelihood training. CoRR, abs/1908.04319.

214. Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10), 1550–1560.

215. Wieting, J., T. Berg-Kirkpatrick, K. Gimpel, and G. Neubig (2019). Beyond
bleu: Training neural machine translation with semantic similarity. arXiv preprint
arXiv:1909.06694.

216. Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Mach. Learn., 8(3-4), 229–256. ISSN 0885-6125.

217. Wiseman, S., S. M. Shieber, and A. M. Rush (2017). Challenges in data-to-document
generation. CoRR, abs/1707.08052.

218. Wolfe, J. H., Automatic question generation from text - an aid to independent study. In
SIGCSE ’76. 1976.

219. Xia, Y., F. Tian, L. Wu, J. Lin, T. Qin, N. Yu, and T.-Y. Liu, Deliberation networks:
Sequence generation beyond one-pass decoding. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 30. Curran Associates, Inc., 2017, 1784–1794.

220. Xiao, D., H. Zhang, Y. Li, Y. Sun, H. Tian, H. Wu, and H. Wang (2020). ERNIE-
GEN: an enhanced multi-flow pre-training and fine-tuning framework for natural lan-
guage generation. CoRR, abs/2001.11314. URL https://arxiv.org/abs/
2001.11314.

221. Xiao, Y. and W. Y. Wang (2021). On hallucination and predictive uncertainty in con-
ditional language generation.

222. Xie, Y., T. Zhou, Y. Mao, and W. Chen (2020). Conditional self-attention for query-
based summarization.

158

https://www.aclweb.org/anthology/2020.acl-main.101
https://www.aclweb.org/anthology/2020.acl-main.101
https://www.aclweb.org/anthology/K17-1028
https://arxiv.org/abs/2001.11314
https://arxiv.org/abs/2001.11314

223. Xu, J., Y. Wang, D. Tang, N. Duan, P. Yang, Q. Zeng, M. Zhou, and X. Sun, Asking
clarification questions in knowledge-based question answering. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Association for Computational Linguistics, Hong Kong, China, 2019. URL https:
//www.aclweb.org/anthology/D19-1172.

224. Ya, J., T. Liu, and L. Guo, A compare-aggregate model with external knowledge
for query-focused summarization. In Z. Huang, W. Beek, H. Wang, R. Zhou, and
Y. Zhang (eds.), Web Information Systems Engineering – WISE 2020. Springer Inter-
national Publishing, Cham, 2020. ISBN 978-3-030-62008-0.

225. Yang, Z., Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V. Le (2019).
Xlnet: Generalized autoregressive pretraining for language understanding. CoRR,
abs/1906.08237.

226. Yang, Z., P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D.
Manning, HotpotQA: A dataset for diverse, explainable multi-hop question answering.
In Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing (EMNLP). 2018.

227. Yao, K., G. Zweig, and B. Peng (2015). Attention with intention for a neural net-
work conversation model. CoRR, abs/1510.08565. URL http://arxiv.org/
abs/1510.08565.

228. Yao, X., G. Bouma, and Y. Zhang (2012). Semantics-based question generation and
implementation. Dialogue & Discourse, 3(2), 11–42.

229. Yuan, X., T. Wang, Ç. Gülçehre, A. Sordoni, P. Bachman, S. Zhang, S. Subrama-
nian, and A. Trischler, Machine comprehension by text-to-text neural question gener-
ation. In Rep4NLP@ACL. Association for Computational Linguistics, 2017.

230. Zajic, D. M., B. Dorr, J. Lin, and R. Schwartz, Sentence compression as a component
of a multi-document summarization system. In Proceedings of the 2006 document
understanding workshop, New York. 2006.

231. Zhang, J., Q. Wu, C. Shen, J. Zhang, J. Lu, and A. van den Hengel (2017). Ask-
ing the difficult questions: Goal-oriented visual question generation via intermediate
rewards. CoRR, abs/1711.07614.

232. Zhang, S. and M. Bansal (2019). Addressing semantic drift in question generation for
semi-supervised question answering. arXiv preprint arXiv:1909.06356.

233. Zhang, X., J. Su, Y. Qin, Y. Liu, R. Ji, and H. Wang, Asynchronous bidirectional
decoding for neural machine translation. In AAAI. AAAI Press, 2018.

234. Zhang, X., J. Zhao, and Y. LeCun, Character-level convolutional networks for text
classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/
file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.

159

https://www.aclweb.org/anthology/D19-1172
https://www.aclweb.org/anthology/D19-1172
http://arxiv.org/abs/1510.08565
http://arxiv.org/abs/1510.08565
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

235. Zhao, S., H. Wang, C. Li, T. Liu, and Y. Guan, Automatically generating questions
from queries for community-based question answering. In Proceedings of 5th Interna-
tional Joint Conference on Natural Language Processing. Asian Federation of Natural
Language Processing, Chiang Mai, Thailand, 2011. URL https://www.aclweb.
org/anthology/I11-1104.

236. Zhao, Y., X. Ni, Y. Ding, and Q. Ke, Paragraph-level neural question generation with
maxout pointer and gated self-attention networks. In EMNLP. 2018.

237. Zheng, Z., X. Si, E. Y. Chang, and X. Zhu, K2q: Generating natural language ques-
tions from keywords with user refinements. In Proceedings of the 5th International
Joint Conference on Natural Language Processing. 2011. URL http://aclweb.
org/anthology-new/I/I11/I11-1106.pdf.

238. Zhou, Q., N. Yang, F. Wei, C. Tan, H. Bao, and M. Zhou, Neural question generation
from text: A preliminary study. In NLPCC. 2017.

239. Zhou, W., M. Zhang, and Y. Wu, Question-type driven question generation. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China,
2019. URL https://www.aclweb.org/anthology/D19-1622.

240. Zhu, H., L. Dong, F. Wei, W. Wang, B. Qin, and T. Liu (2019). Learning to ask
unanswerable questions for machine reading comprehension. CoRR, abs/1906.06045.

160

https://www.aclweb.org/anthology/I11-1104
https://www.aclweb.org/anthology/I11-1104
http://aclweb.org/anthology-new/I/I11/I11-1106.pdf
http://aclweb.org/anthology-new/I/I11/I11-1106.pdf
https://www.aclweb.org/anthology/D19-1622

LIST OF PAPERS BASED ON THESIS

1. Let’s Ask Again: Refine Network for Automatic Question Generation - Preksha

Nema, Akash Kumar Mohankumar, Mitesh M. Khapra, Balaji Vasan Srini-

vasan, Balaraman Ravindran, The 2019 Conference on Empirical Methods in

Natural Language Processing, (EMNLP, 2019)

2. Towards a Better Metric for Evaluating Question Generation Systems- Preksha

Nema, Mitesh M. Khapra, The 2018 Conference on Empirical Methods in Nat-

ural Language Processing, (EMNLP, 2018)

3. Generating Descriptions from Structured Data Using a Bifocal Attention Mech-

anism and Gated Orthogonalization - Preksha Nema, Shreyas Shetty, Parag

Jain, Anirban Laha, Karthik Sankaranarayanan, Mitesh M. Khapra, The

2018 Conference of the North American Chapter of the Association for Compu-

tational Linguistics, (NAACL,2018)

4. Diversity driven Attention Model for Query Based Abstractive Summarization -

Preksha Nema, Mitesh M. Khapra, Anirban Laha, Balaraman Ravindran,

Association for Computational Linguistics, 2017, (ACL, 2017)

161

162

DOCTORAL COMMITTEE

Chairperson: Dr. P. Sreenivasa Kumar
Professor
Department of Computer Science & Engineering
Indian Institute of Technology Madras

Research Advisors: Dr. Mitesh M. Khapra
Associate Professor
Department of Computer Science & Engineering
Indian Institute of Technology Madras

Dr. Balaraman Ravindran
Professor
Department of Computer Science & Engineering
Indian Institute of Technology Madras

Members: Dr. Sutanu Chakraborti
Associate Professor
Department of Computer Science & Engineering
Indian Institute of Technology Madras

Dr. N.S. Narayanaswamy
Professor
Department of Computer Science & Engineering
Indian Institute of Technology Madras

Dr. Kaushik Mitra
Assistant Professor
Department of Electrical Engineering
Indian Institute of Technology Madras

163

164

CURRICULUM VITAE

1. NAME : Preksha Nema

2. DATE OF BIRTH : February 25th, 1990

3. PERMANENT ADDRESS : 531-14 Shyam Dujiya Nilay,

Near Ghadi Chowk, Vijaynagar

Jabalpur, 482002

Madhya Pradesh

Email: preksha.nema9@gmail.com

Phone: +91-9890283245

4. EDUCATIONAL QUALIFICATIONS

Bachelor of Technology (B.Tech.)

Year of Completion : 2012

Institution : Visvesvaraya National Institute of Technology,

Nagpur, Maharashtra

Specialization : Computer Science and

Engineering

165

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	NOTATION
	Introduction
	Limitations of Sequence to Sequence Models
	Objectives of the Thesis
	Contributions of this Thesis
	Outline of the Thesis

	Background
	Relevant NLG Tasks
	Abstractive Summarization
	Query-Based Abstractive Summarization
	Structured Data to Text Generation
	Question Generation

	An overview of Neural Networks
	Artificial Neuron
	Artificial Neural Networks
	Training ANNs

	Recurrent Neural Networks
	Learning Algorithms for RNNs

	Long Short Term Memory
	Sequence-to-Sequence Models
	Encoder Module
	Decoder Module

	Attention Mechanisms
	Evaluation Metrics
	BLEU
	NIST
	METEOR
	ROUGE

	Summary

	Related Work
	State of the art models for different tasks considered in this thesis
	Task: Structured data-to-text generation
	Automatic Question Generation
	Query Based Abstractive Summarization

	Works addressing the same limitations in Seq2Seq models as identified in this thesis
	Avoiding Repeating Phrases
	Better Transition among fields for Structured data to Text Generation
	Improving answerability for Question Generation
	Other Limitations

	Works using similar techniques as proposed in this thesis
	Using Orthogonalization to Diversify Context Vectors
	Using explicit reward signals for improving NLG
	Generating multiple drafts

	Summary

	Avoiding Repeating Phrases in NLG
	Introduction
	Model Architecture
	Encode
	Attend
	Refine
	Decode

	Baseline Methods
	Query Based Abstractive Summarization Dataset
	Experimental Setup
	Implementation Details

	Results and Discussions
	Summary

	Exploiting Task Specific Characteristics for improving Adequacy
	Introduction
	Proposed model
	Encode
	Attend
	Refine
	Decode
	Copying Mechanism

	Experimental setup
	Datasets
	Models compared
	Hyperparameter tuning

	Results and Discussions
	Comparison of different models
	Human Evaluation
	Performance on different languages
	Visualizing Attention Weights
	Out of domain results

	Summary

	Designing Task Specific Metric for improving Answerability
	Introduction
	Q-Metric: A better metric for AQG
	Using Q-Metric to improve AQG systems

	Human Judgments For Answerability
	Creating Noisy Questions
	Instructions provided to human annotators
	Human-Human Correlation
	Correlation between human scores and existing evaluation metrics

	Modifying existing metrics for AQG
	Tuning the weights wi's and
	Correlation between Human scores and different Q-METRICs
	Qualitative Analysis

	Extrinsic evaluation
	Encode-Attend-Refine-Decode Model for AQG
	Encode Module
	Attend Module
	Decode Module
	Refine Module
	Training Objective

	Experimental Details
	Datasets for AQG
	Implementation Details

	Results and Discussions
	EARD's performance across datasets
	Human Evaluations
	Analysis of Refined Draft and Initial Draft
	Analysis of Reward Based Training Objective
	Impact of character and positional embeddings
	Case Study: Originality of the Questions

	Summary

	Conclusion and Future Work
	Future Directions

	LIST OF PAPERS BASED ON THESIS

