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Abstract. When applied to real world problems Markov Decision Pro-
cesses (MDPs) often exhibit considerable implicit redundancy, especially
when there are symmetries in the problem. In this article we present an
MDP minimization framework based on homomorphisms. The frame-
work exploits redundancy and symmetry to derive smaller equivalent
models of the problem. We then apply our minimization ideas to the op-
tions framework to derive relativized options—options defined without
an absolute frame of reference. We demonstrate their utility empirically
even in cases where the minimization criteria are not met exactly.

1 Introduction

Researchers in artificial intelligence (AI) and in particular machine learning (ML)
have long recognized that extending AI and ML approaches to more complex
real-world domains requires incorporating the ability to handle and form various
abstractions, both temporal and spatial. In this article we present a Markov
decision processes (MDP) minimization framework we developed earlier [15] that
allows us to abstract away redundancy in the problem definition. We then apply
these ideas to hierarchical Reinforcement Learning (RL). Our framework is an
extension of a MDP minimization framework developed by Dean and Givan [4,
6].

Model minimization methods attempt to abstract away redundancy in an
MDP model and derive an “equivalent” smaller model. To illustrate model min-
imization, consider the simple gridworld shown in Figure 1(a). The goal state
is labelled G. The gridworld is symmetric about the NE-SW diagonal. Hence
taking action E in state A is equivalent to taking action N in state B, in the
sense that they go to equivalent states that are one step closer to the goal. One
can say that the state-action pairs (A, E) and (B, N) are equivalent. We can
exploit this notion of equivalence to construct a smaller model of the gridworld,
one that can be used to derive a solution to the original problem. Such a reduced
gridworld is shown in Figure 1(b).
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Fig.1. (a) A symmetric gridworld problem. The goal state is G and there are four
deterministic actions. States A and B are equivalent in the sense described in the
text. (b) A reduced model of the gridworld in (a). The states A and B in the original
problem correspond to the single state {A, B} in the reduced problem. A solution to
this reduced gridworld can be used to derive a solution to the full problem.

We base our approach to MDP minimization on the notion of MDP homo-
morphisms. This is an extension of machine homomorphisms from finite state
automata (FSA) literature [9]. We extend the notion to MDPs by incorporating
decision making and stochasticity. The key novelty in our approach is the ex-
tension of notions of equivalence to state-action pairs. This enables us to apply
our results to a wider class of problems and extend existing MDP minimization
frameworks in ways not possible earlier. Specifically, by employing group theo-
retic concepts we show that our extended minimization framework can abstract
away symmetries in an MDP model.

The minimization framework we develop for MDPs can be employed readily
by RL algorithms for spatial abstraction. The options framework [17] enables RL
algorithms to employ temporal abstractions in the form of temporally extended
actions, or options. Extending our algebraic framework to a hierarchical RL set-
ting such as the options framework opens up additional possibilities. In this
paper we introduce relativized options, an extension to the options framework
based on “partial” MDP homomorphisms that allows us to define option policies
without an absolute frame of reference and hence widens the applicability of an
option, enables greater knowledge transfer across tasks and more efficient use of
experience. We also investigate employing relativized options in cases where the
abstraction conditions are not satisfied exactly. We introduce approximate ho-
momorphisms that model such scenarios using the notion of bounded-parameter
MDPs [7].

In the next section we present some notation we will be using. In Section 3 we
outline our model minimization framework and state some results. We also show
how our framework can exploit symmetries of MDPs. In Section 4 we introduce
relativized options and present some experimental results. In Section 5 we define
approximate homomorphisms and empirically demonstrate their usefulness. We
conclude with a discussion on related work and some future directions of research.



2 Notation

A Markov Decision Process is a tuple (S, A, ¥, P, R), where S is a finite set of
states, A is a finite set of actions, ¥ C S x A is the set of admissible state-action
pairs, P : ¥ x S — [0,1] is the transition probability function with P(s,a,s’)
being the probability of transition from state s to state s’ under action a, and
R : ¥ — R is the expected reward function, with R(s,a) being the expected
reward for performing action a in state s. We assume that the rewards are
bounded. Let A, = {al|(s,a) € ¥} C A denote the set of actions admissible in
state s. We assume that for all s € S, A, is non-empty. A stochastic policy 7 is a
mapping from ¥ to the real interval [0, 1] with ). ., 7(s,a) = 1for all s € S.
For any (s,a) € ¥, (s, a) gives the probability of picking action a in state s.
The solution of an MDP is an optimal policy 7* that uniformly dominates all
other possible policies for that MDP.

Let B be a partition of a set X. For any z € X, [z]5 denotes the block of B
to which z belongs. Any function f from a set X to a set Y induces a partition
By on X, with [z]5, = [2']p, if and only if f(z) = f(2'). Let B be a partition
of Z C X xY, where X and Y are arbitrary sets. The projection of B onto
X is the partition B|X of X such that for any z,2' € X, [z]5x = [¢']px if
and only if every block of B containing a pair in which z (z') is a component
also contains a pair in which z' (z) is a component. A partition of an MDP
M = (S,A,¥,P,R) is a partition of ¥. Given a partition B of M, the block
transition probability of M is the function T : ¥ x B|S — [0,1] defined by
T(s,a,[s'|ps) = ZSHE[S,]B|S P(s,a,s"). In other words, T'(s,a,[s']5) is the
probability of transiting from state s to some state in the block [s] B|S (i-e. the
block to which state s’ belongs) under action a.

An option (or a temporally extended action) [17] in an MDP M = (S, A, ¥, P,
R) is defined by the tuple O = (Z,, 3), where the initiation set Z C S is the
set of states in which the option can be invoked, 7 is the option policy, and the
termination function 8 : S — [0, 1] gives the probability of the option terminat-
ing in any given state. The option policy can in general can be a mapping from
arbitrary sequences of state-action pairs (or histories) to action probabilities.

3 MDP Homomorphisms

In this article we present a formalism that captures the intuitive notion of equiv-
alence illustrated in Figure 1. In Figure 1(a), we consider states A and B equiv-
alent, since for every action in A that puts you in a state a certain distance from
the goal, there is an action in B that takes you to an equivalent state at the
same distance from the goal. More generally, in an MDP M = (S, A, ¥, P, R) we
consider state s; equivalent to state s if for every action available in s;, there is
some action in s; that results in similar behavior with respect to the transition
structure P and vice versa. We also require that the actions be equivalent with
respect to the reward function R. We can then derive a simpler model M' of
M by aggregating together blocks of equivalent states. In other words, M’ is a



simpler model of M if there exists a transformation from M to M’ that pre-
serves the transition and reward structure and maps equivalent states in M to
the same state in M’, and equivalent actions in M to the same action in M.
An MDP homomorphism from M to M’ is such a transformation. Formally, we
define it as:

Definition: An MDP homomorphism h from an MDP M = (S, A, ¥, P, R) to
an MDP M' = (§', A", ', P'  R') is a surjection from ¥ to ¥', defined by a tuple
of surjections (f,{gs|s € S}), with h((s,a)) = (f(s), 9s(a)), where f : § — §'
and g5 : A; — Af( ) for s € S, such that:

Pl(f( ) (a)’f(s )) T(saa’ [sl]Bh\S)a VS,SI € Saa € As (1)
R'(f(s),9s(a)) = R(s,a), Vs € S,a € A, ()

We call M’ the homomorphic image of M under h. We use the shorthand h(s, a)
to denote h((s,a)). From condition (1) we can see that state-action pairs that
have the same image under h have the same block transition behavior in M,
i.e., the same probability of transiting to any given block of states with the
same image under f. Condition (2) says that state-action pairs that have the
same image under h have the same expected reward. This definition of a MDP
homomorphism leads to the following definition of equivalence of states and
state-action pairs.

Definition: State action pairs (s1,a1) and (s2,az2) € ¥ are equivalent if there
exists a homomorphism h of M such that h(s1,a1) = h(s2,a2). States s; and
s2 € S are equivalent if i) for every action a; € As,, there is an action as € A,
such that (s1,a1) and (s2,a2) are equivalent, and ii) for every action as € A,,,
there is an action a; € Ay, , such that (s1,a;1) and (s2,a2) are equivalent.

Thus the surjection f maps equivalent states of M onto the same image state
in M’, while g, is a state dependent mapping of the actions in M onto image
actions in M'. For example, if h = (f,{gs|s € S}) is a homomorphism from the
gridworld of Figure 1(a) to that of Figure 1(b), then f(A4) = f(B) is the state
marked {4, B} in Figure 1(b). Also ga(E) = gg(N) = E, ga(W) = gp(S) =W,
and so on. A policy in M’ induces a policy in M and the following describes
how to derive such an induced policy.

Definition: Let M’ be an image of M under homomorphism h = (f,{gs|s €
S }) For any s € 9, g7 '(a’) denotes the set of actions that have the same image
a e A ) under g;. Let 7 be a stochastic policy in M'. Then 7 lifted to M is

the policy maq such that for any a € g;1(a’), Tm(s,a) = 7r(f(8),a')/ |95 (a")



Note: Tt is sufficient that Zaegs—l(a,) mm(s,a) = w(f(s),a’), but we use the above
definition to make the lifted policy unique.

Theorem 1: Let M' = (S', A", %', P' ) R') be the image of M = (S, A,V¥, P,R)
under the homomorphism h = (f,{gs|s € S}). If 7 is an optimal policy for M’,
then 7% is an optimal policy for M.}

Theorem 1 establishes that an MDP can be solved by solving one of its
homomorphic images. To achieve the most impact, we need to derive a small-
est homomorphic image of the MDP, i.e., an image with the least number of
admissible state-action pairs. The following definition formalizes this notion.

Definition: An MDP M is a minimal MDP if for every homomorphic image
M' of M, there exists a homomorphism from M’ to M. A minimal image of an
MDP M is a homomorphic image of M that is also a minimal MDP.

The model minimization problem can now be stated as: “find a minimal
image of the given MDP”. Since this can be computationally prohibitive, we fre-
quently settle for a reasonably reduced model, even if it is not a minimal MDP.
This minimization framework extends the approach proposed by Dean and Givan
[4,6]. They employ stochastic bisimulations [12] on state sets of MDPs and do
not consider state-action equivalence. If we restrict homomorphisms to only the
state set, our approach is equivalent to theirs in terms of the reductions achieved.
The theoretical results established in their framework hold, with suitable mod-
ifications, in our framework also. Specifically, by incorporating our extended
definitions of equivalence, we can extend their algorithm for computing mini-
mal models of MDPs to compute minimal models as defined above. Employing
state-action equivalence allows us to achieve greater reduction in model size than
possible with Dean and Givan’s framework. For example, the gridworld in Fig-
ure 1(a) is irreducible if we consider state equivalence alone. We also explicitly
model symmetries of MDPs in our framework.

3.1 Symmetries of MDPs

We formalize the notion of MDP symmetries employing group theoretic concepts
and show that abstracting symmetries is a special case of the minimization
procedure we developed above.

Definition: An MDP homomorphism h = (f,{gs|s € S}) from MDP M =
(S,A,¥,P,R) to MDP M' = (§', A", ¥', P, R') is an MDP isomorphism from
M to M' if and only if f and g, s € S, are bijective. M is said to be isomorphic
to M’ and vice versa. An MDP isomorphism from an MDP M to itself is an
automorphism of M.

Intuitively one can see that automorphisms can be used to describe symmetries
in a problem specification. In the gridworld example of Figure 1, a reflection of

! The proofs of the various theorems are presented in ref. [15].



the states about the NE-SW diagonal and a swapping of actions N and E and
of actions S and W is an automorphism. It is easy to see that this mapping
captures the equivalence discussed earlier.

Definition:The set of all automorphisms of an MDP M, denoted by AutM,
forms a group under composition of homomorphisms. This group is the symmetry
group of M.

Let G be a subgroup of AutM denoted by G < AutM. The subgroup G induces
a partition B, of ¥: [(sl,al)]Bg = [(sz,az)]Bg if and only if there exists h € G

such that h(si,a1) = (s2,a2). Since G is a subgroup, this implies that there
exists h~! € G such that h™(s2,as) = (s1,a1).

Theorem 2: Let G < AutM be a group of automorphisms of M = (S, A, ¥, P, R).
There exists a homomorphism A9 from M to some M/, such that the partition
induced by hY, B,q, is the same partition as B,.

The image of M under hY is called the G-reduced image of M and if 7* is an
optimal policy for some G-reduced image of MDP M, then 7}, is an optimal
policy for M. Frequently the AutM-reduced model of an MDP is a minimal
image. We can take advantage of structure inherent in a symmetry group and
the induced partition in developing efficient minimization algorithms.

Ours is not the first work to study symmetries of MDPs. Zinkevich and Balch
[19] define symmetries employing equivalence relations on the state-action pairs
of an MDP. They do not make connections to group theoretic concepts or to
minimization algorithms. They show that the optimal action-value function of
a symmetric system is symmetric and suggest that the action-value function
entries be duplicated. They also study in some detail symmetries that arise in
multi-agent systems.

4 Relativized Options

It is often the case that both conditions of a homomorphism do not hold for the
entire ¥ space of an MDP but only over parts of it. For example, consider the
problem of navigating in the gridworld environment shown in Figure 2(a). The
goal is to be in the central corridor after collecting all the objects in the world.
A more complete description of the task is provided in Section 4.1. The entire
gridworld as such is irreducible. But each of the rooms in the world are equivalent
to one another and simple transformation such as reflections and rotations map
them onto each other. Thus we can create a “partial” homomorphic image of this
environment, shown in Figure 2(b), with the homomorphic conditions holding
only for the states in the rooms and not in the corridor. The states in which the
homomorphic conditions do not hold get mapped to a “catch all” absorbing state,
shown as a dark oval. All actions from these states get mapped to an absorbing



action in the image MDP. Formally we can define a partial homomorphism as
follows:

Definition:A partial MDP homomorphism from M = (S, A,¥%,P,R) to M' =
(S"u{r}, A U{a}, ¥’ U{(r,a)}, P, R') is a surjection from ¥ to ¥' U {(7,a)},
defined by a tuple of surjections h = (f,{gs|s € S}), with h(s,a) = (f(s), gs(a)),
where f : S — S'U{r} and g, : A; — A, ,, for s € S, such that:

F(s)
P'(f(5),95(a), f(s") = T(s,a,[s'] 5, 5)s Vs € f71(S"),s' € S,a€ 4, (3)
"(1,0,7) = 1.0 4)
R'(f(s),9s(a)) = R(s,a), Vs € f71(S"),a € 4, (5)

We call M’ the partial homomorphic image of M under h. The state 7 is an
absorbing state in M’ with one action « that transitions to 7 with probability
1. The homomorphism conditions hold only for states that do not map to 7.
All the actions in states that map to 7, map to «. Lifting policies defined in
M' yield policy fragments in M, with action probabilities specified only for
elements in the support of &, i.e., h~1(¥'). In Figure 2, 7 corresponds to the state
represented as a black oval and « is indicated by the solid arrow. All state-action
pairs, with the state component in the corridor, map to (7, ) under the partial
homomorphism. We can extend MDP minimization algorithms to find partial
homomorphic images by suitably restricting the search for homomorphisms to a
subset of ¥. One approach to taking advantage of partial homomorphisms is to
combine our minimization framework with hierarchical learning approaches.

The options framework is a hierarchical learning framework introduced by
Sutton, Precup and Singh [17]. Options are temporally extended actions that
take multiple time steps to complete. A class of options, known as “sub-goal”
options, are defined as policy fragments to achieve a certain sub-goal or accom-
plish a certain sub-task [14]. Frequently, sub-goal options satisfy the Markov
property and the option policy is defined as a map from some subset of ¥ to
action probabilities. In such instances it is possible to specify the the desired
sub-goal of the option and to implicitly define the option policy as the solution
to an option MDP.

The option MDP corresponding to a sub-goal option O is given by Mo =
(S"U{r}, A" U{a},¥', P, Ro), where S’ C S, is the states in which the option
policy needs to be defined, 7, is an absorbing state representing the states in
S—8",A"=A,¥' ={(s,a)|(s,a) € ¥,s € S'}U{(r,a)}, P'(s,a,s") = P(s,a,s),
if (s,a) € W', s' € §', P'(r,a,7) = 1, and P'(s,a,7) = Zs'es' P(s,a,s') for all
(s,a) in ¥' and Rp is a reward function chosen depending on the sub-task O
represents. We refer to the states in which the option policy is defined, S’ in this
case, as the domain of the option. We can also learn the option policy online by
learning a solution to the option MDP. Such an approach is particularly useful
when sub-goals are easy to identify but developing policies to achieve such sub-
goals are non-trivial.

In the gridworld in Figure 2(a), an option that accomplishes the task of
collecting an object and leaving room 1 can be defined as a solution to the MDP



in Figure 2(b), with the appropriate reward function. We can define similar
options for each of the rooms in the world. Formally we define a Markov sub-
goal option as follows:

Definition: A Markov sub-goal option of an MDP M is defined by O
(Mo,Z,B), where T C S is the initiation set of the option, 8 : § — [0
is the termination function and Mo = (S' U {7}, 4’ U {a},¥',P',Ro) is
option MDP.

’]‘ b
the

The option policy 7 is obtained by solving M, treating it as an episodic task
[16] with the possible initial states of the episodes given by Z and the termination
of each episode determined by the option’s termination function 3.

As is evident, the option MDP M, is a partial homomorphic image of the
MDP (S, A, ¥, P, Rp), with the blocks of the induced partition of ¥ being mostly
singletons. The one block that is not a singleton contains all the states not in
S’. We can apply our minimization methods reduce the option MDP further.
This allows us to abstract away redundancy in the option definition and derive
a more compact definition for the option. We refer to this compact option as
a relativized option. Such options are an extension of the notion of relativized
operators introduced by Iba [10]. Formally we define a relativized option as
follows:

Definition: A relativized option of an MDP M = (S, A,¥, P, R) is the tuple
O = (h,Mo,Z,B), where T C S is the initiation set, § : S’ — [0,1] is the
termination function and h = (f,{gs|s € S}) is a partial homomorphism from
the MDP (S, A, %, P, Ro) to the option MDP Mo with Ro chosen based on the
sub-task.

The option MDP is defined as Mo = (S' U {7}, A" U {a},¥', P, R'), where
S'" = f(So), where Sp C S is the domain of O, ¥' = h(¥), P’ satisfies conditions
(3) and (4) and R’ satisfies condition (5). The option policy = : &' — [0,1] is
obtained by solving Mo by treating it as an episodic task as before. Note that
the initiation set is defined over the state space of M and not that of M. Since
the initiation set is typically used by the higher level when invoking the option,
we decided to define it over S. When lifted to M, 7 is suitably transformed into
policy fragments over ¥ depending on the state of M the system is currently in.

Going back to our example in Figure 2(a) we can now define a single rela-
tivized option using the option MDP of Figure 2(b) that represents a option to
collect the object and leave a room. The policy learned in this option MDP can
then be suitable lifted to M to provide different policy fragments in the different
rooms.

4.1 Illustrative Example

We now provide a complete description of the simple gridworld task in Figure
2(a) and some experimental results to illustrate the utility of relativized options.
The agent’s goal is to collect all the objects in the various rooms by occupying
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Fig.2. (a) A simple rooms domain with similar rooms. The task is to collect all 5
objects in the environment. (b) The option MDP corresponding to a get-object-and-
leave-room option. See text for full description.

the same square as the object. Each of the rooms is a 10 by 10 grid with cer-
tain obstacles in it. The actions available to the agent are {N, S, E, W} with
a 0.1 probability of failing, i.e., going randomly in a direction other than the
intended one. The state is described by the following features: the room number
the agent is in, with 0 denoting the corridor, the z and y co-ordinates within
the room or corridor with respect to the reference direction indicated in the fig-
ure and boolean variables have;, i = 0,1, ...,5, indicating possession of object
in room i. Thus the state with the agent in the cell marked A in the figure
and having already gathered the objects in rooms 2 and 4 is represented by
(3,6,8,0,1,0,1,0). The goal is any state of the form (-,-,-,1,1,1,1,1) and the
agent receives a reward of +1 on reaching a goal state.

We compared the performance of an agent that employs relativized options
with that of an agent that uses multiple regular options. The “relativized” agent
employs a single relativized option whose policy can be suitably lifted to apply
in each of the 5 rooms. The relativized option MDP corresponds to a single room
and is shown in Figure 2(b). The state space S’ of the option MDP is defined
by 3 features: z and y co-ordinates and a binary feature have, which is true if
the agent has gathered the object in the room. There is an additional absorbing
state-action pair (7, ), otherwise the action set remains the same. The stopping
criterion § is 1 at 7 and zero elsewhere. The initiation set consists of all states
of the form (i,*), with ¢ # 0. There is a reward of +1 on transiting to 7 from
any state of the form (x, 1), i.e. on exiting the room with the object.

One can see that lifting a policy defined in the option MDP yields different
policy fragments depending on the room in which the option is invoked. For
example, a policy in the option MDP that picks F in all states would lift to



yield a policy fragment that picks W in rooms 3 and 4, picks N in room 5 and
picks E in rooms 1 and 2.

The “regular” agent employs 5 regular options, O1, - - -, Os, one for each room.
Each of the option employs the same state space and stopping criterion as the
relativized option. The initiation set for option O; consists of states of the form
(i,%). There is a reward of +1 on exiting the room with the object. Both agents
employ SMDP Q-learning [3] at the higher level and Q-learning [18] at the option
level.

We also compared the performance of an agent that employs only the four
primitive actions. All the agents used a discount rate of 0.9, learning rate of 0.05
and e-greedy exploration, with an € of 0.1. The results shown are averaged over
100 independent runs. The trials were terminated either on completion of the
task or after 3000 steps.

Figure 3(a) shows the asymptotic performance of the agents. This graph
demonstrates that the option agents perform similarly in the long run, with
no significant difference in performance. The agent that employs only primitive
actions takes a long time to start learning and was still improving after 50,000
steps. Since we are more interested in the initial performance of the option
agents, we do not present further results for the primitive action agent.

Figure 3(b) shows the initial performance of the option agents. As expected,
the relativized agent significantly outperforms the regular agent in the early tri-
als?. Figure 3(c) graphs the rate at which the agents improved over their initial
performance. The relativized agent achieved similar levels of improvement in
performance significantly earlier than the regular option. For example, the rel-
ativized agent achieved a 60% improvement in initial performance in 40 trials,
while the regular agent needed 110 trials. These results demonstrate that em-
ploying relativized options significantly speeds up initial learning performance,
and if the homomorphism conditions hold exactly, there is no loss in the asymp-
totic performance.

5 Approximate Homomorphisms

The various rooms in the test bed above map exactly onto the option MDP in
Figure 2(b). In practice such exact equivalences do not arise often. To study
the usefulness of relativized options in inexact settings, we conducted further
experiments in which the rooms had different dynamics. In the first task, the
rooms had the same set of obstacles, but had different probabilities of action
success. In the corridor actions fail with probability 0.1 and in rooms 1 through
5 with probabilities 0.2, 0.3, 0.25, 0.5 and 0.0 respectively. Figure 4(b) shows the
initial performance of the relativized agent and the regular agent on this task.
Again the relativized agent significantly outperforms the regular agent initially
and the asymptotic performance, Figure 4(a), shows no significant difference.
In the second task, the rooms have differently shaped obstacles, as shown in
Figure 5(a). Again there is a significant improvement in initial performance, but

2 All the significance tests were two sample t-tests with a p-value of 0.01.
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Fig. 3. (a) Comparison of asymptotic performance of various learning agents on the
task shown in Figure 2. See text for description of the agents. (b) Comparison of initial
performance of the regular and relativized agents on the same task. (c) Comparison of
the rate of improvement to final performance of the two agents.

the asymptotic performance of the relativized agent is slightly, but significantly,
worse than the regular agent, as shown in Figures 6(a) and 6(b). This loss in
asymptotic performance is expected and is observed in other inexact scenarios
we tested the agents on. In some cases this loss reaches unacceptable levels, with
the relativized agent failing to successfully complete the task on certain trials
even after considerable training.

One way to bound this loss in asymptotic performance is to model the option
homomorphism as a map from an MDP to a Bounded-parameter MDP (BMDP)
[7]. ABMDP is an MDP in which the transition probabilities and the rewards are
specified as intervals. Formally a BMDP M’ is given by the tuple (S, 4, ¥, Py, Ry)
where S and A are the state and action sets, ¥ is the set of admissible state-action
pairs, Py : ¥ x § — [0,1] x [0, 1] with Py(s,a,s') = [Piow(8,a,5'), Prign(s,a,s')],
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Fig. 4. (a) Comparison of asymptotic performance of the regular and relativized agents
on the modified rooms task. See text for description of the task. (b) Comparison of
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for all (s,a) in ¥ and s’ in S, is the range of values for the probability of
transiting from s to s’ under action a and Ry : ¥ — R x R, with Ry(s,a) =
[Riow(s,a), Rnign(s,a)], for all (s,a) in ¥, is the range of the expected reward
on performing action a in state s.

Definition: An approzimate MDP homomorphism h from an MDP M = (S, A,
¥,P,R) to a BMDP M' = (S’,A’,W’,Pi,R&) is a surjection from ¥ to ¥',
defined by a tuple of surjections (f,{gs|s € S}), with h((s,a)) = (f(s), 9s(a)),
where f : S = S and g5 : A; — A’f(s) for s € S, such that, Vs,s’ € S and
a € A,

Pi(f(5),9s(a), f(s") = l min T(t,a,[s']p,s), max T(ta, [s']Bhls)] (6)

tE[s]Bhls tE[s]BhlS

R&(f(S),gs(a))=l min  R(t,a), max R(t,a) (7)

telslp, s telslp,, s

In the rooms task depicted in Figure 5(a) the homomorphism corresponding to
the relativized option may now be viewed as a map from each of the rooms to
the image BMDP in Figure 5(b), where the probabilities of transiting into and
out of the lightly colored states range from 0 to 1. We can now use the interval
value iteration algorithm of Givan, Leach and Dean [7] to arrive at bounds
for the optimal value function in this BMDP and hence can bound the loss of
performance that arises due to employing such approximate homomorphisms.
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Fig.5. (a) A simple rooms domain with dissimilar rooms. The task is to collect all 5
objects in the environment. (b) The option BMDP corresponding to a get-object-and-
leave-room option. See text for full description.

6 Discussion

Our work derives mainly from the model-minimization framework of Dean and
Givan [4, 6]. Their work is based on concepts from FSA minimization [9] and con-
current process model checking [13]. They build their framework on the notion
of stochastic bisimulations [12] from model checking and extend the definition to
MDPs by incorporating the possibility of decision making and stochasticity. But
they do not address the problem of state-action equivalence and symmetries.
We base our work on the concept of stochastic homomorphisms derived from
the FSA literature, which we believe is a simpler notion than bisimulations and
helps to better understand the minimization process. Many of the results we
present in this paper are extensions of similar results obtained by Givan, Dean
and Greig [6] and have counterparts in FSA minimization frameworks.

Minimization algorithms for other modeling paradigms often employ symme-
try groups. For example, Jump [11] uses symmetry groups of FSA to decompose a
machine into identical components, Emerson and Sistla [5] use symmetry groups
to simplify models of concurrent systems, and Glover [8] employs symmetry
groups in deriving shift invariant models of Markov processes.

Defining MDP symmetry groups with automorphisms on the states does not
capture all the interesting cases of symmetry. Hence employing symmetry groups
in Dean and Givan’s framework does not give us much leverage. Extending the
notion of automorphisms to state-action pairs enables us to overcome this de-
ficiency and employ concepts from group theory and traditional minimization
approaches to greater effect. To the best of our knowledge, ours is the first work
to employ extended stochastic homomorphisms and symmetry groups in mini-
mization of MDPs.
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Fig. 6. (a) Comparison of asymptotic performance of the regular and relativized agents
on the task in Figure 5. (b) Comparison of initial performance of the two agents on
the same task.

The state-of-the-art MDP minimization algorithms [1,2,6] can automati-
cally construct reduced models of an MDP given the complete system model,
i.e., a complete specification of all the components of the MDP. These algo-
rithms can be extended to incorporate state-action equivalence and to compute
reduced models as defined in Section 3. Symmetries of MDPs often have special
forms. For example Zinkevich and Balch [19] explore symmetries in multi agent
systems that arise from permutation of the features corresponding to various
agents. Concurrent process literature [5] also abounds with examples of systems
with permutation symmetry groups. Often this special form of the symmetry
group leads to more efficient minimization algorithms, and we are presently in-
vestigating minimization methods that take advantage of symmetries.

Most minimization algorithms, for MDPs and other formalisms, require that
we specify the complete system model. Algorithms that exploit symmetries (e.g.
ref. [5]) require that we specify the symmetry group beforehand. This requires the
designer to provide considerable domain knowledge to the agent, which might not
be available or difficult to obtain in many cases. We are currently investigating
minimization algorithms that can work with partial specification of the system
model and symmetry groups and still derive reasonable reduced models of the
system.

Relativized options, per se, do not necessarily add more expressive power to
the options framework. It is possible to achieve the same decomposition of a
problem by employing regular options. But if we are learning the option policy
online, then we garner considerable advantage in terms of efficiency and speed.
When employing a relativized option we can employ the experience generated by
every invocation of the option to learn a policy on a much smaller image MDP.
Thus relativized options allow us to considerably speed up learning and make
more efficient use of online experience. They also give us the power to specify a



single option that can be applied to many symmetrically equivalent situations,
as in the task in Figure 2, where the various rooms are symmetrically equivalent.

In this work we demonstrated that the predicted speed up when employ-
ing relativized options is achieved in practice. We also demonstrated that rela-
tivized options are useful even in cases where the homomorphism conditions are
not satisfied exactly. We employ Bounded-parameter MDPs [7] to characterize
approximate homomorphisms and to bound the loss in performance when the
homomorphism conditions are not met exactly. The bound on the loss can also
be used in establishing conditions under which an option might be relativized
and to guide the search for a suitable homomorphism. OQur current research is
focussed on defining principled ways to generate relativized options.

7 Conclusion

In this paper we presented an MDP minimization framework based on the no-
tion of MDP homomorphism. This is an extension of Dean and Givan’s model
minimization framework. Our framework can accommodate state-action equiv-
alence and explicitly addresses the issue of modeling symmetries of MDPs. We
then developed the concept of partial homomorphisms and applied our mini-
mization framework to hierarchical reinforcement learning to define relativized
options—compact, symmetry invariant options. We empirically demonstrated
the usefulness of relativized options even in case the homomorphism conditions
are not met exactly. We developed the notion of approximate homomorphisms
that allow us to bound the loss of performance in such cases.
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