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ABSTRACT

KEYWORDS: Collective Classification, Multi-view Learning, Multi-view

IR, Sentiment Analysis, Linked Data Analysis, Protein Struc-

ture Similarity.

Machine learning techniques can be used to build systems to perform various

tasks such as classification, clustering, retrieval, etc. In traditional machine learn-

ing algorithms, the data points are represented in a d-dimensional space which

defines a view of the data. But many real-world datasets possess rich additional

information that can be leveraged to improve the system’s performance, reduce

labeling cost, etc. For example, in webpage classification the content of the web-

page and text on hyperlink pointing to this page can be used as two different

views. Multi-view learning is a technique which allows the use of multiple views

where a model built on one of the views can aid learning the models built on

other views. It has been shown that multi-view approaches are more effective than

single-view approaches for various domains. In this work, we propose multi-view

based approaches for the following two tasks:

• Linked Data Classification: In general, all the machine learning paradigms as-
sume the data points to be independent and identically distributed (i.i.d).
But many real-world datasets such as webpages, images and protein interac-
tion networks possess additional link information which provides local label
smoothness. For example, in webpage classification, links between web-
pages convey that there is a strong correlation between labels of the linked
pages. This can be exploited to provide regularization and thereby improve
the performance. Collective classification is one of the popular approaches
that can handle this type of network data. It combines traditional machine
learning and link based classification in an iterative procedure. This involves
two important steps: 1) collective learning – training the base classifier on
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the appended content and link information with the given (partially) labeled
network data; and 2) collective inference – applying the trained base classi-
fier on the partially labeled network data and labeling it completely. Most of
the collective classification frameworks assume that sufficient labeled data
is available for training the base classifier. The trained base classifier is ap-
plied on the test data iteratively to perform collective inference. But, there
has been little attention paid towards collective learning on partially labeled
network data. We propose a multi-view learning based algorithm which uti-
lizes both content and link views effectively to learn from the unlabeled data
also. We empirically evaluate the effectiveness of the proposed framework
by showing that it performs better than traditional single view approaches
on sentiment analysis and standard linked datasets such as Cora, Citeseer
and WebKB. We also performed sentiment analysis on automobile reviews.

• Similar Protein Structures Retrieval: With the rapid expansion of protein struc-
ture databases, the task of efficiently retrieving structures similar to a given
protein has gained importance. It involves two major issues: (i) an effective
protein structure representation that captures inherent relationship between
fragments and facilitates efficient comparison between structures, (ii) an ef-
fective framework to accommodate different retrieval requirements. Recently,
researchers proposed a vector space model of proteins using bag of fragments
representation (FragBag), which corresponds to a basic information retrieval
model. In this work, first, we propose an improved representation of pro-
tein structures using Latent Dirichlet Allocation (LDA) topic model. Second,
we handle the most important requirement which is to retrieve proteins,
whether they are close or intermediate or remote homologs. Close, remote
and intermediate homologs are defined based on Structural Alignment Score
(SAS). The SAS thresholds typically are 2, 3.5 and 5 for close, intermediate
and remote homologs respectively. In order to meet diverse objectives, we
propose a multi-view based framework that combines multiple representa-
tions and retrieval techniques. We experimentally show that the proposed
multi-view based retrieval framework performs better than state-of-the-art
filter and match techniques across different retrieval requirements. The ex-
periments are performed on FragBag dataset, which contains 2,930 sequence
non-redundant structures selected from CATH version 2.4.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vii

LIST OF FIGURES viii

ABBREVIATIONS ix

1 INTRODUCTION 1

1.1 Overview of Machine Learning Strategies . . . . . . . . . . . . . . 2

1.2 Motivation And Objectives . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related work 7

2.1 Linked Data Classification . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Similar Protein Structures Retrieval . . . . . . . . . . . . . . . . . . 10

2.3 Multiview Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Multi-view based Collective Learning 15

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iv



3.3.1 MGSA : Multi-grain Sentiment Analysis Framework . . . 24

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Summary and Shortcomings . . . . . . . . . . . . . . . . . . . . . . 29

3.6 MVCL: Multi-view Collective Learning . . . . . . . . . . . . . . . 30

3.6.1 Multi-view based Bootstrapping Algorithm . . . . . . . . . 30

3.6.2 Multi-view based Iterative Learning Algorithm . . . . . . 32

3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Conclusion and Summary . . . . . . . . . . . . . . . . . . . . . . . 36

4 Multi-view based Similar Protein Structure Retrieval 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Representation of proteins in topic space . . . . . . . . . . 43

4.2.2 Multi-view based Retrieval . . . . . . . . . . . . . . . . . . 46

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusion and Discussions 62

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



LIST OF TABLES

3.1 MGSA Performance : Sentence level classification . . . . . . . . . 29

3.2 MGSA Performance : Document level classification . . . . . . . . 29

3.3 Bootstrapping performance for different training ratios using NB
and KNN Classifier on Cora dataset: averaged across 5 splits . . . 36

3.4 Bootstrapping performance for different training ratios using NB
and KNN Classifier on Citeseer dataset : averaged across 5 splits 37

3.5 Bootstrapping performance for different training ratios using NB
and KNN Classifier on WebKB dataset : averaged across 5 splits . 37

3.6 Collective Learning performance for different training ratios using
NB and KNN Classifier on Cora dataset : averaged across 5 splits 38

3.7 Collective Learning performance for different training ratios using
NB andKNNClassifier on Citeseer dataset : averaged across 5 splits 38

3.8 Collective Learning performance for different training ratios using
NB and KNNClassifier onWebKB dataset : averaged across 5 splits 39

3.9 MGSA’s collective Learningperformance fordifferent training ratios
using NB and KNN Classifier: averaged across 5 splits . . . . . . 39

4.1 Comparison of three different distance measures: Cosine similarity
(CO), Euclidean distance (EU) and KL divergence (KL) based on av-
erage area under the curve (AUC) obtained by ranking structurally
similar proteins, which are represented in topic space using 400(11)
library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Selection of the best number of topics for representing proteins,
using eachof the seven libraries, basedon their rankingperformance
indicated by the average AUC . . . . . . . . . . . . . . . . . . . . . 53

4.3 Comparing the average AUC for various multi-view IR methods:
Themulti-viewmodels are obtainedby combiningLDAwithweight
λ1 and one of the following vector space models (i) term frequency
(TF) (I), (ii) term frequency inverse document frequency (TF-IDF)
(II) and (iii) boolean (BOOL) (III) with weight λ2. Since λ2 = 1−λ1,
we have not mentioned their values explicitly in the table. . . . . 55

vi



4.4 Comparison of models built on different libraries for SAS threshold
of 2Å: Here each library isdenotedasX(Y), whereX is thenumberof
fragments in the library, each of length Y. The ranking performance
of a given multi-view IR model for a given library is given in terms
of AUC. The multi-viewmodel contains LDAmodel with weight λ1

and TF vector space model with weight 1 − λ1 . . . . . . . . . . . 55

4.5 Comparison of models built on different libraries for SAS threshold
of 3.5 Å: Here each library is denoted as X(Y), where X is the
number of fragments in the library, each of length Y. The ranking
performance of a given multi-view IR model for a given library is
given in terms of AUC. The multi-view model contains LDAmodel
with weight λ1 and TF vector space model with weight 1 − λ1 . . 56

4.6 Comparison of models built on different libraries for SAS threshold
of 5Å: Here each library isdenotedasX(Y), whereX is thenumberof
fragments in the library, each of length Y. The ranking performance
of a given multi-view IR model for a given library is given in terms
of AUC. The multi-viewmodel contains LDAmodel with weight λ1

and TF vector space model with weight 1 − λ1 . . . . . . . . . . . 56

4.7 Performance of BoW and LDA representations while classifying
proteins at class (C) level of CATH classification. . . . . . . . . . . 58

4.8 Performance of BoW and LDA for protein structure clustering task 58

4.9 AUCs of ROC Curves Using Best-of-Six Gold Standard: The pro-
posed approaches are shown in bold. The speed is given as average
CPU minutes per query. If the processing time (after preprocessing
of protein structure) for a query is less than 0.1s, then it ismentioned
as f ast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



LIST OF FIGURES

3.1 Sample network data . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Example showing neighborhood for two documents . . . . . . . . 26

4.1 Graphical representation of LDA; K is the number of topics; N is
the number of protein structures; Ns is the number of fragments in
protein structure s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Example protein structure with bag of fragments and topic space
representations; built for a given fragment library. (a) shows an
example protein structure and (b) shows a given fragment library.
Each substructure in protein is compared against the fragment li-
brary and the closest matching fragment is used to represent the
substructure. Thus, we obtain bag of fragments representation for
protein structure as shown in (c). We model the structure as a prob-
ability distribution over latent topics. In (d) we have shown a toy
representation using three topics, which forms a simplex. . . . . . 47

4.3 Typical Retrieval Model . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Multi-view based Retrieval Model . . . . . . . . . . . . . . . . . . 49

4.5 Comparison of the average AUC at SAS threshold of 2.0 Å, across
libraries, obtained using TF, LDA and multi-view model using the
best weights from Table 4.4 . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Comparison of the average AUC at SAS threshold of 3.5 Å, across
libraries, obtained using TF, LDA and multi-view model using the
best weights from Table 4.5 . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Comparison of the average AUC at SAS threshold of 5.0 Å, across
libraries, obtained using TF, LDA and multi-view model using the
best weights from Table 4.6 . . . . . . . . . . . . . . . . . . . . . . 60

viii



ABBREVIATIONS

AUC Area Under the Curve

BoW Bag of Words

CATH Class, Architecture, Topology and Homology level classification

CPU Central Processing Unit

EM Expectation Maximization

FragBag Bag of Fragments

i.i.d Independent and identically distributed

IR Information Retrieval

ISCL Iterative Structured Collective Learning

KDD Knowledge Discovery and Data mining

KL Kullback-Leibler

KNN K-Nearest Neighbor

LDA Latent Dirichlet Allocation

MGSA Multi-grain Sentiment Analysis

MVCL Multi-view Collective Learning

NB Naive Bayesian

NLP Natural Language Processing

ROC Receiver Operating Characteristic

SAS Structural Alignment Score

SSL Semi-Supervised Learning

TF Term Frequency

TF-IDF Term Frequency-Inverse Document Frequency

ix



CHAPTER 1

INTRODUCTION

Machine learning techniques can be used to build systems that perform various

tasks such as classification, clustering and retrieval in an automated fashion. The

class of machine learning algorithms used varies depending on the task performed

and the type of experience provided to the learning agent. In traditional machine

learning algorithms, the data points are represented in a d-dimensional space

which defines a view of the data. Much work has been done on finding a suit-

able representation for the data. A representation can be generated by choosing

a subset of dimensions or by projecting the features onto a different space. The

suitability of a representation is measured with respect to certain criteria on the

features of the input data such as information gain, variance or with respect to the

target task. These techniques are commonly referred to as pre-processing methods

and they are part of the ‘data transformation’ stage of Knowledge Discovery and

Data mining (KDD) process. There is another class of methods which instead of

selecting a single most suitable view, focuses on simultaneously utilizing multiple

views. For example, a protein can be represented using its structural and amino

acid sequence information. It would be effective to use both the representations

together rather than using either of them separately or using a single combined

representation. In this work, we propose methods that utilize multiple views for

linked data classification and similar protein structure retrieval tasks. In the liter-

ature, researchers refer to multiple views as multi-view or multi-viewpoints. We use

multi-view throughout the text. In the following section, we give the taxonomy of

common machine learning strategies.



1.1 Overview of Machine Learning Strategies

Taxonomy of common machine learning paradigms is given below :

• Supervised learning techniques learn a function to map the given input to
discrete/continuous output space. For example, in a webpage classification
problem, the learner approximates a function mapping the feature vector
into “Politics” or “Cricket” by reducing the error on training input-output
examples. Since the function outputs a discrete value, it is referred to as
classification. Consider another example, where the input review text has
to be mapped to a score in between 1 and 10. In this case, the output is a
continuous value, it is referred to as regression.

Active Learning is a supervised learningparadigm,which allows querying
the user/oracle to obtain the label for an input datapoint. Typically, it is used
in the cases where there is a fixed budget for getting labels. The querying
must be done on the most informative datapoints with respect to the task in
hand.

• Unsupervised learning techniques model the input data. The input does not
include class labels as in the case of supervised learning. For example, to
understand user browsing behaviour, we would like to group users based
on their online browsing pattern and model each group. It is also called as
clustering. The grouping is performed with respect to an objective function.
For example, in k-means algorithmclustering is done such that the datapoints
within a cluster are more similar and the datapoints across clusters are less
similar. Other unsupervised learning techniques include association rule
mining, blind separation techniques for feature extraction such as principal
component analysis, independent component analysis etc.

• Semi-supervised learning (SSL) combines both labeled and unlabeled data to
learn an appropriate function for prediction. Typically, it uses a small amount
of labeled data and large amount of unlabeled data. It’s a relatively new
paradigm, and is gaining importance due to the fact that getting access to
completely labeled data is hard and costly. Use of unlabeled data provides
regularization, and it has been shown to improve the performance.

Transductive learning works only on the labeled and unlabeled training
data, and cannot handle unseen data. On the other hand, inductive learners
can handle unseen data.

• Reinforcement learning is amachine learningparadigm, that falls neither under
supervised nor unsupervised learning methods. An RL agent interacts with
the environment and receives rewards for every action performed. An action
can be chosen from the action space based on different criteria. Based on the
experience gained over repeated runs, the agent computes the desirability
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of choosing a particular action. The agent looks to maximize the reward
accumulated over time, i.e., it looks to choose actions that promise higher
returns in the long run. Unlike unsupervised learning, there is a notion of
feedback in terms of rewards and next state.

Typically all the machine learning techniques assume the datapoints to have

only one representation, which is also called as single view. But many real-world

datasets possess additional information that can be utilized to improve the perfor-

mance. For example, in text classification, sentences in a document can be repre-

sented using ‘bag of words’ representation which captures the lexical information.

Alternatively, the sentences can also be represented using its ‘parse tree’which cap-

tures the syntactic information. Rather than using either of the views (representa-

tions) separately or using a single representation by combining both views, itmight

be effective to use both views together where amodel built on one of the views can

aid learning themodel built on other view. A relatively newmachine learning tech-

nique to handle multiple views is called as Multi-view Learning[6; 31]. It has been

successfully used in conjunction with traditional paradigms such as supervised,

unsupervised and semi-supervised approaches[2; 6; 13; 15; 31; 35; 52; 55; 56; 65].

Researchers have shown that utilizing multiple views together is more efficient

than using a single view alone or using a combined representation of multiple

views.

1.2 Motivation And Objectives

Across domains, many machine learning problems involve data which naturally

comprises multiple views. Multi-view Learning is a machine learning technique

that can utilize multiple views in a supervised, semi-supervised or unsupervised

setup. Seminal work in this field was done by Blum and Mitchell[6], where they

proposed a “co-training” based multi-view learning algorithm which bootstraps a

set of classifiers from high confidence labels. In that work, they assumed the views
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to be self-sufficient 1 and conditionally independent given the class label. In other

words, they assume a natural split of features into multiple views. For example,

in web page classification, an input web page can be classified using its content

or the text on hyperlinks pointing to this page. In object detection, an object can

be classified using its color or shape. In a multi-modal setting, multiple views can

be defined on signals from separate input sensors. For example, in biometrics,

a person’s identity can be found using his fingerprint or iris scan inputs. It is

impractical to expect such natural splits in all the domains. So, researchers started

working towards finding suitable artificial feature splits and necessary conditions

for multi-view learning to be effective. Nigam and Ghani[31] presented other SSL

algorithms for multi-view learning, which includes co-EM and self-training. They

also analysed the conditions necessary for “co-training” to be successful. Follow-

ing Nigam and Ghani, many approaches for multi-view learning[35; 52; 55; 56; 65]

exploit multiple redundant views to effectively learn a set of classifiers defined us-

ing each of the views. Multi-view learning is found to be advantageous compared

to single-view learning especially when the weaknesses of one view complement

the strengths of the other[6; 13; 55]. This forms the basic motivation for our pro-

posed multi-view based methods for linked data classification and similar protein

structures retrieval tasks. In both the tasks, we exploit redundant views to improve

the performance.

In brief, the approaches can be described as follows :

• In the first part of this work, we focus on multi-viewmethods for linked data
classification. One of the popular frameworks that deals with linked data
classification is collective classification. Collective classification approaches
utilize both node’s attributes (content) and link information in an iterative
procedure[27; 48; 59]. Typically, the feature vector based on link informa-
tion is the class distribution of neighboring nodes[27; 59]. Since acquiring
fully labeled data is not possible in many domains, we focus on collective
classification in a semi-supervised setup. In a partially labeled graph, many
nodes need not be labeled. The feature vector for link view would end up

1A view is said to be self-sufficient, if classification can be performed using that view alone.
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being incomplete. It can even turn out to be zero vectors. So we refer to the
link view as weaker view. On the other hand, content view is self-sufficient.
Hence collective classification on partially labeled graphs involves stronger
content and weaker link views. We propose a multi-view based framework
which utilizes the stronger view to bootstrap and learn model on the weaker
view. And, utilizes the weaker view to help stronger view only when it is
self-sufficient. Since link view is bootstrapped andmodified by content view,
link view can be seen as a redundant representation of the content view itself.
We empirically evaluate the multi-view methods on sentiment analysis and
other standard linked datasets such as Cora, Citeseer, WebKB[48].

• In the second part of this work, we propose a multi-view based framework
for similar protein structures retrieval task. It is an important requirement
to retrieve proteins that are similar to a given query protein, whether they
are close or intermediate or remote homologs. Close, remote and interme-
diate homologs are defined based on Structural Alignment Score (SAS) that
measures structural similarity between proteins. The SAS thresholds are 2,
3.5 and 5 for close, intermediate and remote homologs respectively [25]. An
efficient protein structure comparison method should perform well across
different retrieval requirements. In order to handle this, we exploit multi-
ple redundant representations of the protein fragments. We show that the
proposed multi-view based protein structure retrieval technique is more ef-
fective across different requirements than single view based methods. We
evaluate the multi-view protein structures retrieval framework on FragBag
dataset [25].

1.3 Contributions of the Thesis

Key contributions of this thesis are:

• We propose a multi-view framework to solve collective classification, where
we treat content and link as two different views.

• To the best of our knowledge, no framework has been proposed for sentiment
analysis in a semi-supervised environmentwhichutilizes domain knowledge
to build the graph.

• We propose a novel representation for protein structures, where we have
adapted powerful models from statistical NLP literature to solve the task.

• We have also proposed a novel multi-view based retrieval framework which
exploits multiple redundant representations of protein structure.
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1.4 Organization

In this work, we propose multi-view based approaches for linked data classifi-

cation and similar protein structures retrieval tasks. In Chapter 2, we provide

a detailed literature review for the target tasks. In Chapter 3, we explain the

multi-view framework for linked data classification. This chapter includes prob-

lem setup, proposed approach and experimental results on sentiment analysis and

other standard linkeddatasets. InChapter 4, we explain themulti-view framework

for similar protein structures retrieval task. This chapter includes problem setup,

proposed approach and experimental results on FragBag dataset [25]. In Chapter

5, we provide concluding remarks on the study and elaborate on the future work

that could follow the current work.
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CHAPTER 2

Background and Related work

In this chapter, we provide a detailed literature survey of the techniques proposed

for collective classification and similar protein structures retrieval task.

2.1 Linked Data Classification

Classical Machine Learning techniques assume the data to be i.i.d, but the real

world data is inherently relational and can generally be represented using graphs

or some variants of them. The importance of modelling structured data is evident

from its increasing presence : WWW, social networks, organizational networks,

images, protein sequences, relational data, etc. This field has recently been receiv-

ing a lot of attention in the community under different themes depending on the

problem addressed and the nature of solution proposed. Researchers in each of

these different areas have proposed very useful and successful frameworks. Some

of them include the following:

• Collective classification involves use of a local classifier that embeds the node’s
own attributes and neighbors’ information in a feature vector, and classifies
the nodes in an iterative procedure[27; 48; 59].

• Statistical Relational Learning combines statistics (uncertainty) and relational
information (first-order logic) to model the target domain[4].

• Structured prediction involves the use ofmachine learning techniques on struc-
tured objects that embed the relationship between output classes[18; 72].

• Graph based SSL techniques apply the local smoothness property on the struc-
tured data, i.e., uses it as a constraint or side-information[16; 43; 70; 71].

• Kernel methods for structured data deal with developing similarity functions
for objects of a domain that can handle relationships between objects, as well
as heterogeneous representations[60].



There has been significant research progress on these subtasks in each area

individually. Several workshops are held for each of these fields such as SRL, ILP,

StarAI, GBR, GDM. In this thesis, we focus on collective classification. Collective

classification algorithms deal with within-network classification by simultane-

ously labelling a set of related nodes, allowing estimates of neighboring labels to

influence one another. It involves two sub-tasks : collective learning and collec-

tive inference. 1) Collective learning deals with training the base classifier on the

appended content and link information with the given (partially) labeled network

data; and 2) collective inference deals with applying the trained base classifier on

the partially labeled network data and labeling it completely. There has been huge

increase in interest on collective inference since it is a common factor to all these

subtasks. Some of the workshops on collective inference are “CVPR WS on Infer-

ence in Graphical Models and Structured Potentials”, “Propagation Algorithms on

Graphs with Cycles: Theory and Applications”, “Approximate inference - How

far have we come?”. Though collective inference is an important subissue, collec-

tive learning on network data involves a lot of (new) challenges posed by various

domains. Some of them are mentioned below:

• How to learn the prediction model (classification/regression) with sparsely
labeled network data?

• How to handle severe class imbalance in datasets?

• How to handle streaming data?

• How to handle large scale data?

• How to leverage additional (domain, side) information to reduce the com-
plexity of estimation?

These new challenges have motivated researchers to work towards collective

learning techniques that can overcome the existing limitations[10; 57]. Some of

the workshops which focus on collective learning in addition to inference include

“MLG : Mining and Learning with Graphs”, “CoLISD : Collective Learning and
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Inference on Structured Data” and “Approximate Learning of Large Scale Graphi-

cal Models: Theory andApplications”. In this work, we address the first challenge

i.e., collective learning on sparsely labeled networks.

Most of the collective classification frameworks assume that sufficient labeled

data is available to train the base classifier[7; 21; 27; 48; 59]. They build a feature

vector by appending the content and link information. The learnt model is used

for inferencing on partially labeled network using an iterative framework such

as Iterative Collective Algorithm (ICA), Gibbs Sampling, Belief Propagation, etc.

One of the earliest seminal papers in this field was proposed by Chakrabarti et

al. on using hyperlinks for hypertext classification[59]. Recent works include cau-

tious collective classification procedures, where labels of the k most confidently

predicted nodes are committed in each iteration[33]. This is referred to as a “cau-

tious” procedure, since in collective classification labels of all the unlabeled nodes

are updated in each iteration. One of the major advantages of collective classifi-

cation is its ability to learn different types of dependencies in a network such as

positive vs. negative correlation, different degrees of correlation, etc. This advan-

tage marks its difference from graph based semi-supervised learning techniques

which can also be used to solve within-network classification[16; 70; 71]. Graph

based SSL techniques assume homophily, i.e, neighboring nodes should have same

labels. The method would fail in cases where this assumption does not hold good.

However, when the labeled data is very sparse, the performance of collective clas-

sification might degrade due to lack of sufficiently labeled neighbors[28]. There

is very little attention paid towards collective learning frameworks for partially

labeled network data[10; 49]. Acquiring sufficient amount of labeled data is not

possible in many cases. Also, it is very costly to label them manually. Fortunately,

many datasets are naturally partially labeled. For example, in the task of web

page classification, it is possible to get partial labels on web pages using social

bookmarking sites, open directory project, etc. The task is to label the unlabeled

objects with one or more categories from a finite set of categories and learn a clas-
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sification model that can be used for collective inference. Lu and Getoor proposed

an EM-Like collective learning approach which builds classifiers on content and

link information separately, and combines the results by multiplying the probabil-

ity distribution given by two classifiers. Work by Gallagher et al.[10] deals with

sparsely labeled graphs by adding “ghost edges” into the network. It is done

by identifying key unlabeled nodes that would influence the overall performance

and connecting it to labeled nodes by analysing network properties. They deal

with networks where the nodes do not have attributes. But, in this work, we are

interested in collective learning on partially labeled networks which have both

content and link information, i.e, nodes have their own attributes. We handle

bootstrapping and learning as two different steps, and not as a single step as in

the case of traditional collective classification approaches including the EM-Like

procedure[49]. Since bootstrapping procedure defines the link view alongwith the

given labeled data, we propose a cautious procedure for bootstrapping the labels

of unlabeled nodes.

2.2 Similar Protein Structures Retrieval

Several methods have been proposed in literature for protein structure compari-

son. These methods compare a pair of protein structures, compute a quantitative

measure of similarity and most often generate a structural alignment. Taylor et

al. [69] have compiled a comprehensive review describing challenges in protein

structure comparison and its importance along with various proposed methods.

The proposedmethods differ from state-of-the-art techniques on the following two

broad points: (1) choosing appropriate representation (2) algorithm for efficient

and accurate retrieval of homologous structures from the database. The popular

choices for representations include:

• Complete three dimensional coordinate information or partial coordinate
information of backbone atoms,
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• Representation of various elements using their properties such as φ-ψ angle,
solvent accessibility, etc.

The first type of representations preserve sequential and topological relation-

ships between individual elements in the structure. The methods developed to

compare the first type of representations are partitioned into the ones using dy-

namic programming (DP) [3; 68] and the others not using DP [23; 32]. These

methods are computationally expensive and do not scale well while comparing a

large number of structures. Moreover, a large number of these comparisons do not

yield satisfactory results since the structures are not related. To overcome these

problems, researchers have proposed a two stage approach widely known as filter

and match paradigm. The first stage of this approach employs a very fast filtering

algorithm to obtain a small set of proteins which are very likely to be similar.

These proteins are subjected to rigorous and computationally expensive structure

alignment methods in the second stage, which is known as the match step. These

methods achieve the desired speed in the filtering stage by representing proteins

as vectors and comparing them in the space spanned by appropriate descriptors

or features. For instance, the method proposed by Choi et. al. [26] represents

protein structures using corresponding distance matrix. Rogen and Fein repre-

sented proteins with topological features of backbone using knot invariants [47].

Zotenko and co-workers represent each protein structure as a vector of frequencies

of structural models, each ofwhich is a spatial arrangement of triplets of secondary

structure elements [17]. Several other feature based structure representation and

comparison methods have also been proposed in the literature, such as Friedberg

et al. [24], Tung et al. [12], etc. For a complete survey on these methods, refer to a

survey by [69].

FragBag is the state-of-art fragment based structure comparison method pro-

posed by researchers [25], where they use an interesting vector space represen-

tation for protein structures using fragments as the bases. Vector space represen-

tation of protein structure and retrieval using cosine similarity will capture the
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similarity based on identity alone. Motivated by the success of topic models that

capture similarity between documents at an abstract “topic” level, we propose an

LDA based protein structure representation. We found that FragBag and LDA

based representation outperforms each other for different retrieval requirements.

In order to handle different requirements effectively, we propose a multi-view

based retrieval framework that exploits multiple redundant representations of the

protein structure.

2.3 Multiview Learning

Manyreal-worlddatasetspossessdata samples characterizedusingmultiple views,

e.g., web-pages can be described using both textual content in each page and the

hyperlink structure between them. It has been shown that the error rate on unseen

test samples can be upper bounded by the disagreement between the classification

decisions obtained from independent views of the data [54]. This relatively new

machine learning technique, commonly called as multiview learning [6; 31], has

been predominantly successfully used in conjunction with semi-supervised and

also unsupervised approaches [6; 31; 65; 15; 2; 52; 35; 55; 56; 13].

Inmany domains class labels are expensive to obtain and hence scarce, whereas

unlabeled data are often cheap and abundantly available. Fortunately, many

datasets are naturally partially labeled. For example, in the task of web page clas-

sification, it is possible to get partial labels onweb pages using social bookmarking

sites, open directory project, etc. Moreover, unlabeled data can be used to mini-

mize the misclassification rate by enforcing consistency between the classication

decisions based on different views of the unlabeled examples. In this work [1],

Blum and Mitchell proposed an iterative, alternating co-training method, which

bootstraps a set of classifiers from high confidence labels. It works by repeatedly

adding pseudo-labeled unlabeled examples into the pool of labeled examples and

retrains the classiers for each view. This process is repeated until the convergence
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criteria is satisfied.

Co-EM is a related multi-view learning algorithm [31], which extends the co-

training algorithm to operate simultaneously on all unlabeled samples in an it-

erative batch mode. Co-EM was used with SVMs as base classiers [62], and

subsequently in unsupervised learning [53]. However, co-EM is not really an EM

algorithm since it lacks a clearly dened overall log-likelihood that monotonically

improves across iterations. It also suffers from local maxima problems. Recently,

some co-training algorithms jointly optimize an objective function which includes

loss terms for classiers from each view, and a regularization term that penalizes

disagreement between the classication decisions based on different views.

This co-regularization approach holds the key intuition behind multiview

learning. Krishnapuram et al. [8] proposed a co-regularization based approach

for multi-view learning. It simultaneously learns multiple classiers by maximiz-

ing an objective function that penalizes misclassifications by individual classifiers,

and also includes a regularization term which penalizes disagreement between

different views. This co-regularization framework improves upon the baseline co-

training and co-EM algorithms. The co-regularization approach was later adapted

to two-view spectral clustering [64] and pair-wise clustering algorithm [15] which

aims at nding pairwise clusters with multiview observations. This approach was

subsequently adopted for semi-supervised classification and regression based on

the reproducing kernel Hilbert space (RKHS) [65; 63; 67].

In the seminal work in this field [6], Blum and Mitchell proposed a co-training

based multi-view learning algorithm which bootstraps a set of classifiers from

high confidence labels. This paper provides PAC-style guarantees if (a) there

exist weakly useful classiers on each view of the data, and (b) the views are

conditionally independent given the class label. It could be impractical to expect

such natural splits in all the domains. So, researchers started working towards

finding relaxations and necessary conditions formultiview learning to be effective.

NigamandGhani [31] presented other SSL algorithms formulti-view learning such
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as co-EM, self-training. They also analysed the conditions necessary for co-training

to be successful. Following Nigam and Ghani, many approaches for multi-view

learning [65; 52; 35; 55; 56] exploit multiple redundant views to effectively learn

a set of classifiers defined using each of the views. Balcan et al. [34] showed

that co-training would be useful even if (a) there exist low error rate classifiers

on each view, (b) these classifiers do not make misclassification when they are

condent about their decisions, and (c) there would be cases where classifier on one

view makes condent predictions while the classifier on the other view does not

make confident predictions. Further, researchers found that multiview learning is

advantageous compared to single view learning especially when the weaknesses

of one view complement the strengths of the other [55; 13]. This forms the basic

motivation for our proposed multiview based methods for collective classification

on partially labeled graphs and similar protein structures retrieval tasks. In both

the tasks, we exploit redundant views to improve the performance.

2.4 Summary

In the first part of this work, we deal with collective learning on partially labeled

graphs. We treat content and link as two different views, where link is a weaker

view. We propose multi-view learning based framework for collective learning

that uses content and link views.

In the second part of this work, we deal with similar protein structures re-

trieval. As mentioned in the previous section, it is important to retrieve proteins

whether they are close or intermediate or remote homologs. A single representa-

tion might perform well for one type of retrieval requirement. In order to meet

diverse objectives, we propose a multi-view based framework that exploits multi-

ple representations.
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CHAPTER 3

Multi-view based Collective Learning

In this chapter, we explain the proposedmulti-viewbased approaches for collective

learning. Typically, collective classification algorithms use a flat feature vector

by combining the content and link information. Motivated by the success of

methods which leverage upon multiple views independently[2; 6; 13; 15; 31; 35;

52; 55; 56; 65], we study the impact of handling the content and link information

separately as two different views. This problem differs from typical multi-view

learning[6] because the content view, by labeling data points, not only provides

labels for the link view but also alters the link view. In the first part of this

work, we use a multi-view based approach for sentiment analysis. We refer to

the proposed framework as MGSA (explained in the following sections). We then

discuss the limitations of MGSA. An attempt to overcome some of the limitations

identified with the framework involves a two step multi-view learning based

procedure for collective classification (MVCL). We use the standard benchmark

datasets to show the effectiveness of the proposed framework. There is immense

promise in working on approaches aimed at addressing the other limitations of the

sentiment analysis framework and adaptingmulti-view learning based framework

for sentiment analysis. In the next section, we elaborate the intuition behind the

proposed approach.

3.1 Overview

In this section, we explain the motivation and intuition behind the proposed ap-

proach. The scenario can be formally stated as follows: we are given a network

G = (O; L), whereO is a set of objects and L⊆O×O is a set of links (edges). We refer



to network data as network, its nodes as objects and edges as links throughout

this chapter. The network objects are partially labeled, with only a small fraction

of them being labeled with labels from a finite set of categories C. For example,

one can consider a network of people in a social networking site, where the links

are between people who are friends of each other. Each person’s background be-

longs to one of the following categories: engineering, finance or medicine. The

background of some people are known, and the task is to categorize the back-

ground of remaining people. Each person can be classified based on her own

attributes such as conversations data, groups enrolled, etc. In addition to this, the

friend’s information (link information) is an useful data that can be leveraged for

increasing the classification performance. We use only the class information from

linked objects, since it has been shown that using neighbors’ attributes reduces the

performance[48; 59]. We refer to class distribution and other derived statistics of

neighboring objects’ labels as link information throughout the text. In this section,

we develop the intuition behind the algorithm for a network data with two views

(content and link features). It can be extended to cases where there are multiple

representations of content data and multiple link types between objects. For ex-

ample, in a citation network the publication object can have title, abstract and paper

content as content features, and the links can be citations and author based links i.e.,

if two papers have a common author, then they will be linked.

Most of the collective classification approaches, train a base classifier f using

the labeled network data L, and apply it iteratively on previously unseen partially

labeled network. The base classifier is trained using the features of objects. It is

a combination of objects’ attributes and link information. These approaches have

the following drawbacks

• It might not be possible to have enough labeled data to train a base classifier
in all the scenarios.

• Collective classification techniques donot leverage the unlabeleddata during
training phase. It has been shown that use of limited labeled data and vast
unlabeled data which is easily available, improves the performance of the
trained classifier[49; 70].
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In order to overcome these drawbacks, we propose amulti-view learning based

algorithm in a semi-supervised setup which utilizes both content and link views

effectively to learn from the unlabeled data also. It performs well even in cases

with little labeled data. Let us assume that a base classifier has to be trained on the

given network shown in Figure 3.1(a). Feature vector can either be the combined

flat vector, or the structured representation where content and link information are

maintained separately. The link information is incomplete for the given network,

i.e., none of the neighbors of the labeled datapoints are labeled. So, the link

information part of the feature vector would have zero values. Hence, it can be

seen that the classifier on the combined vector would end up using the content

information only. If the link information is partially complete, as shown in Figure

3.1(b), then E and F nodes are complete to be used in training a base classifier. The

usefulness of D depends on the class distribution of its neighbors, i.e., if E and F

belong to the same class, then classification of B to any arbitrary class would not

influence the class ofD. Else, the nodeDmight turn out to be a noisy input for the

base classifier. It must be noted that it would not be possible to obtain complete

link view in all the cases.

Figure 3.1: Sample network data

The collective classification algorithms usually involve a one-step bootstrap-

ping procedure to initialize the labels of unlabeled nodes. It is done by training

a base classifier on the labeled nodes and using it to predict the labels of unla-

beled nodes. We use this one-step bootstrapping procedure to bootstrap labels for
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sentiment analysis task (MGSA). The bootstrapping procedure not only initializes

the unlabeled datapoints, but also bootstraps the link view which will be used by

the iterative learning procedure. So the error induced by the first step not only

affects the quality of labels but also the quality of link view. In the next step, the

classifier would not only be training using noisy labels, but also on noisy link

features. Ideally, the bootstrapping procedure must use the available content and

link information effectively, i.e., confident predictions using content and link views

must be used to label the unlabeled data. From the example shown in Figure 3.1(a)

it can be seen that each of the representations will have confident predictions of

objects’ label. If nodes “E” and “F” belong to the same class, then node “D” can be

confidently labeled using its link information. Similarly node “C” can be labeled

using “A”. The confident labels provided by link information can be considered

as truth to train the attribute based classifier. And, the confident predictions using

the attribute based classifier, can aid the link based label propagation. This must

be repeated until all the datapoints are labeled. Though it is not possible to train a

global classifier on link data, it is possible to use a local link based label propaga-

tion technique, along with a content classifier to bootstrap the labels. We refer to

this asMulti − view based bootstrapping procedure in MVCL.

The bootstrapping step is followed by an iterative learning procedure where a

classifier is learnt on content and link information. In MGSA, a classifier is learnt

on content alone, and a simple voting is used for link information. It assumes

homophily, which may not be the case in all domains. We overcome this limitation

inMVCL by learning a classifier on link information also. We evaluate bothMGSA

and MVCL frameworks on standard linked datasets.

3.2 Sentiment Analysis

Sentiment analysis is the task of identifying the sentiment expressed in a given

piece of text about the target entity discussed. Due to Web2.0, the number of
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online reviews and users are increasing exponentially. Consequently, this field

has gained huge importance in market analytics. Depending on the target entity,

the granularity of the analysis varies. The target entity can be the product itself,

for example “Canon digital camera”, which is called as coarse-grained analysis.

On the other hand the target entity can also be finer, capturing various features

of a product, for example “clarity of the camera”, which is called as fine-grained

analysis. It can be achieved by performing analysis at various levels of gran-

ularity — document level, paragraph level/sentence level/phrase level — which

basically captures product level, sub topic level or feature level target sentiments.

The former refers to the physical structure of text taken for analysis, while the

latter corresponds to the logical level. We use this notion of physical and logical

levels in granularity throughout the thesis. There are models built at each level

individually[9; 42; 44; 45; 46; 66]which are called as independentmodels[40]. Con-

sidering the nature of information available, the emphasis of the recent approaches

is towards exploring the intra dependencies at each level and inter dependencies

between the levels. Intuition behind intra dependency between entities at a single

level is explained using the following example. In the piece of automobile review

text given below, if the sentiment about manual gear shifter is unknown,

“The manual gear shifter is rubbery.”

then the sentiment about similar features such as driving experience can help in

disambiguating the opinion.

“..has an unpleasant driving experience..”

Inter dependency between coarser and finer levels are also useful to predict the

unknown opinions[7; 40], for instance if sentiment of a document is known, then

majority of the sentences should have same sentiment as the document and vice

versa. This forms the basis of the proposed model, since we use these properties

in the multi-grain collective classification framework. Since the above mentioned
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approaches[7; 40] assume fully labeled corpus, which is not naturally available and

huge amount of web data is partially labeled, we propose a multi-grain collective

classification algorithm for the semi-supervised environment which is partially

labeled at fine and coarse-grained levels. The target entities focussed in this work

are document and sentence level.

3.2.1 Related Work

Pang and Lee[7], use the local dependencies between sentiment labels on sentences

to classify sentences as subjective or not, and the top subjective sentences are used

to predict the document level sentiment. It can be seen as a cascaded fine to

coarse model and was shown to be better than other document level models. This

work gives the basic motivation to study these dependencies. McDonald, Ryan et

al.,[40] employ a joint structuredmodel for sentence and document level sentiment

analysis, whichmodels document level sentiment using sentences level sentiment,

sentence level sentiment using other sentences in the local context and document-

level sentiment. This model was proven to be better than cascaded models (both

fine to coarse and coarse to fine) and independent models at both the levels. Both

the approaches assume to have fully labeled data, minimum cut based approach[7]

uses labeled sentences to predict document level sentiment, and the structured

model[40] uses labeled documents and sentences to build the joint model. Since

it is known that getting fully labeled corpus at any of the levels is not possible,

as the data available in web is naturally partially labeled, and it would involve

human annotation to get fully labeled corpus, we do not assume the data to be fully

labeled at any level. Secondly these approaches capture the structural cohesion

between the sentences i.e., sentences occurring in physical proximity (next to each

other) and not the logical cohesion, i.e., sentences discussing about similar features

as mentioned in Introduction section. Dependency between sentences based on

logical cohesion captured using anaphora and discourse relations has been shown

to perform better than other approaches[58]. Also it is a sentence level approach
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andnot amulti-grain approach as the proposedmodel. The issueswith the existing

approaches and the way proposed model differs from those approaches is briefed

below

• To our best knowledge, no framework has been proposed for multi-grain
sentiment analysis in a semi-supervised environment, i.e., data is not fully
labeled at any of the levels. Only a subset of documents are labeled with
document level sentiment, and again only a subset of sentences in adocument
are labeled in the form of pros and cons.

• In the above mentioned approaches, dependencies captured either at struc-
tural or logical level expect the text to bewritten in an ideal manner for better
performance. Only if the sentences discussing related features are written
next to each other, the structural cohesion will work. And the logical cohe-
sion captured using discourse graph[58], expects the sentences to explicitly
have anaphoric and discourse relations.

• Another disadvantage of the discourse graph based approach is that it needs
anaphora resolution and discourse structure identification to be performed
for all input documents. It also ignores background domain knowledge
and fully relies on discourse graph construction methods. It is obvious
that some form of background domain knowledge will be available in the
form of domain taxonomy, knowledge bases like Wordnet, etc. Also with
the availability of huge amount of text it is possible to perform knowledge
engineering and build a domain knowledge base, which captures features of
a domain and similar features for the same.

In this work, we propose a collective classification algorithm which performs

multi-grain sentiment classification in a semi-supervised environment. Intra-

dependency at sentence level is captured using domain knowledge base, i.e., rela-

tion between features of a domain. The advantage is that it can be prebuilt, and

instantiated for each document. This can be seen as adding domain knowledge

to avoid sparsity that might arise in discourse graph based techniques, that cap-

ture logical cohesion between sentences. Since construction of domain knowledge

is not the focus of this work, apart from briefly explaining the knowledge base

used for this work in the experimental section we do not discuss various methods

available or analyse them further.
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3.3 Proposed Approach

Let C be a corpus of web based review documents. A subset of review documents

have pros and cons section, which has positive and negative sentences discussing

about different features of the target product. An example sentence is given below,

taken from pros section of a laptop review from CNET website.

“Slim design; easy-to-use Intel Wireless Display built-in; speedy Core i5 processor.”

The pros and cons sentences have phrases which are generally comma or semi-

colon separated, that discuss about different features of the review’s target product.

Since not all the sentences in the document are labeled, those documents are

referred to as sentence level partially labeled data S. Subset of documents contain

overall sentiment label of the product, in the form of 5 stars, rating that scales

between 1 and 10, or binary labels such as YES or NO. In this work, only binary

labels are considered. Since only a subset of documents have overall sentiment

label, they are referred to as document level partially labeled data G. Documents

that either have pros and cons section or document level overall sentiment label

or both, are referred to as multi-grain partially labeled dataM. Documents that do

not have any labels are called as unlabeled data U. So the web corpus is naturally

partially labeled, C=M
⋃

U. In general, a document level sentiment label, can

be seen as a function of sentence level sentiment labels. It is stated formally

as follows, D denotes a document and a document contains a set of sentences,

D = {s1, s2, s3, ..., sn}. Sentiment label is denoted by Ω, and the function is given by

Yd, this yields the below formulation

Ω(D) = Yd(Ω(Ds)), where Ds = {Ω(s1),Ω(s2),Ω(s3), ...,Ω(sNs)}, Ns is the number of

subjective sentences in D

Each sentence s j in turn can be seen as a set of sentiment terms O j, where O jǫs j.

Thus sentence level sentiment label,Ω(s j) can be seen as a function, Yus of sentiment
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term level labels Ω(Os j). Sentiment terms are words that carry polarity and the

most commonly used class of words are adjectives. We refer to this as unigram

based classification. It is stated as below

Ω(s j) = Yus(Ω(Os j)), where Os j = {Ω(O1),Ω(O2),Ω(O3), ...,Ω(ONu( j))}, Nu( j) is the number

of sentiment terms in sentence s j

The precision issues of unigrambased classification approach are briefed as follows

• Domain adaptation : Classification of unigrams can either be based on gen-
eral lexicon W, which has positive and negative terms, or using labeled data
— S, G or M, depending on the granularity. Since the lexicon W, is not
domain and context specific[46], there are cases where it would fail. This
includes polarity mismatch of terms in the lexicon for different domains, and
also expansion of the lexicon for evolving domain oriented sentiment terms.
For example, it is not possible to predict the sentiment of the term “rough”
in the sentence “...surface is rough...”, independent of the domain. It will be
negative in the case of products like camera, and positive in the case of tyre.
General lexicon might fail in this case depending on the domain. Also, we
pose the missing sentiment terms as precision issue by adding the sentiment
terms found in the corpus to the lexicon and assigning arbitrary labels to
it. So polarity has to be relearnt using the evidences in multi-grain partially
labeled datasetM.

• Context specificity issues : Set of sentiment terms have different opinions
in different context, i.e., when they modify different target features. For
example, the same sentiment term “huge”will be positive in “huge win”, and
negative in “huge loss”. Since it is not possible to capture the context using
the sentiment term alone, the unigram based classification faces precision
issues in these cases.

Alternatively, s j can be seen as a collection of constituent target feature term

and sentiment term pairs, thus sentiment label at sentence level Ω(s j) can be seen

as a function, Yts of tuple’s labels (Ω(T j)). We refer to it as tuple based sentence

classification. It is given formally as below

Ω(s j) = Yts(Ω(T j)), where T j = {Ω(F1,O1),Ω(F2,O2),Ω(F3,O3), ...,Ω(FNt( j),ONt( j))}, Nt( j) is

the number of tuples in sentence s j
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Inference based on tuple based sentence classification would give high precision

but low recall[44]. We denote the lexicon with labeled unigrams as Lu and bigrams

as Lt. Rather than relying on Lu or Lt alone to infer the unknown label of a tuple

(Fq, Oq), we infer it based on Lt and Lu using a backoff model. The intuition

is that Lu can be used to infer sentiment of a tuple, when it cannot be inferred

using Lt. It is obvious that the label identified using Lt is more reliable than Lu

due to domain adaptation and context specificity issues faced by unigram based

sentence classification technique. Thus we assign a confidence flag for both the

kinds of prediction. Predictions using Lt are assigned High confidence, whereas

those using Lu are assigned Low confidence. The Backoff inference procedure is

given in Algorithm 1. The iterative learning procedure is given Algorithm 2. In

this work, the functions Yd, Yus and Yts are just simple voting.

3.3.1 MGSA : Multi-grain Sentiment Analysis Framework

The notations for the iterative procedure are re-established and simplified as fol-

lows

l - Sentiment label space, which is {+,−}

Ns(i) - Number of subjective sentences in the document Di

Ns(il) - Number of subjective sentences with label l in Di

Nu( j) - Number of unigram sentiment terms in the subjective sentence s j

Nu( jl) - Number of unigram sentiment terms in the subjective sentence s j with label l

Nt( j) - Number of tuples in the subjective sentence s j

Nt( jl) - Number of tuples in the subjective sentence s j with label l

Kb - Neighborhood structure of feature terms given by the domain knowledge base. For

example, it can contain the information that engine and performance of an automative are

related. Thus the sentiment of related feature terms will be correlated in a given review.

Lu - Lexicon with labeled sentiment terms from lexicon W, which are relearnt for the

domain using M, thus Lu is initialized with class labels. Lu has the structure with 5 el-

ements [O, Flag, Label, c+, c−], where O denotes the sentiment term, Flag has commit and

not-commit status which means whether the class label is committed or not. Label gives

24



the class label, c+ and c− denote the count of occurrence of tuple in positive and negative

contexts during the iteration i.e., number of times classified as positive and negative re-

spectively. The querying that was mentioned in backoff model, Llu(O) which denotes the

label returned using Lu for the sentiment term O is done as follows.

I f (Flag == commit)→ Return Label

Elsei f (Flag == uncommit)→ Return argmaxl(cl)

Lt - Lexicon with labeled tuples initialized using pros and cons section in M. Lt has the

structure with 6 elements [F,O, Flag, Label, c+, c−], where F denotes the feature term, and

other 5 tuples are same as in Lu. The querying procedure in backoff model and the way

counts are updated during iterative procedure is same as what is done for Lu.

Ω(t) - Sentiment label of a tuple

(Ω(t),Con f idence) - Pair denotes sentiment label of a tuple and confidence of inference

given by backoff inference procedure

Ω(s) - Sentiment label of a sentence, which was defined as the function of labels of con-

stituent tuples. The function used in this work is maxlabel(x), where x is a collection of

labels. maxlabel(x) returns the label which occurs predominantly in the input x, i.e., a

sentence is labeled with the maximum occurring label of its tuples, which is given below

Ω(s j) = maxlabel(Ω(T j)), where T j = {Ω(F1,O1),Ω(F2,O2),Ω(F3,O3), ...,Ω(FNt( j),ONt( j))},

Ω(T j)ǫl.

Note that any function can be used in place of max, for instance a linear classi-

fication model. Since the focus of this task is to show how the proposed model

improves the accuracy of any classical learning algorithm and not to propose a

new fine-grained or coarse-grained classifier, the simplest classification function is

chosen.

Ω(D) - Sentiment label of document given by bottom up label propagation of the con-

stituent sentences. Similarly here also maxlabel is chosen as the function thus giving the
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following formulation

Ω(D) = maxlabel(Ω(Ds)), where Ds = {Ω(s1),Ω(s2),Ω(s3), ...,Ω(sNs)}

γtli - Number of neighbor tuples for a tuple t with the opinion l in a document Di

Example scenario for two documents D1 and D2 is given in Figure 3.2. As we

mentioned above, the dataset is naturally semi-supervised both at document and

sentence level. We can assume that a subset of nodes are observed and the other

nodes are unobserved. We do not explain the example much since the idea is

to show the graph structure. Multi-grain iterative classification is a joint model

that helps in predicting the labels of unobserved nodes to get completely labeled

dataset, and also acquire more evidence for unigrams and tuples to update the

lexicon Lu and Lt.

Figure 3.2: Example showing neighborhood for two documents

Initialization : Lu and Lt are initialized. Only subjective sentences in a doc-

ument are taken for analysis, and presence of adjectives is taken as the indicator

for subjectivity analysis[5]. Since the iterative procedure is shown to have same
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performance for any arbitrary ordering of nodes[27; 48], we choose an arbitrary

ordering for document nodes during iteration and natural order of occurrence

within a document for sentences. Iterative procedure is given in Algorithm 2.

This process is repeated until it converges or stabilises. This occurs when there

is little or no change between successive sets of labels assigned. The algorithm

converges within 10-15 iterations for the datasets used in this work. The proposed

algorithm can be seen as a cautious iterative relaxation labeling procedure [59]. It

is a local method for learning on Markov Random Fields. Similar methods have

been shown to converge faster on almost all the popular datasets, and do not seem

to have any convergence issues empirically[27; 48; 49].

Algorithm 1 Backoff Inference Procedure(Fq,Oq)
Input: Lt, Lu, Kb

Output: Label of (Fq,Oq)
Label← UNK
Labell ← 0 //denotes count o f neighbors with label, l
Con f idence← Low
if (Fq, Oq) in Lt then

Label← Llt((Fq,Oq))
Con f idence← High

else
Fk← Neighbors(Fq,Kb)
for (Fk,Ok) in Lt do

if Oq==Ok then
Labell ← Labell + Llt((Fk,Ok))

end if
end for
Label← argmaxl(Labell)
Con f idence← High

end if
if Label == UNK then

Label← argmaxl(Llu(Oq))
end if
Return Label, Confidence
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Algorithm 2 Iterative procedure
repeat

for Document Di in C do
for Sentence s j in Di do

for Tuple tk in s j do
(Ω(tk),Con f idence)← BackoffModel(tk)
if Con f idence == High then

Commit labels, Lt ← Lt ∪ (tk,Ω(tk))
else

Update counts in Lu, Lt
end if

end for

end for

end for
Update counts in Lu, Lt
Update sentence and document sentiments
Commit the current labels in Lu, Lt

until Convergence

3.4 Experimental Results

The review articles are taken from websites containing Automobile reviews. The

websites used for this work include CNET, Epinions and Edmunds. CNET and

Epinions articles have both pros & cons section and document level label. Ed-

munds articles contain pros & cons section only and no document level label. 100

articles were chosen arbitrarily from each website, thus forming a testset of 300

articles. The class distribution of document labels is — 120 positive and 80 nega-

tive documents among 200 documents which have document level label, and the

remaining 100 have unknown labels. Note that all documents have binary labels:

Yes or No, positive or negative. Lexical classifier is used as the baseline approach

at both document and sentence levels. It uses count of positive and negative adjec-

tives to classify. It must be noted that the collective classification framework uses

lexical classifier as the base classifier. Experimental results are given in Table 3.1

and 3.2. P, R and F1 denote Precision, Recall and F1 measure respectively.
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Class P R F1 Method

+ 0.381 0.334 0.355 Lexical classifier
- 0.278 0.245 0.260 Lexical classifier
+ 0.73 0.61 0.664 Proposed model
- 0.63 0.56 0.593 Proposed model

Table 3.1: MGSA Performance : Sentence level classification

Class P R F1 Method

+ 0.55 0.39 0.456 Lexical classifier
- 0.225 0.30 0.257 Lexical classifier
+ 0.78 0.734 0.756 Proposed model
- 0.56 0.498 0.527 Proposed model

Table 3.2: MGSA Performance : Document level classification

3.5 Summary and Shortcomings

The following are the observations regarding the proposed framework for senti-

ment analysis:

• Weperform sentiment analysis in a semi-supervised environment using both
content and link information. Unlike other techniques which use collective
classification for sentiment analysis, we do not assume to have fully labeled
data[7; 40; 58]. Since we retain the structure of data, and use content and
link information separately, we call this as a multi-view based approach to
perform sentiment analysis.

• The results of MGSA outperform the baseline classifier. It proves that it can
improve any local classifier’s performance when used in this framework.
Though the final results obtained are on parwith state-of-the-art methods[42;
50], it has to be noted that this method is not a fully labeled approach and
uses only a small amount of labeled data at sentence level.

• The main contribution of the proposed model, is the use of neighborhood
structure of tuples within and between documents given by the domain
knowledge base, by which the accuracy of any ordinary classifier can be im-
proved. The classifier chosen in this work is lexical classifier which classifies
a sentence using the most frequent label of its tuples. The cases where sen-
tence level classification failed in the proposed model are those that needed
other contextual evidences to be taken care. An example case is given below,

“The question is whether the car itself is as good as the wrapper it comes in”
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So it indicates that with a better classifier (state-of-the-art) in place, the addi-
tional strength provided by the framework must help in better performance.

• Secondly, other main reason for mis-classification of sentences is wrong label
initialization. Wrong labels induced by the bootstrapping step will be prop-
agated further in the following iterative learning step. This is also known as
snowball effect.

• Theproposedmulti-viewbased sentiment classifier learningalgorithm, learns
a classifier on the content view only. And, uses voting for the link view.
Classification based on link information can be improved by using a global
classifier.

In order to overcome some of the key limitations of MGSA framework, we fur-

ther propose amulti-view collective learning approach(MVCL). The bootstrapping

step inMGSA is replaced by a cautiousmulti-view based bootstrapping procedure.

A classifier is learnt on the link view also. Other limitations involving the local

classifier are left for the future work. We use standard linked datasets to evaluate

the effectiveness of MVCL.

3.6 MVCL: Multi-view Collective Learning

In this section, we explain the MVCL framework which involves two steps: multi-

view based bootstrapping and iterative structured collective learning. Given a

partially labeled network G, the labeled subset of G is denoted by Gl, and the

unlabeled subset is denoted by Gu. The network objects can have two or more

representations Ai, where Ai ǫ A. The task is to label the unlabeled objects to

one or more classes, that belong to a finite set of categories C, and also build the

classification models Fi on each of the objects’ feature representations Ai.

3.6.1 Multi-view based Bootstrapping Algorithm

Inmany cases, it might not be possible to get objects and all its neighbors labeled to

build a link classifier. In order to leverage the link view completely, we propose a
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multi-view based bootstrapping step, where the content and (partially) incomplete

link view bootstrap the link view together, i.e., initializes the labels of unlabeled

objects. During this process, the local label propagation technique, LP, not only

bootstraps link view, but also co-trains the content based classifier. In this work,

Nearest Neighbor classifier is used as LP, where the neighbors are given by links

in the network. The algorithm is generic for multiple content and link types of an

object. For simplicity, we explain it here for a case with single content and link

type. Initially, a classifier is trained on the content view of labeled data, and the n

most confident predictions are added to labeled set. On the other hand, LPnot only

uses neighbors’ class labels, but also the ratio of labeled and unlabeled neighbors

to commit the label of an object. The intuition behind this is, LP should commit the

label of an object as x, only if majority of its neighbors belong to label x, and even if

all the unlabeled neighbors turn out to be belonging to some arbitrary label y, the

label prediction must not change. This is done to avoid noisy label propagation.

Among these items, n most confident predictions are added to labeled set. If the

prediction of content based classifier and LP disagree, then the object’s label is

not committed. This step is performed to avoid disagreement between multiple

views. The bootstrapping procedure is given in Algorithm 3.

We provide an overview of Algorithm 3 here. State of the network objects is

maintained asOLD,NEW andUNK : it denotes objects for which the label is given,

objects labeled by the iterative bootstrapping step, and objects that are unlabeled.

Step 1 and 2 indicate the initialization of the state of labeled and unlabeled objects.

Step 2 deals with content views of the objects. In Step 5, a classifier is built on each

of the content views. It is followed by Step 8, where the n most confident predic-

tions are added to the labeled set. Step 15 checks for view disagreement : if the

prediction of content based classifier and current label disagree, then the object’s

label is not committed. It could be either of the cases: LP labeled the object with

different class label, or content classifier labeled it differently in previous iterations.

Former case is view disagreement, and the latter case is change of prediction with
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new evidence. The change due to latter case will be automatically corrected in the

following iterations. From Step 22, the procedure involves the use of link based

label propagation, LP. Step 23 is done to avoid noisy label propagation : LP should

commit the label of an object as x, only if majority of its neighbors belong to label x,

and even if all the unlabeled neighbors turn out to be belonging to some arbitrary

label y, the label prediction must not change. The last few steps are explained after

the algorithm.

con f (LP(O)) refers to the maximum value of ratio of number of neighboring

objects belonging to any class to total number of neighbors for the object. It is

given as max(Classcount(c)#neighbors ), ∀c ∈ C. con funk(LP(O)) refers to the ratio of number of

unlabeled neighbors to total number of neighbors for the object, Count(unk)
#neighbors . Among

those objects which qualify this condition, in Step 28, nmost confident predictions

using LP are added to labeled set. In Step 35, the disagreement check similar to

content view is performed for link view.

3.6.2 Multi-view based Iterative Learning Algorithm

After this bootstrapping step, we propose an iterative structured collective learn-

ing algorithm. Classifiers are learnt on content and link views separately, and the

predictions are combined using ensemble operators[30]. The operators used in

this work are Product and Max. The iterative algorithm is given in Algorithm 4.
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Algorithm 3Multi-view based Bootstrapping Algorithm
Input: G is a partially labeled network data, Fa is a set of classifiers for content representa-
tions of data, n is the number of objects to be committed in each iteration by the classifiers
Output: Bootstrapped network data, trained content data classifiers
1: Assign State of O = OLD, where O ∈ Gl

2: Assign State of O = UNK, where O ∈ Gu

3: repeat
4: for Content feature representation Aa ∈ A do

5: Build classifier Fa on Aa(O), where O ∈ Gl

6: k← 1
7: repeat

8: Pick Ok, the kth confidently labeled object
9: if State(Ok) == UNK then

10: Label(Ok)← Fa(Aa(Ok))
11: Gl← Gl

⋃

Ok

12: k← k + 1
13: Assign State of Ok = NEW
14: else

15: if Label(Ok)! = Fa(Aa(Ok)) AND State(Ok)==NEW then

16: Gl ← Gl \Ok

17: Assign State of Ok = UNK
18: end if

19: end if

20: until k < n
21: end for

22: for Link type Al ∈ A do
23: confitems←max(con f (LP(O))) > con funk(LP(O))
24: Ω(confitems)← Count(confitems)
25: nlink←min(Ω(confitems), n)
26: k← 1
27: repeat

28: Pick Ok, the kth confidently labeled object
29: if State(Ok) == UNK then

30: Label(Ok)← argmaxlabelcon f (LP(Ok))
31: Gl ← Gl

⋃

Ok

32: k← k + 1
33: Assign State of Ok = NEW
34: else

35: if Label(Ok)! = argmaxlabelcon f (LP(Ok)) AND State(Ok)==NEW then

36: Gl ← Gl \Ok

37: Assign State of Ok = UNK
38: end if

39: end if

40: until k < nlink
41: end for

42: until Unlabeled object exists or fixed number of iterations is reached
43: Return G, Fa

33



Algorithm 4 Iterative Structured Collective Learning
Input: Bootstrapped network dataG, F is a set of classifiers Fi, whereFi is a classifier
for the feature representation Ai, Ai ǫ A
Output: Fully labeled network data, trained classification models F
repeat

Reestimate parameters of the classifier Fi(Ai), using the representation Ai of
labeled objects
Label(O)← Ensemble Operators(Fi(Ai)), O ǫ Gu

until Convergence or fixed number of iterations
Return G, F

3.7 Experimental Results

Citeseer, Cora, and WebKB link mining datasets are used for benchmarking the

classification task on partially labeled network[48]. Details of the datasets are

given below

• CiteSeer dataset consists of 3312 scientific publications and 4732 links. The
task is to classify the publications object into one of six classes.

• Cora dataset consists of 2708 scientific publications and 5429 links. The task
is to classify the publications object into one of seven classes.

• The WebKB dataset consists of 877 scientific publications and 1608 links
totally, combining the four university datasets. The task is to classify the
publications object into one of five classes.

The results of the bootstrapping step is given first. The multi-view based

bootstrapping step is compared against the baseline approaches. The baseline

approaches includes the following

• Build a classifier on content data of the labeled objects, and use it to predict
the labels of unobserved objects

• Build a classifier on content and link data of the labeled objects appended,
and bootstrap labels of unobserved objects using its prediction.

The results of the bootstrapping step is given first. The multi-view based

bootstrapping step is compared against the baseline approaches. Comparison of
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content only (Co), content and link appended (Co-Link), and multi-view based

bootstrapping technique (MV) using Naive Bayesian (NB), and K-Nearest Neigh-

bor (KNN) as the base classifiers is given in Table 3.3-3.5. In the case of Naive

Bayesian classifier, normalized posterior is used for predicting the output class

label. In KNN, for combined flat vector A f lat, and for content based feature vector

Aa, cosine similarity is used to compute distance between the feature vectors. KNN

with link information uses the structural neighbors to predict the class label : this

is performed by classifying an object using the predominant class among its linked

neighbors. It must be noted that the neighbors computed using cosine similarity

is different from the structural neighbors. The precision (P), recall(R), F1 measure

(F1) and Accuracy(Acc) are averaged across 5 splits for different train-test ratios.

The training and test split is done using stratified random sampling. The training

ratio is given as TR in the tables. It can be seen that MV performs better Co and

Co-Link in all the datasets in terms of F1 and Accuracy.

After the bootstrapping step, the structured collective learning, as given in

Algorithm 4, is performed. EM-Like algorithm proposed by Lu and Getoor[49]

is the baseline approach. Lu and Getoor have shown that the EM-Like algorithm

performs better than approaches which combine the representations to a single

vector. The comparative results are given in Table 3.6-3.8. ISCL-Product, ISCL-

Max refers to Iterative Structured Collective Learning algorithms that use Product,

Max ensemble operators respectively. It can be seen that the proposed framework

performs better than the EM-Like collective learning approach. The best K value

for KNN algorithm, for neighborhood based on cosine distance, was found to be

15. The best n value in the bootstrapping was 5. We also observed that both the

bootstrapping and learning procedure converges within 15-20 iterations.

In order to verify the improvements of MVCL over MGSA, we evaluate the

performance of MGSA on the standard linked datasets. We found that MVCL

outperforms MGSA and the results are given in Table 3.9. MGSA uses a content

classifier (Co) based bootstrapping procedure. From the bootstrapping results
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given in Tables 3.3 to 3.5, it can be seen that this bootstrapping does not perform

as good as Co-Link and MV. This affects the following learning procedure also.

In MGSA, the labels were bootstrapped using backoff procedure. If the label of

a tuple is predicted using bigram lexicon then the label is committed. Else, it is

smoothed using the neighbor’s class label distribution. In this case, if ‘confidence’

of the content classifier is greater than 0.85 (empirically chosen), then the label

is committed. Else, the label is smoothed using the prediction based on link

information.

Cora

Naive Bayesian

Co Co-Link MV
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 70.56 64.92 67.62 70.12 75.62 71.88 73.70 75.89 78.6 76.77 77.68 79.74
40 73.63 71.71 72.66 74.74 78.59 77.68 78.13 80 79.85 79.8 79.83 81.38
60 74.69 73.49 74.09 75.97 80.26 79.89 80.07 81.68 81.89 79.72 80.79 82.5
80 75.27 75.55 75.41 77.14 80.43 81.18 80.8 82.42 82.96 81.26 82.1 83.2

KNN

Co Co-Link MV
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 66.88 59.43 62.93 65.25 71.54 66.43 68.89 71.25 75.32 65.85 70.27 73.97
40 69.16 64.47 66.73 69.07 74.96 72 73.45 75.6 76.81 72.78 74.74 76.83
60 72.42 67.59 69.92 72.12 77.53 74.68 76.08 78.14 77.95 75.88 76.9 78.96
80 74.69 70.64 72.61 74.68 80.02 77.93 78.96 80.61 80.98 80.16 80.57 82.12

Table 3.3: Bootstrapping performance for different training ratios using NB and
KNN Classifier on Cora dataset: averaged across 5 splits

3.8 Conclusion and Summary

Key observations w.r.t the results include the following :

• The proposed approaches provide greater improvement on Cora than Cite-
seer, and on Citeseer than WebKB. Homophily exhibited by the datasets
follows the same order, Cora > Citeseer >>WebKB. Homophily is measured
in terms of autocorrelation of labels belonging to related objects: it is high for
Cora(0.88), and Citeseer (0.83), and very low for WebKB (0.30)[41]. Though
we build a global classifier on the link information in the iterative learning
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Citeseer

Naive Bayesian

Co Co-Link MV
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 69.46 63.33 66.25 69.57 70.49 64.85 67.55 71.16 72.64 69.26 70.91 73.08
40 70.67 66.93 68.75 72.35 72.17 68.43 69.16 73.74 72.89 70.19 71.52 75.13
60 71.45 68.28 69.83 73.24 72.93 70.02 71.44 74.87 73.09 71.08 72.07 75.56
80 71.6 70.03 70.81 74.31 73.95 72.47 73.2 76.36 75.04 73.1 74.06 76.95

KNN

Co Co-Link MV
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 66.42 59.46 62.75 65.36 63.27 59.91 61.54 66.36 69.84 61.51 65.41 68.53
40 70.48 64.94 67.6 69.83 68.46 64.69 66.52 70.96 69.7 64.59 67.05 72.58
60 72.7 67.2 69.84 71.68 70.61 67.42 68.98 73.14 71.97 68.74 70.32 74.03
80 67.07 65.02 66.03 70.24 69.94 66.49 68.17 72.07 71.19 69.39 70.27 74.26

Table 3.4: Bootstrapping performance for different training ratios using NB and
KNN Classifier on Citeseer dataset : averaged across 5 splits

WebKB

Naive Bayesian

Co Co-Link MV
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 63.23 44.93 52.53 72.09 63.17 44.98 52.55 72.18 63.48 45.18 52.79 72.65
40 75.98 52.95 62.41 76.39 74.63 53.08 62.03 76.48 76.28 53.45 62.86 77.03
60 76.18 57.67 65.64 79.19 74.26 57.92 65.08 79.7 76.51 57.8 65.85 80.09
80 75.71 61.15 67.66 80.96 75.68 61.35 67.77 81.19 75.97 61.48 67.96 81.54

KNN

Co Co-Link MV
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 56.01 37.49 44.92 66.02 56.09 37.54 44.98 66.08 56.27 37.76 45.19 66.36
40 75.6 43.38 55.12 70.82 75.69 43.36 55.14 71.07 75.98 43.65 55.45 71.38
60 75.27 46.22 57.27 73.03 75.37 46.26 57.33 73.1 75.78 46.49 57.63 73.51
80 87.86 48.8 62.75 74.8 87.9 48.84 62.79 74.9 88.23 49.02 63.02 75.46

Table 3.5: Bootstrapping performance for different training ratios using NB and
KNN Classifier on WebKB dataset : averaged across 5 splits
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Cora

Naive Bayesian

EM-Like ISCL-Product ISCL-Max
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 79.27 73.12 76.07 77.9 79.77 76.62 78.16 81.46 79.96 78.78 79.37 82.73
40 80.32 77.17 78.71 80.33 80.92 81.07 80.99 83.03 80.98 80.28 80.63 82.85
60 81.29 79.12 80.19 81.7 82.98 80.32 81.63 83.19 83.29 81.22 82.24 83.97
80 82.16 80.66 81.4 82.9 83.86 81.87 82.85 84.63 83.76 81.89 82.81 84.09

KNN

EM-Like ISCL-Product ISCL-Max
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 70.12 64.47 67.18 69.38 76.1 65.98 70.68 74.29 76.82 66.78 71.45 75.89
40 72.34 69.63 70.96 73.64 77.83 73.36 75.53 77.96 78.45 74.15 76.24 78.86
60 76.37 73.72 75.02 76.87 78.67 76.14 77.38 79.16 79.15 76.61 77.86 79.89
80 81.58 79.5 80.53 81.89 81.12 80.02 80.57 82.39 81.76 80.54 81.15 82.81

Table 3.6: Collective Learning performance for different training ratios using NB
and KNN Classifier on Cora dataset : averaged across 5 splits

Citeseer

Naive Bayesian

EM-Like ISCL-Product ISCL-Max
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 72.98 66.01 69.32 72.62 73.99 69.42 71.63 74.82 73.19 69.34 71.21 74.39
40 72.99 68.42 70.63 74.21 74.89 70.23 72.49 75.48 74.56 69.95 72.18 75.32
60 73.67 69.67 71.61 74.91 75.91 71.38 73.58 76.89 75.62 71.23 73.36 76.7
80 74.84 72.01 73.4 76.45 76.16 74.16 75.15 77.87 76.51 73.03 74.73 77.19

KNN

EM-Like ISCL-Product ISCL-Max
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 68.1 59.97 63.77 66.73 69.58 61.78 65.45 69.78 70.75 62.81 66.54 70.37
40 68.48 63.99 66.16 70.68 70.35 64.57 67.34 73.1 70.57 64.88 67.61 73.51
60 70.87 66.34 68.53 72.93 73.45 68.78 71.04 74.91 73.12 69.61 71.32 75.11
80 73.09 66.96 69.89 73.06 73.04 69.56 71.26 75.14 73.45 69.54 71.44 75.46

Table 3.7: Collective Learning performance for different training ratios using NB
and KNN Classifier on Citeseer dataset : averaged across 5 splits
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WebKB

Naive Bayesian

EM-Like ISCL-Product ISCL-Max
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 63.18 43.63 51.61 70.24 64.21 45.87 53.51 73.61 63.89 45.75 53.32 73.26
40 77.81 51.87 62.25 75.99 76.87 53.91 63.37 77.64 76.35 53.15 62.67 77.34
60 78.51 57.67 66.5 79.24 77.25 58.51 66.59 80.89 76.95 58.25 66.31 80.59
80 80.09 62.62 70.28 82 80.56 62.89 70.64 82.27 76.35 61.79 68.3 81.87

KNN

EM-Like ISCL-Product ISCL-Max
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 56.76 37.82 45.39 66.53 56.78 38.16 45.64 66.86 57.18 38.67 46.14 67.08
40 76.21 43.83 55.65 71.45 76.67 44.16 56.04 71.87 77.12 44.34 56.31 72.03
60 76.05 46.29 57.55 73.6 76.67 47.23 58.45 74.17 76.98 47.56 58.8 74.45
80 88.91 48.93 63.12 75.90 89.34 49.71 63.88 75.96 89.78 50.14 64.34 76.18

Table 3.8: Collective Learning performance for different training ratios using NB
and KNN Classifier on WebKB dataset : averaged across 5 splits

Naive Bayesian

Cora Citeseer WebKB
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 76.95 75.78 76.36 78.06 72.18 66.26 69.09 72.71 62.87 43.28 51.27 70.71
40 78.75 78.85 78.80 80.48 72.71 68.98 70.80 74.37 77.38 51.75 62.02 75.64
60 81.30 79.15 80.21 81.72 73.20 70.29 71.71 75.13 78.37 56.76 65.86 78.62
80 80.38 81.32 80.84 82.38 74.08 72.63 73.35 76.57 79.71 62.43 70.02 79.43

KNN

Cora Citeseer WebKB
TR P R F1 Acc P R F1 Acc P R F1 Acc

20 70.32 64.37 67.21 69.3 65.49 58.82 61.98 66.05 56.58 37.66 45.22 66.25
40 72.25 70.02 71.12 73.53 68.72 64.04 66.3 70.41 76.10 43.78 55.58 71.39
60 76.69 74.72 75.70 77.74 70.52 67.57 69.01 72.63 75.98 46.25 57.5 73.46
80 81.45 79.25 80.33 82.07 71.91 67.37 69.57 73.23 88.78 49.79 63.80 75.86

Table 3.9: MGSA’s collective Learning performance for different training ratios
using NB and KNN Classifier: averaged across 5 splits
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stepwhichmust capture the higher order dependencies (not just homophily),
the bootstrap step uses a local label propagation technique which assumes
homophily. The results are encouraging to investigate replacing the local
label propagation technique by a global technique which captures higher
order dependencies between the labels of related objects.

• In general, performance improvement is more for cases with lesser training
data, which makes the proposed approaches applicable for sparsely labeled
datasets.

In this work, we have proposed a multi-view learning based collective classifi-

cation framework, whichperforms collective learningonpartially labelednetwork.

The proposed framework can handle objects withmultiple feature representations,

and the framework is easily extendable to any number of feature representations.

We have also proposed a two step framework, where a multi-view bootstrapping

procedure is used to bootstrap the link view in first step. It is followed by an

iterative structured collective learning framework, which uses ensemble opera-

tors to combine the predictions based on classifiers built using content and link

informations. MGSA framework is not easily extendable to multiple views. It

would be useful to apply MVCL for multi-grain sentiment analysis task where we

can capture multiple views from the content information, intra-dependency at the

same level of granularity and inter-dependency between the levels.
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CHAPTER 4

Multi-view based Similar Protein Structure Retrieval

Protein structure similarity can be captured by not only matching fragments in the

protein structure, but similar fragments (not just identical fragments) must also

be considered to help protein structure comparison. This is achieved by modeling

the protein structure using Latent Dirichlet Allocation (LDA)[14], which maps the

fragments to a topic space using their co-occurrence information. Protein structure

comparison at topic space performs a soft matching by considering similar frag-

ments too. In order to handle different retrieval requirements from close to remote

homologs, we propose a retrieval framework which utilizes multiple representa-

tions : plain vector space representation [38] of fragments in protein structure

and topic space representation using LDA. We also evaluate a multi-view model

that usesmultiple representations (combining vector spacemodel and LDA’s topic

representation) built with different fragment libraries. We empirically prove that

the proposed multi-view framework which utilizes multiple representations out-

performs other state-of-the-art techniques across all the retrieval requirements.

4.1 Introduction

The success of structure comparison methods can be measured based on their

effectiveness in detecting closely and remotely homologous proteins [69]. The

closely homologous proteins have similar structures with relatively less insertions

and deletions. On the other hand, remote homologs possess significantly differ-

ent structures. The similarity in these cases can be inferred based on similarity

of structural fragments. Fragment level protein structure comparison works well



in practice as demonstrated by several methods [11; 25; 36; 37]. The first frag-

ment based comparisonmethodwas proposed byRemington andMathews, which

performs rigid body superposition of fixed length backbone fragments from indi-

vidual proteins [11]. The rigid body superposition was later used by Zuker and

Somorjai to define distance between backbone fragments while comparing them

using dynamic programming [37]. The fragment based structure comparison was

also used in identification and ranking of local features [36]. For further details,

the readers are referred to an excellent review paper by Taylor et al.[69]. Recently

researchers proposed an interesting vector space representation of protein struc-

tures using fragments as bases [25]. The method, FragBag, appears to perform the

task of retrieving similar structures efficiently and is the state-of-the-art method in

fragment based structure comparison. FragBag represents each structure as a bag

of fragments, which is a basic model of retrieval used in the area of text mining. The

success of FragBag opens up many interesting avenues, where powerful language

modeling techniques proposed in information retrieval/statistical natural language

processing can be adopted for representing protein structures. They can achieve

better performance in terms of efficiency and accuracy in identifying structural

homologs. This work focuses on two important problems in this context:

• Effective protein structure representation that captures inherent relationship
between fragments and facilitates efficient comparison between the struc-
tures,

• Effective framework to address different retrieval requirements.

We propose a new representation for protein structures based on Latent Dirich-

let Allocation (LDA)[14]. For retrieving close and intermediate homologs, the LDA

representationworks better. On the other hand, for retrieving remote homologs the

naive vector space model (FragBag) performs well. Since retrieval requirements

could be diverse, it is necessary to build a model that is efficient across different

requirements. In this work, we propose multi-view based retrieval frameworks to

meet the challenges.
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4.2 Proposed Approach

As mentioned previously, the framework for protein structure comparison has

two subproblems to be handled. In this section, we will elaborate the proposed

framework to address these subproblems. These proposed techniques draw a

huge motivation from statistical NLP.

4.2.1 Representation of proteins in topic space

The key point of the proposed approach is to represent proteins as probability

distributions over latent topics. Note that the topic is an abstract concept and is

represented as a multinomial distribution over fragments. Given this representa-

tion, a collection of protein structures can bemodeled using three-level hierarchical

Bayesian generative model known as Latent Dirichlet Allocation (LDA)[14]. In-

tuitively, this formalism clusters similar fragments into topics, which provides

significant advantage over models that perform fragment to fragment comparison

(except identity) while comparing protein structures. We explain this concept with

a simple example. Suppose we are interested in comparing two documents, one

containing words dog and cat and the other containing bark and mews. Naive

word level comparison of the two documents reveal that they are unrelated, when

they actually talk about semantically related topics (dog-barking and cat-mews in

this case). This example can be extended to protein structures, where fragments

are entities equivalent to words in the document. The fragments are grouped into

a topic in a probabilistic manner and the search for homologous proteins can be

performed more accurately in the topic space. Before introducing formal aspects

of the problem formulation, we describe the key ingredients:

1. A fragment fi is the basic unit of protein structure. It is part of the fragment
library of choice F. F={ f1, f2, . . . , fL}, where L is the size of fragment library F.

2. A Protein is a sequence of n fragments, denoted by S = { fi| fi ǫ F}. The
protein structure is converted into a sequence of fragments using the method
described in [25].
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3. A Universe is a collection of N proteins, denoted by U={s1, s2, . . . ,sN}.

The graphical model representation of LDA is provided in Figure 4.1. It models

the protein structure collection according to the following generative process:

1. Pick a multinomial distribution ϕz for each topic z from a Dirichlet distribu-
tion with parameter β.

2. For each protein s, pick a multinomial distribution θs from a Dirichlet distri-
bution with parameter α.

3. For each fragment fi in protein structure s, pick a topic z ǫ {1,. . . , K} with
parameter θs.

4. Pick fragment fi from the multinomial distribution ϕz.

Figure 4.1: Graphical representation of LDA; K is the number of topics; N is the
number of protein structures; Ns is the number of fragments in protein
structure s.

According to the model, each protein is a mixture of latent variables z (referred

to as clusters/topics), and each latent variable zi is a probability distribution over

fragments. Given N proteins, K topics, L unique fragments in the collection, we

can represent p( f |z) for the fragment f , with a set of Kmultinomial distributions ϕ

over the L fragments, P( f |z = j) = ϕ( j)
f
. P(z) is modeled with a set ofN multinomial
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distributions θ over K topics. One way to achieve this is to use Expectation

Maximization to find the estimates of ϕ, and θ. It suffers from local maxima

issues, and its hard to model an unseen protein since it does not assume anything

about θ. LDA overcomes these issues by assuming a prior distribution on θ and

ϕ to provide a complete generative model. It uses Dirichlet distribution 1 for

choosing priors α for θ and β for ϕ.

The likelihood of generating a universe of protein structure collections is

P(s1, s2, . . . , sN) =

∫ ∫

K
∏

z=1

P(ϕz|β)
N
∏

s=1

P(θs|α)(
Np
∏

i=1

K
∑

zi=1

P(zi|θ)P( fi|z, ϕ)) dθ dϕ

Exact inference is LDA model is intractable and hence a number of approxi-

mate inference techniques such as variational methods[14], expectation propaga-

tion [61], and Gibbs sampling [20; 61] have been proposed in literature. We use

Gibbs sampling based inferencing to estimate ϕ and θ. From a sample, ϕ̂ and θ̂

are approximated using the following equations 4.1 and 4.2 after a fixed number

of iterations, which is commonly known as burn in period.

ϕ̂ ≈ (n(wi)
i, j
+ βwi

)/
V
∑

v=1

(n(v)
i, j
+ βv) (4.1)

θ̂ ≈ (n(si)
i, j
+ αzi)/

T
∑

t=1

(n(si)
i, j
+ αt) (4.2)

Here, ni, j is the number of instances of fragment fi, assigned to topic z = j. α

and β are hyper-parameters that determine the smoothness of the distribution. n(si)
i, j

is the number of fragments in protein si that belong to topic z = j. Thus, the total

number of fragments assigned to topic z = j is given by
V
∑

v=1

n(v)
i, j
. The total number

1Dirichlet prior is a conjugate prior of multinomial distribution
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of fragments in protein si is given by
T
∑

t=1

n(si)
i, j
. The terms,

V
∑

v=1

n(v)
i, j

and
T
∑

t=1

n(si)
i, j
, are

normalizing factors.

The work flow for building topic model is as follows:

1. We take collection of protein structures as an input. Weprocess each structure
and obtain the corresponding fragment by matching its substructures with
the library. At the end of this process, we obtain a bag of fragments for each
protein. This process is depicted in Figure 4.2.

2. We learn the topic model on the collection using the machinery described
earlier in this section.

3. Each protein is then represented as a probability distribution over the latent
topics discovered by LDA.

4.2.2 Multi-view based Retrieval

A simple framework for protein retrieval is given in Figure 4.3, where the universe

of proteins are modeled using the representation R chosen. In order to rank the

proteins based on the structural similarity for a query protein, the query protein is

modeled and transformed to the same representation space R. Once the transfor-

mation is done, the protein structures in the collection are ranked based on their

structural similarity with the query protein using a retrieval technique. Most sim-

plest technique would involve a boolean vector representation for each protein.

Here, the fragments from the fragment library are matched against the protein

structure, and a vector of size of the fragment library is built. The vector has 1 in

the position of fragments that are present and 0 in the place of fragments that are

absent. And retrieval can be based on Jaccard’s Coefficient [38]. It can be replaced

by other IR techniques such as term frequency (TF), term frequency-inverse doc-

ument frequency (TF-IDF), etc. The similarity metrics must be chosen according

to the choice of representation [38]. We refer to this family of techniques as naive

vector space models.
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Figure 4.2: Example protein structure with bag of fragments and topic space rep-
resentations; built for a given fragment library. (a) shows an example
protein structure and (b) showsa given fragment library. Each substruc-
ture in protein is compared against the fragment library and the closest
matching fragment is used to represent the substructure. Thus, we
obtain bag of fragments representation for protein structure as shown
in (c). We model the structure as a probability distribution over latent
topics. In (d) we have shown a toy representation using three topics,
which forms a simplex.
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Figure 4.3: Typical Retrieval Model

As mentioned earlier, the retrieval might have different objectives for differ-

ent applications. For example, retrieving proteins that are similar, whether they

are close homologs or remote homologs. Text based IR researchers have shown

that retrieval based on combination of multiple query representations, multiple

representations of text documents, or multiple IR techniques provide significantly

improved results compared to single representation based technique, especially

when there are multiple retrieval requirements across users. These techniques are

referred to as multi-view based IR in literature [1]. Schema of multi-view IR is

given in Figure 4.4. The intuition behind doing this is: retrieval information about

an author, publication or book would require exact keyword match, but querying

based on topics, for example “sports news”, must allow more than just keyword

match.
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Figure 4.4: Multi-view based Retrieval Model
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Motivated by the success of multi-view based text IR works, we propose a

multi-view based retrieval system for protein structure collection. Protein struc-

ture similarity can be captured by not only matching fragments in the protein

structure, but similar fragments (not just identity) must also be considered to help

protein structure comparison. This is achieved by modeling the protein structure

using LDA, which maps the fragments to a topic space using their co-occurrence

information. Protein structure comparison at topic space performs a soft matching

by considering similar fragments too.

The proposed model combines the plain vector (boolean or frequency based)

representation of fragments in protein structure and topic space representation us-

ing LDA. Query protein and proteins in the collection are transformed into a naive

vector space model and LDA representation. The retrieval techniques for both the

modeling methods are different. Let us assume a simple boolean representation

and a cosine similarity metric for the naive vector space model. Cosine similarity

between two protein structures represented using boolean vectors A, B is given

below

FragSimilarity(A,B) = cos(θ) = A.B
||A||||B||

We refer to the similarity based on naive vector representation as FragSimilarity.

LDA based representation uses the asymmetric Kullback Leibler(KL) divergence

measure to rank proteins. Asymmetric KL divergence between two proteins rep-

resented by the topic distribution vector P and Q is given below

DKL(P||Q) =
∑

i

P(i)log
P(i)
Q(i)

The ranking based on these two techniques are combined using a weighted com-

bination of similarity values. KL divergence captures the distance and not sim-

ilarity value as in the case of cosine similarity. The range of values for cosine

similarity(0, 1) and KL divergence (−∞, 0) are different. KL divergence values are
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normalized using min-max normalization to get normalized KL divergence mea-

sure Dnorm
KL

, and converted into similarity value by performing 1 − Dnorm
KL

. Finally,

the values are combined as follows

Similarity = λ1 ∗ FragSimilarity + λ2 ∗ (1 −Dnorm
KL )

λ1 and λ2 denote the relative weight for the retrieval schemes based on vector

representation and LDA respectively. The model can also be extended to more

representation schemes, where 0 ≤ λi ≤ 1, and
∑

i

λi = 1. Comparison of various

vector representations and similarity metrics are given in the experimental results

section.

4.3 Experimental Results

The experiments are performed on FragBag dataset [25] containing 2,930 sequence

non-redundant structures selected from CATH version 2.4. The dataset was con-

structed by using a best-of-six structural aligner (using SSAP [68], STRUCTAL,

DALI [32], LSQMAN [19], CE [23], and SSM) [25; 51]. The structural neighbors of

each protein are determined using threshold on structural alignment score (SAS)

obtained from the alignments. The following three SAS thresholds, 2 Å, 3.5 Å and

5Å, are used to obtain close to remote homologs of the query protein. Each protein

in the dataset is represented as a probability distribution over the latent topics dis-

covered by LDA and is used as a query for evaluating performance of our method

in ranking its structural neighbors. For constructing topic models, we use 7 out of

24 fragment libraries proposed by Kolodny et al. [51] based on their performance

as reported in earlier work [25]. These seven libraries are as follows: 100(5), 300(6),

250(7), 600(9), 600(10), 400(11) and 400(12). Here each library is represented with

the number of constituent fragments and their size. For example, 400(11) repre-

sents a library containing 400 fragments of size 11. The ranking performance is

measured using area under the curve (AUC) of receiver operating characteristics
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(ROC) curve. The overall AUC value is obtained by averaging individual AUC

values across 2930 query proteins. The AUC takes values between 0 and 1 and its

value closer to 1 indicates higher ranking performance.

A number of similaritymeasures exist for comparing protein structures in topic

space. We compare the performance of the following distance measures: Cosine

similarity (CO), Euclidean distance (EU) and KL divergence (KL) and select the

one with the highest performance. The topics were discovered from proteins

represented using fragments from 400(11) library, which is chosen due to its top

performance in FragBag experiments [25]. Table 4.1 contains the results for three

different SAS thresholds: 2 Å, 3 Å and 5 Å. It can be seen that KL and CO are more

appropriate for SAS threshold of 2 Å and 5 Å, while KL performs slightly better

than CO for SAS threshold of 3.5 Å. We use KL as a preferred distance measure

for further analysis, since it outperforms the other two measures in most of the

choices of the number of topics (Table 4.1).

Topics
Dist 10 100 150 200 250 300 400 500 SAS
KL 0.85 0.89 0.9 0.9 0.9 0.9 0.9 0.9
EU 0.84 0.87 0.88 0.88 0.87 0.87 0.87 0.87 2
CO 0.85 0.89 0.89 0.89 0.9 0.9 0.9 0.9
KL 0.71 0.77 0.77 0.78 0.77 0.78 0.78 0.77
EU 0.69 0.71 0.73 0.73 0.73 0.73 0.72 0.72 3.5
CO 0.70 0.73 0.76 0.76 0.76 0.77 0.77 0.77
KL 0.68 0.69 0.69 0.69 0.68 0.68 0.68 0.67
EU 0.67 0.67 0.67 0.66 0.66 0.65 0.65 0.65 5
CO 0.68 0.69 0.69 0.69 0.69 0.69 0.69 0.68

Table 4.1: Comparison of three different distance measures: Cosine similarity
(CO), Euclidean distance (EU) andKL divergence (KL) based on average
area under the curve (AUC) obtained by ranking structurally similar
proteins, which are represented in topic space using 400(11) library.
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In order to select the ideal number of topics, we represented proteins with

various number of topics obtained for each of the seven fragment libraries and

ranking performance of our method is obtained in terms of average AUC value for

each of the SAS thresholds (Table 4.2). The analysis reveals that the representation

using 200-250 topics has the best ranking performance. We use the best performing

number of topics for each library in the further analyses.

Topics
Library 10 100 150 200 250 300 400 500 SAS
100(5) 0.83 0.85 0.86 0.88 0.88 0.87 0.86 0.84
300(6) 0.84 0.85 0.86 0.88 0.88 0.88 0.87 0.85
250(7) 0.85 0.87 0.88 0.89 0.9 0.89 0.89 0.89
600(9) 0.85 0.89 0.9 0.9 0.9 0.9 0.89 0.88 2
600(10) 0.85 0.88 0.9 0.9 0.9 0.9 0.9 0.88
400(11) 0.85 0.89 0.9 0.9 0.9 0.9 0.9 0.9
400(12) 0.84 0.89 0.9 0.9 0.9 0.89 0.89 0.87
100(5) 0.70 0.73 0.73 0.74 0.73 0.72 0.72 0.74
300(6) 0.71 0.74 0.75 0.76 0.76 0.76 0.75 0.75
250(7) 0.71 0.75 0.75 0.76 0.76 0.76 0.76 0.75
600(9) 0.72 0.77 0.77 0.78 0.78 0.78 0.77 0.77
600(10) 0.72 0.77 0.77 0.78 0.78 0.77 0.77 0.77 3.5
400(11) 0.71 0.77 0.77 0.78 0.77 0.78 0.77 0.77
400(12) 0.71 0.77 0.77 0.77 0.76 0.76 0.76 0.76
100(5) 0.67 0.68 0.68 0.68 0.67 0.67 0.67 0.67
300(6) 0.66 0.67 0.68 0.68 0.68 0.68 0.68 0.67
250(7) 0.66 0.69 0.69 0.68 0.68 0.68 0.67 0.67
600(9) 0.68 0.69 0.7 0.69 0.68 0.68 0.68 0.67
600(10) 0.67 0.69 0.69 0.69 0.68 0.68 0.68 0.66 5
400(11) 0.68 0.69 0.69 0.69 0.68 0.68 0.68 0.67
400(12) 0.69 0.7 0.7 0.7 0.69 0.69 0.69 0.67

Table 4.2: Selection of the best number of topics for representing proteins, using
each of the seven libraries, based on their ranking performance indicated
by the average AUC
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Asmentioned in Section 4.2.2, multi-view IR combines LDA and simple vector

space model with weights λ1 and λ2. In this section, we identify the best simple

vector space model from the following choices: (i) term frequency (TF), (ii) term

frequency and inverse document frequency (TF-IDF), and (ii) boolean (Bool). We

choose cosine similarity to compare vectors, since it has been shown to work well

for such representations in literature. The AUC score for different λ values are

given in Table 4.3. The values are computed on 400(11) library, which gives the

best results across different number of LDA topics (from Table 4.2). The analysis

of Table 4.3 reveals that the multi-view IR with either TF or TF-IDF as a simple

vector space model performs better than FragBag [25]. Overall, combining TF and

LDA gives the best results (Table 4.3). The experiments are repeated for other

libraries using the best multi-view IR model (TF and LDA) and the results for SAS

thresholds 2, 3.5 and 5 are given in Table 4.4, 4.5, 4.6 respectively.

It can be seen that for SAS thresholds of 2 and 3.5, best performance is achieved

with a higher weight for LDA representation (λ1). On the other hand, for SAS

threshold of 5, best performance is achieved with a higher weight for simple vec-

tor space model (or at least equal to LDA representation). As mentioned earlier,

SAS threshold of 2 tends to retrieve close homologs, 3.5 retrieves intermediate

homologs and 5 denotes remote homologs. LDA based representation performs

better in identifying close homologs (SAS threshold of 2 Å) than the remote ones

(SAS threshold of 5 Å) for a given query protein. Since the fragment functionality

overlap is less as we move up the parent tree for a protein structure, exact match

using naive vector space model performs better than LDA representation to iden-

tify remote homologs.
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SAS=2 SAS=3.5 SAS=5
λ1 I II III I II III I II III

0 0.89 0.87 0.8 0.77 0.72 0.64 0.75 0.73 0.68
0.1 0.89 0.87 0.81 0.78 0.73 0.65 0.75 0.73 0.69
0.2 0.9 0.88 0.81 0.78 0.74 0.66 0.75 0.73 0.69
0.3 0.9 0.88 0.82 0.79 0.75 0.67 0.75 0.74 0.7
0.4 0.91 0.89 0.83 0.79 0.76 0.69 0.77 0.74 0.7
0.5 0.91 0.9 0.85 0.8 0.77 0.7 0.75 0.74 0.71
0.6 0.91 0.9 0.86 0.8 0.78 0.72 0.75 0.73 0.71
0.7 0.91 0.9 0.88 0.8 0.78 0.75 0.75 0.73 0.71
0.8 0.91 0.91 0.89 0.8 0.79 0.77 0.74 0.72 0.71
0.9 0.91 0.9 0.9 0.8 0.78 0.77 0.72 0.7 0.7
1 0.9 0.9 0.9 0.78 0.78 0.78 0.68 0.68 0.68

Table 4.3: Comparing the average AUC for various multi-view IR methods: The
multi-view models are obtained by combining LDA with weight λ1 and
one of the following vector space models (i) term frequency (TF) (I),
(ii) term frequency inverse document frequency (TF-IDF) (II) and (iii)
boolean (BOOL) (III) with weight λ2. Since λ2 = 1 − λ1, we have not
mentioned their values explicitly in the table.

λ1 400(12) 600(10) 600(9) 250(7) 200(6) 100(5)
0 0.88 0.88 0.88 0.87 0.85 0.86
0.1 0.89 0.89 0.89 0.88 0.86 0.86
0.2 0.89 0.89 0.89 0.88 0.86 0.86
0.3 0.9 0.9 0.9 0.88 0.86 0.86
0.4 0.9 0.9 0.9 0.89 0.87 0.86
0.5 0.9 0.91 0.91 0.89 0.88 0.87
0.6 0.91 0.91 0.91 0.89 0.88 0.87
0.7 0.91 0.91 0.91 0.9 0.89 0.87
0.8 0.91 0.91 0.91 0.9 0.89 0.87
0.9 0.9 0.91 0.91 0.9 0.89 0.87
1 0.89 0.9 0.9 0.89 0.88 0.87

Table 4.4: Comparison of models built on different libraries for SAS threshold of
2 Å: Here each library is denoted as X(Y), where X is the number of
fragments in the library, each of length Y. The ranking performance
of a given multi-view IR model for a given library is given in terms of
AUC. The multi-view model contains LDA model with weight λ1 and
TF vector space model with weight 1 − λ1
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λ1 400(12) 600(10) 600(9) 250(7) 200(6) 100(5)
0 0.76 0.76 0.76 0.74 0.69 0.72
0.1 0.77 0.77 0.77 0.75 0.7 0.72
0.2 0.78 0.77 0.77 0.75 0.71 0.72
0.3 0.78 0.78 0.78 0.76 0.72 0.73
0.4 0.79 0.78 0.79 0.76 0.73 0.73
0.5 0.79 0.79 0.79 0.76 0.74 0.73
0.6 0.79 0.8 0.8 0.77 0.75 0.74
0.7 0.8 0.8 0.8 0.77 0.75 0.74
0.8 0.8 0.8 0.8 0.78 0.76 0.74
0.9 0.79 0.79 0.8 0.77 0.76 0.75
1 0.77 0.77 0.78 0.76 0.76 0.74

Table 4.5: Comparison of models built on different libraries for SAS threshold of
3.5 Å: Here each library is denoted as X(Y), where X is the number of
fragments in the library, each of length Y. The ranking performance
of a given multi-view IR model for a given library is given in terms of
AUC. The multi-view model contains LDA model with weight λ1 and
TF vector space model with weight 1 − λ1

λ1 400(12) 600(10) 600(9) 250(7) 200(6) 100(5)
0 0.76 0.75 0.75 0.75 0.71 0.73
0.1 0.76 0.75 0.75 0.75 0.72 0.73
0.2 0.76 0.75 0.75 0.75 0.72 0.73
0.3 0.76 0.76 0.76 0.76 0.72 0.73
0.4 0.76 0.76 0.76 0.76 0.73 0.73
0.5 0.76 0.76 0.76 0.76 0.73 0.73
0.6 0.76 0.76 0.76 0.76 0.72 0.73
0.7 0.76 0.75 0.75 0.75 0.72 0.72
0.8 0.75 0.74 0.74 0.74 0.71 0.72
0.9 0.73 0.73 0.73 0.73 0.7 0.71
1 0.69 0.69 0.69 0.69 0.68 0.68

Table 4.6: Comparison of models built on different libraries for SAS threshold of
5 Å: Here each library is denoted as X(Y), where X is the number of
fragments in the library, each of length Y. The ranking performance
of a given multi-view IR model for a given library is given in terms of
AUC. The multi-view model contains LDA model with weight λ1 and
TF vector space model with weight 1 − λ1
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Motivated by the fact that the best results are spanning different libraries,

a multi-view model which combines rankings based on representations using

different libraries is proposed. For a given query protein structure, similarity

produced by a model, say using library 400 (11), and weights λ1 = 0.6, λ2 = 0.4

is treated as an independent hypothesis. Output of each model (combination of

libraries and λ1, λ2 values) is treated as a hypothesis. The best k hypotheses are

empirically chosen and are combined using bucket o f models strategy. For example,

let simX(q, sd) and simY(q, sd) be the similarity scores between a query protein q and

a protein sd in the database as provided by the models X and Y respectively. The

similarity between q and sd is given by sim(q, sd) = max(simX(q, sd), simY(q, sd)). We

refer to this as a Combined Model. We evaluated it by combining 3 best models

across SAS thresholds. The best models are 600(9) with weights (0.8, 0.2) for

SAS=2; 400(11) with weights (0.7, 0.3) for SAS=3.5; 400(11) with weights (0.4, 0.6)

for SAS=5. Results for the Combined Model is given in Table 4.9.

In order to show the effectiveness of LDA based representation over Bag of

Words (BoW) representation[25], we compare their performance on classification

and clustering tasks. It can be seen that LDA representation performs better than

the BoW for both the tasks, in terms of time taken and standard measures for the

tasks. Table 4.7 has the comparison results for classification at C level classes in

CATH hierarchy (4 classes). Since the dataset chosen is sparse at other levels of

CATH hierarchy (has less than 10 members for most classes at A, T, H levels), we

perform classification only at C level. Radial Basis Function network (RBF) and

Naive Bayesian(NB) classifiers are used for the comparison. Results are compared

in terms of root mean squared error (RMSE), ROC, and accuracy. The values are

obtained by averaging results across 10 fold cross validation. Table 4.8 contains

comparative results in terms of SSE (sum of squared error) for K Means algorithm

using both BoW and LDA representations.
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BoW LDA BoW LDA BoW LDA BoW LDA
RMSE ROC Accuracy Time (sec)

RBF 0.25 0.23 0.93 0.95 83.9 85.7 6.84 2.5
NB 0.33 0.31 0.9 0.922 78.6 80.6 0.58 0.19

Table 4.7: PerformanceofBoWandLDArepresentationswhile classifyingproteins
at class (C) level of CATH classification.

BoW LDA
K SSE
4 8556.336 3371.61
10 8531.03 3417.21
20 8154.35 3348.29
50 7872.79 3093.44
100 7455.93 2880.1

Table 4.8: Performance of BoW and LDA for protein structure clustering task

The performance of LDA representation and retrieval based on asymmetric KL

and multi-view retrieval using TF and LDA (multi-view model I) are compared

against naive vector space model with cosine similarity on the chosen seven li-

braries. For multi-view based retrieval, the best weight combination of (λ1 and

λ2) for each library is chosen for the plot. The results are shown in Figure 4.5,

4.6, 4.7 for SAS threshold of 2 Å, 3.5 Å and 5 Å respectively. Table 4.9 gives

overall ranking of structural and filter methods, which includes the relative po-

sitioning of proposed techniques. Multi-view model I combines TF and LDA,

Multi-view model II combines TF-IDF and LDA, Multi-view model III combines

Boolean vector space model and LDA. It is clear that our method outperforms all

the filter-and-match methods. We performed a paired t-test and paired sign test

with AUC values of each query obtained using proposed models and baseline

state-of-the-art filter-and-match method (FragBag). Based on the statistical test,

our results are significantly better than the state-of-the-art at 1% significance level.
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Figure 4.5: Comparison of the average AUC at SAS threshold of 2.0 Å, across
libraries, obtained using TF, LDA andmulti-view model using the best
weights from Table 4.4

Figure 4.6: Comparison of the average AUC at SAS threshold of 3.5 Å, across
libraries, obtained using TF, LDA andmulti-view model using the best
weights from Table 4.5
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Figure 4.7: Comparison of the average AUC at SAS threshold of 5.0 Å, across
libraries, obtained using TF, LDA andmulti-view model using the best
weights from Table 4.6

Methods SAS=2 SAS=3.5 SAS=5 Average Rank Speed
SSM using SAS score 0.94 0.9 0.89 0.91 1 13
Structural using SAS score 0.9 0.81 0.84 0.85 2 39
Combined Model 0.92 0.82 0.75 0.83 3 Fast
Structural using native score 0.87 0.77 0.83 0.823 4 39
Multi-view model I (400,11) 0.91 0.8 0.76 0.823 4 Fast
CE using native score 0.9 0.79 0.74 0.81 6 54
Multi-view model II (400,11) 0.9 0.78 0.73 0.803 7 Fast
FragBag Cos distance (400,11) 0.89 0.77 0.75 0.803 7 Fast
Multi-view model III (400,11) 0.89 0.77 0.7 0.787 9 Fast
CE using SAS score 0.84 0.72 0.75 0.77 10 54
FragBag histogram intersection (600,11) 0.87 0.73 0.7 0.767 11 Fast
SGM 0.86 0.71 0.68 0.75 12 Fast
FragBag Euclidean distance (40,6) 0.86 0.71 0.64 0.737 13 Fast
Zotenko et al. (18) 0.78 0.64 0.66 0.693 14 Fast
Sequence matching by BLAST e-value 0.76 0.57 0.5 0.61 15 Fast
PRIDE 0.72 0.54 0.51 0.59 16 Fast

Table 4.9: AUCs of ROC Curves Using Best-of-Six Gold Standard: The proposed
approaches are shown in bold. The speed is given as average CPU
minutes per query. If the processing time (after preprocessing of protein
structure) for a query is less than 0.1s, then it is mentioned as f ast.
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4.4 Conclusion

The contribution of this work includes a novel representation for protein struc-

tures and a multi-view based similar protein structures retrieval framework. We

demonstrated that our method outperforms most of the existing filter-and-match

methods. Our results are very competitive even with the state-of-the-art structure

comparison methods operating at the level of complete three dimensional repre-

sentation. Moreover, our method is much faster than these methods. Kolodny

and co-workers first proposed the use of IR techniques in protein structure com-

parison [25]. In this work, we have shown significant improvements by adapting

more powerful models from statistical NLP literature to this task. We have also

taken advantage of multiple representations of the protein structure through the

proposedmulti-view based retrieval framework. This work has firmly established

that such fragment based models can be competitive with the structural methods.

It has also opened the doors for deeper analysis, using techniques from statistical

NLP, of the role that fragments play in determining the overall structure.
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CHAPTER 5

Conclusion and Discussions

In this chapter we summarize our contributions and point out the potential exten-

sions for future research.

5.1 Conclusion

Wehave proposedmulti-view approaches for linked data classification and similar

protein structure retrieval tasks. First, we proposed a multi-view collective learn-

ing framework for sentiment analysis (MGSA). We performed sentiment analysis

in a semi-supervised environment using both content and link information. Unlike

other approaches which use collective classification for sentiment analysis, we do

not assume to have fully labeled data[7; 40; 58]. Since we use content and link

information separately, we call this as a multi-view based approach to perform

sentiment analysis. The empirical analysis was performed on automobile reviews,

and we found that MGSA outperformed the baseline classifiers. To overcome

some of the key limitations of the framework proposed for sentiment analysis, we

further proposed a two step multi-view collective learning framework (MVCL).

MVCL involves cautious procedures for bootstrapping labels and learning clas-

sifiers on content and link views. MVCL performs better than MGSA and other

single view approaches on Cora, Citeseer andWebKB linked datasets. Second, we

proposed a multi-view retrieval framework for protein structures. We found that

our method outperforms most of the existing filter-and-match methods. Our re-

sults are competitive even with the state-of-the-art structure comparison methods

operating at the level of complete three dimensional representation. Moreover,



our method is much faster than these methods. We found that utilizing multi-

ple redundant representations is more effective than using only one or combining

the multiple representations and using it as one representation. The views might

not be independent, but still redundancy among the representations and com-

patibility between the views help to achieve better performance than single view

approaches[31]. The key contributions of this work are:

• Using link as a view in a multi-view learning setup to solve collective clas-
sification. We proposed cautious algorithms for bootstrapping and learning
classifiers on the stronger content and the weaker link views.

• Exploiting multiple representations to solve the similar protein structures
retrieval task.

5.2 Future Directions

Possible directions of future research include:

• Weevaluated themulti-view learning frameworkon standard linkeddatasets.
A thorough empirical study of the framework can be carried out on a variety
of text domain datasets which possess more than two views. For example,
an academic network data, in which the authors are connected to their co-
authors and publications. Similarly each publication has its own citation
network and is also connected to its authors.

• A theoretical analysis for using link as a view in multi-view learning frame-
work can be performed[54].

• In the bootstrapping step, a better link view based label propagation tech-
nique that does not assume homophily can be used.

• We exploited multiple representations of protein structures for the retrieval
task. It could be interesting to work on the multi-view based learning frame-
work for the similar protein structures retrieval task (Learning to Rank frame-
work for multi-view IR).

• Wemodelled protein structures using LDA. It might be useful to adapt more
powerful NLP techniques to model the same. For example, proteins have a
hierarchy of classes, so it might be effective to use hierarchical topic models
to capture this rich information.
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• We performed an overlapping fixed length segmentation of proteins into
fragments. It would be effective to use multi-task topic models that can
perform both segmentation of proteins into fragments and model the bag of
fragments that can be used as a representation for protein structures[22].
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