Multi-label Collective Classification in Multi-attribute Multi-relational Network Data

Priyesh Vijayan
Ericsson Research
Chennai, India
Email: priyesh@hotmail.co.in

Shivashankar Subramanian
Ericsson Research
Chennai, India
Email: s.shivashankar@ericsson.com

Balaraman Ravindran
Department of CSE, IIT Madras
Chennai, India
Email: ravi@cse.iitm.ac.in

Abstract—Classical machine learning techniques assume the data to be i.i.d., but the real world data is inherently relational and can generally be represented using graphs or some variants of a graph representation. The importance of modeling relational data is evident from its increasing presence in many domains: Telecom networks, WWW, social networks, organizational networks, images, protein sequences, etc. This field has recently been receiving a lot of attention in various communities under different themes depending on the problem addressed and the nature of solution proposed. Collective classification is one such popular approach which involves the use of a local classifier that embeds the node’s own attributes and neighbors’ information in a feature vector, and classifies the nodes in an iterative procedure. Despite the increasing popularity, there is not much attention paid towards datasets with multiple attributes and multi-relational (MAMR) networks under multi-label scenarios. In MAMR data, nodes can be represented using multiple types of attributes (attribute views) and there are multiple link types between the nodes. For example, in Twitter, users can be represented using their tweets, urls shared, hashtags and list memberships. And different Twitter users can be connected using follower, followed by and re-tweet links. Secondly, in many networks, nodes are associated with more than one label. For instance, Twitter users can be tagged with one or more labels from a set \(L \), where \(L \) contains various movie genres that a user might like. Motivated by this, we propose a learning technique for multi-label collective classification using multiple attribute views on multi-relational network data which captures complex label correlations within and across attribute/relationship types. We empirically evaluate our proposed approach on Twitter and MovieLens datasets, and we show that it performs better than the state-of-art approaches.

I. INTRODUCTION

Many real-world applications such as web page classification [1], churn prediction [2] and sentiment analysis [3] etc., have an inherent network structure that results in correlation between labels of neighboring data points. For example, in web page classification, hyperlinks between web pages convey that there is a strong correlation between labels of linked pages. Existing works that handle network data can be broadly classified into two types: (1) methods that use only relational (structure) information (2) methods that use both attribute and relational information. It has been shown that latter type of methods capture richer information than the former ones.

Collective classification is one of the popular approaches that can handle both attribute and relational information [4], [5]. It includes node classification techniques, which jointly model attribute data and label correlation information of related objects, by combining traditional machine learning and link (neighborhood structure) based classification in an iterative procedure. Semi-supervised collective classification techniques have been proposed by researchers to handle partially labeled networks [3], [6], [7].

All these collective classification techniques assume the data points to have only one attribute and one link representation. But many real-world datasets possess additional information that can be utilized to improve the performance. For example, in an academic dataset, in order to classify research interests, researchers can be represented not only using a single attribute view such as their publications’ text but also using other attribute views such as their homepage content, conference details of their publications and multiple relational views such as their co-authorship network, co-citation network and so on. Thus network data can have multiple attribute (vector-based) and multiple relational (graph-based) representations. Also, in many such complex network datasets such as Twitter, Facebook and LinkedIn, the nodes are commonly associated with more than one label. For instance, the labels could be social network users’ interests. This is referred to as multi-label classification [8].

When multiple views of data are available, we can use a different class of methods to take advantage of unlabeled data [9]. Multi-view learning techniques learn a model for each available view of the data and minimize the disagreement between multiple views on the unlabeled data. Co-training [10], [11] is a multi-view semi-supervised learning algorithm which learns a model on each view of the data and exchanges confident predictions with each other, thereby leveraging complementary information available across different views. However, multi-view learning methods do not model network data with relational features.

Recently, MAMR setup and multi-label classification on network data has drawn the attention of researchers separately. To the best of our knowledge there is no existing work for multi-label classification handling MAMR data in a semi-supervised setup. This scenario can be found in many applications such as: (1) Twitter users’ interest classification, where users can be represented using their tweets, urls shared, hashtags and list memberships. And different Twitter users can be connected using follower, followed by and re-tweet links. (2) Topic classification on web page dataset, where each web page can be represented using the text, hashtags and images. Additionally different web pages can be connected using in-link, out-link and co-citation networks.
The key challenge would be to design a multi-label semisupervised learning technique that would not only exploit multiple attribute and relational view data but also correlation between labels. In multi-label scenario, there may be dependency among labels associated with instances as in the case of research interest prediction, where a researcher working on data mining is more likely to work on machine learning, whereas a researcher working on microprocessors is unlikely to work on machine learning and there may be correlation among labels of related instances as researchers with similar interest collaborate together for publications/projects. Thus complex label correlations must be captured within the same instance across multiple attribute views and among labels of related instances across multiple relational views. In this work, we address these challenges by building upon multi-view learning technique to solve multi-label collective classification on MAMR data by treating multiple attribute and multiple relational types as different views.

In this paper, we refer to network data with multiple attribute views (representations) and multi-relational information as multi-attribute multi-relational (MAMR) datasets. Also we use ‘single attribute’ to denote datasets with only one attribute view and ‘multi-attribute’ for datasets with multiple types of attribute views. Finally, as commonly used in the literature, we also use single and multi-relational data for networks with single and multiple relationship types respectively.

II. RELATED WORKS

Some of the recent works which address a similar classification problem are discussed below:

Multi-Label Collective Classification (MLCC) [12] adapts collective classification technique to handle multi-label classification on single attribute single relational network data. It transforms the multi-label problem into multiple binary relevance problems one for each label and captures complex label correlations that may exist among labels within the same instance and across related instances; by stacking labels of the same instance and related instances with the feature set. Cross-model Collective Ensemble Classification (CEC) [13] is a single-label collective classification technique for single attribute multi-relational network data. In [13], the authors propose an ensemble framework that can iteratively infer from multiple collective classifiers learnt over multiple networks, one for each network.

Iterative annotation of multi-relational social networks (IMR) [14] is a multi-label collective classification technique for single attribute multi-relational network data. It treats the multi-label problem as multiple binary relevance problems by learning collective classifiers for each label on the feature set stacked with aggregate label information of related instances from multiple relations for respective label classifiers. This technique does not capture label correlations as [12].

Heterogeneous Learning (GBDT) [15] is a single label classification technique for multi-attribute multi-relational network data. It is an error driven model which constructs a function on each attribute view and tries to globally reduce an empirical error function with two constraints: (1) Consensus across various attribute sources (2) Connected instances should have similar predictions.

[12], [13] and [14] are iterative inference techniques (transductive setup) while [15] is a semi-supervised inductive learning technique. Our focus is on inductive learning for multi-label classification on MAMR data that should capture complex label correlations. The closest related work would be [15], but since it enforces homophily and does not leverage label correlation information, it cannot be directly used for multi-label collective classification.

III. PROBLEM DEFINITION

In this section we define the problem of multi-label classification on MAMR data and list down key challenges involved in addressing the problem. Conventional node classification algorithms (for single-label classification) in partially labeled networks propagate labels among nodes until convergence. In this setup, label information for a subset of nodes will be completely known and that of the remaining nodes would be unknown. But in many social network datasets such as Facebook, users may be associated with multiple groups (multi-label classification). In this scenario, label information will not be completely known even for a subset of the nodes, i.e., not all label assignments will be known for nodes. For each group (label), we could generate a labeled set of nodes, based on any of the labeling strategies, such as group membership based label assignment. Thus we learn a classifier for each label separately that models the complex data and also captures label correlations effectively.

The dataset is represented as \(D(N,A,G,L,T,U,Y) \), where \(N \) is the number of instances(nodes), \(A \) is the set of vector based attribute views, \(G \) is the set of graph based relational features, \(L \) is the label set, \(T \) is the family of sets of labeled instances’ indices for each label, \(U \) is the family of sets of unlabeled instances’ indices for each label and \(Y \) is the label vector for instances. Important notations followed in this paper are tabulated in Table I.

TABLE I Symbol Table

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = {A^1, A^2, \ldots, A^p})</td>
<td>set of (p) attribute views, (A_j \in \mathbb{R}^{j_i, j_{2i}}) is the dimension of (i^{th}) view</td>
</tr>
<tr>
<td>(G = {G^1, G^2, \ldots, G^q})</td>
<td>set of (q) relational(graph) views</td>
</tr>
<tr>
<td>(L = {L_1, \ldots, L_k})</td>
<td>the set of (k) labels</td>
</tr>
<tr>
<td>(T = {T_1, T_2, \ldots, T_k})</td>
<td>(k) sets of labeled instances’ indices over (N)</td>
</tr>
<tr>
<td>(U = {U_1, U_2, \ldots, U_k})</td>
<td>(k) sets of unlabeled instances’ indices over (N)</td>
</tr>
<tr>
<td>(Y_i = (Y_{i1}, Y_{i2}, \ldots, Y_{ik}))</td>
<td>label vector for (i^{th}) instance, ((Y_{ij} = 1 \text{ if } j \in L \text{ else } Y_{ij} = 0))</td>
</tr>
</tbody>
</table>

In order to exploit MAMR data for multi-label classification, various information need to be captured while modeling. The key challenges involved are:

1. Building a unified model for multiple views which may differ in representation (attribute and structure) and statistical properties (distribution), \(P(Y|A,G) \).
2. Maximizing consensus among multiple attribute and multiple relational views separately to leverage the unlabeled information. Also, exploiting complementary information between attribute and link views at a higher level that effectively utilizes both the node’s profile and relationships.
3. Capturing complex label correlations that may exist within the same instance across multiple attribute views and among labels of related instances across multiple relational views, also (at a higher level) between attribute and relational views.
\[
\min \left(L_1(A, G, L, T) + L_2(A, G, L, U) + L_3(A, G, L, U) \right)
\]

\[
L_1(A, G, L, T) = \sum_{l \in L} \left(\sum_{a \in A} \mathcal{L}(f^a_l(A^a_{T_l}), Y^l_T) + \sum_{g \in G} \mathcal{L}(f^g_l(G^g_{U_l}), Y^l_U) \right)
\]

\[
L_2(A, G, L, U) = \sum_{l \in L} \left(\sum_{a \in A} (f^a_l(A^a_{U_l}) - \prod_{a \in A} f^a_l(A^a_{U_l}))^2 + \sum_{g \in G} (f^g_l(G^g_{U_l}) - \prod_{g \in G} f^g_l(G^g_{U_l}))^2 \right)
\]

\[
L_3(A, G, L, U) = \sum_{l \in L} \left(\sum_{a \in A} (f^a_l(A^a_{U_l}) - \prod_{g \in G} f^g_l(G^g_{U_l}))^2 + \sum_{a \in A} (f^a_l(A^a_{U_l}) - \prod_{a \in A} f^a_l(A^a_{U_l}))^2 \right)
\]

IV. PROPOSED SOLUTION

A. Proposed Framework

Semi-supervised learning methods minimize the loss on both labeled and unlabeled data. The loss on labeled data is solved with supervised machine learning techniques that fit a model to the data, whereas the loss on unlabeled data varies depending on the semi-supervised paradigm used. In the case of disagreement based semi-supervised techniques such as co-training methods, loss on unlabeled data is captured as the disagreement on unlabeled data between views.

We propose a co-training style learning framework for multi-label classification on multi-attribute and multi-relational data. The proposed framework learns a classifier \(f^l \) for each label, \(l \in L \) on each attribute view \(a \in A \) and each relational view \(g \in G \), leveraging both labeled and unlabeled data. The classifiers learned on attribute and relational views are denoted as \(f^a_l \) and \(f^g_l \) respectively. The objective function solved by the framework can be expressed as a minimization of three loss terms \(L_1 \), \(L_2 \) and \(L_3 \) as given in equation (1).

\(L_1 \) represents the loss on labeled data on both attribute and relational views, where \(L \) is the loss function of the classifier used. For SVM classifier [16] which we use in this work, \(\mathcal{L} \) would be Hinge loss. The proposed framework leverages unlabeled data by reducing the loss terms \(L_2 \) and \(L_3 \), where \(L_2 \) represents the local disagreement within predictions of multiple attribute and multiple relational views and \(L_3 \) represents the global disagreement between the predictions of individual attribute and relational views with combined predictions from relational and attribute views respectively.

The proposed co-training style framework handles \(L_2 \) and \(L_3 \) losses with two update steps alternatively. The first update uses an ensemble averaging based co-training method to maximize consensus locally within multiple attribute views and multiple relational views. In ensemble averaging based co-training, we learn a model on each view and combine the predictions using voting. We select instances with high scores from voting to be appended to the labeled set for re-training. Conventional co-training algorithms re-train from confident predictions of individual views which may be noisy, whereas ensemble based techniques can help in reducing variance (error on unlabeled data) which is very critical for semi-supervised setup in order to prevent noisy label propagation [17]. The second update uses a co-training style method to reduce the disagreement between attribute and relational views globally by exchanging highly confident predictions obtained from ensemble of local view classifiers from the previous update.

B. Handling Relational Information

Co-training methods cannot handle relational data directly; hence we need to transform relational views into vector-based views. Each relational view, \(G^i \) is transformed into a vector space, \((TG^i) \) where instances are represented with aggregated label information [5] (COUNT, MODE, label distribution, etc.) of it’s neighbors in \(G^i \). This transformation enables us to learn a unified model across multiple views (attribute and relational). Secondly, co-training assumes that the instances do not have any missing views, but \(MAMR \) data could have missing views especially relational views since it can contain arbitrary relationships between nodes. Nodes with arbitrary relationships, i.e., not all relationship types might be present for a particular node, can easily be found in social networks. For instance, in case of Twitter, we witness absence of follower information for less active users. In such cases, it is not advisable to consider missing views for nodes while learning. The transformation step handles such cases suitably for different aggregation techniques used: zero vector for count based transformation, equal probability vector for label distribution based transformation, and so on.

C. Handling Label Correlation

\(MAMR \) data has complex label correlations. Labels within the same instance may be correlated across different attribute views and labels of related instances may be correlated across different relational views. In order to capture label correlation information for each label within instances, we follow a two step procedure similar to [18]. In the first step, for each label we predict labels for instances on each view and combine them by voting. In the second step, for each label \(l \) on each view \(A^i \), we obtain a new feature set, \(SA^i \) by stacking \(A^i \) with a binary vector \(Y^l_{-i} \) that captures the labels in \(\{L - l\} \) obtained from the predictions. Since the same label correlation information \(Y_{-l}^l \) for each label \(l \) obtained from voting is stacked across multiple attribute views, consensus among stacked attribute views will be maximized. Whereas label correlations between related instances are automatically captured by classifiers learned on the transformed relational data, as the data explicitly represents the summarized label correlation information of related instances.
D. Algorithm

The objective function in equation (1) is extended to capture relational information and label correlations as mentioned in section IV-B and IV-C respectively. The new objective function is given below in equation (2).

\[
\min\{L_1(SA,TG,L,T) + L_2(SA,TG,L,U) + L_3(SA,TG,L,U)\} \tag{2}
\]

The proposed solution handles the above mentioned objective function as described in Algorithm 1. In order to learn on multiple views with label correlation information, we need label predictions for stacking as explained in IV-C. Hence we bootstrap labels for unlabeled instances using multi-view learning on attribute views as explained by the function MVLearning in the Algorithm 2. After bootstrapping, the iterative multi-view learning procedure follows. We minimize the four disagreement terms expressed in \(L_2\) and \(L_3\) losses alternatively and iteratively by the following four steps:

1) We create stacked attribute views for each label as explained in section IV-C (stackLabelCorrelation\((A,Y,l)\)). For unlabeled instances, stacked attribute views are created by stacking the original feature set of views with label predictions obtained from an ensemble (voting) of attribute learners and for labeled instances given labels are stacked. Then for each label, we (re-)train a model on each attribute view with top confident predictions from an ensemble of attribute classifiers (either from step 4 or initially with bootstrapped ensemble of predictions). This step aims to locally maximize consensus within multiple attribute views.

2) We create relational views as explained in section IV-B \((\text{transformGraph}\((G,Y)\))\) with predictions from an ensemble of attribute classifiers. For each label, we (re-)train a model on each transformed relational view with top confident predictions from an ensemble of attribute classifiers from step 1. This step aims to globally reduce the disagreement between each relational view and multiple attribute views by learning from shared complementary information from an ensemble of attribute classifiers.

3) We update the transformed relational views \((\text{transformGraph}\((G_T,Y_T)\))\) with confident predictions from step 2. For each label, we (re-)train a model on each relational view with top confident predictions from an ensemble of relational classifiers from step 2. This step aims to locally maximize the consensus within multiple relational views.

4) We update stacked attribute views \((\text{stackLabelCorrelation}\((A_T,Y_T,l)\))\) with confident predictions from step 3. For each label, we (re-)train a model on each stacked attribute view with top confident predictions shared from an ensemble of relational classifiers and thereby reduce the global disagreement between each attribute view and multiple relational views. Steps 1 to 4 are iterated until the termination condition is met.

\[
\text{MVLearning}(\text{views}, T, U, Y) \text{ function learns a one-vs-all SVM classifier for each label on the labeled data obtained from an ensemble of multi-view learners either locally within attribute/relation views or globally across attribute and relational views. The posterior probability for positive class and negative class for each label on unlabeled data is predicted on all views. Then we combine probabilities by voting to find highly confident predictions for each label and append it to the labeled set for that label.}
\]

Algorithm 1 \(ML - MAMR\)

Input: \(D(A, G, L, T, N, Y)\)

Output: \([f_A, f_G, Y]\)

Bootstrap:

for \(l \in L\) do

\([f_A, T^l, U^l, Y^l] = \text{MVLearning}(A, T^l, U^l, Y^l)\)

end for

Iterative multi-view learning:

repeat

Step 1:

for \(l \in L\) do

\(SA = \text{stackLabelCorrelation}(A,Y,l)\)

\([f_A, T^l, U^l, Y^l] = \text{MVLearning}(SA,T^l,U^l,Y^l)\)

end for

Step 2:

\(TG = \text{transformGraph}(G,Y)\)

for \(l \in L\) do

\([f_G, T^l, U^l, Y^l] = \text{MVLearning}(TG,T^l,U^l,Y^l)\)

end for

Step 3:

\(TG_T = \text{transformGraph}(G_T,Y_T)\)

for \(l \in L\) do

\([f_G, T^l, U^l, Y^l] = \text{MVLearning}(TG_T,T^l,U^l,Y^l)\)

end for

Step 4:

for \(l \in L\) do

\(SA_T = \text{stackLabelCorrelation}(A_T,Y_T,l)\)

\([f_A, T^l, U^l, Y^l] = \text{MVLearning}(SA_T,T^l,U^l,Y^l)\)

end for

until \(U^l = \emptyset, \forall l \in L\)

Algorithm 2 \(MVLearning\)

function \(\text{MVLearning}(\text{views}, T, U, Y)\)

for \(X\) in \(\text{views}\) do

\(f_X = SVM_MTrain(X_T,T_T)\)

\([P_X, N_X, Y_X = SVM_Predict(f_X, U)\]

end for

\(P_{prob} = \Pi_X P_X\), where \(x \in A\) [voting]

\(N_{prob} = \Pi_X N_X\), where \(x \in A\) [voting]

\(T = T \cup \text{getConfidentLabels}(P_{prob}, N_{prob})\)

\(U = U \backslash T\)

return \([f, T, U, Y]\)

end function

The \(\text{getConfidentLabels}(P_{prob}, N_{prob})\) function returns instances with top confident predictions. There are many techniques to choose confident labels. We choose the top 10% confident predictions while maintaining the label distribution (positive, negative class distribution for each label) same as in the given labeled set.

For collective inference on \(MAMR\) data under semi-supervised conditions, we can use the same iterative learning procedure given in Algorithm 1 without re-estimating the parameters of \(f_A^l\) and \(f_G^l\).
V. EXPERIMENTAL RESULTS

A. Datasets

We have used two datasets to evaluate the performance of the proposed ML – MAMR model. A short description of the datasets used is given below:

Rugby Players and Clubs on Twitter (Twitter Dataset):
UCD MLG group’s multi-view Twitter dataset\(^1\) is a collection of 854 International Rugby Union players, clubs and organizations on Twitter. The ground truth consists of communities corresponding to 15 countries. The communities are overlapping, as players can be associated with their home nation and the nation in which they play club rugby. We used all the views as it is from the source dataset.

There are 9 different views in the dataset, viz.:
- **Attribute views (3):** tweet contents of players, list memberships of each player and the corresponding lists’ contents.
- **Relational views (6):** followers, followedby, mentions, mentionedby, retweets and retweetedby relations of players.

The characteristics of the data are as follows:
- **Instances:** 854; **Labels:** 15; **Label cardinality:** 1.2307
- **Label density:** 2.2976

MovieLens Dataset (Movie Dataset):
This dataset is an extension of GroupLens research group’s MovieLens10M\(^2\) dataset. The task here is to predict relevant genres for each movie.

We extracted 4 different views from the data, viz.:
- **Attribute views (2):** movie summary and movie tags.
- **Relational views (2):** actor and director graphs.

Tags of movies are directly obtained from the source dataset, while summary of movies were extracted from IMDB\(^3\) database using the IMDB ids of movies given in the source dataset. Summary (text) is represented using term-frequency (TF) representation, where the vocabulary was built using distinct words with (freq(words)>3). Actor and director information of movies are available in the source dataset, with which we created actor and director graphs by adding links between movies that share common artists and directors respectively.

The characteristics of the data are as follows:
- **Instances:** 3911; **Labels:** 18; **Label cardinality:** 0.0820
- **Label density:** 0.1276

In general, the number of labels associated to instances (on an average) plays a key role in capturing label correlations. We can see that Movie dataset has higher label density and cardinality measures compared to Twitter dataset which allows the proposed technique to capture richer correlation information. This can also be seen in experimental results section, where the gain in performance using the proposed method (compared to state-of-art techniques) is higher on Movie-Genre dataset.

B. Baseline methods and Experimental Setup

We compare our proposed ML – MAMR learning approach with three related works discussed in section II, viz: MLCC [12], CEC [13] and GBDT [15]). Our primary focus is on capturing complex label correlations (within instance and across related instances) besides MAMR setup and since IMR [14] assumes all labels to be independent, we use CEC\(_ML\) as a baseline to compare our performance with a technique that handles single-attribute multi-relational data with complex label correlations. In CEC\(_ML\), we stack label correlation information similar to MLCC in CEC method.

In order for MLCC, CEC and CEC\(_ML\) to handle multi-attribute data we combine multiple attribute views into a single attribute view by stacking views together and similarly for MLCC to handle multi-relational data we combine multiple relational views into a single relational view by adding links between nodes if they have at least one link (based on any of the relationships) between them.

ML – MAMR, MLCC, CEC and CEC\(_ML\) do not have any parameters. As our work does not focus on weighting views, in GBDT we give equal weight to attribute views and relational views on an abstract level ($\lambda_0 = 0.5$ and $\lambda_1 = 0.5$) and also at individual view level among attribute and relational views (w). The base classifier used for the experiments is libsvm’s [16] implementation of SVM.

The below mentioned performance measures are averaged using 5-fold cross validation for each labeled ratio. We repeat the experiments with different labeled ratios (10% 30% 50% 70% and 90%) in-order to evaluate the robustness of our proposed method under label sparsity conditions. For each label, training instances are chosen by using stratified random sampling, i.e., instance ratio for each label in the labeled set is maintained at the same ratio as present in the entire dataset [19]. We evaluate the performance using four commonly used metrics for multi-label classification [8]: Exact-Match-Ratio, Accuracy, Precision and Hamming Loss.

C. Results

Experimental results on the two datasets comparing our proposed approach with baseline methods are given in Tables II and III. The results are given on a percentage scale. Performances of the best method on each metric are highlighted. Overall, the proposed approach performs better than the baseline approaches. Some of the observations that we derived from the results are given below:

- Performance gain on Movie dataset is higher compared to Twitter dataset, which goes well with the intuition that it is possible to capture label correlations better on a dataset which has higher label density/cardinality.
- Following from the previous observation, on Twitter dataset, GBDT performs better than other baseline techniques and similarly on Movie dataset, MLCC performs better than the rest. It reinstates the argument that GBDT assumes homophily and is not naturally suitable for multi-label classification.
- Proposed approach shows better gain in performance for scenarios with lower labeled instances (training ratio), i.e., handles label sparsity by leveraging all the views effectively.
- Exact match ratio is considered as the strictest evaluation metric for multi-label classification. From the experimental results, we can see that the proposed approach shows maximum gain in performance on exact match ratio than other metrics. It re-emphasizes the fact that our proposed approach captures necessary label correlation information effectively.

\(^2\)http://ir.ii.uam.es/hetrec2011/datasets.html

\(^3\)http://www.imdb.com
In this paper we studied the problem of multi-label classification for multi-attribute multi-relational data sources. The complexities of the data require a unified multi-label model to learn from multiple attribute and arbitrary relational views. Secondly, the proposed technique also captures various complex label correlations within and across attribute and relational data. To the best of our knowledge, the proposed co-training style algorithm is the first to provide a solution to this problem. The proposed algorithm tries to maximize the consensus among various attribute and relational views individually, and simultaneously reduces disagreement between attribute and relational views by sharing complementary information between them. It is very much evident from the empirical results that the proposed algorithm not only exploits multiple views, but also captures label correlations effectively than any of the existing works.

REFERENCES

