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Abstract

Transductive inference on graphs has been garner-
ing increasing attention due to the connected nature
of many real-life data sources, such as online social
media and biological data (protein-protein interac-
tion network, gene networks, etc.). Typically rela-
tional information in the data is encoded as edges in
a graph but often it is important to model multi-way
interactions, such as in collaboration networks and
reaction networks. In this work we model multi-
way relations as hypergraphs and extend the dis-
criminative random walk (DRW) framework, orig-
inally proposed for transductive inference on sin-
gle graphs, to the case of multiple hypergraphs. We
use the extended DRW framework for inference on
multi-view, multi-relational data in a natural way,
by representing attribute descriptions of the data
also as hypergraphs. We further exploit the struc-
ture of hypergraphs to modify the random walk
operator to take into account class imbalance in
the data. This work is among very few approaches
to explicitly address class imbalance in the in-
network classification setting, using random walks.
We compare our approach to methods proposed for
inference on hypergraphs, and to methods proposed
for multi-view data and show that empirically we
achieve better performance. We also compare to
methods specifically tailored for class-imbalanced
data and show that our approach achieves compa-
rable performance even on non-network data.

1 Introduction

With the advent of technology for easy generation and stor-
age, data sources have become increasingly rich in detail. De-
pending on the nature of the data this poses several challenges
to machine learning and consequently several classes of so-
lutions have emerged. Our goal in this work is to bring to-
gether different strands of ideas to develop an unified frame-
work for various transductive learning problems on partially
labeled networked data. Due to the connected nature of many
real-life data sources, the problem of within network clas-
sification has become an active area of research in recent
times [Zhu and B.Goldberg, 2009]. In this setting, the data

instances are treated as nodes in a graph and the links repre-
sent relations between the nodes. Given a small labeled set,
the goal is to infer labels for the other nodes in the graph.
This is an instance of transductive inference, since the la-
beled and unlabeled data together with the graph structure
is used in the inference procedure [Chakrabarti et al., 1998;
Castillo er al., 2007; Domingos and Richardson, 2001].

Many of the learning approaches assume a pair-wise rela-
tion between the nodes which translate to edges in the graph.
In this work we are interested in looking at data that have
multi-way relations between the instances. For e.g., the co-
author relation is naturally a multi-way relation. Such multi-
way relations can be modeled using hypergraphs in which the
edges are subsets of nodes. The use of hypergraphs enables
several extensions to the basic within network classification
setting and such extensions are the key contributions of this
work.

Hypergraph based modeling for machine learning has gar-
nered some interest recently [Yu er al., 2012; Gao et al., 2011,
Sun et al., 2008]. In particular, Zhou and Schélkopf in 2006
[Zhou et al., 2006] extended spectral clustering methods for
graphs to hypergraphs and further developed a transductive
inference setup for embedding, i.e., labelling a partially la-
beled hypergraph. In this approach the hyperedge which is
being cut is considered as a clique with weight of the hyper-
edge being distributed uniformly over all sub-edges of clique.
The spectral formulation then tries to minimize the total num-
ber of these sub-edges across the cut, using a normalized hy-
pergraph cut objective that penalises unbalanced cuts.

In the case of many sources of connected data, such as on-
line social networks and biological networks, in addition to
the relational structure there is rich attribute information as
well. This has lead to the development of collective learn-
ing and inference approaches that work with such attributed
graphs [Desrosiers and Karypis, 2009; Sen et al., 2008]. Col-
lective Classification approaches like Iterative Classification
Algorithm (ICA) [Sen et al., 2008] use an augmented descrip-
tion of the data where the class-distribution in the neighbour-
hood of a node are treated as additional features. These work
well in situations where there is sufficient labeled data to train
a classifier well. Such methods can also be generalized be-
yond a transductive setting, but that is not of relevance to this
work.

Another source of richness in data is the availability of



multiple-descriptions of the same data. For example, to clas-
sify videos in YouTube we can construct multiple views,
such as attributes from video, attributes from speech/sound
in video, text corpus from text description of video etc., and
several methods have been proposed to take advantage of
the same [Xu et al, 2013; Sun, 2013]. Multi-view meth-
ods have been used extensively in a semi-supervised setting
with partially labeled training data [Blum and Mitchell, 1998;
Sindhwani et al., 2005]. However, handling multi-view data
for transductive inference on graphs has not received much
attention and there are only a few results such as [Zhou and
Burges, 2007; Shi et al., 2012; Vijayan et al., 2014]. Simi-
larly, the same entities could have different kinds of relations
between themselves. “Follows” and “retweets” on Twitter is
an example of multiple relations.

One over-arching problem that spans the different settings
described above and in general inductive learning from data,
is that of class imbalance. In many real settings, the differ-
ent classes are seldom distributed uniformly. There have been
different approaches proposed for handling class imbalance
(e.g. [Cieslak et al., 2012]) but there are none that are satis-
factory in the networked data context.

In this work we propose a unified method to address
the problems discussed above by extending the discrimina-
tive random walk framework (DRW) [Callut et al., 2008;
Mantrach et al., 2011]. DRW is one of the most successful
approaches for within network classification and is based on
transit times in a limited random walk. The method works
very well even when the fraction of labeled nodes on the
graph is very small. In this work we extend the DRW frame-
work in several significant ways.

e First, we extend the DRW framework to accommodate
inference on hypergraphs. We introduce a new random
walk operator on hypergraphs and modify the DRW pro-
cedure appropriately.

e Second, we modify the random walk operator to han-
dle multiple relations and multiple views. This is accom-
plished by modeling the attribute descriptions of the data
as a hypergraph.

e Third, we account for class imbalance in the network
data to a limited extent by appropriately reweighting
the hyperedges with a preponderance of minority class
points. Such a re-weighting is made possible naturally
by the use of a hypergraph based representation.

This extended DRW yields a single algorithm that can han-
dle multi-way multi-relational multi-attribute data with class
imbalance. We extensively compare the proposed extended
DRW approach with a variety of existing algorithms on syn-
thetic as well as many real data sets and empirically establish
that our approach does better than existing methods, espe-
cially in the presence of class skew and limited availability of
labeled data. For example, even when only 10% of the nodes
in the graph are labeled we are able to achieve up to 35%
improvement when the class ratios are very skewed.

2 Background

In this section we will look into basic formulations involving
hypergraphs. We will define formal representations for hyper-

graphs and D-Random Walk.

Hypergraphs

Let G = (V, E) be a hypergraph, where V represents a finite
set of objects and E the set of hyperedges such that for any
e; € E,e; C V. Each edge is associated with a weight w(e).
For a vertex v, degree of vertex d(v) = > cpeoce W(€).
For a hyperedge e € E, d(e) represents the degree of the
edge i.e. 5(e) = |e|. Let H be a hypergraph incidence matrix
with h(v,e) = 1 if vertex v is in edge e. Let W denote the
diagonal weight matrix containing weights of the hyperedges,
D, denote the diagonal vertex degree matrix containing the
degrees of vertices and D, denote the diagonal edge degree
matrix containing the degrees of edges. Also, let n = |V be
the total number of instances.

For an attribute view, let X be n x d categorical attribute
matrix of instances where x; represents an attribute vector
in the dataset, i.e., a column containing the values of this at-
tribute for all elements of the dataset. Let L be a set of labeled
instances, assigned to a category from a discrete set Y. The
label of each instance v € L is written as y, and L, denotes
the set of nodes in class y, with n, = |L,|.

D-Walks

As proposed in [Callut et al., 2008], bounded random D-
Walks are a very effective way of classification in a partially
labeled graph. For a given set of states vg, v1,..., vy and a
class y € Y, a D-Walk is a sequence of states vg, v1, ..., v,
such that y,, = y,, = yand y,, # yforall 0 < ¢t < I. Let
Dy denote the event of a D-walk of exactly length [ starting
and ending on a node labeled y. For a given unlabeled node
v € V, we define E[pt(v) | D}], the expected length-limited
passage time (pt(v)), as the number of times the random walk
process reaches node v in a walk of length exactly ! as fol-
lows:
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Now, the D-walk betweenness function for a node v and class
y and some maximum walk length L is defined as:

L
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The above betweenness can be computed very efficiently
using forward and backward variables, as explained in [Cal-
lut et al., 2008]. An unknown node is classified based on its
betweenness in the walk.
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where Ply] is estimated as the proportion of nodes belonging
to class y.



3 Extended DRW

The DRW algorithm as proposed in [Callut e al., 2008] was
defined on simple graphs, and used an edge weighting scheme
to accommodate instance similarity based on attributes. We
extend their algorithm in several ways:

(1) We define DRW for hypergraphs to model multi-way rela-
tions by defining a random walk operator appropriate for both
graphs and hypergraphs;

(2) We accommodate multiple relations in the DRW frame-
work by extending the random walk operator to multiple hy-
pergraphs;

(3) We include attribute information also as a hypergraph; and
(4) We introduce an edge reweighting scheme to handle class-
imbalance.

In this section, we explain the extensions and modifications
that were carried out on DRW and propose our algorithm.

Random Walk in hypergraphs

The random walk probability matrix P for a hypergraph G =
(V, E') can be computed in the following way. Letu € E,v €
FE be two vertices in a hypergraph connected by a hyperedge
€’ then the transition rules are defined as :

e Choose ¢’ from vertex u over all edges incident on u
with a probability proportional to the weight of €/, i.e.,

(5)
ec E&uce

e Choose a vertex v (excluding u) in ¢’ uniformly at ran-

dom, i.e.,
1

P2= 5y -1

e Probability of transition from u to v is summation over
all such hyperedges that connect u and v,
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stochastic matrix P as,
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w(e)} is d(v), we can the write the transition

The diagonal entries of P are ensured to be 0, to preclude self-
loops. The above stochastic matrix P is row-stochastic and
a non-symmetric matrix. In our framework, we do not need
a symmetric matrix and hence do not use techniques used
in graph learning literature (e.g., [Shi and Malik, 2000]) to
approximate the nearest symmetric matrix for random walk.
This preserves the accuracy of the random walk derived from
the transition probability matrix. Our formulation for random
walk is also different from the random walk operator defined
in [Zhou et al., 2006] - for a given edge e we choose a vertex
v uniformly at random excluding the current vertex, whereas,
in [Zhou et al., 2006] for a given edge e a vertex v is cho-
sen uniformly at random including the current vertex. Their
formulation reduces the probability of transitioning between

nodes by a significant amount for hyperedges with a small

degree. Crucially, this modification brings the random walk

operator more in line with the definition on graphs and it can
be used generically for both hypergraphs and graphs.

For this random walk operator, the stationary or steady

state probability of a node j is given by
d(5)
T = ———~ 9
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Based on this definition of hypergraph random walk, DRW
can be extended for hypergraphs by replacing the probabili-
ties in the forward and backward operator computation, by the
transition probabilities computed for the hypergraph. There
would be a corresponding change in the betweenness mea-
sures, with the expected path lengths now being dependent
on the hypergraph.

Random Walk for Multiple Relations

We extend the random walk operator proposed in the previ-
ous section, and propose a multi-graph random walk operator
that can be used for learning with multiple relations, along
the lines of [Zhou and Burges, 2007]. We model multiple
relations as a set of graphs and hypergraphs, which can be
viewed as different layers. A random walker can move from
one graph (or layer) to another with the probability distribu-
tion defined over the different layers being dependent on the
steady state probabilities of the nodes, which in turn is influ-
enced by the differential weights « that are used to weight the
different graphs and hypergraphs. Once the layer is chosen,
the random walker can move following the transition proba-
bility matrix defined in the earlier section.

The following equations outline the procedure for combin-
ing multiple graphs and hypergraphs. Let Py, Ps, ..., P, be
the transition probability matrices for each graph and hyper-
graph and II;,1ls, ..., IT,, be the corresponding steady state
probability diagonal matrices.

OéiHij
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Extending DRW to multiple relations is straightforward
once the combined random walk operator is defined, and can
be done by replacing the probabilities in the forward and
backward operator calculations by the transition probabilities
given in equation 11. The betweenness score that’s thus ob-
tained signifies the node’s betweenness for a particular class
over all the different layers of graphs and hypergraphs and
over all possible bounded D-random walks through those lay-
ers, for a given L.



Modeling Attribute Views

Categorical attributes can be converted to hypergraphs by
connecting all instances having the same value for a partic-
ular attribute, with a single hyperedge. Let 1, ..., x,, be the
attributes of the data. Let each x; draw its values from the
set v; where v; = {v}, V2, ..., }. We then construct a hy-
peredge for each v;'. Real attributes can be discretized into
multiple bins, by appropriately recursively splitting each at-
tribute. In order to produce purer edges to aid in the inference
process even under class skew (see next section), we used the
split criterion from Hellinger distance decision trees [Cieslak
et al., 2012]. Each of the bins is considered to be a hyperedge.

Handling Class Imbalance

The fact that we are using hyperedges in our modeling gives
us a significant advantage in exploring new ways to differen-
tiate informative connections from the noisy ones. The ran-
dom walk operator over hypergraphs gives us the freedom to
weight each of the hyperedges individually, and we can define
weights to be some function of the set of nodes comprising an
edge. One weighting measure that could be used is the purity
of the hyperedge, i.e., the fraction of the class in majority
among the known labels on that edge. Crucially, to address
skewness in the dataset, we use Hellinger Distance [Cieslak
et al., 2012] to generate the weights. Skewness in the dataset
implies that instances of some classes are over represented
while instances of some other classes are under-represented.
In this scenario, the instances of the under-represented class
are dominated by the majority class in most of the hyperedges
in the graph. From the point of computing the betweenness
score for the minority class, hyperedges with a slightly more
than expected number of known instances of the minority
class are strong indicators of the similarity between the nodes
in that hyperedge. We need a weighing function that captures
this similarity between minority class points. Hellinger dis-
tance addresses these requirements very well, being less sen-
sitive to skewness in data.

For binary classification, Hellinger distance of a hyperedge
is defined as follows:

NNy
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yT = set of positive instances in hyperedge e,
y. = set of negative instances in hyperedge e,
y+ = set of positive instances in entire training set,
y~ = set of negative instances in entire training set.

This weight becomes 1 when all of the instances in the hy-
peredge have the same label and the hyperedge covers all the
known instances of that label.

For a multi-class problem, we define the Hellinger distance
as follows :

where,

e For each edge, find the edge-class ratios that is defined as
the ratio of the number of known instances of each class
in the edge to the number of instances of each class in
the whole training data.

e Consider the class having maximum edge-class ratio as
the positive class.

o Consider all other classes together as the negative class.
e Compute Hellinger distance as per Equation 13

Given that the class proportions are skewed, if a class has
a high edge-class ratio, then it indicates a significant devia-
tion from the underlying class distribution and therefore it is
probably relevant to the inference. Considering the class with
the maximum edge-class ratio as positive, instead of the most
frequently occurring class was also empirically observed to
perform better.

If none of the instances in a hyperedge have known labels
then the hyperedge is assigned the mean weight of the known
hyperedges. In the case of graphs, we set the weights of the
edges to be 1.

The Extended DRW Algorithm

Putting all of these together, the complete EDRW procedure
is as shown in Algorithm 1. First the attribute views and re-
lations are converted into corresponding hypergraphs (lines
3 -5, 8 - 10). Second, the Hellinger weights are computed
for each of the hypergraphs (lines 6 and 11), then the ran-
dom walk operator corresponding to all the views is com-
puted (lines 12 - 14). The o’s required in this step are empiri-
cally estimated through five-fold cross validation. Finally the
DRW procedure is called with this random walk operator and
the resulting steady state probabilities (line 16).

4 Experimental Setup

The experiments aim to show the effectiveness of the differ-
ent aspects of the Extended DRW method - construction of
the attribute view hypergraph, inference with very few la-
beled samples; with multiple views and multiple relations;
and when the data exhibits high class-imbalance. Towards
this, we have run experiments on synthetic and real datasets.

Algorithm 1 Extended Discriminative Random Walk

1: function MVMR.PREDICT(Views, Relations, Y)
2: i+ 0

3 for view € Views do
4 i+l
5 H; + convertToHypergraph(view, Y")
6: W, + computeHellingerWeights(H;,Y")
7: > Using equation 13
8: for relation € Relations do
9: i i+l
10: H; + relation
11: W; < computeHellingerWeights(H;,Y")
12: for j = 1:length(H) do
13: [P;, I1;] < computeStochasticMatrix( ;)
14: > Using Equations 8 and 9
15: [P, II] <— combineHypergraphs(P, II)
16: > Using Equation 11
17: labels +— D-RandomWalk(P, IT)
18: return labels




The synthetic datasets consist of a graph and a hypergraph
of 1000 nodes and two classes. In order to show the effec-
tiveness of EDRW under different class skews, we consid-
ered 3 different class skews - 1:1, 1:5 and 1:20 - and for each
skew, generated 5 sets, each consisting of a hypergraph and
a graph. Our method is compared with the work of [Zhou
and Burges, 2007] with modifications to handle hypergraphs,
and ICA with bootstrapping, and also with a modified ver-
sion of ICA that uses transductive SVM as its classifier. In or-
der to show the effectiveness of Hellinger distance, we have
also compared against the results obtained by weighting the
hyperedges based on purity, and on assigning equal weights
to all hyperedges. For generating synthetic hypergraphs, we
needed to decide on the degree distribution of the hyperedges
and the homophily factor. We say that a hypergraph exhibits
homophily if the class distribution on a significant number of
hyperedges is significantly different than the base class distri-
bution of the whole dataset. We estimated both these factors
from many real-world data sets. The degrees of the hyper-
edges were drawn from a modified power law distributions,
and mean homophily was set at 0.4 for hypergraphs and 0.6
for graphs.!

We have also used real-world data with varying number
of views and relations, to compare our method against other
multi-view and collective classification approaches. The de-
tails about the various datasets used can be found in Table 1.
We performed further experiments that we have not reported
here due to lack of space. For a given percentage of un-
knowns, experiments were run over multiple partitions of the
dataset into training and test data, and the average of all the
runs have been reported. In all the experiments, we found that
the performance was similar for walk lengths of 2, 3 and 4,
reminiscent of results reported in [Callut e al., 2008]. The
results reported here are for L = 2. For data with more than
one graph or hypergraph, the weights for each of the graphs
and hypergraphs were found using 5-fold cross-validation.

Table 1: Dataset Description

No. of No. of Attr. Rel.
Dataset . .
nodes classes Views Views
WebKB 877 5 1 0
Cora 2708 7 1 1
Citeseer 3312 6 1 1
Twitter
Football | 28 20 2 6
Twitter 464 28 2 6
Olympics
5 Results

The results shown in bold are significantly better at a p-value
of 0.05 according to paired sample t-test. When all methods
perform equally well in an experiment, none of the results are

"Due to lack of space we are not able to provide a complete de-
scription here. Along with the code of EDRW, the details and code
for synthetic graph generation is available at https://github.
com/HariniA/EDRW.

shown in bold. The results that are reported are the macro F1-
scores, which is deemed to be better than other measures such
as accuracy in the presence of class-imbalance. The same
test and training data split was used for comparison between
multiple algorithms, for a particular run. The reported results
have been measured over the complete set of unlabeled data.

Synthetic data

Experiments were run on 5 different sets of random graph
and hypergraph for every skew ratio that was considered. On
each of these sets, the experiments were run multiple times as
mentioned above. The results are reported in Table 2 and are
an average over a total of 50 different runs over the 5 sets of
graphs for a given skew ratio. In the table, “EDRW” denotes
the case where the experiments were run using Hellinger
weights for the hypergraph, “Purity” the case where the edges
were weighted by the purity of the hyperedge, and “Equal”
the case where all hyperedges were given equal weights (un-
weighted). The results were compared against ICA, ICA with
Transductive SVM (abbreviated as TICA in the table) as the
classifier, and against the work of [Zhou and Burges, 2007]
appropriately modified to handle hypergraphs (denoted as LP
below).

It was observed that ICA performs well even under some
amount of class-imbalance, provided the number of known
training examples is sufficient. ICA with TSVM performs
poorly as the number of unknowns increases, and with in-
creasing skew. TSVM can handle partially labeled data, but
under extreme class skew doesn’t seem to perform well in
this setting. LP becomes worse with the increase of skew
and with increase in the number of unknown data, while our
method with Hellinger weights performs well even under ex-
treme class imbalance and with lots of unknowns, achieving
up to 35% improvement over ICA in one case.

Real-World Data

Skewed Dataset

WebKB [Sen et al., 2008] is a skewed dataset of 5 classes
with the ratio of the most frequently occurring class to the
least frequently occurring one being 10:1. We combined the
word corpus of all four universities into a single corpus, con-
structed a hypergraph and classified with different sizes of
training and test set. Table 3 gives the results of comparison
of EDRW with Hellinger trees [Cieslak and Chawla, 2008]
and with SVMs. The use of Hellinger distance as a weight
measure on a skewed dataset, along with hyperedges, helps
EDRW perform better than the other methods.

One View and One Relation

For Cora and Citeseer [Sen et al., 2008] datasets we con-
structed one higher order relationship hypergraph for word
corpus of papers and another hypergraph for co-citation net-
work. We have compared our algorithm with Iterative Clas-
sification Algorithm (ICA) [Sen er al., 2008] with bootstrap-
ping to initialize the labels. The results are shown in Table
4. For ICA, we treated the co-citation information as a bi-
nary relation and the words as node attributes. Since both the
views were hypergraphs, with the ability to weight every sin-
gle hyperedge of the views, we were able to better differenti-
ate more important hyperedges from the less important ones,



Table 2: Macro-F1 scores for synthetic datasets

;ﬁ%‘g Percentage of Unknowns
30% 50% 70% 90%

EDRW | 0.9998 | 0.9992 | 0.9991 | 0.9880

Equal | 0.9972 | 0.9984 | 0.9965 | 0.9764

11 Purity | 0.9971 | 0.9971 | 0.9969 | 0.9839
LP 0.9998 | 0.9997 | 0.9993 | 0.9978

ICA 1.0000 | 1.0000 | 1.0000 | 0.9999

TICA | 0.9900 | 0.7721 | 0.5000 | 0.5000

EDRW | 0.9877 | 0.9602 | 0.9051 | 0.7837

Equal | 0.9486 | 0.8949 | 0.8405 | 0.7305

1:5 Purity | 0.9471 | 0.8922 | 0.8607 | 0.7113
LP 0.9825 | 0.9631 | 0.8391 | 0.5053

ICA | 0.9076 | 0.8772 | 0.8230 | 0.4557

TICA | 0.7751 | 0.6489 | 0.3938 | 0.1435

EDRW | 0.8938 | 0.8060 | 0.7589 | 0.6761

Equal | 0.8747 | 0.7663 | 0.7553 | 0.6705

1:20 Purity | 0.8791 | 0.7664 | 0.7557 | 0.6725
LP 0.6408 | 0.5103 | 0.4875 | 0.4874

ICA | 0.8455 | 0.7672 | 0.7436 | 0.4927

TICA | 0.5175 | 0.3978 | 0.2814 | 0.0824

and this led to good results for EDRW. Note that Cora dataset
exhibits class imbalance with ratio of the minority class to the
majority class being 1:4.5.

Multiple Views and Multiple Relations

Twitter Olympics and Twitter Football [Greene, 2013]
are datasets with more than one view and one relation. We
have compared EDRW to Collective Ensemble [Eldardiry
and Neville, 2011]. This supports multiple relation classifi-
cation, but we concatenate the multiple-views to produce a
single attribute description. In order to check the efficiency of
the hypergraph approach, we also constructed a graph based
on the Jaccard similarity of the attributes of the nodes, with
edges being present between two nodes if their similarity
was above a particular threshold, and ran our algorithm us-
ing those graphs rather than the hypergraphs. As we can see
from tables 5 and 6, the hypergraph model performs better,
despite there not being much of a class skew. This is as ex-
pected, since the hypergraph allows us to look at similarity at
individual attribute levels, while the Jaccard similarity looks
at an aggregated distance measure. Collective Ensemble per-
forms worse than EDRW in most of these experiments due to
the fact that the attributes from two views are concatenated
together as a single view, thus leading to a bloating up of
the feature space, which might lead to issues like overfitting.
One more reason for the better performance of EDRW are
the weights given to different attribute and relational views,
which is missing in Collective Ensemble.

6 Conclusion

In this work, we proposed Extended Discriminative Random
Walks (EDRW), by defining a random walk operator on mul-
tiple graphs and hypergraphs, facilitating transductive infer-

Table 3: Macro-F1 scores for WebKB dataset

Macro F1-score
Unknowns | H-Tree SVM | EDRW
30% 0.6156 | 0.6577 | 0.6860
50% 0.4937 | 0.6175 | 0.6665
70% 0.5713 | 0.5452 | 0.6314
80% 0.5011 | 0.4773 | 0.5864
90% 0.4547 | 0.4015 | 0.5077

Table 4: Macro-F1 scores for Cora and Citeseer datasets

Cora Macro F1 Citeseer Macro F1
Unknowns ICA EDRW ICA EDRW
30% 0.7431 | 0.8222 | 0.6938 | 0.7094
50% 0.7336 | 0.8204 | 0.6760 | 0.7083
70% 0.6854 | 0.7927 | 0.6406 | 0.6900
90% 0.5456 | 0.6385 | 0.5614 | 0.6174

Table 5: Macro-F1 scores for Twitter Olympics dataset

Macro F1
Unknowns | CE Jéc"ard EDRW
raph
152(30%) | 0.7122 | 0.9706 | 0.9888
241(50%) | 0.6217 | 0.9380 | 0.9525
290(60%) | 0.5381 | 0.9154 | 0.9360

Table 6: Macro-F1 scores for Twitter Football dataset

Macro F1
Unknowns | CE Jéccard EDRW
raph
82(30%) 0.7380 0.9078 0.9579
129(50%) | 0.6573 0.8821 0.9252
181(70%) | 0.5315 0.8349 0.9007
205(80%) 0.4422 0.7761 0.8427

ence on multi-view, multi-relational data. One of the key
innovations of the work is a hyperedge weighing scheme
based on Hellinger distance that helps improve performance
in case of class-imbalance, which we empirically established,
on both synthetic and real data. The advantages of this formu-
lation are: unified representation of attribute descriptions, re-
lational information and multi-way relations; a random walk
operator that handles any number of views and relations; good
performance even in the presence of class-imbalance and a
small number of known labels. In order to enable this ap-
proach to scale to very large datasets we are working on graph
sparsification techniques for faster inference.
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