
Abstraction Using Symmetries in Markov Decision

Processes

A THESIS

submitted by

SHRAVAN MATTHUR NARAYANAMURTHY

for the award of the degree

of

MASTER OF SCIENCE
(by Research)

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

October 2007

THESIS CERTIFICATE

This is to certify that the thesis entitled Abstraction Using Symmetries in Markov

Decision Processes, submitted by Shravan Matthur Narayanamurthy, to the In-

dian Institute of Technology, Madras, for the award of the degree of Master of

Science (by Research), is a bona fide record of the research work carried out by

him under my supervision. The contents of this thesis, in full or in parts, have not

been submitted to any other Institute or University for the award of any degree or

diploma.

Dr. B. Ravindran
Research Guide
Assistant Professor
Dept. of Computer Science and Engineering
IIT-Madras, 600 036

Place: Chennai

Date:

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Dr. B. Ravindran for his guidance and

support. The freedom and unconstrained atmosphere that you provided has

been a great help. I have always enjoyed discussing with you and amidst all the

turbulence, those chats I had with you have helped me set my bearing right. Thank

you Sir!

I would also like to thank Dr. N. S. Narayanaswamy and Dr. Shankar Bal-

achandran who have supported and advised me in times of uncertainty. They

have helped me gain clearer thoughts that enabled me to take better decisions.

Thanks a lot sirs.

I am also thankful to the members of my general test committee, Prof. P.

Sreenivasa Kumar and Dr. Venkatesh Balasubramanian. They have always been

forthcoming with their advice and help on my research and career.

I would like to express my deepest sense of gratitude to my family for their

unceasing support and understanding. Thank you for being there for me when I

needed it the most.

I wish to thank my dearest friends, Aditya, Sunando, Mishra, Rohith, Srini,

Vimal, Anoop and Hari who have been an integral part of my life at IIT Madras.

They have supported me through each one of my struggles. I consider myself

very lucky to have made such friends. Thank you very much guys. I will always

i

cherish your company.

I will always yearn for the deep discussions that I had with Hari and Vimal in

the “Bermuda Quadrangle”. We have spent so many fun-filled hours there that it

makes me nostalgic. Thanks guys. I have learnt a lot from you two!

I wish to thank all the members of RISE lab for creating a vibrant atmosphere!

I would also like to thank the CSE department for providing me with excellent

facilities to complete my research. Thanks to all the administrative, faculty and

student community of the department.

Finally, I wish to thank the institute for these wonderful two years

ii

ABSTRACT

KEYWORDS: Markov Decision Processes, Symmetries, Abstraction

Current approaches to solving Markov Decision Processes (MDPs), the de-facto

standard for modeling stochastic sequential decision problems, scale poorly with

the size of the MDP. When used to model real-world problems though, MDPs

exhibit considerable implicit redundancy, especially in the form of symmetries.

However, existing model minimization approaches do not efficiently exploit this

redundancy due to symmetries. These approaches involve constructing a reduced

model first and then solving them. Hence we term these as “explicit minimization”

approaches.

In the first part of this work, we address the question of finding symmetries of

a given MDP. We show that the problem is Isomorphism Complete, that is, the prob-

lem is polynomially equivalent to verifying whether two graphs are isomorphic.

Apart from the theoretical importance of this result it has an important practical

application. The reduction presented can be used together with any off-the-shelf

Graph Isomorphism solver, which performs well in the average case, to find sym-

metries of an MDP. In fact, we present results of using NAutY (the best Graph

Isomorphism solver currently available), to find symmetries of MDPs. We next

address the issue of exploiting the symmetries of a given MDP. We propose the use

of an explicit model minimization algorithm called theG-reduced image algorithm

iii

that exploits symmetries in a time efficient manner. We present an analysis of the

algorithm and corroborate it with empirical results on a probabilistic GridWorld

domain and a single player GridWorld Soccer domain. We also present results of

integrating the symmetry finding with the explicit model minimization approach

to illustrate an end-to-end approach for “Abstraction using Symmetries in MDPs”.

We then note some of the problems associated with this explicit scheme and as a

solution present an approach wherein we integrate the symmetries into the solution

technique implicitly. However, we should select a suitable solution technique so

that the overheads due to integration do not outweigh the improvements. We

validate this approach by modifying the Real Time Dynamic Programming (RTDP)

algorithm and empirically demonstrate significantly faster learning and reduced

overall execution time on several domains.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES vii

LIST OF FIGURES ix

1 Introduction 1

1.1 Outline of the Thesis . 3

2 Background and Related Work 5

2.1 Reinforcement Learning Problem 5

2.1.1 Markov Decision Processes 6

2.1.2 Dynamic Programming . 8

2.2 Homomorphisms and Symmetry Groups 12

2.2.1 Structured MDPs . 14

2.3 Related Work . 15

2.4 Problem Definition . 20

2.5 Bounds on improvement . 20

2.5.1 Value Iteration . 21

3 Explicit Model Minimization 23

3.1 Finding Symmetries . 23

3.1.1 Problem Simplification . 23

3.1.2 Isomorphism Completeness of the problem 24

3.1.3 Significance . 42

v

3.2 Exploiting Symmetries . 43

3.2.1 G -Reduced Image Algorithm 44

3.3 Results . 50

3.3.1 Probabilistic GridWorld . 50

3.3.2 GridWorld Soccer . 52

4 Implicit Model Minimization 56

4.1 Problems with Explicit Model Minimization 56

4.1.1 Exorbitant memory requirements 56

4.1.2 Non-preservation of structure 57

4.1.3 Redundant operations of reduced model construction and
policy lifting . 58

4.2 Approach . 59

4.3 Reduced Value Iteration . 60

4.4 Reduced Real Time Dynamic Programming 63

4.4.1 Convergence of Reduced RTDP 64

4.5 Results . 66

5 Conclusions and Future Work 72

LIST OF TABLES

3.1 Bijections in the interpretation, I(X1), of the set bijection of Example 1 28

3.2 Bijections that X2({1, 3, 4}) = {N,E,S} of Example 2 represents . . . 29

3.3 Bijections in the interpretation, I(X2), of the set bijection of Example 2 29

3.4 Bijections I(X) which, as claimed, is the set of bijections common to
both I(X1) and I(X2). 30

vii

LIST OF FIGURES

1.1 (a) A symmetric GridWorld problem. The goal state is G and there
are four deterministic actions. State-action pairs (A,E) and (B,N)
are equivalent in the sense described in the text. (b) A reduced
model of the GridWorld in (a). The state-action pairs (A,E) and
(B,N) in the original problem both correspond to the pair ({A,B},E)
in the reduced problem. A solution to this reduced GridWorld can
be used to derive a solution to the full problem. 2

2.1 Factored representation of a Grid-World domain where (x,y) are the
co-ordinates of a grid . 15

2.2 Running times of the Value Iteration algorithm on the Probabilistic
GridWorld domain plotted against the size of the GridWorld with
various degrees of symmetry (0, 2 and 4) 22

3.1 An example MDP and the tree derived due to a breadth first enumer-
ation of states of the MDP shown above with the crosses indicating
the pruning of the branch and the reduced MDP got by using the
G -Reduced Image Algorithm in Algorithm 4 46

3.2 Average running times of the value iteration algorithm with explicit model

minimization on Probabilistic GridWorld vs size of the GridWorld. Each

of the 3 sets should be compared with the graph for no reduction. Curves

in a set represent different degrees of symmetry. Each set shows the time

reduction with reduced model usage. First one discounts the time taken

to find symmetries and for reduction. The next set includes the time

for reduction but discounts time taken to find symmetries. The last one

includes both the time taken to find symmetries using NAutY and time for

reduction. 51

3.3 Single Player grid soccer where agent B selects it actions randomly. The

initial state is shown on the left and an example of transitions and associ-

ated probabilities are given for a particular state and action on the right.

Notice that fifty percent of the time A’s actions are executed first causing

it to lose the ball and the game reset to the initial state. In addition, if B

selects H or E it does not move and so A still loses the ball and returns to

the initial state. The other outcomes are equiprobable. 53

viii

3.4 Average running times of the value iteration algorithm with explicit model

minimization on GridWorld Soccer domain vs size of the domain. Size of

one represents the 5 × 4 grid. Thereafter an increment of one means an

increment of one along both axes. Each graph should be compared with

the graph for no reduction. The other graphs show the time reduction

with reduced model usage. First one discounts the time taken to find

symmetries and for reduction. The next one includes the time for reduction

but discounts time taken to find symmetries. The last one includes both

the time taken to find symmetries using NAutY and time for reduction. 55

4.1 Factored representation of a Grid-World domain where (x,y) are the
co-ordinates of a grid . 57

4.2 Average running times of the RVI algorithm on the Probabilistic
GridWorld domain plotted against the size of the GridWorld with
various degrees of symmetry (0, 2 and 4). Irrespective of the amount
of symmetry, the running times of RVI have increased by nearly
equal amounts from that of the normal Value Iteration algorithm.
This corroborates the analysis. 62

4.3 Learning curves for the Deterministic Grid World(25x25 grid) show-
ing the decrease in the number of steps taken per episode 67

4.4 Learning curves for the Probabilistic Grid World(25x25 grid) show-
ing the decrease in the number of steps taken per episode 68

4.5 Learning curves for the GridWorld(5x4 grid) soccer domain showing
the decrease in the number of steps taken per episode 68

4.6 Running times of the Reduced RTDP algorithm on the Deterministic
GridWorld domain plotted against the size of the GridWorld with
various degrees of symmetry(0,2 and 4) 69

4.7 Running times of the Reduced RTDP algorithm on the Probabilistic
GridWorld domain plotted against the size of the GridWorld with
various degrees of symmetry(0,2 and 4) 70

4.8 Running times of the Reduced RTDP algorithm on the GridWorld
soccer domain plotted against the size of the GridWorld with 0 and
2-fold symmetry . 71

ix

CHAPTER 1

Introduction

Markov Decision Processes (MDPs) [Puterman, 1994] have become the de-facto

standard for modeling and solving stochastic sequential decision problems. Many

real world problems can be easily modeled using MDPs. However, due to their

large size, they usually do not yield readily to the current solution techniques as

most of the solution techniques scale poorly with the size of the MDP. Nevertheless,

models of real world problems exhibit much redundancy that can be eliminated,

reducing the size of the problem.

One way of handling redundancy is to form abstractions, as we humans do,

by ignoring details not needed for performing the immediate task at hand. While

driving, for example, we ignore details regarding clothing and the state of our

hair. On the other hand, while preparing to attend a ball, we would want to pay

special attention to our clothing and hair. Researchers in artificial intelligence (AI),

in particular machine learning (ML), have long recognized the utility of being able

to form abstractions.

Researchers in many fields, ranging from various branches of mathematics

to social network analysis, also recognize the utility of abstractions. They have

tried to answer some important questions on the usefulness of abstractions and

on modeling abstractions. Informally, one can define a good abstraction to be a

function of the observable features of a task such that it is a “sufficient statistic”

and the notion of sufficiency varies with the goal.

G

A

B
S

W E

N

G

{A, B}

(a) (b)

Figure 1.1: (a) A symmetric GridWorld problem. The goal state is G and there
are four deterministic actions. State-action pairs (A,E) and (B,N) are
equivalent in the sense described in the text. (b) A reduced model of
the GridWorld in (a). The state-action pairs (A,E) and (B,N) in the
original problem both correspond to the pair ({A,B},E) in the reduced
problem. A solution to this reduced GridWorld can be used to derive a
solution to the full problem.

Determining sufficiency and providing ways of modeling abstractions are well

studied problems in AI (e.g., Amarel [1968]; Popplestone and Grupen [2000]; Dean

et al. [1997]; Knoblock [1990]; Dean and Lin [1995]). Specifically, for MDPs we

use the MDP homomorphisms framework proposed by Ravindran [2004] as it is

generic and can accommodate different notions of abstractions.

The approach to abstraction we use in this work belongs to the class of model

minimization methods. The goal of model minimization is to derive a reduced

model representation in which some key property of the original model is pre-

served. In the case of MDPs, we require that transition and reward dynamics of

the MDP is preserved in the reduced model.

To illustrate the concept of minimization, consider the simple GridWorld shown

in Figure 1.1(a). The goal state is labeled G. Taking action E in state A is equivalent

to taking action N in state B, in the sense that they go to equivalent states that

are both one step closer to the goal. One can say that the state-action pairs (A, E)

and (B, N) are equivalent. One can exploit this notion of equivalence to construct

2

a smaller model of the GridWorld (Figure 1.1(b)) that can be used to solve the

original problem.

Figure 1.1 also illustrates a situation in which the symmetry in the problem is

exploited in the abstraction. Symmetries of a structure are characterized tradition-

ally by the symmetry group of the structure. This is the group of mappings of the

structure onto itself, such that some structural property is preserved. For example,

in the GridWorld in Figure 1.1(a), such a mapping is given by reflecting the states

about the NE-SW diagonal and flipping actions N and E, and actions S and W.

This leaves the transition structure of the GridWorld unaltered. The MDP ho-

momorphism framework incorporates this traditional group-theoretic definition

to model symmetries of MDPs. Identifying symmetrically equivalent situations

frequently results in useful abstraction. The model minimization approach to this

is to find symmetries and derive the corresponding minimal image. We explore

the following aspects of using symmetries for abstraction:

1. Complexity of the problem of finding symmetries

2. Efficient approaches to deriving the minimal model and application of sym-
metries in solving the original MDP

1.1 Outline of the Thesis

We establish notation for the thesis, provide some background and discuss related

work in Chapter 2. We then take up the problem of finding symmetries in Chapter

3. We prove that it is equivalent to finding whether two graphs are isomorphic

and discuss the significance of the result. The constructive proof helps us to use

heuristic algorithms available for finding graph isomorphisms to find symmetries

3

for MDPs. Next, we propose the use of a polynomial time algorithm [Ravindran,

2004] to explicitly construct the G-reduced image of an MDP given the symmetry

group,G. We prove the correctness of the algorithm and demonstrate its efficiency

on a couple of domains. This addresses the second part of the goal. Due to the

explicit nature of the construction and representation of MDPs, we categorize them

as “Explicit Model Minimization”. We also present results on the time taken for

Explicit Model Minimization using Value Iteration.

We then identify some problems associated with this explicit scheme of things

in Chapter 4. As a solution, we propose an idea for “Implicit Model Minimization”.

We note that the idea cannot be implemented with all solution techniques. How-

ever, used with the right solution technique and representation, we observe notable

reduction in execution times and significantly faster learning. We demonstrate the

results of using a modified version of the Real Time Dynamic Programming (RTDP)

[Barto et al., 1995] algorithm on multiple domains.

Finally, we summarize and present some directions for future work in Chapter

5.

4

CHAPTER 2

Background and Related Work

In this chapter we introduce some notation that we will use in the thesis. We

provide some background on the Reinforcement Learning problem and introduce

in a limited fashion the necessary Dynamic Programming (DP) solutions. We

also introduce the MDP homomorphism framework and provide an account of

the related literature. With this background we formally define the problem and

bound the improvements possible if the problem is solved.

2.1 Reinforcement Learning Problem

This section is adapted from Sutton and Barto [1998], Puterman [1994] and Ravin-

dran [2004]. The reinforcement learning problem is a formulation of the problem

Agent

Environment

A

 c
 t
i
o
 n

a
t

R

 e
 w

 a
 r
d

r
t

S

 t
a
 t
e

s
t

r

t+1

s
t+1

of learning from interaction to achieve a goal. The learner is called the agent. It

interacts continually with, what is called, the environment by selecting actions.

The environment responds to those actions by presenting new situations to the

agent. The environment also gives rise to rewards, special numerical values that

the agent tries to maximize over time. An instance of the problem is called a task

and it involves a complete specification of an environment. A reinforcement learn-

ing task that satisfies the Markov property is called a Markov Decision Process, or

MDP. If the state and action spaces are finite, then it is called a finite Markov De-

cision Process (finite MDP). Finite MDPs are particularly important to the theory

of reinforcement learning. We provide a limited introduction to MDPs next.

2.1.1 Markov Decision Processes

A finite Markov decision process is a tuple 〈S,A,Ψ,P,R〉, where S is the set of states, A

is the set of actions,Ψ ⊆ S×A is the set of admissible state-action pairs, P : Ψ×S→

[0, 1] is the transition probability function with P(s, a, s′) being the probability of

transition from state s to state s′ under action a, and R : Ψ → R is the expected

reward function, with R(s, a) being the expected reward for performing action a in

state s. We assume that the rewards are bounded. Let As = {a | (s, a) ∈ Ψ} ⊆ A

denote the set of actions admissible in state s. We assume that for all s ∈ S, As is

non-empty. In this work we assume that the set of states and set of actions are

finite, but the language of homomorphisms we employ extends to infinite spaces

with little work.

A stochastic policyπ is a mapping fromΨ to the real interval [0, 1] s.t.
∑

a∈As
π(s, a) =

1 for all s ∈ S. For any (s, a) ∈ Ψ, π(s, a) gives the probability of picking action a in

state s. The value of state s under policy π is the expected value of the discounted

6

sum of future rewards starting from state s and following policy π thereafter. The

value function Vπ corresponding to a policy π is the mapping from states to their

values underπ. It can be shown (e. g., Bertsekas [1987]) that Vπ satisfies the Bellman

equation:

Vπ(s) =
∑

a∈As

π(s, a)















R(s, a) + γ
∑

s′∈S

P(s, a, s′)Vπ(s′)















,

where 0 ≤ γ < 1 is a discount factor. This formulation is known as the discounted

sum of rewards criterion.

Similarly, the value of a state-action pair (s, a) under policy π is the expected

value of the discounted sum of future rewards starting from state s, taking action a,

and following π thereafter. The action value function Qπ corresponding to a policy

π is the mapping from state-action pairs to their values and satisfies:

Qπ(s, a) = R(s, a) + γ
∑

s′∈S

P(s, a, s′)Vπ(s′),

where 0 ≤ γ < 1 is a discount factor.

The solution of an MDP is an optimal policy π? that uniformly dominates all

other possible policies for that MDP. In other words, Vπ
?
(s) ≥ Vπ(s) for all s in S

and for all possible π. It can be shown [Bertsekas, 1987] that the value function

for all optimal policies is the same. We denote this optimal value function by V?. It

satisfies the Bellman optimality equation:

V?(s) = max
a∈As















R(s, a) + γ
∑

s′∈S

P(s, a, s′)V?(s′)















.

7

Similarly the optimal action value function Q? satisfies:

Q?(s, a) = R(s, a) + γ
∑

s′∈S

P(s, a, s′) max
a′∈As′

Q?(s′, a′).

These two optimal value functions are related by V?(s) = maxa Q?(s, a). Typically

MDPs are solved by approximating the solution to the Bellman optimality equa-

tions (e. g., Bertsekas, 1987; Sutton and Barto, 1998). Given the optimal action

value function, an optimal policy is given by

π?(s, a) ≥ 0 if Q?(s, a) = maxa′∈As Q?(s, a′)

= 0 otherwise.

Next, we discuss a class of methods for solving the reinforcement learning

problem, formulated as a MDP, called Dynamic Programming (DP).

2.1.2 Dynamic Programming

The term dynamic programming (DP) [Bellman, 1957] refers to a collection of

algorithms used to compute optimal policies given a model of the environment as

a Markov decision process (MDP).

The key idea of DP, and of reinforcement learning generally, is the use of value

functions to organize and structure the search for good policies. Next we present

two algorithms for solving the reinforcement learning problem. We only provide

the algorithm and its complexity for completeness. The details can be found in

[Sutton and Barto, 1998] and [Puterman, 1994]. Complexity results can also be

found in [Littman, Dean, and Kaelbling, 1995].

8

Value Iteration

Algorithm 1 Value Iteration with action value functions

1: GivenM = 〈S,A,Ψ,P,R〉 and G ≤ AutM,
2: Hashtables Q0,Q1 ← Nil are the action value functions for the previous and

current iterations respectively
3: |S| dimension vectors v0, v1 are the state value functions for the previous and

current iterations respectively
4: v0 ← 0̄
5: repeat
6: for each s ∈ S do
7: for each a ∈ As do
8: if (s, a) < Q1 then
9: add (s, a) to Q1

10: Q1(s, a)← 0
11: end if
12:

Q1(s, a)← R(s, a) + γ
∑

s′∈S′

P(s, a, s′) max
a′∈As′

Q0(s′, a′)

13: end for
14: end for
15: ∀s ∈ S, v1(s) = maxa∈As Q1(s, a)
16: ∆← max(abs(v1 − v0))
17: Q0 ← Q1

18: v0 ← v1

19: until ∆ <
ε(1−γ)

2γ

Value Iteration is a simple iterative algorithm that uses the bellman optimality

equation as the update equation to find successive approximations to the optimal

value function. The algorithm is presented in Algorithm 1.

The computational complexity per iteration of the value-iteration algorithm

with full backups is quadratic in the number of states and linear in the number

of actions. Commonly, the transition probabilities P(s,a,s’) are sparse. If there

are a constant number of next states with non-zero probability then the cost per

iteration is linear in the number of states and linear in the number of actions. The

9

number of iterations required to reach the optimal policy is polynomial in the

number of states and the magnitude of the largest reward if the discount factor

is held constant [Littman et al., 1995]. However, in the tests that we run, we only

need an ε-optimal policy.1 So we fix ε and use the Bellman error magnitude to

decide when the current value function is ε-optimal. So, effectively, we can write

the running time of value iteration as O(|Ψ|.|S|.pε), where pε denotes the number

of iterations for converging to an ε-optimal policy with a fixed ε, which can be

considered independent of the size of the state and action spaces; a fact that we

use to simplify analysis.

Real Time Dynamic Programming (RTDP)

Algorithm 2 Real Time Dynamic Programming algorithm

1: GivenM = 〈S,A,Ψ,P,R〉 and G ≤ AutM,
2: Hashtable Q← Nil is the action value function.
3: for each episode do
4: Initialize s and S′ ← {s}
5: Choose a from s using policy derived from Q (e.g. ε-greedy policy)
6: for each step of the episode do
7: Take action a and observe reward r and next state s′

8: Choose a′ from s′ using policy derived from Q (e.g. ε-greedy policy)
9: if (s, a) < Q then

10: add (s, a) to Q
11: Q(s, a)← 0
12: end if
13:

Q(s, a)← R(s, a) + γ
∑

s′∈S

P(s, a, s′) max
a′∈As′

Q(s′, a′)

14: s← s′; a← a′

15: end for
16: end for

1An ε-optimal policy π is such that Q?(s, a) ≤ Qπ(s, a) + ε for all (s, a) ∈ Ψ.

10

A major drawback to value iteration that we discussed above is that they

involve operations over the entire state set of the MDP, that is, they require sweeps

of the state set. If the state set is very large, then even a single sweep can be very

expensive. For example, the game of backgammon has over 1020 states. Even at

the rate of a million state values backed up per second, value iteration would take

over a thousand years to complete a single sweep.

Asynchronous DP algorithms are in-place iterative DP algorithms that do not

have a fixed order for backing up the values of states. The values of some states

may be backed up several times before the values of others are backed up once.

However for convergence, the values of all states must be backed up and no state

can be ignored after some point of time. Asynchronous DP algorithms allow great

flexibility in selecting states to which backup operations are applied.

RTDP is an asynchronous DP algorithm where the agent performs asynchronous

DP concurrently with the process of executing actions, i.e., learning and control

occur simultaneously. The interaction is as follows:

1. Control decisions are based on the most up-to-date information from the DP
computation, and

2. The control decisions influence the selection of states to which the DP backup
is applied

As a consequence of this interaction, the DP computation can focus on regions of

the state set that are most relevant for control as revealed in the system’s behavior.

However, specific conditions on the interaction must hold for the algorithm to be

RTDP [Barto et al., 1995]. These conditions are necessary to ensure the convergence

properties of the algorithm. Another consequence of these interactions is that the

11

number of iterations required to converge to an ε-optimal policy is dependent on

the state-action space and topology.

A specific implementation is presented in Algorithm 2. In spite of the term

“real-time” being used, DP and control can be carried out in simulation mode,

where the model is used as a surrogate for the actual system.

2.2 Homomorphisms and Symmetry Groups

This section has been adapted from [Ravindran and Barto, 2002].

Let B be a partition of a set X. For any x ∈ X, [x]B denotes the block of B to

which x belongs. Any function f from a set X to a set Y induces a partition (or

equivalence relation) on X, with [x] f = [x′] f if and only if f (x) = f (x′) and x, x′ are

f -equivalent written x ≡ f x′. Let B be a partition of Z ⊆ X × Y, where X and Y are

arbitrary sets. The projection of B onto X is the partition B|X of X such that for

any x, x′ ∈ X, [x]B|X = [x′]B|X if and only if every block containing a pair in which

x is a component also contains a pair in which x′ is a component or every block

containing a pair in which x′ is a component also contains a pair in which x is a

component.

Definition 1. An MDP homomorphism h from an MDP M = 〈S,A,Ψ,P,R〉 to an

MDP M′ = 〈S′,A′,Ψ′,P′,R′〉 is a surjection from Ψ to Ψ′, defined by a tuple of

surjections < f , {gs|s ∈ S} >, with h((s, a)) = (f (s), gs(a)), where f : S → S′ and

12

gs : As → A′
f (s)

for s ∈ S, such that: ∀s, s′ ∈ S, a ∈ As

P′(f (s), gs(a), f (s′)) =
∑

s′′∈[s′] f

P(s, a, s′′) (2.1)

R′(f (s), gs(a)) = R(s, a) (2.2)

We use the shorthand h(s, a) for h((s, a)). Often for convenience, we use

< f , {gs} > to denote < f , {gs|s ∈ S} >.

Definition 2. Let M’ be an image of the MDP M under homomorphism h =<

f , {gs} >. For any s ∈ S, g−1
s (a′) denotes the set of actions that have the same image

a′ ∈ A′
f (s)

under gs. Let π′ be a stochastic policy inM′. Then π′ lifted toM is the

policy πM′ such that for any a ∈ g−1
s (a′), π′

M
(s, a) = π′(f (s), a′)/|g−1

s (a′)|

Definition 3. An MDP homomorphism h =< f , {gs} > from MDPM = 〈S,A,Ψ,P,R〉

to MDPM′ = 〈S′,A′,Ψ′,P′,R′〉 is an MDP isomorphism fromM toM′ if and only

if f and gs, are bijective. M is said to be isomorphic toM′ and vice versa. An MDP

isomorphism from MDPM to itself is called an automorphism ofM.

Definition 4. The set of all automorphisms of an MDP M, denoted by AutM,

forms a group under composition of homomorphisms. This group is the symmetry

group ofM.

Let G be a subgroup of AutM. The subgroup G induces a partition BG of Ψ:

[(s1, a1)]BG ≡ [(s2, a2)]BG if and only if there exists h ∈ G such that h(s1, a1) = (s2, a2)

and (s1, a1), (s2, a2) are said to be G equivalent written (s1, a1) ≡G (s2, a2). Further if

s1 ≡BG|S s2 then we write as shorthand s1 ≡G|S s2. It can be proved that there exists

a homomorphism hG fromM to someM′, such that the partition induced by hG,

13

BhG , is the same as BG. The image ofM under hG is called the G-reduced image of

M.

Definition 5. An MDP M′ is said to be a reduced model of an MDP M, iff there

exists an MDP homomorphism h :M→M′.

2.2.1 Structured MDPs

A structured MDP is described by the tuple 〈S,A,Ψ,P,R〉 where the state set S is

given by a set of M features, that is, S ⊆
∏M

i=1 Si, where Si is the set of permissible

values for the feature i. So a state represents a unique assignment to the state

variables si.
2

The transition probabilities P are often described by a two-slice Temporal Bayesian

Network (2-TBN). The state transition probabilities can be factored as:

P(s, a, s′) =

M
∏

i=1

Prob(s′i |Pre(s′i , a)) (2.3)

where Pre(s′
i
, a) denotes the parents of node s′

i
in the 2-TBN corresponding to

action a and each of the probabilities Prob(s′
i
|Pre(s′

i
, a)) is given by a conditional

probability table (CPT) associated with node s′
i
. The reward function may be

similarly represented.

An example 2-TBN is shown in Figure 2.1 which represents transition probabili-

ties of the usual GridWorld domain. The co-ordinates of the grid act as features that

are denoted as nodes. The CPT for the changes corresponding to state transitions

factored on the x-co-ordinate are also shown in the figure.

2We do not consider structure in the action space in this work.

14

Px(t+1)a(t)x(t)

x

x

x

x

x

x

x + 1

x + 1

0.9

0.9

0.9

0.9

N

E

W

S

x(t)

y(t)

x(t+1)

y(t+1)

a(t)

Figure 2.1: Factored representation of a Grid-World domain where (x,y) are the
co-ordinates of a grid

2.3 Related Work

The use of symmetries as a tool for simplification and elegance is widespread in

almost all fields of science. For example, a simple application of symmetry is

in integration where the problem is often simplified by using symmetry of the

function. Another application is for lowering the order of an Ordinary Differential

Equation (ODE) or to reduce the number of variables of a Partial Differential

Equation (PDE) [Wolf, 1995]. In chemistry, point group symmetry provides a

useful classification scheme for simple molecules [Dunitz, 1996].

Not surprisingly, symmetries have been used, heavily, even in the field of

computer science in the areas of Automata, Planning and Constraint Satisfaction

and Model Checking. The goal is generally to find a smaller model which is

equivalent to the original model or to prune the search space by symmetry breaking

to improve search efficiency. We first discuss the model minimization approach

for MDPs which extends notions of minimization in automata literature. We then

discuss symmetry breaking in Constraint Satisfaction.

15

MDP Minimization is a well studied problem. As stated earlier, in the model

minimization approach, a reduced MDP that that preserves some key properties

as the original MDP is found by combining “equivalent” states. The reduced

MDP found depends on the notion of equivalence between states used in the

aggregation. The notion of equivalence chosen will be fundamental in design-

ing and analyzing algorithms for reducing MDPs. In [Dean and Givan, 1997] a

minimization algorithm is proposed based on the notion of stochastic bi-simulation

homogeneity. Informally, a partition of the state space for an MDP is said to be

homogenous if for each action, states in the same block have the same probability

of transitioning to each other block. They also provide an algorithm for finding the

coarsest homogenous refinement of any partition of the state space of an MDP. The

algorithm starts with an initial partition P0 and iteratively refines it by splitting

the blocks until the coarsest homogenous refinement of P0 is obtained. A notion

of stability of a block with respect to another is defined and unstable blocks are

split till all blocks of the partition are stable. The complexity of the algorithm is

expressed in terms of the partition manipulation operations. Hence, the actual

complexity depends on the underlying partition representation and manipulation

algorithms. Givan et al. [2003] discuss the application of the algorithm to solving

factored MDP problems. Enumerating the state space is avoided by describing

large blocks of equivalent states in factored form with the block descriptions being

inferred directly from the original factored representation.

Ravindran [2004] proposes a more generic framework based on the notion of

MDP homomorphisms with state-dependent action recoding as introduced in Section

2.2. This allows a greater reduction in problem size and aids in modeling many

other notions of equivalence like symmetries. A polynomial time algorithm to find

16

the reduced model under the notion of MDP homomorphisms is also proposed by

extending the algorithm proposed by Givan et al. [2003] and Lee and Yannakakis

[1992]. Again, the algorithm is polynomial in the number of block operations, the

stability criterion is modified to suit the equivalence notion and the same process

of iterative splitting is used. The notion of stability used is called the stochastic

substitution property, which is an extension of the substitution property for finite

state machines [Hartmanis, 1966].

However, literature on MDP minimization using symmetries is sparse. Zinke-

vich and Balch [2001] define symmetries based on state-action equivalence but do

not make any connections to group-theoretic concepts or minimization algorithms.

So we look at literature from the area of Constraint Satisfaction.

In artificial intelligence and operations research, constraint satisfaction is the

process of finding a solution to a set of constraints. Such constraints express

allowed values for variables. A solution is therefore an evaluation of these variables

that satisfies all constraints. Formally, a constraint satisfaction problem is defined

as a triple < X,D,C >, where X is a set of variables, D is a set of domain values

and C is a set of constraints. Every constraint is in turn a pair < t,R >, where t

is a tuple of variables and R is a set of tuples of values; all these tuples having

the same number of elements; as a result R is a relation. An evaluation of the

variables is a function from v : X → D. Such an evaluation satisfies a constraint

< (x1, x2, . . . , xn),R > if (v(x1), v(x2), . . . , v(xn)) ∈ R. A solution is an evaluation that

satisfies all constraints in C.

A problem contains symmetry when any of its structure can be permuted to

give an equivalent problem. Symmetry in a Constraint Satisfaction Problem (CSP)

17

can be defined as solution preserving or constraint preserving. Solution symmetry

is a permutation of the variables and values that preserve the set of solutions to

the problem. A constraint symmetry is an automorphism of the micro-structure of

the problem.

Symmetries occur frequently in constraint satisfaction problems leading to

redundant search when traditional backtracking methods are used. Their removal

will thus simplify the problem space. Benhamou [1994] define solution preserving

symmetries and point out that solution preserving symmetries are not practically

useful as the solution has to be found for identifying symmetries. Hence they define

constraint symmetry as a permutation on the domain values that does not alter

membership of the value tuples to the constraint relation, when the permutation

is applied. This naturally induces permutations on the relations themselves. They

derive a set of necessary conditions for values to be symmetric and use these

conditions for symmetry breaking.

Another approach to symmetry breaking checks the current partial assignment

against previous no-goods. Pearson [2004] uses graph isomorphism to check if

a partial assignment is symmetrically equivalent to a previously found no-good.

They use the NAutY [McKay, 1981] system to store canonical representations of

the no-good graphs and compare the canonical graph of the partial assignment

with no-good canonical to check symmetrical equivalence.

Another dimension to analyze the literature is the approach to symmetry find-

ing. Two main approaches exist:

1. To derive a set of necessary conditions for elements to be symmetric

2. Prove Isomorphism Completeness and use a graph isomorphism finding
system

18

Intuitively symmetries seem easier to identify than homomorphisms and we

tried the first approach to find a polynomial time algorithm for symmetry finding,

along the lines of the MDP homomorphism finding, with the motivation of finding

better algorithms for MDP minimization. The MDP homomorphism definition

allows for deriving this easily because, two state action pairs (s1, a1), (s2, a2) are

homomorphically equivalent if

h(s1, a1) = h(s2, a2)

So, P′(f (s1), gs1
(a1), f (s′)) = P′(f (s2), gs2

(a2), f (s′))∀s′ ∈ S

Hence, T(s1, a1, [s
′]Bh|S) = T(s2, a2, [s

′]Bh|S)∀s′ ∈ S

This is the stochastic substitution property and it allows us to deal just with blocks

without worrying about the actual functions. However, a similar attempt for

symmetries still needs the symmetry f in the necessary condition as below:

h(s1, a1) = (s2, a2)

So, P(f (s1), gs1
(a1), f (s′)) = P(s2, a2, f (s′))∀s′ ∈ S

and P(s1, a1, s
′) = P(s2, a2, f (s′))∀s′ ∈ S

Flener et al. [2002] and Crawford [1992] point that symmetry finding for CSPs in

general is Isomorphism Complete. However, there also exist results showing that

symmetry finding is NP-complete (in case of geometric automorphism of graphs

[Manning, 1990]). So we were still unclear whether symmetry finding for MDPs

is Isomorphism Complete or NP-complete due to the presence of factorially many

action recoding functions. A better understanding of the use of symmetries for

abstraction in MDPs is the motivation for this work.

19

2.4 Problem Definition

To exploit the power of abstraction using symmetries, we identify them and con-

struct a reduced model by abstracting away the symmetric portions. As the re-

duced model can be significantly smaller, it can be easier to solve. We use the

notion of automorphisms to model symmetries. So formally, given an MDPM,

1. Find the automorphism group, AutM and

2. Given the automorphism group, AutM find the corresponding reduced
model, the AutM-Reduced Image

2.5 Bounds on improvement

By definition, a reduced model preserves the dynamics of the system. Ravindran

and Barto [2001] show that optimal value functions and policies are also preserved

by reduced models. So, reduced models are functionally equivalent to the original

model but are significantly smaller. Hence running times of solution techniques

can be reduced by following the model minimization approach:

1. Construct the functionally equivalent reduced model.

2. Solve the reduced model.

3. Lift the solution to the original model.

To estimate the improvements obtained let us look at value iteration. The

results below apply to stationary deterministic markov policies.

20

2.5.1 Value Iteration

LetM′ =< S′,A′,Ψ′,P′,R′ > be a reduced model ofM =< S,A,Ψ,P,R >.

Let |Ψ′| = |Ψ|/k1 and |S′| = |S|/k2.

As seen in Section 2.1.2, to solveM′, that is, finding an ε-optimal policy using

Value Iteration takes n1.|Ψ
′|.|S′|.pε time where, pε is the number of iterations taken

to converge to an ε-optimal value function, which is independent of |Ψ′| or |S′| and

n1 ∈ N.

Also, lifting the policy takes n2.|S|where, n2 ∈ N.

n1.|Ψ
′|.|S′|.pε + n2.|S| ≤ n.(

|Ψ|.|S|.pε

k1.k2
+ |S|) where n = max(n1,n2)

≤ n.(
|Ψ|.|S|.pε + k2.|S|

k2
) where k = max(k1, k2)

≤ n.(
|Ψ|.|S|.(pε + 1)

k2
)

≈ n.(
|Ψ|.|S|.pε

k2
)

Hence, if we are already given a reduced model, then we can achieve a speed-up

factor, which is at most the square of the reduction in the state space of the reduced

model. But, it should be noted that this is the best possible scenario because in

practice, the number of states that one can transition to, from a given state, is

constant and reduces the speed-up to nearly as much as the reduction in state-

action space. This is demonstrated in Figure 2.2 on the probabilistic grid-world

domain.

21

30 32 34 36 38 40 42 44 46 48 50
0

2

4

6

8

10

12

14

16

18

Size of the Gridworld

T
im

e
 i
n

 s
e

c

Impact of Symmetric Reductions on the Probabilistic GridWorld

← bef = 7.8 sec

← 2−red fac = 1.6

← 4−red fac = 3.1

← bef = 10.0 sec

← 2−red fac = 1.7

← 4−red fac = 3.5

← bef = 12.2 sec

← 2−red fac = 1.8

← 4−red fac = 3.8

← bef = 15.8 sec

← 2−red fac = 1.8

← 4−red fac = 3.4

Before Reduction
After 2−reduction
After 4−reduction

Figure 2.2: Running times of the Value Iteration algorithm on the Probabilistic
GridWorld domain plotted against the size of the GridWorld with var-
ious degrees of symmetry (0, 2 and 4)

With the above background, we address the problem defined in Section 2.4 in

the next chapter.

22

CHAPTER 3

Explicit Model Minimization

3.1 Finding Symmetries

3.1.1 Problem Simplification

Let us consider the first part of our problem, i.e., given an MDP M, find the

automorphism group ofM, AutM. We know that a group can be specified using

its generators. So we simplify the problem to finding the generators of AutM.

Let AMGEN(M) denote the problem of finding the generators of AutM. We write

A ∝ B if a problem A is polynomially reducible to B. We say that problems A

and B are polynomially equivalent iff A ∝ B and B ∝ A. We denote polynomial

equivalence by ≡∝.

Definition 6. A problem A is Isomorphism Complete iffA is polynomially equivalent

to finding whether two graphs are isomorphic.

Let G1,G2 be two simple graphs unless otherwise mentioned. The following

is a list of relevant Isomorphism Complete problems [Booth and Colbourn, 1977] on

graphs:

• ISO(G1,G2): Isomorphism recognition for G1 and G2

• IMAP(G1,G2): Isomorphism Map from G1 to G2(if it exists),

• AGEN(G1): Generators of the automorphism group, AutG1

• DGEN(G): Generators of the automorphism group, AutG, where G is a
weighted digraph

From [Mathon, 1979], [Read and Corneil, 1977], [Miller, 1977] we have,

DGEN(G) ≡∝ AGEN(G) ≡∝ IMAP(G1,G2) ≡∝ ISO(G1,G2).

We intend to prove that AMGEN(M) is Isomorphism Complete. We are done

if we prove that AMGEN(M) ≡∝ DGEN(GM), where GM is a weighted graph

constructed in polynomial time fromM, that is, AMGEN(M) ∝ DGEN(GM) and

DGEN(GM) ∝ AMGEN(M). It is easy to see that DGEN(GM) ∝ AMGEN(M) is true

because we can always construct a degenerate MDP from a digraph. So we need

to prove that AMGEN(M) ∝ DGEN(GM).

3.1.2 Isomorphism Completeness of the problem

An MDP M can be considered as a pseudograph with states acting as vertices

and actions acting as edges. Since there can be more than one action affecting

the transition between 2 states, we need to represent this as a pseudograph. The

transition probabilities and rewards can be thought of as weight functions. Next,

we formally pose AMGEN(M) as a problem on a weighted pseudograph.

24

Let GM =< Σa,V,E,WP,WR > be the pseudograph corresponding toM, where

Σa : Alphabet for labelling corresponding to actions

V : Set of vertices corresponding to states

E : Set of edges, where each edge is a triple

(u, a, v) where, u, v ∈ V and a ∈ Σa

corresponding to state transitions

WP : E→ R corresponding to transition probabilities

WR : E→ R corresponding to rewards with

WR(u, a, v) =WR(u, a, v′) ∀ (u, a, v), (u, a, v′) ∈ E

Note, E =
⋃

u,v∈V

Euv where, Euv = { (u
′, a, v′) ∈ E | u′ = u and v′ = v }

AMGEN(M) can be formulated as finding the generators of the group of bijec-

tions h : V × Σa → V × Σa. h is defined by h(u, a) = (f (u), gu(a)), where

f : V → V and

gu : Σa → Σa defined for each u ∈ V are bijections s. t.

WP(f (u), gu(a), f (v)) = WP(u, a, v) and

WR(f (u), gu(a), f (v)) = WR(u, a, v) ∀ (u, a, v) ∈ E

These two components of each generator can be interpreted as follows:

1. f is a function that permutes the states/vertices

2. The set of functions {gu} defined for each state/vertex permutes the ac-
tions/edge labels. These are called the State-Dependent Action Recoding
(SDAR) functions.

25

Set Bijections

Let us assume, for a moment, that we have a procedure that constructs a weighted

digraph WDM from GM. Now, solving DGEN(WDM) gives the generators of

WDM. Even if these were somehow same as the f s we are looking for, we still

need a way to find the SDAR functions. To achieve this, we define the notion

of a set bijection which represents a set of bijections very compactly. In the worst

case, for each f , there can be factorially many SDAR functions. So a normal

explicit representation cannot be used. We also define the operations of intersection

between two set bijections to find the bijections that are common to both set bijections,

composition between two set bijections and an inverse of a set bijection. All these

operations can be done in time polynomial of the number of elements in the domain

of a bijection belonging to the set bijection.

Definition 7. Consider two finite sets A and B. Let UA = {UA1
,UA2

, . . . ,UAk
} and

UB = {UB1
,UB2
, . . . ,UBk

} be partitions of A and B respectively. UA and UB are said

to be similar iff |UA| = |UB| and for each UAi
∈ UA there exists a unique UB j

∈ UB

such that |UAi
| = |UB j

|. We denote it by UA ∼ UB.

Note that, by definition the sets A and B will be of the same size.

Definition 8. Let A and B be two finite sets and UA = {UA1
,UA2

, . . . ,UAk
} and

UB = {UB1
,UB2
, . . . ,UBk

} be partitions of A and B respectively such that UA ∼ UB. A

bijective map X : UA → UB where X(UAi
) = UB j

implies |UAi
| = |UB j

| for all UAi
∈ UA

is called a set bijection.

Informally, a set bijection can be interpreted as representing a set of bijections

from A to B. X(UAi
) = UB j

represents all possible bijective mappings from elements

26

in UAi
to elements in UB j

. A bijection from A to B in the set of bijections that represent

the set bijection, can be formed by collating mappings from each X(UAi
) = UB j

. The

set bijection represents all mappings that can be formed by such collations. To

formalize this notion, we define the interpretation function next.

Let XAB , {all bijections X : UA → UB such thatUA and UB are similar partitions

of A and B respectively } be the set of all set bijections. Let 2S|V| be the powerset set of

all permutations from A→ B. Define, Î : XAB → 2S|V| such that Î(X : UA → UB) = {

all bijections l : A → B | l(x ∈ UAi
) ∈ X(UAi

) ∀UAi
∈ UA}. Evidently, Î is only

injective and not surjective as there exist sets of 2S|V| that cannot be represented

by a set bijection. For example, consider the set of bijections, between {a, b, c} and

{1, 2, 3}, L = {(a → 1, b → 2, c → 3), (a → 2, b → 1, c → 3), (a → 2, b → 3, c → 1)}.

Clearly there does not exist an X : UA → UB such that Î(X) = L. All we can say is

that there exists an X such that L ⊂ Î(X). To get a bijective interpretation function,

we define, I : XAB → image(Î) such that I(X : UA → UB) = Î(X : UA → UB). Clearly

I is a bijection and we call this the interpretation function.

Example 1. Consider A = {1, 2, 3, 4} and B = {N,E,W,S}. Let U1
A
= {{1, 2}, {3, 4}} and

U1
B = {{N,E}, {W,S}}. Consider the following set bijection:

X1({1, 2}) = {N,E}

X1({3, 4}) = {W,S}

27

X1({1, 2}) = {N,E} represents the following bijections:

1→ N, 2→ E

1→ E, 2→ N

X1({3, 4}) = {W,S} represents the following bijections:

3→W, 4→ S

3→ S, 4→W

So the set bijection X1 represents the bijections in Table 3.1, i.e., I(X1) is the set of

bijections in Table 3.1.

1→N, 2→E, 3→W, 4→S
1→N, 2→E, 3→S, 4→W
1→E, 2→N, 3→W, 4→S
1→E, 2→N, 3→S, 4→W

Table 3.1: Bijections in the interpretation, I(X1), of the set bijection of Example 1

Example 2. Consider A = {1, 2, 3, 4} and B = {N,E,W,S}. Let U2
A
= {{3}, {1, 2, 4}} and

U2
B = {{N,E,S}, {W}}. Consider the following set bijection:

X2({3}) = {W}

X2({1, 2, 4}) = {N,E,S}

X2({1, 2, 4}) = {N,E,S} represents the bijections in Table 3.1.

So I(X2) is the set of bijections in Table 3.3.

28

1→N, 2→E, 4→S
1→N, 2→S, 4→E
1→E, 2→N, 4→S
1→E, 2→S, 4→N
1→S, 2→N, 4→E
1→S, 2→E, 4→N

Table 3.2: Bijections that X2({1, 3, 4}) = {N,E,S} of Example 2 represents

1→N, 2→E, 3→W, 4→S
1→N, 2→S, 3→W, 4→E
1→E, 2→N, 3→W, 4→S
1→E, 2→S, 3→W, 4→N
1→S, 2→N, 3→W, 4→E
1→S, 2→E, 3→W, 4→N

Table 3.3: Bijections in the interpretation, I(X2), of the set bijection of Example 2

Definition 9. Let A be a finite set and let U1
A
= {U1

A1
,U1

A2
, . . . ,U1

Ak
}, U2

A
= {U2

A1
,U2

A2
,

. . . ,U2
Ak
} be two partitions of A such that, U1

A
∼ U2

A
. We define the intersection of

two similar partitions of a finite set as U1
A
∩ U2

A
= {U1

Ai
∩ U2

A j
| U1

Ai
∈ U1

A
,U2

A j
∈

U2
A

and U1
Ai
∩U2

A j
, ∅}.

Definition 10. Let A and B be two finite sets and U1
A
= {U1

A1
,U1

A2
, . . . ,U1

Ak
}, U2

A
=

{U2
A1
,U2

A2
, . . . ,U2

Ak
}be two partitions of A and U1

B = {U
1
B1
,U1

B2
, . . . ,U1

Bk
}, U2

B = {U
2
B1
,U2

B2
,

. . . ,U2
Bk
} be two partitions of B. Also let U1

A
∼ U1

B and U2
A
∼ U2

B. Let two set bi-

jections X1 and X2 be defined from U1
A

to U1
B and from U2

A
to U2

B respectively.

If (U1
A
∩ U2

A
) ∼ (U1

B ∩ U2
B), we define the intersection between the two set bijec-

tions X = X1 ∩ X2 as follows: ∀U1
Ai
∈ U1

A
,U2

A j
∈ U2

A
such that U1

Ai
∩ U2

A j
, ∅,

X(U1
Ai
∩U2

A j
) = X1(U1

Ai
) ∩X2(U2

A j
). Note that, X : U1

A
∩U2

A
→ U1

B ∩U2
B and it can be

shown that I(X) = I(X1) ∩ I(X2).

Example 3. Consider the set bijections X1 and X2 of Example 1 and Example 2

respectively. U1
A
∩U2

A
= {{1, 2}, {3}, {4}}. U1

B ∩U2
B = {{N,E}, {W}, {S}}. Since, U1

A
∩U2

A

29

is similar to U1
B ∩U2

B, X = X1 ∩ X2 : U1
A
∩U2

A
→ U1

B ∩U2
B is:

X({1, 2} ∩ {1, 2, 4}) = X1({1, 2}) ∩ X2({1, 2, 4})

X({1, 2}) = {N,E} ∩ {N,E,S}

X({1, 2}) = {N,E}

Similarly,

X({3}) = {W}

X({4}) = {S}

So, I(X) is the set of bijections in Table 3.4:

1→N, 2→E, 3→W, 4→S
1→E, 2→N, 3→W, 4→S

Table 3.4: Bijections I(X) which, as claimed, is the set of bijections common to both
I(X1) and I(X2).

Definition 11. Let A be a finite set. Let U1
A
= {U1

A1
,U1

A2
, . . . ,U1

Ak
}, U2

A
= {U2

A1
,U2

A2
, . . . ,

U2
Ak
} be two similar partitions of A. Let X be a set bijection defined from U1

A
to U2

A
. We

define the inverse of X as X−1 : U2
A
→ U1

A
such that X−1(U2

Ai
) = U1

A j
iff X(U1

A j
) = U2

Ai
.

Definition 12. Let A, B and C be three finite sets and UA = {UA1
,UA2

, . . . ,UAk
},

UB = {UB1
,UB2
, . . . ,UBk

} and UC = {UC1
,UC2
, . . . ,UCk

} be partitions of A, B and C

respectively . Also let UA, UB and UC be pairwise similar to each other. Let two

set bijections X1 and X2 be defined from UB to UC and UA to UB respectively. We

define the composition of X1 and X2, X = X1 �X2 as the set bijection from UA to UC

defined by X(UAi
) = X1(X2(UAi

)), for each UAi
∈ UA. It can be shown that for each

l ∈ I(X) there exist, l1 ∈ I(X1) and l2 ∈ I(X2) such that l = l1 ◦ l2 where ◦ denotes

normal function composition.

30

Example 4. Let U3
A
= {{N,W}, {E,S}}. Consider the set bijection X1 of Example 1 and

the set bijection X2 : U1
A
→ U3

A
defined by,

X2({1, 2}) = {E,S}

X2({3, 4}) = {N,W}

Then X−1
1

is given by,

X−1
1 ({N,E}) = {1, 2}

X−1
1 ({W,S}) = {3, 4}

If X = X2 � X−1
1

, then X is

X({N,E}) = X2(X−1
1 ({N,E}))

X({N,E}) = X2({1, 2})

X({N,E}) = {E,S}

Similarly,

X({W,S}) = {N,W}

Vector-Weighted Digraph

We assume that Σa can be ordered and let O be such an ordering.

Without loss of generality, we can assume that |Euv| = k,∀u, v ∈ V because, we

can always take maxu,v∈V |Euv| = k and if ∃u, v ∈ V such that (u, a, v) ∈ E for some

a ∈ Σa and |Euv| < k, then add dummy labels (chosen from the remaining labels in

31

Σa) and zero weights to make |Euv| = k. This corresponds to the general assumption

in MDPs that |As| = k, ∀s ∈ S.

Let < a1, a2, . . . , ak > ordered as per O be the k-tuple representing the label of

each edge in Euv. This being the same for all edges, we leave out labeling from the

graph definition.

Now we define the vector-weighted digraph corresponding toM, VWGM =<

V,E′,WP,WR >, as follows:

E′ = {(u, v) | ∃a ∈ Σa and (u, a, v) ∈ E}

WP : E′ → R
k defined by

WP(u,v) =<WP(u, a1, v), . . . ,WP(u, ak, v) >

WR : E′ → R
k defined by

WR(u,v) =<WR(u, a1, v), . . . ,WR(u, ak, v) >

where a1, a2, . . . , ak are ordered as per O.

Sorted Vector-Weighted Digraph

We define the sorted vector-weighted digraph, SVWGM =< V,E′,WPs
,WRs

>, as

follows:

32

WPs
: E′ → R

k defined by

WPs
(u,v) =<WP(u, puv(1), v), . . . ,WP(u, puv(k), v) >

where, puv : Nk → Σa such that

WP(u, puv(1), v) ≤WP(u, puv(2), v) ≤ . . . ≤WP(u, puv(k), v)

WRs
: E′ → R

k defined by

WRs
(u,v) =<WR(u, ruv(1), v), . . . ,WR(u, ruv(k), v) >

where, ruv : Nk → Σa such that

WR(u, ruv(1), v) ≤WR(u, ruv(2), v) ≤ . . . ≤WR(u, ruv(k), v)

Note that, puv and ruv are not unique. So we choose them such that the order O is

preserved.

Set Bijections that sort the vector-weights

Here we show that there exists a set bijection whose interpretation is the set of

permutations that sort the vector-weights. Let Nk be the set of first k natural

numbers. Let DP
uv , { all permutations l : Nk → Σa | l sorts WP(u,v)} be

defined for each (u, v) ∈ E′. So, WPs
(u,v) =< WP(u, l(1), v), . . . ,WP(u, l(k), v) > and

WP(u, l(1), v) ≤ WP(u, l(2), v) ≤ . . . ≤ WP(u, l(k), v) . Clearly, Nk can be partitioned

into Uuv
Nk
= {N1

k
,N2

k
, . . . ,N

j

k
} such that, ∀t ∈ N

y

k
, WP(u, l(t), v) has the same value for

each y = 1, 2, . . . , j and if t ∈ N
y

k
and t′ ∈ N

y+1

k
then WP(u, l(t), v) < WP(u, l(t′), v).

This partition induces a corresponding partition Uuv
Σa
= {Σ1

a ,Σ
2
a , . . . ,Σ

j
a} where Σi

a =

{l(t) | t ∈ N
i
k
}. Since, each l sorts WP(u,v), they satisfy the property that l(x ∈ N

i
k
) ∈ Σi

a.

Therefore, there exists a set bijection QP
uv : Uuv

Nk
→ Uuv

Σa
such that, I(QP

uv) = DP
uv.

33

Using a similar procedure, we can show that there exists set bijection QR
uv :

Uuv
Nk
→ Uuv

Σa
whose interpretation is the set of permutations that sort WR(u,v).

Let Quv = QP
uv ∩ QR

uv. If Quv = ∅, then there doesn’t exist an automorphism for

the MDPM.

Weighted Digraph

Now we define the weighted digraph WGM =< V,E′,W′ > as follows:

W′ : E′ → R such that W′(u, v) = m(WPs
(u, v).WRs

(u, v))

where m is a bijection from R
2k → R

and . denotes concatenation

Construction

The procedure for finding symmetries of an MDPM is given in Algorithm 3.

The complexity of the algorithm is as follows. The construction steps in lines

3 to 5, are at most polynomial in |E|. Using a constant access time data structure

like a hash-table, QP
uv and QR

uv can be constructed in O(|Euv|) time. The intersection

takes O(|Euv|
2) time. Since this runs for |E′| iterations, computation of Quv is at

most polynomial in |E|. Since m is known, the construction of weighted digraph

in line 13, is polynomial in |E|. With the use of procedures that return at most

|V| automorphisms of AutWGM [Mathon, 1979], the construction of Gu for each

f , from lines 15 to 26, runs for at most |V| iterations. The most expensive part of

the loop from lines 20 to 26 is the computation of |V|2 intersections. But this is

34

Algorithm 3 Construction

1: GivenM = 〈S,A,Ψ,P,R〉
2: Let SOLN be an empty set
3: Construct the pseudograph GM =< Σa,V,E,WP,WR > as defined on page 25
4: Construct the vector-weighted digraph VWGM =< V,E′,WP,WR > as defined

on page 31
5: Construct the sorted vector-weighted digraph SVWGM =< V,E′,WPs

,WRs
>

as defined on page 32
6: for each (u, v) ∈ E′ do
7: Compute QP

uv and QR
uv by finding the partition of Nk as described on page 33

8: Quv ← QP
uv ∩QR

uv

9: if QP
uv ∩QR

uv does not exist then
10: exit
11: end if
12: end for
13: Construct the weighted digraph WGM =< V,E′,W′ > using m as described on

page 34
14: F← DGEN(WGM) where F is the set of generators of AutWGM
15: for each f ∈ F do
16: for each (u, v) ∈ E′ do
17: Guv ← Q f (u) f (v) �Q−1

uv

18: end for
19: Let Ĥ f be an empty set
20: for each u ∈ V do
21: Gu ← Guv from some v ∈ V
22: for each v ∈ V do
23: Gu ← Gu ∩ Guv

24: end for
25: Add Gu to Ĥ f

26: end for
27: Add < f , Ĥ f > to SOLN
28: end for

35

still polynomial in |V||E| time. Hence the algorithm takes polynomially more time

than the solution time of DGEN. Also to extract a solution from SOLN, we need

to extract |V| SDAR functions from Ĥ f for each f , which takes |Euv| time if we use

a constant access time data structure. So extraction of a solution takes O(|V|2|E|)

which is still polynomial in |V||E|. Next we prove the correctness of the algorithm.

Correctness of construction

Let f belong to AutWGM.

Let u, v ∈ V be such that (u, v) ∈ E′

Let Guv , Q f (u) f (v) �Q−1
uv

Let Gu ,
⋂

v∈V

Guv

If the intersection exists, define,

χ
M
= { all functions l : V →

⋃

u∈V

I(Gu) | l(u) ∈ I(Gu)}

Else, the properties of set bijection intersection ensure that

there does not exist a < f , {gu} >∈ AutM

Note that, χ
M

,
∏

u∈V

I(Gu)

Let AutWGM , { f ∈ AutWGM | < f , {gu} >< AutM for any {gu}}

For each l let gl
u , l(u) ∀u ∈ V

Since l(u) ∈ I(Gu) l(u) : Σa → Σa

36

Lemma 1. The set H f = {< f , {gl
u} >, ∀l ∈ χ

M
} is a set of automorphisms of AutM.

Proof.

W′(f (u), f (v)) = W′(u, v)

=⇒ m−1(W′(f (u), f (v))) = m−1(W′(u, v))

=⇒ WPs
(f (u), f (v)).WRs

(f (u), f (v)) = WPs
(u,v).WRs

(u,v) ∵ m is injective

=⇒ WP(f (u), q f (u) f (v)(i), f (v)) = WP(u, quv(i), v) ∀ i = 1, . . . , k and

WR(f (u), q f (u) f (v)(i), f (v)) = WR(u, quv(i), v) ∀ i = 1, . . . , k

where quv ∈ I(Quv) and

q f (u) f (v) ∈ I(Q f (u) f (v)) (3.1)

Also, Q f (u) f (v) : U
f (u) f (v)

Nk
→ U

f (u) f (v)

Σa
,

Q−1
uv : Uuv

Σa
→ Uuv

Nk
and

U
f (u) f (v)

Nk
= Uuv

Nk
(from 3.1)

Hence, Guv = Q f (u) f (v) �Q−1
uv is well defined

and Q f (u) f (v) = Guv �Quv

∀guv ∈ I(Guv), q f (u) f (v)(i) = guv(quv(i)) ∀ i = 1, . . . , k,

For some, q f (u) f (v) ∈ I(Q f (u) f (v))

and quv ∈ I(Quv)

∴ WP(f (u), guv(a), f (v)) = WP(u, a, v), ∀ (u, a, v) ∈ E and

WR(f (u), guv(a), f (v)) = WR(u, a, v), ∀ (u, a, v) ∈ E

37

If
⋂

v∈V

Uuv
Σa
/

⋂

f (v)∈V

U
f (u) f (v)

Σa

There does not exist an automorphism

corresponding to f in AutM

∵ Gu =
⋂

v∈V

Guv

gu : Σa → Σa (3.2)

∴ WP(f (u), gu(a), f (v)) = WP(u, a, v), ∀ (u, a, v) ∈ E and

WR(f (u), gu(a), f (v)) = WR(u, a, v), ∀ (u, a, v) ∈ E (3.3)

f : V → V (3.4)

From equations 3.2- 3.4, it is clear that, < f , {gu} > where gu ∈ I(Gu), is an

automorphism of M. Since, u is arbitrary, we can pick from any Gu and hence

their cartesian product should be considered. So, it is quite evident that H f = {<

f , {gl
u} >, | l ∈ χ

M
} is a set of automorphisms of AutM. �

Lemma 2.

If < f , {gu} >∈ AutM, < f , {gu} >∈ H f

Proof.

f : V → V

gu : Σa → Σa

WP(f (u), gu(a), f (v)) = WP(u, a, v), ∀ (u, a, v) ∈ E and

WR(f (u), gu(a), f (v)) = WR(u, a, v), ∀ (u, a, v) ∈ E

38

Let q f (u) f (v) ∈ I(Q f (u) f (v)) for some v ∈ V

Let qu = g−1
u � q f (u) f (v)

∵ qu : Nk → Σa and is a bijection

WP(f (u), gu(qu(i)), f (v)) = WP(u, qu(i), v) ∀ i = 1, . . . , k and

WR(f (u), gu(qu(i)), f (v)) = WR(u, qu(i), v) ∀ i = 1, . . . , k

∵ gu(qu(i)) = q f (u) f (v)(i) ∀ i = 1, . . . , k

WP(f (u), q f (u) f (v)(i), f (v)) = WP(u, qu(i), v) ∀ i = 1, . . . , k and

WR(f (u), q f (u) f (v)(i), f (v)) = WR(u, qu(i), v) ∀ i = 1, . . . , k (3.5)

If i ≤ j then

WP(f (u), q f (u) f (v)(i), f (v)) ≤ WP(f (u), q f (u) f (v)(j), f (v)) and

WR(f (u), q f (u) f (v)(i), f (v)) ≤ WR(f (u), q f (u) f (v)(j), f (v))

∵ q f (u) f (v) ∈ I(Q f (u) f (v))

From Equation 3.5 we have

If i ≤ j then

WP(u, qu(i), v) ≤ WP(u, qu(j), v) and

WP(u, qu(i), v) ≤ WP(u, qu(j), v)

∵ v is arbitrary qu ∈ I(Quv) ∀v ∈ V

=⇒ gu ∈ I(Gu) (3.6)

From Equation 3.5 we also have

W′(f (u), f (v)) = W′(u, v) ∵ m is bijective (3.7)

From equations 3.6 and 3.7 we have that < f , {gu} >∈ H f . �

39

Corollary 1.

From lemmas 1 and 2, we have

⋃

f∈AutWGM−AutWGM

H f ⊆ AutM and AutM ⊆
⋃

f∈AutWGM−AutWGM

H f

=⇒ AutM =
⋃

f∈AutWGM−AutWGM

H f

Lemma 3. Let φ : AutM → AutWG be defined by φ(< f , {gu} >) = f . Then φ is a

group homomorphism.

Proof.

φ(< f1, {g
f1
u } > . < f2, {g

f2
u } >) = φ(< f1. f2, {g

f1
f2(u)
.g

f2
u } >)

= f1. f2

= φ(< f1, {g
f1
u } >).φ(< f2, {g

f2
u } >) �

Corollary 2. AutM/ker(φ) � im(φ)

Proof. It is a basic result from Group Theory that if φ : G1 → G2 is a group homo-

morphism, then ker(φ) is a normal subgroup and the quotient group, G1/ker(φ) is

isomorphic to im(φ) which is a subgroup of G2. �

Lemma 4. AutM partitioned as per Corollary 1 is the set of all left cosets of the

kernel of φ, ker(φ).

Proof. By definition ofφ, it is easy to see that the set of automorphisms in He, where

e is the identity permutation, forms ker(φ). So we need to prove that H f .He = H f

40

for some arbitrary f. Since ker(φ) has the identity element, < f , {gl
u} >∈ H f =⇒ <

f , {gl
u} >∈ H f .He. So we only need to prove that < f , {gl

u} >∈ H f .He =⇒ < f , {gl
u} >∈

H f .

< f , {gl
u} > .ker(φ) = < f , {gl

u} > .H
e

= {< f .e, {gl
e(u).g

l′

u} > ∀gl′

u | < e, {gl′

u} >∈ He}

= {< f , {gu} >, gu = gl
u.g

l′

u ,∀gl′

u | < e, {gl′

u} >∈ He}

Since < f , {gu} > is an automorphism, from Lemma 2, < f , {gu} >∈ H f . Hence, the

result. �

Lemma 5.

Let F , { f1, f2, . . . , fn} be the generators of AutWGM .

So AutWGM = { f
α1

1
f α2

2
. . . f αm

m | for each i, fi ∈ F, αi ∈ Z, fi , fi+1 and m ∈ Z
+}

Let F̄ , F ∩ AutWGM

Then AutM =�
⋃

f∈F−F̄

H f �

where,� {a, b, c} � stands for the group generated by the set {a, b, c}.

Proof.

f ∈� F − F̄� =⇒ f ∈ im(φ)

∵ fi ∈ F − F̄ =⇒ fi ∈ im(φ) by defn.

=⇒

m
∏

i=1

f αi

i
∈ im(φ) as im(φ) is a subgroup of AutWGM

∴� F − F̄� ⊆ im(φ) (3.8)

41

f <� F − F̄� =⇒ ∃i such that fi ∈ F̄, αi , 0 and

m
∏

i=1

f αi

i
= f

=⇒ f < im(φ)

∵ (f < im(φ)) =⇒ f g < im(φ) ∀g ∈ im(φ)

∴ f ∈ im(φ) =⇒ f ∈� F − F̄�

Hence, im(φ) ⊆ � F − F̄� (3.9)

From equations 3.8 and 3.9, we have,

im(φ) = � F − F̄�

AutM/ker(φ) = � {π−1(f) | f ∈ F − F̄} �

where π is the isomorphism

from AutM/ker(φ) to im(φ)

AutM/ker(φ) = �
⋃

f∈F−F̄

H f �

AutM = �
⋃

f∈F−F̄

H f � by Corollary 1 �

Since Ĥ f , found by the algorithm, can be interpreted as representing H f , the

algorithm finds the generators and as discussed takes time polynomial in |V||E|.

Hence AMGEN(M) is Isomorphism Complete.

3.1.3 Significance

The above result is significant both theoretically and practically. Practically speak-

ing, the reduction to Graph Isomorphism allows us to use any of the numerous

off-the-shelf Graph Isomorphism solvers to find symmetries on MDPs.

42

In fact, we use NAutY - No Automorphisms, Yes?, the best Graph Isomorphism

solver currently available [Skiena, 1997] to find out symmetries in MDPs. NAutY

solves AGEN(G). It uses backtracking and a refinement procedure to find the

canonical labeling. If two different labelings lead to the same graph, then an

automorphism can be found using these labelings [McKay, 1981]. In the worst case

it can take exponential time. So it allows the use of a variety of vertex invariants,

which act like heuristics, to solve harder problems. However, for random graphs

with n vertices and edge probability 0.5, average execution times for large n are

about n2 nanosecs.

We use NAutY in the fourteenth line in the construction, where we need to solve

DGEN(G). We first convert the weighted digraph into an unweighted digraph

using standard procedure. We then use NAutY to find the generators of the

automorphism group of the so found digraph. From these we extract generators

of AutWG as per the above procedure. We present some results in Section 3.3.

3.2 Exploiting Symmetries

We address the second part of our problem here. We suggest a way to exploit

abstractions resulting from symmetries. We make the assumption that the abstrac-

tions are known before applying any of these ideas. This assumption is reasonable

because:

1. In a large family of tasks, abstractions are known beforehand or can be
specified by the designer through a superficial examination of the problem.

2. We can always find them using the approach outlined in Section 3.1. How-
ever, it might need some tuning in order to find the right vertex invariant.

43

However, even with the availability of such information, it is not a trivial task

to efficiently use them. For e.g., to utilize the symmetry information presented as

the symmetry group, G of an MDP, a straightforward way by explicit enumeration,

takes time proportional to |Ψ| × |G|.

3.2.1 G -Reduced Image Algorithm

We use an efficient incremental algorithm, proposed in [Ravindran, 2004], for

building the reduced MDP given a symmetry group or subgroup. This is an

adaptation of an algorithm proposed by Emerson and Sistla [1996] for constructing

reduced models for concurrent systems. The algorithm is presented in Algorithm

4 for completeness.

The algorithm does a breadth-first enumeration of states skipping states and

state-action pairs that are equivalent to those already visited. On encountering a

state-action pair not equivalent to one already visited, it examines the states reach-

able from it to compute the image MDP parameters. Infinite paths are detected by

maintaining already visited nodes.

For example, consider the MDP shown in Figure 3.1. It is easy to see that

the MDP exhibits rotation symmetry. Hence the Symmetry Group G consists

of { f1(1) = 2, f1(2) = 3, f1(3) = 1, {gs(A1) = A1, gs(A2) = A2, ∀s ∈ S}}, { f2(1) =

3, f2(2) = 1, f2(3) = 2, {gs(A1) = A1, gs(A2) = A2, ∀s ∈ S}}, { f3(1) = 1, f3(2) = 2, f3(3) =

3, {gs(A1) = A1, gs(A2) = A2, ∀s ∈ S}}.

44

Algorithm 4 Incremental algorithm for constructing the G -reduced image given
MDPM and some G ≤ AutM.

1: GivenM = 〈S,A,Ψ,P,R〉 and G ≤ AutM,
2: ConstructM/BG = 〈S

′,A′,Ψ′,P′,R′〉.
3: Set Que to some initial state {s0},S

′ ← {s0}

4: while Que is non-empty do
5: s = dequeue{Que}
6: for each a ∈ As do
7: if (s, a) .G (s′, a′) for any (s′, a′) ∈ Ψ′, then
8: Ψ′ ← Ψ′ ∪ (s, a)
9: A′ ← A′ ∪ a

10: R′(s, a) = R(s, a)
11: for each t ∈ S such that P(s, a, t) > 0 do
12: if t ≡G|S s′, for some s′ ∈ S′, then
13: P′(s, a, s′)← P′(s, a, s′) + P(s, a, t)
14: else
15: S′ ← S′ ∪ t
16: P′(s, a, t) = P(s, a, t)
17: add t to Que
18: end if
19: end for
20: end if
21: end for
22: end while

45

1

3

2

A1 0.4

10

A1 0.6

10

A1 0.6

10

A1 0.4

10

A1 0.6

10

A1 0.4

10

A2 0.4

5

A
2

0
.
4

5
 A
2

0

.
4

5

A

2

0

.
6

5

A

 2

0
 .
6

5

A2 0.6

5

1

1
 2
 1
 3

A1
 A2

2
 3
 2
 1
 3
 1
 3
 2

A1
 A1

A2

A2

1,A1

2,A1

3,A1

1,A2

2,A2

3,A2

1

A1 1.0

10

A2 1.0

5

Figure 3.1: An example MDP and the tree derived due to a breadth first enumer-
ation of states of the MDP shown above with the crosses indicating
the pruning of the branch and the reduced MDP got by using the G -
Reduced Image Algorithm in Algorithm 4

46

The following is a description of how the algorithm works on this MDP.

1. State 1 is added to the queue and to S′.

2. State 1 is dequeued from the queue and state-action pair (1,A1) is added to
Ψ′.

3. Action A1 is added to A′.

4. R′(1,A1) = 10.

5. States 1 and 2 are reachable by taking action A1.

6. As both 1 and 2 are equivalent to 1, P′(1,A1, 1) = 0.4 + 0.6 and nothing is
added to the queue.

7. Now state-action pair (1,A2) is considered.

8. Action A2 is added to A′.

9. R′(1,A2) = 5.

10. States 1 and 3 are reachable by taking action A2.

11. As both 1 and 3 are equivalent to 1, P′(1,A2, 1) = 0.6 + 0.4 and nothing is
added to the queue.

12. The algorithm stops because all actions have been exhausted and the queue
is empty.

As a result we have,

M′ =< {1}, {A1,A2}, {(1,A1), (1,A2)},P′(1,A1, 1) = 1.0,P′(1,A2, 1) = 1.0,

R′(1,A1) = 10,R′(1,A2) = 5 >

as the reduced MDP, which is indicated in Figure 3.1.

From Lemma 6, it is evident that the algorithm terminates when at least one

representative from each equivalence class of G has been examined.

47

Lemma 6. If the branch rooted at (s′, a′) is pruned because it is equivalent to (s, a),

then states and state-action pairs occurring in the pruned branch are equivalent to

that occurring in the branch rooted at (s, a).

Proof.

s ≡G|S s′ =⇒ ∃ an automorphism < f , {gs} > such that f (s) = s′

=⇒ P(f (s), gs(a), f (t)) = P(s′, gs(a), f (t)) ∀ t ∈ S

=⇒ P(s, a, t) = P(s′, gs(a), f (t)) ∀ t ∈ S (3.10)

by definition of automorphisms

(s, a) ≡G (s′, a′) =⇒ ∃ an automorphism < f , {gs} >

such that f (s) = s′ and gs(a) = a′

=⇒ P(f (s), gs(a), f (t)) = P(s′, a′, f (t)) ∀ t ∈ S

=⇒ P(s, a, t) = P(s′, a′, f (t)) ∀ t ∈ S (3.11)

by definition of automorphisms

From Equation 3.10, it is clear that if two states are equivalent then there will be

equivalent actions to choose from and from Equation 3.11 that if two state-action

pairs are equivalent then there exist equivalent states to which, they transition to.

Since the states are arbitrary, by induction the lemma holds. �

48

Lemma 7. The transition probabilities computed for the reduced model are correct.

Proof. Let BG be the partition induced by G . Let ρ(s, a) = {t ∈ S | P(s, a, t) > 0}

denote the set of states reachable from state s by taking action a.

Since, there exists a homomorphism from M → M/BG, for some arbitrary

[s, a]BG and [s′]BG|S ,

P′([s, a]BG , [s
′]BG|S) =

∑

s′′∈[s′]BG|S

P(s, a, s′′)

=
∑

s′′∈([s′]BG|S
∩ρ(s,a))

P(s, a, s′′)

If we assume that S andΨ can be ordered and that a block written [s′]BG|S means

that s′ occurs before all other s′′ ∈ [s′]BG|S , then it can be seen that lines 11 to 19

compute

P′(s, a, s′) =
∑

s′′∈([s′]BG|S
∩ρ(s,a))

P(s, a, s′′)

and represents P′([s, a]BG , [s
′]BG|S).

Since, [s, a]BG and [s′]BG|S are arbitrary, from Lemma 6 all (s, a) ∈ Ψ′ are covered

and line 11 makes sure that no s′ ∈ S is left out, the lemma holds. �

From Lemma 7 it is clear that the transition probabilities actually represent

those for the reduced image. The algorithm as presented assumes that all states

are reachable from the initial state. It is easy, however, to modify the algorithm

suitably. Assuming an explicit representation for the symmetry group and that

table look-up takes constant time, the algorithm will run in time proportional to

49

|Ψ′|.max(s,a)∈Ψ|ρ(s, a)|.|G|. In the worst case, this can be as large as |Ψ′|.|S|.|G|. How-

ever, most real-world domains exhibit considerable sparseness in their transition

matrices and most times, for a particular domain, max(s,a)∈Ψ|ρ(s, a)| is a constant and

the algorithm takes O(|Ψ′|.|G|) time. Also as G is just a subgroup, the algorithm

can work with whatever little symmetry information the designer might have.

For an end-to-end approach to abstraction using symmetries, we can first find

the symmetries using the method outlined in Section 3.1. Then, we can use the

symmetry group so found to construct the reduced model and follow the explicit

model minimization approach. We present some results next.

3.3 Results

The experiments were run on the following two domains. We describe results per

domain.

3.3.1 Probabilistic GridWorld

The domain is an N × N GridWorld with four probabilistic actions of going UP,

DOWN, RIGHT and LEFT having a 90% success probability. The initial state

was (0,0) and the goal states were {(0,N − 1), (N − 1, 0)}. We used Algorithm 3

to find the symmetries with NAutY being used as the DGEN solver. We then

used the symmetries to find the partition of Ψ. We were able to find the partition

corresponding to the symmetry group, that is, for a grid of size M×N, states (x,y),

(y,x), (M-1-x,N-1-y) and (N-1,M-1-x) are equivalent. We present the time taken by

the algorithm for GridWorlds of different sizes.

50

20 22 24 26 28 30 32 34 36 38
0

5

10

15

20

25

30

35

40

45

Size of the Gridworld

T
im

e
 i
n

 s
e

c

Value Iteration with Explicit Model Minimization on the Probabilistic GridWorld

No Reduction

Without 2−reduction time

Without 4−reduction time

With 2−reduction time

With 4−reduction time

Nauty + 4−reduction time

Figure 3.2: Average running times of the value iteration algorithm with explicit model
minimization on Probabilistic GridWorld vs size of the GridWorld. Each
of the 3 sets should be compared with the graph for no reduction. Curves
in a set represent different degrees of symmetry. Each set shows the time
reduction with reduced model usage. First one discounts the time taken to
find symmetries and for reduction. The next set includes the time for reduction
but discounts time taken to find symmetries. The last one includes both the
time taken to find symmetries using NAutY and time for reduction.

To complete the end-to-end approach, we ran the G-reduced image algorithm,

presented in Section 3.2.1, to find the reduced image and ran the Value Iteration

algorithm, presented in Section 2.1.2, on the reduced image. To show the efficiency

of reduction, we show the time taken for reduction and solution separately. We

also present the case of a handcrafted 2-folded symmetry which is used with the

G-reduced image algorithm and reduced model is used with Value Iteration.

51

From Figure 3.2 it is evident that the reduced model construction is efficient

and adds little overhead. However, the results of the end-to-end approach show

a significant overhead due to symmetry finding. It cuts the saving by almost half.

Still the results are significant because they double the size of the largest GridWorld

that can be solved in some given time.

3.3.2 GridWorld Soccer

The domain is a soccer-inspired grid domain. It is a slightly modified version

of that described in [Bowling, 2003]. We first describe the original version of the

domain and then state the modification.

It is basically an M × N grid with two agents. One is denoted the attacker (A)

who holds the ball and the other as the defender (B) who tries to snatch the ball

from the attacker. The center lines/grids(depending on whether M and N are even

or odd) for both x-axis and y-axis are chosen naturally. The state is defined by

the non-identical positions of the attacker and the defender. This defines the state

space with (MN)2 − (MN) states. The actions are movements in the four compass

directions: N, E, W, S and the hold action H. It is a single player game, in that,

only the attacker chooses actions deliberately while the defender executes random

actions. The action chosen by the attacker and the random action of the defender

are executed in random order, which determines the next state. However if the

defender tries to move into the attacker’s location then the state is unchanged and

if the attacker tries to move into the defender’s location, the game is reset to the

initial state which is shown in Figure 3.3. The right hand section of the grid is the

attacker’s half and the left hand section that of the defender. The goal is chosen

52

G

O

A

L
 A
B

G

O

A

L

G

O

A

L

G

O

A

L

G

O

A

L

WEST

A

A
A
 A

B

B

B

B

0.7

0.1

0.1
 0.1

Figure 3.3: Single Player grid soccer where agent B selects it actions randomly. The
initial state is shown on the left and an example of transitions and associated
probabilities are given for a particular state and action on the right. Notice
that fifty percent of the time A’s actions are executed first causing it to lose the
ball and the game reset to the initial state. In addition, if B selects H or E it
does not move and so A still loses the ball and returns to the initial state. The
other outcomes are equiprobable.

to be situated beyond the first column of grids occupying one grid on each side of

the y-axis central line/grid. A W action from the squares in front of the goal state

leads to a goal with a reward of 1 and to the end of an episode. Everywhere else

the reward is 0. A 5 × 4 domain is shown in Figure 3.3.

Intuitively, the domain seems symmetric around the y-axis center line. How-

ever, the results of using Algorithm 3 on this domain showed us that the domain

is not symmetric due to the existence of the reset action when the attacker tries to

move into the defender’s position. So we modified the domain to have symmetric

reset, that is, reset happens to the initial state and its symmetric state around the

y-axis center line with equal probability. This makes the domain symmetric as per

intuition, which the algorithm confirms.

Interestingly, the algorithm also finds that the existence of the hold action

adds further symmetry. The grids along the border of the domain act as walls.

53

For example, the northern wall stops the N action leaving the state unchanged

which is the same result if the agent were to execute a H action. These additional

symmetries which we did not think of before running algorithm were found by

the algorithm. This suggests that there might exist complicated symmetries that

will be discovered by the algorithm, which are hard to find, even upon a close

examination. Also in many cases, symmetries are size invariant. So we can use

the algorithm on a relatively smaller version of the domain and find symmetries

which might still hold on the larger version.

We present the time taken by the algorithm for different sizes. An increment of

one here means an increase of one along both axes. The presence of two agents,

blows up the state space very rapidly and we hit the limit on the order of the graph

imposed by NAutY very soon (for a 11 × 10 grid).

To present similar graphs as in the probabilistic GridWorld case, we use the ex-

plicit model minimization approach with Value Iteration. The results are presented

in Figure 3.4.

In this case, we find that the overheads due to the construction and the G-

reduced image algorithm is negligible. Though efficiency of the G-reduced image

algorithm is expected, the efficiency of the construction can be possibly because of

the structure of the domain yielding an easy graph to find automorphisms on.

In this chapter, we have provided a constructive proof for the Isomorphism

Completeness of the problem of finding symmetries. We have also proposed the use

of this constructive proof along with an efficient minimization algorithm to solve

an MDP using symmetries. We have also demonstrated the approach empirically.

54

1 1.5 2 2.5 3 3.5 4
0

2000

4000

6000

8000

10000

12000

Size of the Gridworld

T
im

e
 in

 m
ill

i m
in

s

Value Iteration with Explicit Model Minimization on the GridWorld Soccer domain

No Reduction
Without 2−reduction time
With 2−reduction time
Nauty + 2−reduction time

Figure 3.4: Average running times of the value iteration algorithm with explicit model
minimization on GridWorld Soccer domain vs size of the domain. Size of one
represents the 5 × 4 grid. Thereafter an increment of one means an increment
of one along both axes. Each graph should be compared with the graph for
no reduction. The other graphs show the time reduction with reduced model
usage. First one discounts the time taken to find symmetries and for reduction.
The next one includes the time for reduction but discounts time taken to find
symmetries. The last one includes both the time taken to find symmetries
using NAutY and time for reduction.

55

CHAPTER 4

Implicit Model Minimization

In this chapter, we note some problems associated with Explicit Model Minimiza-

tion. Most of them stem from the explicit construction of a reduced model. We

also present some solutions addressing each issue separately. We then present the

Implicit Model Minimization approach, which resolves all these issues.

4.1 Problems with Explicit Model Minimization

4.1.1 Exorbitant memory requirements

An explicitly specified symmetry group consumes O(|G|× |Ψ|) space. So to address

this, we need to specify the symmetry group implicitly. One approach to do this

is to use factored representations and structured morphisms. For e.g., the NE-SW

symmetry in a GridWorld can be succinctly represented as follows:

(x, y) −N ≡ (y, x) − E

(x, y) − S ≡ (y, x) −W

The advantage here is that the morphisms forming the symmetry group need not

be stored explicitly as they are defined on the features instead of states. However,

we incur some overhead in the running time. For example, let us consider the

case of permutation automorphisms. To check whether (s, a) ≡G (s′, a′), we need

to generate |G| states that are equivalent to (s′, a′) by applying each h ∈ G. Each

application of h incurs a time linear in the number of features. Thus in this case

the time complexity of the algorithm presented is of the order of |Ψ|′.|G|.M, where

M is the number of features whereas no space is needed for storing G explicitly.

Thus by restricting the class of automorphisms to functions that are defined

on features instead of states, we only incur additional time, which is a function of

the number of features (significantly less than the number of states) along with a

drastic decrease in the space complexity. The use of factored representations leads

to further reduction in space needed for storing the transition probabilities and the

reward function, thereby making the G -Reduced Image algorithm more effective

than its use in the generic case.

4.1.2 Non-preservation of structure

Px(t+1)a(t)x(t)

x

x

x

x

x

x

x + 1

x + 1

0.9

0.9

0.9

0.9

N

E

W

S

x(t)

y(t)

x(t+1)

y(t+1)

a(t)

Figure 4.1: Factored representation of a Grid-World domain where (x,y) are the
co-ordinates of a grid

57

Due to the explicit nature of the algorithm wherein the state-action spaces,

transition probabilities and rewards are stored explicitly, the structure present

in the transition probabilities and the reward function are not preserved in the

reduced model. Hence, the reduced model might take up considerably more

space than the original model.

For example, consider the factored representation of a 4×4 Grid-World domain

as shown in Figure 4.1. The number of entries in the transition probability tables

is 2 ∗ 4 ∗ 4 ∗ 4 = 128.

Now consider the reduced model constructed by the G -Reduced Image algo-

rithm using a 2-fold symmetry along the NE-SW diagonal. The number of entries

in the transition probability matrix is |Ψ′| × |S′| = 64/2 ∗ (16 − 6) = 320.

4.1.3 Redundant operations of reduced model construction and

policy lifting

The goal of the model minimization approach is to solve the given MDP, though

taking lesser time. Hence, the explicit construction of a reduced model and lifting

the policy in a reduced model to the original model seem redundant. The previous

problem and this one can be resolved by forgoing the explicit construction and

integrating the minimization approach with the solution methods. We call this

Implicit Model Minimization and present it in Section 4.2.

58

4.2 Approach

To resolve some of the issues mentioned in the previous section, we propose the

Implicit Model Minimization approach where we modify a solution technique

to integrate the symmetries. This is achieved by including the reduced model

construction as a part of the solution technique. This enables us to work in the

reduced state-action space of a compact original model without converting the

compact model into an explicit one. This will also aid to reduce the overheads for

constructing a reduced model and policy lifting.

A solution technique like value iteration, involves multiple sweeps through

the state-action space with each sweep generating a better approximation to the

optimal value function. The idea of implicit model minimization is to restrict the

sweeps only to the state-action space of the reduced MDP and compute transition

probabilities and reward parameters for the reduced MDP before computing the

update equation. Since we are dealing with symmetries, the reduced MDP is

actually a portion of the original MDP. Because of this we can restrict the sweeps

to this portion of the given MDP and reap the benefits of model minimization as

each sweep takes lesser time. Also as the parameters of the reduced MDP are used

in the update equation, the value function is computed only for the reduced MDP

and the solution is correct as long as we stay in the corresponding portion of the

original MDP. We apply this idea to Value Iteration next.

59

4.3 Reduced Value Iteration

We use the G -Reduced Image algorithm as a basis to present the reduced value

iteration algorithm in Algorithm 5.

Following is an analysis of the time taken by the algorithm.

LetM′ =< S′,A′,Ψ′,P′,R′ > be a reduced model ofM =< S,A,Ψ,P,R >.

Let |Ψ′| = |Ψ|/k1 and |S′| = |S|/k2.

Let pε be the number of iterations taken to converge to the ε-optimal value

function.

Algorithm 5 computes the value function only for the reduced model but

in each iteration there is a |G| = O(k1) overhead for comparing equivalence of

state-action pairs and a O(k2) overhead for comparing equivalence of states while

computing the transition probabilities of the reduced model. So, the time taken by

the algorithm is:

n1.|Ψ
′|.|G|.|S′|.O(k2).pε = n1.

|Ψ|.n2.k1

k1
.
|S|.n3.k2

k2
.pε

= n′1.|Ψ|.|S|.pε (4.1)

Usually, the number of operations involved is more in this algorithm, that is,

the value of the constant involved is more than that in normal Value Iteration.

Hence, it will take more time than normal Value Iteration, that is, the overheads

outweigh the reduction. This is verified on the Grid-World domain and the results

60

Algorithm 5 Reduced Value Iteration with integrated symmetries

1: GivenM = 〈S,A,Ψ,P,R〉 and G ≤ AutM,
2: Hashtables Q0,Q1 ← Nil are the action value functions for the previous and

current iterations respectively
3: |S| dimension vectors v0, v1 are the state value functions for the previous and

current iterations respectively
4: v0 ← 0̄
5: repeat
6: Set Que to some initial state {s0}

7: while Que is non-empty do
8: s = dequeue{Que}
9: for each a ∈ As do

10: if (s, a) .G (s′′, a′′) for any (s′′, a′′) ∈ Q0, then
11: Hashtable S′ ← Nil is for checking equivalent states
12: for each t ∈ S such that P(s, a, t) > 0 do
13: if t ≡G|S s′, for some s′ ∈ S′, then
14: P′(s, a, s′)← P′(s, a, s′) + P(s, a, t)
15: else
16: S′ ← S′ ∪ t
17: P′(s, a, t) = P(s, a, t)
18: add t to Que
19: end if
20: end for
21: if (s, a) < Q1 then
22: add (s, a) to Q1

23: Q1(s, a)← 0
24: end if
25:

Q1(s, a)← R(s, a) + γ
∑

s′′∈S′

P′(s, a, s′′) max
a′′∈As′′

Q0(s′′, a′′)

26: end if
27: end for
28: end while
29: ∀s ∈ S, v1(s) = maxa∈As Q1(s, a)
30: ∆← max(abs(v1 − v0))
31: Q0 ← Q1

32: v0 ← v1

33: until ∆ <
ε(1−γ)

2γ

61

are shown in Figure 4.2. As is evident, the amount of symmetry does not matter

and the running time of the Reduced Value Iteration algorithm is more than that

of normal Value Iteration by a constant factor.

10 10.5 11 11.5 12 12.5 13 13.5 14
0

50

100

150

200

250

300

350

400

Size of the Gridworld

T
im

e
 i
n

 s
e

c

Reduced Value Iteration on the Probabilistic GridWorld

← bef = 32.0289 sec

← 2−aft = 114.7 s
← 4−aft = 110.7 s

← bef = 51.4141 sec

← 2−aft = 168.5 s
← 4−aft = 163.9 s

← bef = 78.2471 sec

← 2−aft = 244.5 s
← 4−aft = 236.4 s

Before Reduction
After 2−reduction
After 4−reduction

Figure 4.2: Average running times of the RVI algorithm on the Probabilistic Grid-
World domain plotted against the size of the GridWorld with various
degrees of symmetry (0, 2 and 4). Irrespective of the amount of symme-
try, the running times of RVI have increased by nearly equal amounts
from that of the normal Value Iteration algorithm. This corroborates
the analysis.

62

From the above analysis it is clear that the equivalence comparisons act as

overheads and nullify any reductions possible in the state and state-action spaces.

This also means that if we can find a solution technique, unlike the Value Iteration

algorithm, for which the number of iterations required for convergence depends on

the state-action space, we can integrate the ideas of implicit model minimization to

achieve reductions in the time taken. Since the Real Time Dynamic Programming

(RTDP), as seen in Section 2.1.2, has this property, we modify RTDP to integrate the

symmetry information as in the case of the Reduced Value Iteration algorithm. We

present the Reduced RTDP algorithm next and demonstrate the significant gains

over the normal RTDP case empirically in Section 4.5.

4.4 Reduced Real Time Dynamic Programming

Clearly, we are presented with two contrasting goals here:

1. Achieving gains over normal solution techniques by exploiting symmetries
efficiently.

2. Doing so with the preservation of any structure present in the transition
probabilities and the reward function.

To achieve the best of both worlds, we apply the implicit model minimization

idea to the RTDP algorithm. The number of iterations required for convergence of

RTDP depends on:

1. Topology of the domain

2. Size of the state-action space

The topology helps RTDP to use the agent’s experience to focus on the relevant

sections of the state space. This saves the time spent on building a reduced model

63

of the irrelevant sections of the state-space. Also, the time spent in random walks

during the early phases of exploration by the Reduced RTDP algorithm is lesser

because there is only a reduced amount of space to explore, which is because it

works only on the state space corresponding to the reduced model.

As the number of iterations required for convergence depends on the size of

the state-action space, Reduced RTDP takes lesser number of iterations and hence

lesser time than normal RTDP because the reduced version of the algorithm only

acts on the portion of the state space that corresponds to the reduced model. We

present the algorithm in Algorithm 6.

4.4.1 Convergence of Reduced RTDP

The algorithm is a modification of the RTDP algorithm with steps from the previous

algorithm integrated into lines 7 to 20. If we assume that we have the reduced

MDP M′, then leaving out lines 7 to 10 and lines 13 to 20 leaves us with the normal

RTDP algorithm being run on the reduced image since as explained below, for all

(s, a) ∈ Ψ′,R′(s, a) = R(s, a). Due to the equivalence tests done at lines 7 and 14, the

algorithm maintains a policy for and considers only the reduced state space. From

lemmas 6 and 7, lines 13 to 20 compute the transition probabilities for the reduced

image. From Equation 2.2, R(s, a) is the expected reward under the reduced image.

So for all (s, a) ∈ Ψ′,R′(s, a) = R(s, a). Thus the update equation in line 21 can be

rewritten as,

Q(s, a) = R′(s, a) +
∑

s′′∈S′

γ.P′(s, a, s′′). max
a′′∈As′′

Q(s′′, a′′) (4.2)

64

Algorithm 6 RTDP algorithm with integrated symmetries, which computes the
Action Value function for the reduced MDP without explicitly constructing it.

1: GivenM = 〈S,A,Ψ,P,R〉 and G ≤ AutM,
2: Hashtable Q← Nil is the action value function.
3: for each episode do
4: Initialize s and S′ ← {s}
5: Choose a from s using policy derived from Q (e.g. ε-greedy policy)
6: for each step of the episode do
7: if (s, a) ≡G (s′′, a′′) for some (s′′, a′′) ∈ Q where (s′′, a′′) , (s, a) then
8: s← s′′; a← a′′

9: continue
10: end if
11: Take action a and observe reward r and next state s′

12: Choose a′ from s′ using policy derived from Q (e.g. ε-greedy policy)
13: for each t such that P(s, a, t) > 0 do
14: if t ≡G|S s′′, for some s′′ ∈ S′, then
15: P′(s, a, s′′)← P′(s, a, s′′) + P(s, a, t)
16: else
17: S′ ← S′ ∪ t
18: P′(s, a, t) = P(s, a, t)
19: end if
20: end for
21: if (s, a) < Q then
22: add (s, a) to Q
23: Q(s, a)← 0
24: end if
25:

Q(s, a)← R(s, a) + γ
∑

s′′∈S′

P′(s, a, s′′) max
a′′∈As′′

Q(s′′, a′′)

26: s← s′; a← a′

27: end for
28: end for

65

which is nothing but the update equation for the reduced image. Thus it is exactly

similar to running normal RTDP on the reduced image. As normal RTDP con-

verges to an optimal action value function [Barto et al., 1995], reduced RTDP also

converges, as long as it continues to back up all states in the reduced image.

4.5 Results

An exact analysis of the Reduced RTDP algorithm is beyond the scope of this thesis.

Hence we present empirical evidence to corroborate the above made claims.

Experiments were done on three domains, Deterministic GridWorld, Proba-

bilistic GridWorld and GridWorld Soccer. The latter two domains were explained

in Chapter 3, Section 3.3. The Deterministic GridWorld is similar to the Proba-

bilistic GridWorld. The only difference is that, the actions are deterministic. We

consider the effect of the degree of symmetry by presenting graphs for multiple

symmetries wherever applicable. We compare the reduced RTDP algorithm using

multiple degrees of symmetry with the normal RTDP algorithm1.

We present learning curves representing the decrease in the number of steps

taken to finish each episode. We plot the running times of the reduced RTDP

algorithm with multiple symmetries and the normal RTDP algorithm against the

size of the domain. We ran 200 episodes of each domain and the times were

averaged over 25 runs. All the algorithms used a discount factor, γ = 0.9. An

epsilon greedy policy with ε = 0.1 was used to choose the actions at each step. We

present one learning graph per domain.

1The normal RTDP algorithm is sometimes referred in this work as the no or zero symmetry
case.

66

One observation contrary to the graphs presented is that when reduced RTDP

algorithms are used for very small domains, the overhead involved in checking

equivalence of states outweighs the benefit from the reduction due to symmetry

because the topology is not complicated enough to cause an explosion in the space

to be explored, which does not affect the number of iterations too much.

0 50 100 150 200
0

500

1000

1500

2000

2500

Episodes

#
 S

te
p

s
 p

e
r

E
p

is
o

d
e

Reduced RTDP
2−fold symmetry

Reduced RTDP
full symmetry

Normal RTDP

Figure 4.3: Learning curves for the Deterministic Grid World(25x25 grid) showing
the decrease in the number of steps taken per episode

67

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

Episodes

#
 S

te
p

s
p

e
r

E
p

is
o

d
e

Reduced RTDP
2−fold symmetry

Reduced RTDP
full symmetry

Normal RTDP

Figure 4.4: Learning curves for the Probabilistic Grid World(25x25 grid) showing
the decrease in the number of steps taken per episode

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

Episodes

#
 S

te
p

s
 p

e
r
 E

p
is

o
d

e

Normal
RTDP

Reduced RTDP
2−fold symmetry

Figure 4.5: Learning curves for the GridWorld(5x4 grid) soccer domain showing
the decrease in the number of steps taken per episode

68

10 12 14 16 18 20 22 24 26 28 30
0

50

100

150

200

250

300

Size of the Gridworld

T
im

e
 i
n

 s
e

c

RTDP vs Reduced RTDP on the Deterministic GridWorld

← bef = 69.5 sec

← 2−red fac = 2.5

← 4−red fac = 4.9

← bef = 159.6 sec

← 2−red fac = 3.0

← 4−red fac = 6.2

← bef = 265.1 sec

← 2−red fac = 2.6

← 4−red fac = 5.8

RTDP
2−red RTDP
4−red RTDP

Figure 4.6: Running times of the Reduced RTDP algorithm on the Determinis-
tic GridWorld domain plotted against the size of the GridWorld with
various degrees of symmetry(0,2 and 4)

69

10 12 14 16 18 20 22 24 26 28 30
0

50

100

150

200

250

Size of the Gridworld

T
im

e
 i
n

 s
e

c

RTDP vs Reduced RTDP on the Probabilistic GridWorld

← bef = 42.6 s

← 2−red fac = 2.0
← 4−red fac = 3.2

← bef = 97.6 s

← 2−red fac = 2.6

← 4−red fac = 4.3

← bef = 172.6 s

← 2−red fac = 2.5

← 4−red fac = 5.0

RTDP
2−red RTDP
4−red RTDP

Figure 4.7: Running times of the Reduced RTDP algorithm on the Probabilistic
GridWorld domain plotted against the size of the GridWorld with var-
ious degrees of symmetry(0,2 and 4)

70

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

Size of the Gridworld

T
im

e
 i
n

 s
e

c

RTDP vs Reduced RTDP on the Gridworld Soccer domain

← bef = 567.7 sec

← 2−red fac = 2.0

← bef = 1019.8 sec

← 2−red fac = 1.9

← bef = 3122.3 sec

← 2−red fac = 2.0

← bef = 5236.3 sec

← 2−red fac = 2.0

RTDP
2−red RTDP

Figure 4.8: Running times of the Reduced RTDP algorithm on the GridWorld soccer
domain plotted against the size of the GridWorld with 0 and 2-fold
symmetry

71

CHAPTER 5

Conclusions and Future Work

The primary motivation for this work was to gain a better understanding of the

use of symmetries for abstraction in MDPs. In this regard, first we have addressed

the problem of finding symmetries, which we have shown is Isomorphism Com-

plete. This is an interesting result because even with all the additional complexities

involved in the formulation of an MDP, it turns out that finding symmetries on

MDPs is no harder than finding graph isomorphisms. An important practical ap-

plication is that, it now allows the use of existing Graph Isomorphism solvers and

heuristics to our advantage. Next, we proposed the use of an efficient minimiza-

tion algorithm to perform abstraction using symmetries in an end-to-end manner.

Not surprisingly, our tests on various domains indicate that we can achieve the

practical bounds on improvement that we set out in Section 2.5.1 if we can use

good heuristics for symmetry finding.

We then identified certain problems with the explicit approach and looked at

ways of minimization without actually constructing a reduced image. Combined

with a suitable technique and representation, this results in enormous savings in

space and possibly time.

There are two aspects which need further attention. One is the use of approxi-

mate notions of symmetry because exact symmetries might not exist in real world

domains. Though the approach works on functions that are not exactly symme-

tries, the solutions found need not be optimal. We need to find bounds on the

amount of deviation from the optimal policy. Ravindran and Barto [2004] discuss

the notion of approximate homomorphisms for non-exact minimization of MDPs

and derive bounds on the deviation from the optimal policy. This should be a

good starting point.

Another aspect is to tailor algorithms to particular representations. For e.g.,

in factored representations, finding symmetries might be easier due to the tree

structure of the transition probabilities and reward function. Though on a generic

graph structure we have shown that finding symmetries is a hard problem, one

might find representations for which it turns out easier.

73

Publication

1. S. M. Narayanamurthy and B. Ravindran (2007). Efficiently Exploiting
Symmetries in Real Time Dynamic Programming. IJCAI 2007, Proceedings of
the 20th International Joint Conference on Artificial Intelligence, pages 2556–2561.

74

REFERENCES

Amarel, S., On representations of problems of reasoning about actions. In D. Michie (ed.),
Machine Intelligence 3, volume 3. Elsevier/North-Holland, Amsterdam, London, New
York, 1968, 131–171. Amarel, S.

Barto, A. G., S. J. Bradtke, and S. P. Singh (1995). Learning to act using real-time dynamic
programming. Artificial Intelligence, 72, 81–138.

Bellman, R. E., Dynamic Programming. Princeton University Press, 1957.

Benhamou, B., Study of symmetry in constraint satisfaction problems. In A. Borning (ed.),
PPCP’94: Second International Workshop on Principles and Practice of Constraint Program-
ming. Orcas Island, Seattle, USA, 1994. URL citeseer.ist.psu.edu/benhamou94study.
html.

Bertsekas, D. P., Dynamic programming: deterministic and stochastic models. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1987. ISBN 0132215810.

Booth, K. S. and C. J. Colbourn (1977). Problems polynomially equivalent to graph
isomorphism. Technical report, University of Waterloo.

Bowling, M. (2003). Multiagent Learning in the Presence of Agents with Limitations. Ph.D.
thesis, Carnegie Mellon University.

Crawford, J. (1992). A theoretical analysis of reasoning by symmetry in first-order logic.
URL citeseer.ist.psu.edu/crawford92theoretical.html.

Dean, T. and R. Givan, Model minimization in markov decision processes. In AAAI/IAAI.
1997. URL citeseer.ist.psu.edu/dean97model.html.

Dean, T., R. Givan, and S. Leach, Model reduction techniques for computing approxi-
mately optimal solutions for Markov decision processes. In Proceedings of UAI-97. 1997.
URL citeseer.ist.psu.edu/article/dean97model.html.

Dean, T. and S.-H. Lin, Decomposition techniques for planning in stochastic domains. In
Proceedings of the 1995 International Joint Conference on Artificial Intelligence. 1995. URL
citeseer.ist.psu.edu/article/dean95decomposition.html.

Dunitz, J. D., Symmetry arguments in chemistry. In Proceedings of the National Academy of
Sciences, USA, volume 93. 1996.

Emerson, F. A. and A. P. Sistla (1996). Symmetry and model checking. Formal Methods in
System Design: An International Journal, 9(1/2), 105–131. URL citeseer.ist.psu.edu/
emerson94symmetry.html.

75

Flener, P., A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh (2002).
Breaking row and column symmetries in matrix models. URL citeseer.ist.psu.edu/
flener02breaking.html.

Givan, R., T. Dean, and M. Greig (2003). Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence, 147(1-2), 163–223.

Hartmanis, J., Algebraic structure theory of sequential machines (Prentice-Hall international
series in applied mathematics). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1966.
ISBN B0006BNWTE.

Knoblock, C. A., Learning abstraction hierarchies for problem solving. In T. Dietterich

and W. Swartout (eds.), Proceedings of the Eighth National Conference on Artificial In-
telligence. AAAI Press, Menlo Park, California, 1990. URL citeseer.ist.psu.edu/
knoblock90learning.html.

Lee, D. and M. Yannakakis, Online minimization of transition systems (extended ab-
stract). In STOC ’92: Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing. ACM Press, New York, NY, USA, 1992. ISBN 0-89791-511-9.

Littman, M. L., T. L. Dean, and L. P. Kaelbling, On the complexity of solving Markov
decision problems. In Proceedings of the Eleventh Annual Conference on Uncertainty in
Artificial Intelligence (UAI–95). Montreal, Québec, Canada, 1995. URL citeseer.ist.
psu.edu/littman95complexity.html.

Manning, J. B. (1990). Geometric symmetry in graphs. Ph.D. thesis, Purdue University.

Mathon, R. (1979). A note on the graph isomorphism counting problem. Information
Processing Letters, 8(3), 131–132. ISSN 0020-0190.

McKay, B. D. (1981). Practical graph isomorphism. Congressus Numerantium, 30, 45–87.

Miller, G. L., Graph isomorphism, general remarks. In STOC ’77: Proceedings of the ninth
annual ACM symposium on Theory of computing. ACM Press, New York, NY, USA, 1977.

Pearson, J., Symmetry breaking in constraint satisfaction with graph-isomorphism:
Comma-free codes. In AI&M 1-2004, Eighth International Symposium on Artificial In-
telligence and Mathematics, January 4-6, 2004, Fort Lauderdale, Florida, USA. 2004.

Popplestone, R. J. and R. A. Grupen, Symmetries in world geometry and adaptive system
behaviour. In AFPAC ’00: Proceedings of the Second International Workshop on Algebraic
Frames for the Perception-Action Cycle. Springer-Verlag, London, UK, 2000. ISBN 3-540-
41013-9.

Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., New York, NY, USA, 1994. ISBN 0471619779.

Ravindran, B. (2004). An Algebraic Approach to Abstraction in Reinforcement Learning. Ph.D.
thesis, Department of Computer Science, University of Massachusetts Amherst.

Ravindran, B. and A. G. Barto (2001). Symmetries and model minimization of markov
decision processes. Technical report, University of Massachusetts, Amherst.

76

Ravindran, B. and A. G. Barto (2002). Model minimization in hierarchical reinforcement
learning. Lecture Notes on Computer Science, 2371, 196–211. ISSN 0302-9743. URL
http://link.springer-ny.com/link/service/series/0558/bibs/2371/23710196.

htm;http://link.springer-ny.com/link/service/series/0558/papers/2371/

23710196.pdf.

Ravindran, B. and A. G. Barto, Approximate homomorphisms: A framework for non-exact
minimization in markov decision processes. In In the Proceedings of the Fifth International
Conference on Knowledge Based Computer Systems (KBCS 04). 2004.

Read, R. C. and D. G. Corneil (1977). The graph isomorphism disease. Journal of Graph
Theory I, 339–363.

Skiena, S. (1997). The stony brook algorithm repository. URL http://www.cs.sunysb.
edu/˜algorith/implement/nauty/implement.shtml.

Sutton, R. and A. Barto, Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998. URL citeseer.ist.psu.edu/sutton98reinforcement.html.

Wolf, T. (1995). The program crack for solving pdes in general relativity.

Zinkevich, M. and T. Balch, Symmetry in markov decision processes and its implica-
tions for single agent and multiagent learning. In Proceedings of the ICML-01. Morgan
Kaufmann, 2001. ISBN 1-55860-778-1.

77

