
A System Approach to Network Modeling for
DDoS Detection using a Naive Bayesian Classifier

R Vijayasarathy
Society for Electronic Transactions

and Security
Chennai, India

vijayasarathy@setsindia.net

Balaraman Ravindran
Department of Computer Science

and Engineering
IIT Madras, India

ravi@cse.iitm.ac.in

S V Raghavan
Department of Computer Science

and Engineering
IIT Madras, India

svr@cs.iitm.ernet.in

Abstract—Denial of Service(DoS) attacks pose a big threat to
any electronic society. DoS and DDoS attacks are catastrophic
particularly when applied to highly sensitive targets like Crit-
ical Information Infrastructure. While research literature has
focussed on using various fundamental classifier models for
detecting attacks, the common trend observed in literature is to
classify DoS attacks into the broad class of intrusions, which
makes proposed solutions to this class of attacks unrealistic
in practical terms. In this work, the approach to a carefully
engineered, practically realised system to detect DoS attacks using
a Naive Bayesian(NB) classifier is described. The work includes
network modeling for two protocols – TCP and UDP.

I. INTRODUCTION

Denial of Service attacks are a major threat to the modern
electronic society. Carefully crafted attacks of large mag-
nitude, better referred to as Distributed Denial of Service
attacks(DDoS) have the ability to cause havoc at the highest
level, national information infrastructure. The ease at which
such attacks can be performed today is startling given the
number of free online tools available in the open(Trinoo[1]
, Stacheldracht [2] etc.). An ideal situation would be to differ-
entiate between good and bad packets as generally attempted
and accomplished in the case of intrusion attempts, which
in the case of DoS attacks is extremely hard as only the
intent differs between a genuine user and an attacker. The
difficulty in classifying good and bad packets brings another
hard problem to solve – even if the attack were detected,
one doesn’t know which class of packets have to be filtered.
While solutions to some of the attacks have been around for
a while, they either deal with a small subset of the problem
with reduced constraints(ex, Syncookies[3]), or are too simple
to be effective(declare as attack if bandwidth is choked) in the
case of sophisticated attacks.

The research community has taken two perspectives of
solving the problem apart from simple measures of detecting
attacks:

1) Converting the problem into that of a classification
problem on network state(and not on individual packets
or other units) by modelling normal and attack traffic
and classifying the current state of the network as good
or bad, thereby detecting attacks when they happen.

Classical machine learning algorithms are used to solve
the problem; and

2) Cryptographic solutions like client puzzles which dis-
courage attack attempts. Some examples include hash
pre-image based client puzzles as proposed in [4] and
[5].

This work focusses on using machine learning techniques
for detecting DoS attacks. The problem of attack detection
using machine learning techniques is not new to literature.
While signature detection techniques can detect attacks based
on signatures of attacks already learnt by them, Anomaly
detection techniques learn network traffic from a baseline pro-
file and detect anomalies as ones which deviate significantly
from the baseline profile. Signature detection techniques are
effective against known attacks while anomaly detection has
the ability to detect unknown(zero-day) attacks.

Various methods have been proposed to accomplish the
above objective. The include statistical approaches, like [6],
which proposes a Chi-Square-Test on the entropy values of
the packet headers. [7] discusses the effects of multivariate
correlation analysis on the DDoS detection and presents an
example of SYN flooding. [8] uses the covariance matrix to
present the relationship between each pair of network feature
and identifies attacks. In [9] the CUSUM algorithm is used
to detect the change in the amount of packets to destination.
Different other techniques taken from pattern analysis and
machine learning have also been proposed in literature. For ex-
ample, Markov Models [10] consider application layer DDoS
attacks and use hidden semi-markov models to describe brows-
ing behavior of users for anomaly detection at the application
layer. Other classification algorithms such as Support Vector
Machines [11], Genetic Algorithms [12], Artificial Neural
Networks (ANN) [13] [14] and Bayesian Learning [15] have
also been applied. Hybrid modeling techniques such as [12]
also provide interesting results. Hidden Markov Model based
DoS attack solutions have also been proposed in [16][17]. A
taxonomy of DDoS attacks and defence mechanims has been
documented in [18]. Recent works [19] [20] have discussed
use of bayesian classifiers towards intrusion detection in
general, which includes DoS attacks.

In most of these works, a few drawbacks are generally978-1-4244-8953-4/11/$26.00 c© 2011 IEEE

observed. In these works, DoS attacks have been classified
to fall into the broad category of Intrusion attacks, and so
solutions have been oriented more towards formal intrusions,
including root escalation, scripting attacks etc. A major factor
that is often missed by classifying DoS attacks into intrusion
attacks is the enormous volume that DoS detection solutions
have to handle in comparison with intrusion attacks. This fact
straightaway differentiates DoS attacks from other types of
intrusion, and renders learning models such as SVMs, HMMs,
ANNs impractical when it comes to real time attack detection.
The detection mechanism is expected to be ultra light weight
to support speeds in the order of at least a few hundred Mbps.
This is also well complimented by the fact that the very nature
of DoS attacks(the system can absorb some attack traffic unlike
intrusions) makes it detectable using simpler notions than the
ones which are input parameters to models described above.

Another practical drawback of supervised/unsupervised
learning models for DoS detection is the accuracy of (sup-
posedly normal) traffic supplied to learning1. In practical user
sites, it is a very difficult proposition to be fully confident that
the input to learning is absolutely normal. The system may
cause false alarms if traces of the training traffic contained
abnormalities. For making practical systems out of research
outcomes, additional work has to be done to eliminate con-
sidering such abnormalities which may be present in traffic
supplied to learning.

Another common problem to the entire research community
on DoS attacks is the lack of training data. The DoS research
community depends extensively on standard datasets (KDD
dataset [21] and DARPA dataset [22])for the purpose of
learning and analysis, which are better suited to analysis of
intrusion attacks.

So a practical system using any machine learning algorithm
to detect DoS attacks should be carefully engineered to be
a) Light weight; b) Accommodative of practical difficulties in
learning. Different systems for DoS detection and mitigation
have different approaches to the problem based on their
position in the network. The system could be placed either
near the target, or the source, or anywhere at an intermediate
point in the network[9].

A. Contribution of this work

This work proposes an anomaly based system developed to
detect DoS attacks using a Naive Bayesian classifier approach,
coupled with elegant tricks to make the system useable in
real-time. The system is designed to be before the target. The
focus of the system is on two transport layer protocols – TCP
and UDP, both of which work on a common framework of
mechanisms, although with different input parameters. While
other protocols in the Internet stack may be different, the
authors of this work believe that the basic solution framework
can still be retained while working out solutions for other
protocols. The mechanisms have been tested against standard

1During the training phase, the system does learning. Learning and training
are used interchangeably

DARPA dataset [22] and inbound data to the web server of
SETS captured for a period of 7 days.

II. TECHNICAL OVERVIEW

A Naive Bayes(NB) classifier is a simple probabilistic
classifier based on applying Bayes’ theorem with naive in-
dependence assumptions. A naive Bayes classifier assumes
that the presence (or absence) of a particular feature of a
class is unrelated to the presence (or absence) of any other
feature. Depending on the precise nature of the probability
model, naive Bayes classifiers can be trained very efficiently
in a supervised learning setting. In many practical applications,
one can work with the naive Bayes model without believing in
Bayesian probability or using any Bayesian methods. The fact
that NB classifiers can work with small amounts of training
data, and can also accommodate a large number of attributes
makes them a good choice for network modeling for DoS
attacks.

TCP is taken as example for illustration. The classifier
consists of two phases of operation. During the training phase,
the probability distribution of TCP packets is estimated based
on observation of a large number of ”normal” packets. This
will show the bias of particular TCP packets against a few
others. If there are dependencies in the occurrence of specific
TCP packets, a mechanism to factor these dependencies in
the probabilities is in place. During the deployment phase,
based on these probabilities, the probability of occurrence of
a particular packet set shall be determined. If this probability
were to be lesser than a threshold probability, then that
particular sequence is said to be not seen or abnormal.

A. Windowing

Windowing essentially means splitting input traffic into
traffic subsets, which fit into logical entities called windows.
Analysis is done on every single window(traffic subset) to
help arrive at a conclusion on the network state. Windowing is
essential in order to have reasonable estimate and control over
the reaction time of the system for attacks and better modeling
from larger training datasets.

B. Packet based Windowing

Windowing may be done in two ways:
• Time Windows: Windows based on time slices, occurring

every n time units.
• Packet count Windows: Windows based on packet count,

occurring for every n network packets.
The important factor that drives the choice among the two

is the fact that analysis during learning should help analysis
to be done real time. Packet windows are considered a better
choice of the two for the following reasons:
• Packet windows provide smaller reaction times during an

attack situation, because of the fact that the system may
have to wait wait for the time window to complete before
deciding to flag an attack(or anomaly).

• Packet windows may provide for more accurate modeling,
since the number of possible events to be considered is

bound to be limited, whereas the number of events to be
considered may be large in time windows, since there is
no control on how many packets could be received within
a time window.

One obvious concern with a packet window is the fact that
the periodicity of probability computations may not be known,
since one doesn’t know when n packets would be available for
computing probabilities. This may happen particularly when
there is high traffic rate at one time, and low traffic rate at
another. But the server can easily handle low volume traffic
and related probability computations in any case.

C. Parameters for Transmission Control Protocol(TCP)

TCP packet headers is used in the system. The following
parameters were examined:

1) TCP flags
2) Payload size
3) Source/Destination Port number and count
4) Source/Destination IP number and count
5) Inter-packet time gaps
6) Total connection time till current packet
7) Number of packets in connection
It is assumed that the overall traffic is streamed for analysis

based on destination details like IP address, port number etc.
Also, source details are not considered because of the assump-
tion that spoofing is the common trend among attackers.

Parameters 6 and 7 make sense only when complete
connection sequence data is supplied. So if the system is
utilised on-line, these attributes won’t be available for on-line
usage. Hence, those attributes are also excluded. Amongst the
remaining 3 parameters, it was experimentally found that TCP
flags are best suited among the rest of the attributes.

Hence, in a packet window, modeling is done based on
the TCP flags set in the packet. The TCP flags field is a
collection of 8-bits, each bit representing one flag. Individual
flags or combinations of flags symbolise specific actions in
TCP – For example, connection establishment, connection
closure, requesting data etc. The different TCP flags are: SYN,
ACK, PSH, FIN, URG, RST(standard TCP flags), ECE, CWR.
Since combinations of these flags represent different actions
with TCP, a maximum of 28 different combinations are to be
considered to model entire TCP traffic. These combinations
are referred to as observables.

It is seen that the last two flags are seldom used in IPv4
communication, and hence only 26 observables are considered.
Each of the 64 observables could be considered separately, but
on examination of traffic datasets, it is seen that packets with
only very few observables among the 26 occur as inbound
packets. This will obviously result in many zero probabilities
if viewed separately, which in turn, may result in losing vital
probability information because of a zero-probability event.
Hence, these observables are grouped into observable groups
in order to have lesser observables and events to be modeled,
and to try and decrease number of zero probability events.

Based on experimentation, the following classification of
packets in TCP was arrived at:

1) T1: Packets with RST bit set(irrespective of other bits)
– 32 packet types

2) T2: SYN packets – 1 packet type
3) T3: ACK packets – 1 packet type
4) T4: FIN/ACK packets – 1 packet type
5) T5: PSH/ACK packets – 1 packet type
6) T6: Rest of the packets – 28 packet types. Includes

seldom used packets and invalid packets.
Since a window is characterised by the occurence of packets

belonging to either of these observable groups, the probability
of a window is a function of the probability of these observable
groups inside the window. Since the observable surrounding
the occurrence of a number of TCP packet types is being
modeled, the number of possible events depends on the size
of the window, that is, the number of packets in a window. For
example, if the window size is n, then there are n + 1 events
for every observable group, that is from number of packets of
type Ti , k = 0 in that window(no packet of type Ti occurred
in the window) to k = n(the window was full of packets of
type Ti).

In order to avoid zero probabilities, laplacian smoothing is
done over the data set so that there will be no zero probability
event. The total number of values on which smoothing has to
be performed is 6 ∗ (n + 1). For typical values, it is seen that
the simple smoothing technique adopted may be inappropriate
under the assumption that the training data is very less. For
example, for number of training windows T = 1000, and for
window size n = 100, we may have to smooth 606 values,
which is not acceptable given the value of T . This brings
in the need for reducing the number of possible events per
observable group (n + 1) to a constant number of bands K,
thereby reducing number of zero probability events, and also
improving smoothing. This will bring down the total number
of events to 6 ∗K from 6 ∗ (n + 1). However while grouping
events, it is to be ensured that only events which are as likely
probable as each other are to be in the same group. These
events may not be contiguous in nature – events k = l and
k = l + 1 may not fall into the same group.

For the purpose of implementation, it is assumed that events
per group Ti have to be grouped to K such constant bands,
and this number is independent of window size. For example,
if SYN observable group was considered, and window size
N = 100, then the bands for number of windows in which
n SYN packets(n varies from 0 to 100) were found could be
the following: First band b1 = {k = 0, k = 23, k = 54, k =
13 . . .}, second band b2 = {k = 18, 27, 56, 99 . . .} and so on.
It is to be noted that these bands are disjoint sets, and the
union of these sets results in the event space. These indices
may also vary from site to site.

In summary, the following are the primary goals of the
training phase:
• To determine the optimal band ranges(of events) for

each of the TCP observable groups. For example, if
window size n = 100, then there are 101 possible events
which have to be examined. Events which were to have
been found equally likely during the learning phase are

grouped into bands and examined. A constant number of
such bands is assumed and grouping is done accordingly.
The bands may not be contiguous in nature.

• To learn from input traffic based on the above bands
for the Naive Bayesian(NB) model and determine the
probabilities for each of these bands.

• To determine threshold probability for the stream.

D. Parameters for User Datagram Protocol(UDP)

The objective of monitoring protocol headers is to evolve a
distinguishing pattern in them, which will subsequently help
detecting DoS attacks on the protocol. The feature about
UDP is that it is connection-less, and hence ensures speedy
communication. However, the header of the UDP protocol
does not contain fields like flags, which will determine the
state of the communication, unlike TCP, where TCP flags
determine which state the connection is in. Since UDP is not
connection-oriented, most DoS attacks performed on UDP are
only bandwidth based attacks, essentially trying to exhaust
bandwidth resources available to connect to the server. In
line with this view of thought, it can be seen that header
information may not be a critical parameter for detecting DoS
attacks on UDP.

Hence, the parameter considered here is the Window Arrival
Time(WAT) of a packet window. WAT of a packet win-
dow is the duration in which a packet window has arrived.
Technically, it is the difference in time between packets P1

and PN of a window, where N is the size of the window
and Pi is the time of arrival of packet i of the window.
Due to implementation limitations in considering overlapping
windows, only non-overlapping windows are being considered.
During training phase, the WATs of windows are monitored,
and a model evolved to accommodate these events(WATs).
During the deployment phase, the probabilities of these models
are used to determine the probability of an incoming window.
If the probability is less than a particular threshold proba-
bility(determined out of the learning input itself), then the
window is classified as abnormal.

These WATs are grouped into a constant number of bands
defined by time bounds. Hence, each band is a collection of
a contiguous range of WATs. The WATs of Incoming UDP
traffic are collected, which helps in the creation of a constant
number of time bands(defined by upper and lower bounds)
inside which these WATs can be viewed. With this setup,
the probability of WAT falling under each band is computed
and used during detection. During detection, the WAT of each
window is computed, and the probability of the window is
the probability of the band inside which the WAT falls. If this
probability were to be lesser than a threshold probability, then
the window is considered abnormal. The threshold probability
is determined by adopting methods similar to that done in
TCP.

The primary goals of the training phase with respect to UDP
are the following:

1) To compute per UDP stream, the upper and lower
intervals of each band of intervals of WATs, given that

a constant number of bands(K) exist. For example, if
window size N = 100, then the different bands could be
B1 = (0–10) seconds2 , B2 = (11–235) seconds, B3 =
(236–499) seconds and so on. It is to be noted that the
band intervals shall span the entire time.

2) To compute per stream, the probabilities of each of these
bands(for example, probability of WAT in B2 etc) at the
end of the training phase.

3) To compute per stream the dynamic threshold probabil-
ity associated with the stream. This threshold probability
is the probability below which the window will be
considered abnormal.

III. PRACTICAL DESIGN CONSIDERATIONS

The most important factors driving practical design issues
are the following:

1) Availability of Training Data: One of the most im-
portant challenges for establishing confidence over a
statistical model is to have large volumes of test data.
This in this context amounts to having large volumes of
training data to determine what traffic patterns are part
of a good network state. This is generally impractical,
considering the time for which learning has to take place
before the system can be deployed online, particularly
in sites where the traffic is not expected to be very high
at any point of time. So the system should be able to
work with small training data.

2) Authenticity of Training Data: The general assumption
in a learning based system is that the data supplied
to training is generally tagged and completely normal.
This will help the system to completely take all patterns
seen during training as normal and determine anomalies
accordingly. But in practical situations, it is very hard to
guarantee such purely normal training data. The training
data might even contain data pertaining to unsuccessful
attack attempts, in which case, these attempts will never
be classified as anomalies during the testing phase. So
the system should be able to absorb some proportion of
abnormal data in the training data and still be able to
classify them as abnormal.
To work around the problem, the error in ”normal” traffic
is quantified into the system in the form of a parameter
called the Error Proportion(t). This proportion indicates
the proportion of training traffic(supposedly normal)
that is likely to be abnormal. From experiments in
limited datasets(tagged and untagged), it is seen that
the proportion varies from 1% in tagged datasets like
the DARPA dataset to close to 10% in other untagged
datasets.

3) Dealing with sparse training data: In many user sites,
the training data is observed to be very sparse, that is,
the data contains occurrence of very less events out of
a large number of possibilities. In this case, a large
number of probabilities remain zero, due to which there

2Unit of time is assumed to be seconds.

is a possibility of losing crucial probability information
because of one zero probability event.

IV. ALGORITHM

Further sections describe the important engineering methods
used to deal with the above problems. Due to space limitation,
TCP is taken as the model for description, and algorithms are
explained in terms of TCP. It is to be noted that the design
for UDP is more or less similar.

The system design consists primarily of two phases of
operation:

1) (Training Phase) The system takes stream information
and traffic statistics corresponding to the stream as input,
and produces a data structure S which consists of the
NB model probabilities for the different TCP events.
This model is used in the deployment phase to determine
the probability of a window(function of probabilities of
individual flags). It is to be noted that operations done
during training phase are entirely offline.

2) (Deployment Phase) The actual operations phase in
which the system takes the stream S containing the
NB model probabilities for the stream as input, and
determines the state of the network at any point in time.
In real time, the system takes input traffic and determines
if the network state is normal or anomalous.

V. TRAINING PHASE

A. Inputs

Inputs to the training phase are the following:
1) Stream information – containing the following:

a) Target IP address
b) Target (canonical) host name
c) Target port number(application layer)
d) Target port name(canonical)
e) Window size(N)
f) Error proportion t of learning traffic.

2) TCP Stream traffic statistics(per stream): Traffic statis-
tics denote the number of packets for each of the 6 TCP
packet classes in a window of the stream. For example,
if N = 100, then a typical example of statistics for one
window could be the tuple (2 5 46 43 4 0).

B. Pseudo-code

Every TCP stream is captured into a single data structure
called stream S, which captures all the above mentioned
values. For the model probabilities, S maintains a 2-D array W
which represents the actual learnt probabilities of each event
for each packet type. For example, S.W [3][7] denotes the
probability of observing 7 packets of type T3 in a window.
Variable C is a 1-D array which represents local count of
packet types per window. W is updated based on the elements
of C. Variable K denotes the number of bands of events per
packet type.

Algorithms 1 and 2 describe the training phase function for
TCP.

Complexity: The complexity of the algorithm is determined
by the inputs to the algorithm3, namely, a) Number of windows
W for the learning phase, b) Window size N . The complexity
of the algorithm, hence, is O(W ∗N). For practical purposes,
even N could be considered very small when compared to
W , and hence the complexity of the algorithm could be
generalised to O(W).

Algorithm 1: Training phase functionality for TCP
Input: Stream Information SF, Traffic statistics TF,

window size N , number of bands K, error
proportion t.

Output: Updated Stream Data Structure S with learnt
probabilities and threshold probability for
stream.

Initialise S with the number of windows N and error1

proportion t;
/* Update model probabilities */
S ← TCPTrain(SF,TF,S.N,K);2

/* Determine Threshold probability for
the stream */

S.threshold probability ←3

determineThresholdProbability(S.N,TF,S.t);
return S;4

C. Smoothing

Smoothing is a common technique used in situations where
the system has to deal with sparse training data. Smoothing
is the mechanism of artificially injecting a trivial non-zero
value (for example, assuming even before the beginning of
the experiment that every event has occurred once) to every
element in the data matrix in order to avoid ending up with a
sparse matrix(resulting out of sparse data). Hence, smoothing
is very important in the design of practical systems modeling
network traffic for DoS attacks. Further information about how
smoothing is performed on TCP is available in later sections.

D. The Distribution – An overview

The probability distribution considered is broadly described
by the following:

1) Observables – Grouped into 6(T1 to T6).
2) Discrete Random Variable Xi per observable group i =

number of packets of type Ti observed in a window.
3) Outcome set Oi = {0,1,2,3. . . N}, where N = window

size.
4) The probability of observing ci packets of type Ti in a

window is P (Xi = ci).
5) P (X1 = ci) = number of windows with ci packets

T , where
T = Total number of training windows.

6) Probability of a window W(c1 packets of T1, c2 packets
of T2 . . . c6 packets of T6(c1 + · · · c6 = window size

3Number of bands K is generally assumed to be constant and doesn’t
impact the complexity of the algorithm.

Algorithm 2: Function TCPTrain(SF,TF) – Learning Mod-
ule Algorithm for TCP

Input: Stream Information SF, Traffic Statistics TF,
Window size for stream N , number of bands K.

Output: Updated Stream Data Structure S with learnt
probabilities.

Initialise stream S with destination IP, destination port,1

etc. from SF;
for Every window in TF do2

Populate S.Cis for each of the 6 Tis;3

for i = 1 to 6 do4

/* Update corresponding event
occurence. */

Increment S.W[i][S.Ci];5

end6

Increment S.total windows in learning;7

end8

/* Determine Optimal bands for each row
of W, compute probabilities */

for i = 1 to 6 do9

band ← determineOptimalBands(S.W[i],S.N,K);10

// Determine band ranges for row i
S ← updateProbabilities(S,K,band,i);11

// Determine probabilities for row i
end12

return S;13

N)) = P (X1 = c1) ∗ · · ·P (X6 = c6), by Naive Bayes
independence assumptions.

E. Band Grouping and Optimal Band Determination

TCP is taken as the model for explaining the concept of
band grouping while it applies equally on UDP.

Description: During the process of collection of statistics,
the count of observable types T1 to T6 per window are
computed. Since certain events corresponding to each of these
packet types are close to improbable for normal traffic(for
example, the event SYN=windowsize is close to improbable in
a normal situation, as this generally indicates a SYN flooding
attack), probabilities have to be smoothed in order to preserve
other window related information while detection is on. In
order to overcome the concerns of using simple smoothing
over smaller training set, events are grouped together and
modeled, so that smoothing may be done on lesser number of
values. Observables are grouped into bands, and probabilities
of each of these bands determined. Input to the algorithm is a
collection of statistics denoting number of windows observed
against each event, from 0 to window size, per TCP packet
type.

Problem Statement: Given an array of numbers(size of array
equivalent to window size+1) A = a0, a1, a2, a3, . . . aN ,
where N =window size, Divide the array into K groups, such
that each element is closest in likelihood to every other element
in the group.

Methodology: Initially, grouping contiguous events was
considered for want of convenience during hardware based
detection – If the events were non-contiguous, extra efforts
have to go into determining which band this particular event
belongs to. However, this kind of partitioning may result in
inaccurate probabilities since a single high or low probable
event will create imbalance and bias to all other events in the
group. Hence, only events which are as equally likely as each
other are to be grouped.

In order to group these numbers, the numbers are first
sorted. Sorting these numbers brings like events closer. It is to
be ensured that the like events fall into the same group. How-
ever, the number of such bands/groups is also limited. This
lets only a reasonable such grouping since the best grouping
in terms of like events may have bigger number of groups. In
order to do efficient grouping by accommodating fixed number
of groups, each group is characterised by a jump (in values)
that it has with the last element of the previous group. With the
sorted array, the jumps between successive numbers(it is to be
seen that estimating jumps between successive numbers will
clearly isolate surges into a single group, since one big number
between small number neighbours will automatically induce
two jumps. This situation is not desirable.) is computed. The
job on hand is to estimate the boundaries of fixed number of
partitions in the sorted sequence in accordance with the jumps.
If j bands are allowed, then the top (j − 1) jumps are taken
and partitions are drawn in the sorted sequence in front of
them. The indices corresponding to the original sequence of
numbers in the sorted sequence in each partition will form the
elements of the band. The number of windows for each band
is computed as the average number of windows occurring for
events in the band. The probability is computed as the average
number of windows by the total number of windows.

The methodology described above is presented formally in
Algorithm 3.

Example: Let window size N = 10.

Let the set representing number of windows during
learning against each event(from n = 0 to n = 10)
be A = {500, 291, 271, 36, 222, 111, 1211, 3, 1, 31, 1},
corresponding to packet type Ti. Let the fixed number of
bands K = 5.

Sorted array As = {1211, 500, 291, 271, 222, 111, 36, 31, 3, 1, 1},
which brings like events closer.

Jump array J = {711, 209, 20, 49, 111, 75, 5, 28, 2, 0}.

Top 4 jumps Js[0] . . . Js[3] = {711, 209, 111, 75}.

Index array I = {0, 1, 4, 5}.

Sorted Index array Is = {0, 1, 4, 5}.

Band groups: Bg1 : As[0](1 value), Bg2 : As[1](1
value), Bg3 : As[2] − As[4](3 values), Bg4 : As[5](1

Algorithm 3: Function determineOptimalBands(S.W[],K)
– Optimal Band Determination Algorithm for TCP

Input: Array A = {a0, a1 . . . aN}, window size for
stream N ,number of bands K.

Output: 2-dimensional array band, containing indices of
per group elements in A.

J [N] ← {0};// stores jumps between1

consecutive values of array A
Js[K − 1] ← {0};// stores the top (K − 1)2

jumps.
upper,lower,nelements ← 0;3

I[K − 1] ← 0, Is[K − 1] ← 0;// stores indices4

in A of top ((K − 1)) jumps.
Sort array A in descending order and copy into array As;5

/* Determining jumps between
consecutive values of As */

for i = 0 to N do6

J [i] ← As[i]−As[i + 1];7

end8

Determine the top (K − 1) jumps(largest numbers) from9

array J . Store them in Js[0], Js[1] . . . Js[K − 2];
Store indices of Js[0] . . . Js[K − 2] in J into array I;10

Sort array I in ascending order and store in Is;11

for i = 0 to K − 1 do12

upper ← Is[i];13

nelements ← upper - lower + 1;14

k ← 0;15

band[i][k++] ← nelements;16

for j = lower to (lower+nelements) do17

band[i][k++] ← index of As[j] in A;18

end19

lower ← upper + 1;20

end21

band[i][K++] ← remaining elements of A;22

return band;23

value),Bg5 : As[6]As[10](5 values).

Bands[indices]: B1 : {6}, B2 : {0}, B3 : {1, 2, 4}, B4 : {5},
B5 : {3, 9, 7, 8, 10}.

Complexity: The function determineOptimalBands() is
dominated by the sorting of numbers, and hence has a
theoretical complexity of O(NlogN), although for practical
implementations, N will be small and the complexity in that
case would be O(N2).

F. Probability Updation

Problem: Given 2-dimensional array band of K number of
rows(that is, K number of bands), determine the probability
for all possible events for the packet type.

Methodology: After determining the band indices, deter-
mining probabilities is done by the following philosophy:
Probability of all events within a group should be the same,
and should be the mean probability of all events. However,

smoothing needs to be done prior to determining probabilities.
The method explained above is described in Algorithm 4.

Algorithm 4: Function updateProbabilities(S,K,band,L) –
Probability determination algorithm

Input: TCP Stream structure S, 2-D array band
containing band indices of groups of A, number
of bands K, Index of packet type L(for writing
into appropriate index at S.W)

Output: Probabilities of all events updated into
corresponding W index in S

avgwcount ← 0;1

for j = 0 to K do2

nelband ← band[j][0];3

for k = 1 to (1+ nelband) do4

avgwcount ← avgwcount + S.W[L][band[j][k]];5

end6

/* Smooth the event group and
compute mean */

avgwcount++;7

avgwcount ← avgwcount
nelband ;8

/* Write the mean value into the
corresponding W indices of the
packet type. */

for k = 1 to (1+ nelband) do9

S.W[L][band[j][k]] ← avgwcount;10

end11

/* Compute probabilities */
for k = 1 to (1+ nelband) do12

S.W[L][band[j][k]] ← S.W [L][band[j][k]]
S.total windows in learning ;13

end14

avgwcount ← 0;15

end16

return S;17

Complexity: The complexity of the function updateProb-
abilities() is dominated by operations done on individual
elements of each band, whose sum total is the window size
N . Hence, the complexity of the function is O(N).

G. Thresholding

Problem: Given learning traffic statistics for a site, deter-
mine the threshold probability occurrence below which an
event will be considered abnormal.

Methodology: For the purpose of determining a threshold
probability, a technique called Cross Validation is adopted.
The following is the philosophy behind cross validation: While
there is variability in traffic in terms of some events appearing
more likely than a few others, it is assumed that this variability
is reflected in the learning traffic also. So, the idea is to
simulate the fact that detection actually has to work on unseen
data, by making some of the training data itself unseen, and
get trained with the seen data. For the assumed unseen data,
the detection module estimates probabilities, and a suitably

low probability estimated in detection becomes a candidate
for threshold probability.

An important design consideration is to eliminate the effect
of bad traffic that may be present in the training traffic.
During cross validation, there is a possibility that most of
”unseen” traffic set(in spite of randomly picking the traffic
for the unseen set) might be bad traffic, in which case the
threshold probability will be lesser than an ideal choice(since
the probability of most unseen windows would be very low
as estimated by the model built with good traffic). This is
undesirable. So the unseen traffic should be sampled at random
a number of times before a threshold probability is arrived at.
The algorithm mentioned here does 10 such iterations.

A single experiment consists of training the model using
a group G consisting of 9

10 th of learning traffic(picked at
random from the complete traffic), and estimating probabilities
of a blob B consisting of the remaining 1

10 th of traffic.
The learning traffic(that is, window statistics) is split into 10
groups(10-fold cross validation4) of traffic(that is, windows)
at random. The system is trained on every possible 9-group
combination, and probabilities computed on the remaining
group of traffic. This will result in a number of probabilities,
from which a suitably low probability will be chosen as the
threshold probability.

The error proportion(t) is taken as an input to the al-
gorithm. If the error proportion were x percent, then the
lower x percent of probabilities calculated in the learning-
cum-estimation phase described above will be eliminated. The
threshold probability will be the least probability in the set
after x percent of probabilities are eliminated. The algorithm
uses a Random Number Generator Rng() which will be used
for determining which group a particular window statistic shall
belong to.

Complexity: The number of operations to be performed
during the execution of the function depends on the total
number of training windows W , and is dominated by the
sorting function which sorts W values. Hence the complexity
of the algorithm is O(WlogW). This appears slightly intensive
in practical applications but doesn’t affect the effciency since
all training phase operations are one-time operations done
completely offline.

VI. DEPLOYMENT PHASE

The deployment phase is very similar in functionality to the
training phase in terms of computing statistics. The system
takes as input the data structure S containing the NB model
probabilities for the given stream, and determines if the
network state for the stream is normal or anomalous at any
point in time. It is important to have a light-weight deployment
phase activity for the system since this phase is the online
phase. The system is designed to only perform preliminary
window statistics computation and a few look ups to determine
the probability of a window.

4cross validation done by splitting input dataset into n groups is called
n-fold cross validation.

Algorithm 5: Function determineThresholdProbability(S)–
Dynamic Threshold determination algorithm

Input: Window size for stream N , Traffic statistics TF ,
Error proportion t percent

Output: Threshold probability Pt for S
/* Initialisation */
Seed Rng();1

parray[] ← 0;2

/* Grouping Learning traffic */
Split traffic TF uniformly at random into 10 groups3

G1, G2 . . . G10;
for i = 1 to 10 do4

G ← TF −Gi;5

B ← Gi;6

/* Learn from 9
10th of traffic */

Stemp ← TCPTrain(SF ,G);7

/* Compute probability of remaining
1
10th of traffic */

for every window W in B do8

P ← determineProbability(W ,Stemp);9

add P to parray;10

end11

end12

/* Sieving lower probabilities */
Sort array parray;13

result ← parray[t
100 ? parraylen + 1];14

return result15

A. Probability Computation

Probability computation involves computing statistics of a
window and determining the probability at which the window
would have occurred in the training phase. It is described in
Algorithm 6.

Complexity: The detection mechanism involves a set of
constant, light weight operations. More precisely, it in-
cludes a constant number of additions for updating TCP flag
statistics(N of them) until a window of packets is received, 6
lookups to determine probabilities of individual events in the
window, 5 multiplications(or additions in the case of logspace
operations) to determine the probability of the window, and
one comparison operation to arrive at a verdict.

B. Attack Detection

Flagging an abnormal situation as an attack is a function of
a series of abnormal windows, not necessarily consecutive.
For example, if attack were to be flagged after observing
5 consecutive abnormal windows(say), then the attacker can
cleverly escape attack detection by keeping attack traffic just
below 5.

To overcome this problem, a step based mechanism is used.
At any point(until a reasonable time out period) in the course
of deployment, if the number of abnormal windows goes
beyond a particular number (quantified as a parameter called
Abnormal Window Count(AWC)), then the system flags an

Algorithm 6: Function determineProbability(W,S) – Prob-
ability of a window W for stream S

Input: Stream with NB probabilities S, packet window
statistics W

Output: Probability P of window W
Initialise P to 1;1

Determine counts of packets with flags of all 6 groups2

T1 . . . T6 and update counts C1 . . . C6;
for i = 1 to 6 do3

P = P * S.W[i][Ci];4

end5

return P;6

attack. This will ensure that attacks such as the one explained
above will be caught. The function of the system during
deployment phase is formally described in Algorithm 7.

Algorithm 7: Function TCPDeploy(S,IT,AWC)
Input: Stream S, Input Traffic IT , Abnormal Window

Count(AWC)
/* Initialisation */
A ← 0;1

for every packet window W in T do2

P ← determineProbability(W ,S);3

if P < Threshold probability of S then4

increment A;5

else6

decrement A;7

end8

if A ≥ AWC then9

return attack ;10

end11

end12

VII. EXPERIMENTAL RESULTS

• Experiments were conducted on the following training
datasets5:

– DARPA dataset(TCP): Consisted of hundreds of
streams with number of inbound TCP packets vary-
ing from a few hundreds to seventy thousand. The
target stream(telnet server) with the most number of
inbound packets(70,600) was taken for training.

– SETS dataset(TCP): Consists of inbound TCP traffic
to the webserver of SETS, India collected over a
period of 15 days. The traffic consists of roughly
half a million packets.

– SETS dataset(UDP): Consists of inbound UDP traffic
to local DNS server at SETS, India, collected over
a period of 2 days. The traffic consists of roughly
64,300 packets.

5The system was trained using these datasets.

For attacks, datasets were synthesised for each of these
above streams.

• Two kinds of tests were performed for the purpose of
determining four parameters – True and false positives,
true and false negatives. The tests were:

– False Positive Test(FPT): Dataset is fed into both
the training phase and the deployment phase and
the number of windows classified as abnormal is
observed, to determine false positives.

– False Negative Test(FNT): Dataset is fed into the
training phase. During the deployment phase, attack
traffic(anomalous event) is provided as input to sys-
tem, and the number of windows classified as normal
is observed, to determine false negatives.

• Critical system parameters, namely, Accuracy(Acc), False
Alarm Rate(FAR), and Miss Rate(MR) were computed
based on the number of true and false predictions. To
understand the effect of window size on the problem,
experiments were conducted with different window sizes.
The results are tabulated in Table II.

WS DARPA at t =1% SETS at t =5%
Acc FAR MR Acc FAR MR

50 98.3% 2.3% 0 97% 7% 0
100 98.6% 2% 0 97.4% 6.2% 0.06%
200 98.7% 1.8% 0 97.1% 5% 1.1%

TABLE I
EXPERIMENTAL RESULTS FOR TCP

WS SETS at t =1%
Acc FAR MR

100 99.5% 0.4% 0.1%
200 99.2% 0.5% 0.6%

TABLE II
EXPERIMENTAL RESULTS FOR UDP

With the tagged DARPA dataset(at an error proportion of
1%), there is a uniform trend in performance. With increasing
window size, the accuracy becomes better, false alarms lesser.
The miss rate is zero, that is, no attacks were missed. But
with the untagged SETS dataset, it is safe to assume a slightly
bigger error proportion of 5%, and the performance is slightly
different from the DARPA dataset. With increasing window
size, the false alarms become lesser but the miss rate increases
marginally. Although untagged datasets show a slightly differ-
ent pattern in performance, it could be concluded that larger
window sizes are bound to improve system performance.

Experiments were later conducted on a partially tagged
DARPA dataset6 containing predominantly normal traffic
mixed with some attack traffic on the above TCP stream.
While the training dataset remained the same, the new dataset
was used as the deployment dataset. Around 7.4% of win-
dows(consisting of various attacks) were detected as anomalies

6Attacks on a particular stream are not known although prevalent attacks
on the dataset on certain classes of IPs is mentioned.

even though the system was not specifically tuned for them.
While an AWC of 5 to 10 works for flooding attacks in general,
in order to detect a variety of attacks, the AWC may have to
be tuned appropriately.

Remarks

• For the purpose of analysing real-time latency, the de-
tection algorithm was implemented on a Virtex 4 FPGA
operating at 65Mhz. It is observed that the maximum per-
packet latency is 4 micro seconds, and the attack detection
time is roughly 3 seconds for an AWC of 5.

• In an attempt to compare the performance of the pro-
posed method with other methods in literature, it was
observed that different works have been done in different
testing environments, including datasets used, number of
features, performance parameters reported, constraints on
efficiency reports etc. Here are a few excerpts of the
variety of environments in which different works are
conducted:

– [20] does Naive Bayes modeling on the KDD99
dataset, utilising 41 attributes and reports for DoS
attacks a detection rate of 99.75% and a false positive
rate of 0.04%.

– [17] does HMM based training on the DARPA99
dataset, testing on a mix of DARPA99 dataset traffic
and DDoS traffic injected at (supposedly)arbitrary
times, reports a detection rate of 100% with zero
false alarms, subject to the condition that the length
of the input observation sequence in the constant
time t is 120, while their Discrete Reinforcement
Learning algorithm reports 79.2% Detection Rate.

Owing to the above, it is understood that comparison
efforts of proposed system with other systems may be
inaccurate.

VIII. CONCLUSION AND FUTURE WORK

A practical approach to network modeling for DoS attacks
using Naive Bayesian Classifiers has been proposed. The
resulting system has been prototyped independently and is ver-
ified to be light weight and working close to line speeds(Only
testing limitations don’t let the authors claim that the system
works at line speeds). The system has been tested with limited
number of datasets. An avenue of research lies in making
the user parameters more friendly – For example, only a
seasoned network administrator will be able to provide a
reasonable value to the error proportion t. In more critical
applications where even successful attacks of small magnitude
can cause catastrophic effects, it is important to improve the
system performance to catch literally all attack traffic. Another
important area of concern is addressing an attack situation –
In terms of making a robust and fool proof practical system,
attack mitigation is a wide topic of research.

ACKNOWLEDGMENT

The authors would like to thank Rangadurai Karthik for
useful debugging exercises on software, and the hardware

implementation team at SETS for implementing the detection
algorithm in FPGA.

REFERENCES

[1] M. Yamamura, http://service1.symantec.com/sarc/sarc.nsf/html/W32.
DoS.Trinoo.html.

[2] D. Dittrich, “The stacheldraht distributed denial of service attack tool,”
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis, December
1999.

[3] D. Bernstein, “Syn cookies,” http://cr.yp.to/syncookies.html.
[4] A. Juels and J. G. Brainard, “Client puzzles: A cryptographic counter-

measure against connection depletion attacks,” in NDSS, 1999.
[5] T. Aura, P. Nikander, and J. Leiwo, “Dos-resistant authentication with

client puzzles,” in Lecture Notes in Computer Science. Springer-Verlag,
2000, pp. 170–177.

[6] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred, “Statistical
approaches to ddos attack detection and response,” in Proc. DARPA
Information Survivability Conference and Exposition, 2003, vol. 1, Apr.
2003, pp. 303–314.

[7] S. Jin and D. Yeung, “A covariance analysis model for ddos attack
detection,” in Communications, 2004 IEEE International Conference,
China, Jun. 2004, pp. 1882–1886.

[8] S.-Y. Jin and D. Yeung, “Ddos detection based on feature space mod-
eling,” in Proc. of 2004 International Conference on Machine Learning
and Cybernetics, vol. 7. IEEE Press, Aug. 2004, pp. 4210–4215.

[9] Z. Zhou, D. Xie, and W. Xiong, “A novel distributed detection scheme
against ddos attack,” Journal of Networks(JNW), vol. 4, no. 9, pp. 921–
928, Nov 2009.

[10] Y. Xie and S.-Z. Yu, “A novel model for detecting application layer
ddos attacks,” in IMSCCS ’06: Proceedings of the First International
Multi-Symposiums on Computer and Computational Sciences - Volume
2 (IMSCCS’06). Washington, DC, USA: IEEE Computer Society, 2006,
pp. 56–63.

[11] J. Seo, C. Lee, T. Shon, K.-H. Cho, and J. Moon, “A new ddos
detection model using multiple svms and tra,” in Machine Learning
and Cybernetics, vol. 3823. Springer, 2005.

[12] T. Shon, Y. Kim, C. Lee, and J. Moon, “A machine learning framework
for network anomaly detection using svm and ga,” in Information
Assurance Workshop, 2005. IAW ’05. Proceedings from the Sixth Annual
IEEE SMC, Nagoya, Japan, Jun. 2005, pp. 176–183.

[13] D. Gavrilis and E. Dermatas, “Real-time detection of distributed denial-
of-service attacks using rbf networks and statistical features,” Comput.
Netw. ISDN Syst., vol. 48, no. 2, pp. 235–245, 205.

[14] Y. Xiang and W. Zhou, “Mark-aided distributed filtering by using neural
network for ddos defense,” in Global Telecommunications Conference,
2005. GLOBECOM ’05. IEEE, Nov. 2005, p. 5pp.

[15] M. V. Mahoney and P. K. Chan, “Learning nonstationary models
of normal network traffic for detecting novel attacks,” in KDD 02:
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2002, pp. 376–385.

[16] J. Kang, Y. Zhang, and J. bin Ju, “Detecting ddos attacks based on multi-
stream fused hmm in source-end network,” in International Conference
on Cryptography and Network Security, 2006.

[17] X. Xu, Y. Sun, and Z. Huang, “Defending ddos attacks using hidden
markov models and cooperative reinforcement learning,” in PAISI’07:
Proceedings of the 2007 Pacific Asia conference on Intelligence and
security informatics. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
196–207.

[18] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense
mechanisms,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp.
39–53, 2004.

[19] K.-C. Khor, C.-Y. Ting, and S.-P. Amnuaisuk, “From feature selection
to building of bayesian classifiers: A network intrusion detection per-
spective,” American Journal of Applied Sciences 6 (11), pp. 1949– 1960,
2009.

[20] D. M. Farid, N. Harbi, and M. Z. Rahman, “Combining naive
bayes and decision tree for adaptive intrusion detection,” CoRR, vol.
abs/1005.4496, Apr. 2010.

[21] “Kdd cups 1999 data,” http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html, October 1999.

[22] “Darpa intrusion detection datasets,” http://www.ll.mit.edu/mission/
communications/ist/corpora/ideval/data/index.html.

