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Abstract

In this work we address the question of finding symmetries of a given MDP. We show that the problem is
Isomorphism Complete, that is, the problem is polynomially equivalent to verifying whether two graphs are
isomorphic. Apart from the theoretical importance of this result it has an important practical application. The
reduction presented can be used together with any off-the-shelf Graph Isomorphism solver, which performs well
in the average case, to find symmetries of an MDP. In fact, we present results of using NAutY (the best Graph
Isomorphism solver currently available), to find symmetries of MDPs.

1. Introduction

Markov Decision Processes (MDPs) are widely employed to model sequential decision problems. But current solution
techniques for MDPs do not scale well with the size of the MDPs, and hence are proving inadequate in solving large real-
world problems. While building abstract models of real-world problems, it can be seen that a high degree of redundancy
is present which can be exploited to reduce size of the model. This reduction in size could possibly lead to more efficient
solution methods.

One such notion of redundancy is a degree of symmetry that is present in any real-world problem. (Amarel, 1968) first
looked at exploiting such symmetries in solving a missionaries and cannibals problem. In this work we use the notion of
symmetries in MDPs introduced in (Ravindran, 2004). While it is widely believed that finding symmetries in MDPs is a
hard problem, no one has investigated before exactly how hard this problem is.

Intuitively this seems harder than finding symmetries in graphs, due to the additional structure introduced by MDPs. In
this work we show that finding symmetries in MDPs is no harder than the problem of graph isomorphism. We also show
that existing graph isomorphism solvers can be used to find symmetries in MDPs.

We present some notation in the next section, and some related work in Section 3. In Section 4 we formally define the
problem, and present a constructive algorithm in Section 5 for showing the equivalence to graph isomorphism. We discuss
some results Section 6 and conclude in Section 7.

2. Homomorphisms and Symmetry Groups

Let B be a partition of a set X. For any x ∈ X, [x]B denotes the block of B to which x belongs. Any function f from a set
X to a set Y induces a partition (or equivalence relation) on X, with [x] f = [x′] f if and only if f (x) = f (x′) and x, x′ are
f -equivalent written x ≡ f x′. Let B be a partition of Z ⊆ X × Y, where X and Y are arbitrary sets. The projection of B
onto X is the partition B|X of X such that for any x, x′ ∈ X, [x]B|X = [x′]B|X if and only if every block containing a pair in
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which x is a component also contains a pair in which x′ is a component or every block containing a pair in which x′ is a
component also contains a pair in which x is a component.
Definition 1. An MDP homomorphism h from an MDP M = 〈S,A,Ψ,P,R〉 to an MDP M′

= 〈S′,A′,Ψ′,P′,R′〉 is a
surjection fromΨ toΨ′, defined by a tuple of surjections < f , {gs|s ∈ S} >, with h((s, a)) = ( f (s), gs(a)), where f : S→ S′
and gs : As → A′f (s) for s ∈ S, such that: ∀s, s′ ∈ S, a ∈ As

P′( f (s), gs(a), f (s′)) =

∑

s′′∈[s′] f

P(s, a, s′′) (1)

R′( f (s), gs(a)) = R(s, a) (2)

We use the shorthand h(s, a) for h((s, a)). Often for convenience, we use < f , {gs} > to denote
< f , {gs|s ∈ S} >.
Definition 2. LetM’ be an image of the MDPM under homomorphism h =< f , {gs} >. For any s ∈ S, g−1

s (a′) denotes
the set of actions that have the same image a′ ∈ A′f (s) under gs. Let π′ be a stochastic policy inM′. Then π′ lifted toM is
the policy πM′ such that for any a ∈ g−1

s (a′), π′
M

(s, a) = π′( f (s), a′)/|g−1
s (a′)|

Definition 3. An MDP homomorphism h =< f , {gs} > from MDPM = 〈S,A,Ψ,P,R〉 to MDPM′
= 〈S′,A′,Ψ′,P′,R′〉

is an MDP isomorphism fromM toM′ if and only if f and gs, are bijective. M is said to be isomorphic toM′ and vice
versa. An MDP isomorphism from MDPM to itself is called an automorphism ofM.
Definition 4. The set of all automorphisms of an MDP M, denoted by AutM, forms a group under composition of
homomorphisms. This group is the symmetry group ofM.

Let G be a subgroup of AutM. The image ofM under G is called the G-reduced image ofM.
Definition 5. An MDPM′ is said to be a reduced model of an MDPM, iff there exists an MDP homomorphism h :M→
M′.

3. Related Work

MDP Minimization is a well studied problem. As stated earlier, in the model minimization approach, a reduced MDP that
that preserves some key properties as the original MDP is found by combining “equivalent” states. The reduced MDP
found depends on the notion of equivalence between states used in the aggregation. The notion of equivalence chosen
will be fundamental in designing and analyzing algorithms for reducing MDPs. In (Dean & Givan, 1997) a minimization
algorithm is proposed based on the notion of stochastic bi-simulation homogeneity. Informally, a partition of the state
space for an MDP is said to be homogeneous if for each action, states in the same block have the same probability of
transitioning to each other block. They also provide an algorithm for finding the coarsest homogeneous refinement of any
partition of the state space of an MDP. The algorithm starts with an initial partition P0 and iteratively refines it by splitting
the blocks until the coarsest homogeneous refinement of P0 is obtained. A notion of stability of a block with respect to
another is defined and unstable blocks are split till all blocks of the partition are stable. The complexity of the algorithm
is expressed in terms of the partition manipulation operations. Hence, the actual complexity depends on the underlying
partition representation and manipulation algorithms. (Givan et al., 2003) discuss the application of the algorithm to solving
factored MDP problems. Enumerating the state space is avoided by describing large blocks of equivalent states in factored
form with the block descriptions being inferred directly from the original factored representation.

(Ravindran, 2004) proposes a more generic framework based on the notion of MDP homomorphisms with state-dependent
action recoding as introduced in Section 2. This allows a greater reduction in problem size and aids in modeling many other
notions of equivalence like symmetries. A polynomial time algorithm to find the reduced model under the notion of MDP
homomorphisms is also proposed by extending the algorithm proposed by (Givan et al., 2003) and (Lee & Yannakakis,
1992). Again, the algorithm is polynomial in the number of block operations, the stability criterion is modified to suit the
equivalence notion and the same process of iterative splitting is used. The notion of stability used is called the stochastic
substitution property, which is an extension of the substitution property for finite state machines (Hartmanis, 1966).

However, literature on MDP minimization using symmetries is sparse. (Zinkevich & Balch, 2001) define symmetries based
on state-action equivalence but do not make any connections to group-theoretic concepts or minimization algorithms.

Another dimension to analyze the literature is the approach to symmetry finding. Two main approaches exist:
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1. To derive a set of necessary conditions for elements to be symmetric

2. Prove Isomorphism Completeness and use a graph isomorphism finding system

Intuitively symmetries seem easier to identify than homomorphisms and we tried the first approach to find a polynomial
time algorithm for symmetry finding, along the lines of the MDP homomorphism finding, with the motivation of finding
better algorithms for MDP minimization. The MDP homomorphism definition allows for deriving this easily because, two
state action pairs (s1, a1), (s2, a2) are homomorphically equivalent if

h(s1, a1) = h(s2, a2)
P′( f (s1), gs1 (a1), f (s′)) = P′( f (s2), gs2 (a2), f (s′))

T(s1, a1, [s′]Bh |S) = T(s2, a2, [s′]Bh |S)

for all s′ ∈ S. This is the stochastic substitution property and it allows us to deal just with blocks without worrying about
the actual functions. However, a similar attempt for symmetries still needs the symmetry f in the necessary condition as
below:

h(s1, a1) = (s2, a2)
P( f (s1), gs1 (a1), f (s′)) = P(s2, a2, f (s′))

P(s1, a1, s′) = P(s2, a2, f (s′))

(Flener et al., 2002) and (Crawford, 1992) point that symmetry finding for CSPs in general is Isomorphism Complete.
However, there also exist results showing that symmetry finding is NP-complete (in case of geometric automorphism of
graphs (Manning, 1990)). So we were still unclear whether symmetry finding for MDPs is Isomorphism Complete or
NP-complete due to the presence of factorially many action recoding functions. A better understanding of the use of
symmetries for abstraction in MDPs is the motivation for this work.

4. Problem Definition

To exploit the power of abstraction using symmetries, we identify them and construct a reduced model by abstracting away
the symmetric portions. As the reduced model can be significantly smaller, it can be easier to solve. We use the notion of
automorphisms to model symmetries. So formally, given an MDPM,

1. Find the automorphism group, AutM and

2. Given the automorphism group, AutM find the corresponding reduced model, the AutM-Reduced Image

5. Finding Symmetries

5.1. Problem Simplification

Let us consider the first part of our problem, i.e., given an MDPM, find the automorphism group ofM, AutM. We know
that a group can be specified using its generators. So we simplify the problem to finding the generators of AutM. Let
AMGEN(M) denote the problem of finding the generators of AutM. We write A ∝ B if a problem A is polynomially
reducible to B. We say that problems A and B are polynomially equivalent iff A ∝ B and B ∝ A. We denote polynomial
equivalence by ≡∝.
Definition 6. A problem A is Isomorphism Complete iff A is polynomially equivalent to finding whether two graphs are
isomorphic.

Let G1,G2 be two simple graphs unless otherwise mentioned. The following is a list of relevant Isomorphism Com-
plete problems (Booth & Colbourn, 1977) on graphs:

• ISO(G1,G2): Isomorphism recognition for G1 and G2

• IMAP(G1,G2): Isomorphism Map from G1 to G2(if it exists),
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• AGEN(G1): Generators of the automorphism group, AutG1

• DGEN(G): Generators of the automorphism group, AutG, where G is a weighted digraph

From (Mathon, 1979), (Read & Corneil, 1977), (Miller, 1977) we have,
DGEN(G) ≡∝ AGEN(G) ≡∝ IMAP(G1,G2) ≡∝ ISO(G1,G2).
We intend to prove that AMGEN(M) is Isomorphism Complete. We are done if we prove that AMGEN(M) ≡∝
DGEN(GM), where GM is a weighted graph constructed in polynomial time from M, that is, AMGEN(M) ∝
DGEN(GM) and DGEN(GM) ∝ AMGEN(M). It is easy to see that DGEN(GM) ∝ AMGEN(M) is true because
we can always construct a degenerate MDP from a digraph. So we need to prove that AMGEN(M) ∝ DGEN(GM).

5.2. Isomorphism Completeness of the problem

An MDPM can be considered as a pseudograph with states acting as vertices and actions acting as edges. Since there can
be more than one action affecting the transition between 2 states, we need to represent this as a pseudograph. The transition
probabilities and rewards can be thought of as weight functions. Next, we formally pose AMGEN(M) as a problem on a
weighted pseudograph.

Let GM =< Σa,V,E,WP,WR > be the pseudograph corresponding toM, where

Σa : Alphabet for labelling corresponding to actions
V : Set of vertices corresponding to states
E : Set of edges, where each edge is a triple

(u, a, v) where, u, v ∈ V and a ∈ Σa

corresponding to state transitions
WP : E→ R corresponding to transition probabilities
WR : E→ R corresponding to rewards with

WR(u, a, v) =WR(u, a, v′) ∀ (u, a, v), (u, a, v′) ∈ E
Note, E =

⋃

u,v∈V
Euv where, Euv = { (u′, a, v′) ∈ E | u′ = u and v′ = v }

AMGEN(M) can be formulated as finding the generators of the group of bijections h : V × Σa → V × Σa. h is defined by
h(u, a) = ( f (u), gu(a)), where

f : V → V and
gu : Σa → Σa defined for each u ∈ V are bijections s. t.

WP( f (u), gu(a), f (v)) = WP(u, a, v) and
WR( f (u), gu(a), f (v)) = WR(u, a, v) ∀ (u, a, v) ∈ E

These two components of each generator can be interpreted as follows:

1. f is a function that permutes the states/vertices

2. The set of functions {gu} defined for each state/vertex permutes the actions/edge labels. These are called the State-
Dependent Action Recoding (SDAR) functions.

5.2.1. SET BIJECTIONS

Let us assume, for a moment, that we have a procedure that constructs a weighted digraph WDM from GM. Now, solving
DGEN(WDM) gives the generators of WDM. Even if these were somehow same as the f s we are looking for, we still
need a way to find the SDAR functions. To achieve this, we define the notion of a set bijection which represents a set
of bijections very compactly. In the worst case, for each f , there can be factorially many SDAR functions. So a normal
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explicit representation cannot be used. We also define the operations of intersection between two set bijections to find the
bijections that are common to both set bijections, composition between two set bijections and an inverse of a set bijection.
All these operations can be done in time polynomial of the number of elements in the domain of a bijection belonging to
the set bijection.
Definition 7. Consider two finite sets A and B. Let UA = {UA1 ,UA2 , . . . ,UAk } and UB = {UB1 ,UB2 , . . . ,UBk } be partitions
of A and B respectively. UA and UB are said to be similar iff |UA| = |UB| and for each UAi ∈ UA there exists a unique
UB j ∈ UB such that |UAi | = |UB j |. We denote it by UA ∼ UB.

Note that, by definition the sets A and B will be of the same size.
Definition 8. Let A and B be two finite sets and UA = {UA1 ,UA2 , . . . ,UAk } and UB = {UB1 ,UB2 , . . . ,UBk } be partitions of
A and B respectively such that UA ∼ UB. A bijective map X : UA → UB where X(UAi ) = UB j implies |UAi | = |UB j | for all
UAi ∈ UA is called a set bijection.

Informally, a set bijection can be interpreted as representing a set of bijections from A to B. X(UAi ) = UB j represents all
possible bijective mappings from elements in UAi to elements in UB j . A bijection from A to B in the set of bijections that
represent the set bijection, can be formed by collating mappings from each X(UAi ) = UB j . The set bijection represents all
mappings that can be formed by such collations. To formalize this notion, we define the interpretation function next.

Let XAB , { all bijections X : UA → UB such that UA and UB are similar partitions of A and B respectively } be the
set of all set bijections. Let 2S|V| be the powerset set of all permutations from A → B. Define, Î : XAB → 2S|V| such that
Î(X : UA → UB) = { all bijections l : A → B | l(x ∈ UAi ) ∈ X(UAi ) ∀UAi ∈ UA}. Evidently, Î is only injective and not
surjective as there exist sets of 2S|V| that cannot be represented by a set bijection. For example, consider the set of bijections,
between {a, b, c} and {1, 2, 3}, L = {(a → 1, b → 2, c → 3), (a → 2, b → 1, c → 3), (a → 2, b → 3, c → 1)}. Clearly there
does not exist an X : UA → UB such that Î(X) = L. All we can say is that there exists an X such that L ⊂ Î(X). To get a
bijective interpretation function, we define, I : XAB → image(Î) such that I(X : UA → UB) = Î(X : UA → UB). Clearly I
is a bijection and we call this the interpretation function.
Example 1. Consider A = {1, 2, 3, 4} and B = {N,E,W,S}. Let U1

A = {{1, 2}, {3, 4}} and U1
B = {{N,E}, {W,S}}. Consider

the following set bijection:

X1({1, 2}) = {N,E}
X1({3, 4}) = {W,S}

X1({1, 2}) = {N,E} represents the following bijections:

1→ N, 2→ E
1→ E, 2→ N

X1({3, 4}) = {W,S} represents the following bijections:

3→W, 4→ S
3→ S, 4→W

So the set bijection X1 represents the bijections in Table 1, i.e., I(X1) is the set of bijections in Table 1.

1→N, 2→E, 3→W, 4→S
1→N, 2→E, 3→S, 4→W
1→E, 2→N, 3→W, 4→S
1→E, 2→N, 3→S, 4→W

Table 1. Bijections in the interpretation, I(X1), of the set bijection of Example 1

Example 2. Consider A = {1, 2, 3, 4} and B = {N,E,W,S}. Let U2
A = {{3}, {1, 2, 4}} and U2

B = {{N,E,S}, {W}}. Consider
the following set bijection:

X2({3}) = {W}
X2({1, 2, 4}) = {N,E,S}
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X2({1, 2, 4}) = {N,E,S} represents the bijections in Table 1.

1→N, 2→E, 4→S
1→N, 2→S, 4→E
1→E, 2→N, 4→S
1→E, 2→S, 4→N
1→S, 2→N, 4→E
1→S, 2→E, 4→N

Table 2. Bijections that X2({1, 3, 4}) = {N,E,S} of Example 2 represents

So I(X2) is the set of bijections in Table 3.

1→N, 2→E, 3→W, 4→S
1→N, 2→S, 3→W, 4→E
1→E, 2→N, 3→W, 4→S
1→E, 2→S, 3→W, 4→N
1→S, 2→N, 3→W, 4→E
1→S, 2→E, 3→W, 4→N

Table 3. Bijections in the interpretation, I(X2), of the set bijection of Example 2

Definition 9. Let A be a finite set and let U1
A = {U1

A1
,U1

A2
, . . . ,U1

Ak
}, U2

A = {U2
A1
,U2

A2
, . . . ,U2

Ak
} be two partitions of A

such that, U1
A ∼ U2

A. We define the intersection of two similar partitions of a finite set as U1
A ∩U2

A = {U1
Ai
∩U2

A j
| U1

Ai
∈

U1
A,U2

A j
∈ U2

A and U1
Ai
∩U2

A j
, ∅}.

Definition 10. Let A and B be two finite sets and U1
A = {U1

A1
,U1

A2
, . . . ,U1

Ak
}, U2

A = {U2
A1
,U2

A2
, . . . ,U2

Ak
} be two partitions

of A and U1
B = {U1

B1
,U1

B2
, . . . ,U1

Bk
}, U2

B = {U2
B1
,U2

B2
, . . . ,U2

Bk
} be two partitions of B. Also let U1

A ∼ U1
B and U2

A ∼ U2
B.

Let two set bijections X1 and X2 be defined from U1
A to U1

B and from U2
A to U2

B respectively. If (U1
A ∩U2

A) ∼ (U1
B ∩U2

B),
we define the intersection between the two set bijections X = X1 ∩ X2 as follows: ∀U1

Ai
∈ U1

A,U2
A j
∈ U2

A such that
U1

Ai
∩ U2

A j
, ∅, X(U1

Ai
∩ U2

A j
) = X1(U1

Ai
) ∩ X2(U2

A j
). Note that, X : U1

A ∩ U2
A → U1

B ∩ U2
B and it can be shown that

I(X) = I(X1) ∩ I(X2).
Example 3. Consider the set bijections X1 and X2 of Example 1 and Example 2 respectively. U1

A ∩U2
A = {{1, 2}, {3}, {4}}.

U1
B ∩U2

B = {{N,E}, {W}, {S}}. Since, U1
A ∩U2

A is similar to U1
B ∩U2

B, X = X1 ∩ X2 : U1
A ∩U2

A → U1
B ∩U2

B is:

X({1, 2} ∩ {1, 2, 4}) = X1({1, 2}) ∩ X2({1, 2, 4})
X({1, 2}) = {N,E} ∩ {N,E,S}
X({1, 2}) = {N,E}

Similarly,
X({3}) = {W}
X({4}) = {S}

So, I(X) is the set of bijections in Table 4:

1→N, 2→E, 3→W, 4→S
1→E, 2→N, 3→W, 4→S

Table 4. Bijections I(X) which, as claimed, is the set of bijections common to both I(X1) and I(X2).

Definition 11. Let A be a finite set. Let U1
A = {U1

A1
,U1

A2
, . . . ,U1

Ak
}, U2

A = {U2
A1
,U2

A2
, . . . , U2

Ak
} be two similar partitions

of A. Let X be a set bijection defined from U1
A to U2

A. We define the inverse of X as X−1 : U2
A → U1

A such that
X−1(U2

Ai
) = U1

A j
iff X(U1

A j
) = U2

Ai
.
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Definition 12. Let A, B and C be three finite sets and UA = {UA1 ,UA2 , . . . ,UAk }, UB = {UB1 ,UB2 , . . . ,UBk } and UC =
{UC1 ,UC2 , . . . ,UCk } be partitions of A, B and C respectively . Also let UA, UB and UC be pairwise similar to each other.
Let two set bijections X1 and X2 be defined from UB to UC and UA to UB respectively. We define the composition of X1
and X2, X = X1 � X2 as the set bijection from UA to UC defined by X(UAi ) = X1(X2(UAi )), for each UAi ∈ UA. It can
be shown that for each l ∈ I(X) there exist, l1 ∈ I(X1) and l2 ∈ I(X2) such that l = l1 ◦ l2 where ◦ denotes normal function
composition.

Example 4. Let U3
A = {{N,W}, {E,S}}. Consider the set bijection X1 of Example 1 and the set bijection X2 : U1

A → U3
A

defined by,

X2({1, 2}) = {E,S}
X2({3, 4}) = {N,W}

Then X−1
1 is given by,

X−1
1 ({N,E}) = {1, 2}

X−1
1 ({W,S}) = {3, 4}

If X = X2 � X−1
1 , then X is

X({N,E}) = X2(X−1
1 ({N,E}))

X({N,E}) = X2({1, 2})
X({N,E}) = {E,S}

Similarly,
X({W,S}) = {N,W}

5.2.2. VECTOR-WEIGHTED DIGRAPH

We assume that Σa can be ordered and let O be such an ordering.

Without loss of generality, we can assume that |Euv| = k,∀u, v ∈ V because, we can always take maxu,v∈V |Euv| = k and if
∃u, v ∈ V such that (u, a, v) ∈ E for some a ∈ Σa and |Euv| < k, then add dummy labels (chosen from the remaining labels
in Σa) and zero weights to make |Euv| = k. This corresponds to the general assumption in MDPs that |As| = k, ∀s ∈ S.

Let < a1, a2, . . . , ak > ordered as per O be the k-tuple representing the label of each edge in Euv. This being the same for
all edges, we leave out labeling from the graph definition.

Now we define the vector-weighted digraph corresponding toM, VWGM =< V,E′,WP,WR >, as follows:

E′ = {(u, v) | ∃a ∈ Σa and (u, a, v) ∈ E}
WP : E′ → R

k defined by
WP(u,v) =<WP(u, a1, v), . . . ,WP(u, ak, v) >

WR : E′ → R
k defined by

WR(u,v) =<WR(u, a1, v), . . . ,WR(u, ak, v) >

where a1, a2, . . . , ak are ordered as per O.

5.2.3. SORTED VECTOR-WEIGHTED DIGRAPH

We define the sorted vector-weighted digraph, SVWGM =< V,E′,WPs ,WRs >, as follows:
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WPs : E′ → R
k defined by

WPs (u,v) =<WP(u, puv(1), v), . . . ,WP(u, puv(k), v) >
where, puv : Nk → Σa such that

WP(u, puv(1), v) ≤WP(u, puv(2), v) ≤ . . . ≤WP(u, puv(k), v)
WRs : E′ → R

k defined by
WRs (u,v) =<WR(u, ruv(1), v), . . . ,WR(u, ruv(k), v) >
where, ruv : Nk → Σa such that

WR(u, ruv(1), v) ≤WR(u, ruv(2), v) ≤ . . . ≤WR(u, ruv(k), v)

Note that, puv and ruv are not unique. So we choose them such that the order O is preserved.

5.2.4. Set Bijections THAT SORT THE VECTOR-WEIGHTS

Here we show that there exists a set bijection whose interpretation is the set of permutations that sort the vector-weights.
Let Nk be the set of first k natural numbers. Let DP

uv , { all permutations l : Nk → Σa | l sorts WP(u,v)} be defined for each
(u, v) ∈ E′. So, WPs (u,v) =<WP(u, l(1), v), . . . ,WP(u, l(k), v) > and WP(u, l(1), v) ≤WP(u, l(2), v) ≤ . . . ≤WP(u, l(k), v)
. Clearly, Nk can be partitioned into Uuv

Nk
= {N1

k ,N
2
k , . . . ,N

j
k} such that, ∀t ∈ N

y
k ,WP(u, l(t), v) has the same value for each

y = 1, 2, . . . , j and if t ∈ N
y
k and t′ ∈ N

y+1
k then WP(u, l(t), v) < WP(u, l(t′), v). This partition induces a corresponding

partition Uuv
Σa
= {Σ1

a ,Σ
2
a , . . . ,Σ

j
a} where Σi

a = {l(t) | t ∈ N
i
k}. Since, each l sorts WP(u,v), they satisfy the property that

l(x ∈ N
i
k) ∈ Σi

a. Therefore, there exists a set bijection QP
uv : Uuv

Nk
→ Uuv

Σa
such that, I(QP

uv) = DP
uv.

Using a similar procedure, we can show that there exists set bijection QR
uv : Uuv

Nk
→ Uuv

Σa
whose interpretation is the set of

permutations that sort WR(u,v).
Let Quv = QP

uv ∩QR
uv. If Quv = ∅, then there doesn’t exist an automorphism for the MDPM.

5.2.5. WEIGHTED DIGRAPH

Now we define the weighted digraph WGM =< V,E′,W′ > as follows:

W′ : E′ → R such that W′(u, v) = m(WPs (u, v).WRs (u, v))
where m is a bijection from R

2k → R

and . denotes concatenation

5.2.6. CONSTRUCTION

The procedure for finding symmetries of an MDPM is given in Algorithm 1.

The complexity of the algorithm is as follows. The construction steps in lines 3 to 5, are at most polynomial in |E|. Using
a constant access time data structure like a hash-table, QP

uv and QR
uv can be constructed in O(|Euv|) time. The intersection

takes O(|Euv|2) time. Since this runs for |E′| iterations, computation of Quv is at most polynomial in |E|. Since m is known,
the construction of weighted digraph in line 13, is polynomial in |E|. With the use of procedures that return at most |V|
automorphisms of AutWGM (Mathon, 1979), the construction of Gu for each f , from lines 15 to 26, runs for at most |V|
iterations. The most expensive part of the loop from lines 20 to 26 is the computation of |V|2 intersections. But this is still
polynomial in |V||E| time. Hence the algorithm takes polynomially more time than the solution time of DGEN. Also to
extract a solution from SOLN, we need to extract |V| SDAR functions from Ĥ f for each f , which takes |Euv| time if we use
a constant access time data structure. So extraction of a solution takes O(|V|2|E|) which is still polynomial in |V||E|. Next
we prove the correctness of the algorithm.
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Algorithm 1 Construction
1: GivenM = 〈S,A,Ψ,P,R〉
2: Let SOLN be an empty set
3: Construct the pseudograph GM =< Σa,V,E,WP,WR > as defined on page 2
4: Construct the vector-weighted digraph VWGM =< V,E′,WP,WR > as defined on page 9
5: Construct the sorted vector-weighted digraph SVWGM =< V,E′,WPs ,WRs > as defined on page 10
6: for each (u, v) ∈ E′ do
7: Compute QP

uv and QR
uv by finding the partition of Nk as described on page 11

8: Quv ← QP
uv ∩QR

uv
9: if QP

uv ∩QR
uv does not exist then

10: exit
11: end if
12: end for
13: Construct the weighted digraph WGM =< V,E′,W′ > using m as described on page 12
14: F← DGEN(WGM) where F is the set of generators of AutWGM
15: for each f ∈ F do
16: for each (u, v) ∈ E′ do
17: Guv ← Q f (u) f (v) �Q−1

uv
18: end for
19: Let Ĥ f be an empty set
20: for each u ∈ V do
21: Gu ← Guv from some v ∈ V
22: for each v ∈ V do
23: Gu ← Gu ∩ Guv
24: end for
25: Add Gu to Ĥ f

26: end for
27: Add < f , Ĥ f > to SOLN
28: end for

5.2.7. CORRECTNESS OF CONSTRUCTION

Let f belong to AutWGM.
Let u, v ∈ V be such that (u, v) ∈ E′

Let Guv , Q f (u) f (v) �Q−1
uv

Let Gu ,
⋂

v∈V
Guv

If the intersection exists, define,

χ
M
= { all functions l : V →

⋃

u∈V
I(Gu) | l(u) ∈ I(Gu)}

Else, the properties of set bijection intersection ensure that
there does not exist a < f , {gu} >∈ AutM

Note that, χ
M

,
∏

u∈V
I(Gu)

Let AutWGM , { f ∈ AutWGM | < f , {gu} >< AutM for any {gu}}

For each l let gl
u , l(u) ∀u ∈ V

Since l(u) ∈ I(Gu) l(u) : Σa → Σa

Lemma 1. The set H f
= {< f , {gl

u} >, ∀l ∈ χ
M
} is a set of automorphisms of AutM.
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Proof.

W′( f (u), f (v)) = W′(u, v)
=⇒ m−1(W′( f (u), f (v))) = m−1(W′(u, v))

=⇒ WPs ( f (u), f (v)).WRs ( f (u), f (v)) = WPs (u,v).WRs (u,v) ∵ m is injective
=⇒ WP( f (u), q f (u) f (v)(i), f (v)) = WP(u, quv(i), v) ∀ i = 1, . . . , k and

WR( f (u), q f (u) f (v)(i), f (v)) = WR(u, quv(i), v) ∀ i = 1, . . . , k
where quv ∈ I(Quv) and

q f (u) f (v) ∈ I(Q f (u) f (v)) (3)

Also, Q f (u) f (v) : U f (u) f (v)
Nk

→ U f (u) f (v)
Σa

,

Q−1
uv : Uuv

Σa
→ Uuv

Nk
and

U f (u) f (v)
Nk

= Uuv
Nk

(from 3)

Hence, Guv = Q f (u) f (v) �Q−1
uv is well defined

and Q f (u) f (v) = Guv �Quv

∀guv ∈ I(Guv), q f (u) f (v)(i) = guv(quv(i)) ∀ i = 1, . . . , k,
For some, q f (u) f (v) ∈ I(Q f (u) f (v))
and quv ∈ I(Quv)

∴ WP( f (u), guv(a), f (v)) = WP(u, a, v), ∀ (u, a, v) ∈ E and
WR( f (u), guv(a), f (v)) = WR(u, a, v), ∀ (u, a, v) ∈ E

If
⋂

v∈V
Uuv
Σa
/

⋂

f (v)∈V
U f (u) f (v)
Σa

There does not exist an automorphism
corresponding to f in AutM

∵ Gu =

⋂

v∈V
Guv

gu : Σa → Σa (4)
∴ WP( f (u), gu(a), f (v)) = WP(u, a, v), ∀ (u, a, v) ∈ E and

WR( f (u), gu(a), f (v)) = WR(u, a, v), ∀ (u, a, v) ∈ E (5)
f : V → V (6)

From equations 4- 6, it is clear that, < f , {gu} > where gu ∈ I(Gu), is an automorphism ofM. Since, u is arbitrary, we can
pick from any Gu and hence their cartesian product should be considered. So, it is quite evident that H f

= {< f , {gl
u} >

, | l ∈ χ
M
} is a set of automorphisms of AutM. �

Lemma 2.

If < f , {gu} >∈ AutM, < f , {gu} >∈ H f

Proof.

f : V → V
gu : Σa → Σa

WP( f (u), gu(a), f (v)) = WP(u, a, v), ∀ (u, a, v) ∈ E and
WR( f (u), gu(a), f (v)) = WR(u, a, v), ∀ (u, a, v) ∈ E
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Let q f (u) f (v) ∈ I(Q f (u) f (v)) for some v ∈ V
Let qu = g−1

u � q f (u) f (v)

∵ qu : Nk → Σa and is a bijection
WP( f (u), gu(qu(i)), f (v)) = WP(u, qu(i), v) ∀ i = 1, . . . , k and
WR( f (u), gu(qu(i)), f (v)) = WR(u, qu(i), v) ∀ i = 1, . . . , k

∵ gu(qu(i)) = q f (u) f (v)(i) ∀ i = 1, . . . , k
WP( f (u), q f (u) f (v)(i), f (v)) = WP(u, qu(i), v) ∀ i = 1, . . . , k and
WR( f (u), q f (u) f (v)(i), f (v)) = WR(u, qu(i), v) ∀ i = 1, . . . , k (7)

If i ≤ j then
WP( f (u), q f (u) f (v)(i), f (v)) ≤ WP( f (u), q f (u) f (v)( j), f (v)) and
WR( f (u), q f (u) f (v)(i), f (v)) ≤ WR( f (u), q f (u) f (v)( j), f (v))

∵ q f (u) f (v) ∈ I(Q f (u) f (v))
From Equation 7 we have

If i ≤ j then
WP(u, qu(i), v) ≤ WP(u, qu( j), v) and
WP(u, qu(i), v) ≤ WP(u, qu( j), v)

∵ v is arbitrary qu ∈ I(Quv) ∀v ∈ V
=⇒ gu ∈ I(Gu) (8)

From Equation 7 we also have
W′( f (u), f (v)) = W′(u, v) ∵ m is bijective (9)

From equations 8 and 9 we have that < f , {gu} >∈ H f . �

Corollary 1.

From lemmas 1 and 2, we have
⋃

f∈AutWGM−AutWGM

H f ⊆ AutM and AutM ⊆
⋃

f∈AutWGM−AutWGM

H f

=⇒ AutM =

⋃

f∈AutWGM−AutWGM

H f

Lemma 3. Let φ : AutM→ AutWG be defined by φ(< f , {gu} >) = f . Then φ is a group homomorphism.

Proof.

φ(< f1, {g f1
u } > . < f2, {g f2

u } >) = φ(< f1. f2, {g f1
f2(u).g

f2
u } >)

= f1. f2
= φ(< f1, {g f1

u } >).φ(< f2, {g f2
u } >) �

Corollary 2. AutM/ker(φ) � im(φ)

Proof. It is a basic result from Group Theory that if φ : G1 → G2 is a group homomorphism, then ker(φ) is a normal
subgroup and the quotient group, G1/ker(φ) is isomorphic to im(φ) which is a subgroup of G2. �

Lemma 4. AutM partitioned as per Corollary 1 is the set of all left cosets of the kernel of φ, ker(φ).
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Proof. By definition of φ, it is easy to see that the set of automorphisms in He, where e is the identity permutation, forms
ker(φ). So we need to prove that H f .He

= H f for some arbitrary f. Since ker(φ) has the identity element, < f , {gl
u} >∈

H f
=⇒ < f , {gl

u} >∈ H f .He. So we only need to prove that < f , {gl
u} >∈ H f .He

=⇒ < f , {gl
u} >∈ H f .

< f , {gl
u} > .ker(φ) = < f , {gl

u} > .He

= {< f .e, {gl
e(u).g

l′
u} > ∀gl′

u | < e, {gl′
u} >∈ He}

= {< f , {gu} >, gu = gl
u.gl′

u ,∀gl′
u | < e, {gl′

u} >∈ He}

Since < f , {gu} > is an automorphism, from Lemma 2, < f , {gu} >∈ H f . Hence, the result. �

Lemma 5.

Let F , { f1, f2, . . . , fn} be the generators of AutWGM .
So AutWGM = { f α1

1 f α2
2 . . . f αm

m | for each i, fi ∈ F, αi ∈ Z, fi , fi+1 and m ∈ Z
+}

Let F̄ , F ∩ AutWGM
Then AutM =�

⋃

f∈F−F̄
H f �

where,� {a, b, c} � stands for the group generated by the set {a, b, c}.

Proof.

f ∈� F − F̄� =⇒ f ∈ im(φ)
∵ fi ∈ F − F̄ =⇒ fi ∈ im(φ) by defn.

=⇒

m
∏

i=1
f αi
i ∈ im(φ) as im(φ) is a subgroup of AutWGM

∴� F − F̄� ⊆ im(φ) (10)

f <� F − F̄� =⇒ ∃i such that fi ∈ F̄, αi , 0 and
m
∏

i=1
f αi
i = f

=⇒ f < im(φ)
∵ ( f < im(φ)) =⇒ f g < im(φ) ∀g ∈ im(φ)

∴ f ∈ im(φ) =⇒ f ∈� F − F̄�
Hence, im(φ) ⊆ � F − F̄� (11)

From equations 10 and 11, we have,

im(φ) = � F − F̄�
AutM/ker(φ) = � {π−1( f ) | f ∈ F − F̄} �

where π is the isomorphism
from AutM/ker(φ) to im(φ)

AutM/ker(φ) = �
⋃

f∈F−F̄
H f �

AutM = �
⋃

f∈F−F̄
H f � by Corollary 1 �

Since Ĥ f , found by the algorithm, can be interpreted as representing H f , the algorithm finds the generators and as discussed
takes time polynomial in |V||E|. Hence AMGEN(M) is Isomorphism Complete.
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5.3. Significance

The above result is significant both theoretically and practically. Practically speaking, the reduction to Graph Isomorphism
allows us to use any of the numerous off-the-shelf Graph Isomorphism solvers to find symmetries on MDPs.

In fact, we use NAutY - No Automorphisms, Yes?, the best Graph Isomorphism solver currently available (Skiena, 1997)
to find out symmetries in MDPs. NAutY solves AGEN(G). It uses backtracking and a refinement procedure to find
the canonical labeling. If two different labelings lead to the same graph, then an automorphism can be found using these
labelings (McKay, 1981). In the worst case it can take exponential time. So it allows the use of a variety of vertex invariants,
which act like heuristics, to solve harder problems. However, for random graphs with n vertices and edge probability 0.5,
average execution times for large n are about n2 nanosecs.

We use NAutY in the fourteenth line in the construction, where we need to solve DGEN(G). We first convert the weighted
digraph into an unweighted digraph using standard procedure. We then use NAutY to find the generators of the automor-
phism group of the so found digraph. From these we extract generators of AutWG as per the above procedure.

6. Results

The experiments were run on the following two domains. We describe results per domain.

6.1. Probabilistic GridWorld

The domain is an N ×N GridWorld with four probabilistic actions of going UP, DOWN, RIGHT and LEFT having a 90%
success probability. The initial state was (0,0) and the goal states were {(0,N−1), (N−1, 0)}. We used Algorithm 1 to find
the symmetries with NAutY being used as the DGEN solver. We then used the symmetries to find the partition of Ψ. We
were able to find the partition corresponding to the symmetry group, that is, for a grid of size M × N, states (x,y), (y,x),
(M-1-x,N-1-y) and (N-1,M-1-x) are equivalent. We present the time taken by the algorithm for GridWorlds of different
sizes.

To complete the end-to-end approach, we ran the G-reduced image algorithm, presented in (Ravindran, 2004), to find the
reduced image and ran the Value Iteration algorithm on the reduced image. To show the efficiency of reduction, we show
the time taken for reduction and solution separately. We also present the case of a handcrafted 2-folded symmetry which
is used with the G-reduced image algorithm and reduced model is used with Value Iteration.

From Figure 1 it is evident that the reduced model construction is efficient and adds little overhead. However, the results
of the end-to-end approach show a significant overhead due to symmetry finding. It cuts the saving by almost half. Still
the results are significant because they double the size of the largest GridWorld that can be solved in some given time.

6.2. GridWorld Soccer

The domain is a soccer-inspired grid domain. It is a slightly modified version of that described in (Bowling, 2003). We
first describe the original version of the domain and then state the modification.

It is an M×N grid with two agents. One is denoted the attacker (A) who holds the ball and the other as the defender (B) who
tries to snatch the ball from the attacker. The center lines/grids(depending on whether M and N are even or odd) for both
x-axis and y-axis are chosen naturally. The state is defined by the non-identical positions of the attacker and the defender.
This defines the state space with (MN)2 − (MN) states. The actions are movements in the four compass directions: N,
E, W, S and the hold action H. It is a single player game, in that, only the attacker chooses actions deliberately while the
defender executes random actions. The action chosen by the attacker and the random action of the defender are executed
in random order, which determines the next state. However if the defender tries to move into the attacker’s location then
the state is unchanged and if the attacker tries to move into the defender’s location, the game is reset to the initial state
which is shown in Figure 2. The right hand section of the grid is the attacker’s half and the left hand section that of the
defender. The goal is chosen to be situated beyond the first column of grids occupying one grid on each side of the y-axis
central line/grid. A W action from the squares in front of the goal state leads to a goal with a reward of 1 and to the end of
an episode. Everywhere else the reward is 0. A 5 × 4 domain is shown in Figure 2.

Intuitively, the domain seems symmetric around the y-axis center line. However, the results of using Algorithm 1 on this
domain showed us that the domain is not symmetric due to the existence of the reset action when the attacker tries to move
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Figure 1. Average running times of the value iteration algorithm with explicit model minimization on Probabilistic GridWorld vs size of
the GridWorld. Each of the 3 sets should be compared with the graph for no reduction. Curves in a set represent different degrees of
symmetry. Each set shows the time reduction with reduced model usage. First one discounts the time taken to find symmetries and for
reduction. The next set includes the time for reduction but discounts time taken to find symmetries. The last one includes both the time
taken to find symmetries using NAutY and time for reduction.

into the defender’s position. So we modified the domain to have symmetric reset, that is, reset happens to the initial state
and its symmetric state around the y-axis center line with equal probability. This makes the domain symmetric as per
intuition, which the algorithm confirms.

Interestingly, the algorithm also finds that the existence of the hold action adds further symmetry. The grids along the
border of the domain act as walls. For example, the northern wall stops the N action leaving the state unchanged which
is the same result if the agent were to execute a H action. These additional symmetries which we did not think of before
running algorithm were found by the algorithm. This suggests that there might exist complicated symmetries that will be
discovered by the algorithm, which are hard to find, even upon a close examination. Also in many cases, symmetries are
size invariant. So we can use the algorithm on a relatively smaller version of the domain and find symmetries which might
still hold on the larger version.

We present the time taken by the algorithm for different sizes. An increment of one here means an increase of one along
both axes. The presence of two agents, blows up the state space very rapidly and we hit the limit on the order of the graph
imposed by NAutY very soon (for a 11 × 10 grid).To present similar graphs as in the probabilistic GridWorld case, we use
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Figure 2. Single Player grid soccer where agent B selects it actions randomly. The initial state is shown on the left and an example of
transitions and associated probabilities are given for a particular state and action on the right. Notice that fifty percent of the time A’s
actions are executed first causing it to lose the ball and the game reset to the initial state. In addition, if B selects H or E it does not move
and so A still loses the ball and returns to the initial state. The other outcomes are equiprobable.

the explicit model minimization approach with Value Iteration. The results are presented in Figure 3.

In this case, we find that the overheads due to the construction and the G-reduced image algorithm is negligible. Though
efficiency of the G-reduced image algorithm is expected, the efficiency of the construction can be possibly because of the
structure of the domain yielding an easy graph to find automorphisms on.

7. Conclusion

In this work, we have provided a constructive proof for the Isomorphism Completeness of the problem of finding symme-
tries. We have also proposed the use of this constructive proof along with an efficient minimization algorithm to solve an
MDP using symmetries and demonstrated it empirically. As part of future work, we are looking at adapting approximation
algorithms for finding graph isomorphisms to finding approximate symmetries in MDPs.
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Figure 3. Average running times of the value iteration algorithm with explicit model minimization on GridWorld Soccer domain vs size
of the domain. Size of one represents the 5 × 4 grid. Thereafter an increment of one means an increment of one along both axes. Each
graph should be compared with the graph for no reduction. The other graphs show the time reduction with reduced model usage. First
one discounts the time taken to find symmetries and for reduction. The next one includes the time for reduction but discounts time taken
to find symmetries. The last one includes both the time taken to find symmetries using NAutY and time for reduction.


