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ABSTRACT
In most general learning problems, data is obtained from
multiple sources. Hence, the features can be inherently par-
titioned into multiple views or feature sets. For example, a
media clip can have both audio and video features. If we con-
catenate these features to form a single view, we essentially
lose some statistical properties exhibited by the views. Since
conventional Machine Learning algorithms do not deal with
multiple views, Multi-View Learning (MVL) approaches like
Co-training and Canonical Correlation Analysis were intro-
duced. In this work, we propose an approach to multi-view
learning based on a recently proposed autoencoder model
called Predictive AutoEncoder (PAE). Standard PAE works
with only two views. We propose ways to generalize the PAE
to handle more than two views. Experimental results show
that the proposed approach performs better than the exist-
ing MVL approaches like co-training and Canonical Corre-
lation Analysis.
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1. INTRODUCTION
In many areas of scientific analysis, we come across situa-

tions where data is gathered from multiple sources. A set of
indicators from a given source have specific properties that
can be exploited while dealing with that source alone. These
sets of indicators are called views. For example, a clipping
can be represented by both its audio and video. A document
can be represented in multiple languages. An instance can
thus have multiple views or in other words, its indicators
can be inherently grouped together to form multiple views.
Each of these views could be sufficient for classification on
their own. They could also be weak. In any case, they pro-
vide additional information from the context of other views.
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Hence, when used together in an ideal setting, it is trivial to
assume that the learning model would perform better.

Conventional Machine Learning algorithms like Decision
Trees [10], Naive Bayes [7] or Support Vector Machines [4]
cannot deal with multiple views. One simple approach to use
these algorithms with multi-view data is to concatenate all
the views together and consider it as a single view problem.
However, this causes over-fitting of data when the training
instances are not adequate. It is also not a meaningful ap-
proach, since we are not exploiting the statistical properties
exhibited by each view.

Multiview Learning [3] is a paradigm in machine learning
that aims to achieve optimum results when you have multi-
ple views in the data. Here, the approach involves treating
each view separately and using the additional information
of the data (view relationships) to jointly optimize the func-
tions on each of the views. This results in better perfor-
mance as the additional information present here plays a
major role in tasks like disambiguation and similarity detec-
tion. Several algorithms have been developed for multi-view
learning with the prime method being Co-training [3]. Co-
training works on the principle of consensus. It trains to
improve the agreement between the multiple views (typi-
cally two). This has spurned off a whole class of algorithms.
Co-EM [9], which essentially works like Co-training but by
assigning probabilistic labels is another popular variant. Co-
Regularization [13] is a generalized regularization algorithm
to deal with multiple views. Multiple Kernel Learning [2]
has also been adapted to suit the multi-view setting. Here,
the kernels correspond to different views and their combina-
tion helps in the learning process.

There is another class of algorithms which fall under Sub-
space Learning. These algorithms aim to find a latent sub-
space where all the views of an instance can be projected.
We assume that the views are derived from this latent sub-
space. Once we have this subspace, we simply run the con-
ventional machine learning approaches for the given task.
Canonical Correlation Analysis (CCA) [6] is a popular ap-
proach in subspace learning. CCA and Kernel CCA (KCCA)
[1] try to maximize the correlation of the projections of dif-
ferent views on a set of basis vectors. The latent subspace
typically has fewer dimensions than the views. Hence, these
approaches also help in countering the curse of dimension-
ality.

In this paper, we propose one such subspace learning ap-
proach based on neural networks. Our aim is to explore the
application of auto-encoders in a multi-view setting. There
are some recent development in the neural network commu-



nity to learn common representations for multimodal data
[11, 14, 8, 15, 12]. In our work, we specifically attempt to
generalize the model proposed in [11], to handle data with
more than two views. In [11], the authors use an auto-
encoder setup to accomplish Natural Language Processing
tasks on bilingual data. They build a shared representa-
tion for parallel documents in two different languages and
use this rich representation for tasks like cross language doc-
ument classification and cross language sentiment analysis.
The auto-encoder model introduced in [11], Predictive Auto-
Encoder (PAE), is the model we have replicated to test on
traditional multi-view datasets.

The parallel documents are essentially like multiple views
of the semantic equivalent of the document. However, these
views are highly correlated. The performance of the PAE
in a multi-view setup, where there is no assumed correla-
tion between the views has not been explored. Our goal
in this work is to explore the performance of PAE on tra-
ditional two-view data and conditionally extend it to cover
more views. The major contributions of this paper are the
approaches we introduce to extend the PAE to handle data
sets with more than two views.

2. BACKGROUND
In this section, we will briefly explain the necessary back-

ground to understand the Predictive Auto-Encoder (PAE)
and the proposed variants to PAE. An auto-encoder is a
three layer neural network consists of an encoder followed
by a decoder[5]. The encoder is a function f that maps an
input x ∈ Rdx to hidden representation h(x) ∈ Rdh . It can
be defined as

h(x) = f(x) = sf (Wx+ bh) (1)

where sf is a nonlinear activation function like sigmoid func-
tion.

sigmoid(z) =
1

1 + e−z
(2)

The parameters of the encoder are a dh X dx weight matrix
W and a bias vector bh ∈ Rdh .

The decoder function g maps the hidden representation h
back to a reconstruction y such that,

y = g(h) = sg(W
′h+ by) (3)

where sg is the decoder’s activation function, typically either
the identity or a sigmoid. The decoder’s parameters are the
matrix W ′ and a bias vector by ∈ Rdx . In general, W ′ =
WT .

The auto-encoder is trained to find the parameters θ =
{W, bh, bx} such that the reconstruction error is minimum.
If Dn is the set of training examples, then the objective
function to be minimized is given by,

JAE(θ) =
∑
x∈Dn

L(x, g(f(x)) (4)

where L is the reconstruction error. A typically used recon-
struction error function is the Squared error function.

3. PREDICTIVE AUTO-ENCODER
In this section, we describe the Predictive Auto-Encoder

model introduced in [11], which is the basis for the proposed
multi-view learning approach. This is the basic building
block for our proposed model for multiple views.

The PAE consists of an encoder, that maps the two input
views into the hidden layer and then a decoder, that recon-
structs the two input views. A pictorial representation is
given in Figure 1.

Figure 1: Predictive Auto-encoder for two views

The PAE learns the shared representation of instances in
two different views. The procedure consists of two phases.
In the first phase, the model takes as input, a parallel list of
instances in two different views.

Let xi ∈ RV1 be the feature vector of instance i in view
V1 and yi ∈ RV2 be the corresponding feature vector in view
V2.

Now, we have a set of parallel instances Z, where

Z = {(xi, yi)}ni=1 (5)

For a given parallel set of features zi = (xi, yi), we construct
two vectors z1i and z2i such that

z1i = (xi ∈ RV1 , 0) & z2i = (0, yi ∈ RV2) (6)

z1i and z2i are thus representations of xi and yi in a RV1+V2

dimensional space such that the features of the other view
are all set to 0. Now, the objective function in the PAE is
designed such that we can learn a function f : RV1+V2 →
RVh , where RVh is the hidden layer dimensional space, to
make f(z1i ) and f(z2i ) highly correlated. Once this is done,
to prepare the data for the learning classifier, we simply
project the data with two views (xi, yi) into the RVh space
and use the resultant vector for the training and testing. We
achieve this function f through a PAE in the following way.

Recollecting zi, z
1
i and z2i from the beginning, the PAE

is now trained to learn the parameters W , bh and by, that
minimize the following objective function.

ΦPAE(W, bh, by) =

n∑
i=1

L(zi, g(f(z1i ))) +

n∑
i=1

L(zi, g(f(z2i )))

+

n∑
i=1

L(zi, g(f(zi)))− α
n∑
i=1

cor(f(z1i ), f(z2i ))

(7)

Here, L is the reconstruction error and α is the scaling co-
efficient for the last term.

The conventional auto-encoder objective function consists
of only the third term i.e the error in reconstructing fea-
tures of both views zi, given features of both views zi. In



this model, the first term represents the reconstruction er-
ror while constructing both the views, given just z1i and
the second term represents the same value, given just z2i .
These terms help in improving the knowledge and predic-
tive power of one view about the other view. The final
scaled correlation term is introduced to ensure that the hid-
den representations of both the views are highly correlated.
The introduction of this term helps in obtaining a better
shared representation.

4. GENERALIZATION OF PREDICTIVE
AUTO-ENCODER

The traditional PAE proposed in [11] can be applied for a
multi-view problem with two views only. In this section, we
propose two different ways to generalize the PAE to handle
more than two views. One way is to introduce a variant of
the auto-encoder that deals with k views. The other way
is to use the described 2-view PAE as a building block and
come up with a tree-like framework to handle n views.

4.1 k-PAE Model
In this subsection, we will propose a way to generalize the

PAE model to an k-PAE model, where k is the number of
views. To generalize PAE, we can concatenate more views
to both input and output layer. However, to train such
a network, we need to generalize the training objective to
handle multiple views.

The reconstruction loss terms in the objective function
can be extended in two different ways.

• Loss in reconstructing one view given all other views.

• Loss in reconstructing all the other views given one
single view.

This is application dependent and can be selected based
on the availability of the views during test time.

While calculating the correlation between the projected
representations of the parallel views, PAE uses the Pearson’s
formula for calculating the covariance. This is defined as the
second joint cumulant.

Before describing the way to generalize this cumulant to k
views, we will formally define the joint cumulants. The joint
cumulant of several random variables X1, . . . , Xk is defined
by a cumulant generating function g and consequently the
joint cumulant κ.

g(t1, t2, . . . , tk) = logE(e
∑k

j=1 tjXj ) (8)

κ(X1, . . . , Xk) =
∑
π

(|π| − 1)!(−1)|π|−1
∏
B∈π

E

(∏
i∈B

Xi

)
(9)

where π runs through the list of all partitions of {1, ..., k},
B runs through the list of all blocks of the partition π. The
kth cumulant does not directly give us a dimensionless quan-
tity for the k-PAE. But by intuition, we use the normaliza-
tion factor η, described below. Given ϑ(f(z1i )) is the vari-
ance of f(z1i ), for k variables (views), we use the ratio of the
kth cumulant to a normalization factor η, where

η =
√
ϑ(f(z1i )) · ϑ(f(z2i )) · · ·ϑ(f(zki )) (10)

as the equivalent of the correlation coefficient for k variables,
which is dimensionless.

In the original two-view PAE, the term cor(f(z1i ), f(z2i ))
can be defined in terms of joint cumulants as

cor(f(z1i ), f(z2i )) =
κ(f(z1i ), f(z2i ))√
ϑ(f(z1i )) · ϑ(f(z2i ))

(11)

Thus, for our k-PAE model, the final term in the opti-
mization function becomes

κ(f(z1i ), f(z2i ) · · · f(zki ))

η
(12)

The objective function of the k-PAE, ΦkPAE thus be-
comes,

ΦkPAE(W, bh, by) =

n∑
i=1

L(zi, g(f(z1i ))) + · · ·

+

n∑
i=1

L(zi, g(f(zki ))) +

n∑
i=1

L(zi, g(f(zi)))

−α
n∑
i=1

κ(f(z1i ), f(z2i ) · · · f(zki ))

η

(13)

In this work, we have explored the performance of this
generalized model on three views. The equations for this
are given below. Figure 2 shows the model.

Given three views,

η =
√
ϑ(f(z1i )) · ϑ(f(z2i )) · ϑ(f(z3i )) (14)

The correlation term in the end comes,

κ(f(z1i ), f(z2i ), f(z3i ))√
ϑ(f(z1i )) · ϑ(f(z2i )) · ϑ(f(z3i ))

(15)

Hence the optimization function Φ3−PAE for our three
view auto-encoder becomes,

Φ3−PAE(W, bh, by) =

n∑
i=1

L(zi, g(f(z1i ))) +

n∑
i=1

L(zi, g(f(z2i )))

+

n∑
i=1

L(zi, g(f(z3i ))) +

n∑
i=1

L(zi, g(f(zi)))

−α
n∑
i=1

κ(f(z1i ), f(z2i ), f(z3i ))

η

(16)

Figure 2: Predictive Auto-encoder for three views



4.2 kc2-PAE Model
In this subsection, we propose a second way to generalize

PAE to handle more than two views. In this approach, we
use several k-PAEs to handle multiple views. Given k views,
we construct kC2 2-PAEs one for each pair of views. Then
we learn kC2 shared representations one for each pair of
views and also train a classifier for each. Then we aggregate
the decisions of these kC2 classifiers by taking majority vot-
ing. This method for 3 views is pictorially depicted in Figure
3.

Even though this model looks like a simple extension of
PAE for k-views, in practise, this works extremely well when
compared to the k−PAE model. We will verify this in the
experiments.

Note that this model has advantage in training when com-
pared to the k-PAE model. Unlike k-PAE model, this model
does not require a parallel data which has all k views at
a time. Each of the 2-PAE model in the setting can be
trained separately with different amount of training data
and we require not more than a pair of views for each train-
ing instance. Even during testing, we can use only a set of
classifiers out of the given pool of classifiers based on the
availability of views.

5. EXPERIMENTS AND RESULTS
We initially test the performance of the two-view PAE on

traditional multiview dataset. This is to support our intu-
ition to use the PAE framework in a non-NLP setting, where
it was initially proposed. We then conduct the experiments
for the proposed models for three views.

5.1 Datasets Description

5.1.1 WebKB Dataset
This dataset consists of academic web pages collected from

computer science department web sites at four universities:
Cornell, University of Washington, University of Wisconsin,
and University of Texas. These pages can be grouped into
six classes: student, staff, faculty, department, course and
project. There are two views containing the text on the page
and the anchor text of hyperlink respectively.

For our experiment, we have extracted the instances of
two classes - course and faculty. The feature set size in each
view was the top 10k words in each set. We performed PCA
on these views for dimensionality reduction and arrived at
253 features each.

5.1.2 Amazon Multilingual Dataset
This is the dataset used in [11]. The dataset consists of

50k reviews, each in English and French. The ratings were
on a scale of 1 to 5 and each of them had 10k documents.
For our experiment, we grouped reviews with ratings 1 and
2 as negative sentiment reviews and those with 4 and 5 as
positive sentiment reviews. We used all the 50k reviews for
training the PAE as that phase is unsupervised. However,
for the actual classification, we used only these 40k reviews
i.e 20k negative class reviews and 20k positive class reviews.
The number of features in each view were 10k.

5.1.3 RCV Multilingual Dataset
The Reuters RCV Multilingual dataset consists of 6 sam-

ples of 1200 documents, balanced over 6 labels - E21, CCAT,
M11, GCAT, C15 and ECAT. Each sample is made of 5

views. The documents are present in five different lan-
guages - English, French, German, Italian and Spanish. The
documents were initially in english and they were machine-
translated to obtain the remaining four views. The features
in each view are 2000 words, selected by the k-medoids al-
gorithm.

For our experiment, we have chosen all the documents of
two classes - E21 and CCAT in three languages - English,
French and German. We thus have 1200 E21 samples and
1200 CCAT samples.

5.2 Performance on Amazon Multilingual dataset
Amazon Multilingual dataset has been used in [11] to

prove the efficiency of PAE over other cross lingual ap-
proaches in NLP like translate-and-train and translate-and-
test. In this experiment, we wanted to compare the perfor-
mance of PAE with the standard Multiview Learning ap-
proaches like co-training and Canonical Correlation Analy-
sis.

Note that this dataset is not a typical multiview learning
dataset since both the views are higly correlated. Also both
are strong views i.e each sufficient for good classification re-
sults on their own. We learnt 40 dimensional representation
for the data when using CCA and PAE. The classifier used in
all the experiments was Gaussian Naive bayes. The results
for this data set are as given in Table 1.

Table 1: Amazon Review Results - Accuracy
Model Accuracy

Canonical Correlation Analysis 0.70
Co-training 0.61

2-PAE 0.72

From the table, it is evident that PAE performs better
than co-training. CCA is close to PAE in performance. But
it is important to note that CCA is not scalable for huge data
while PAE is clearly scalable due to the usage of stochastic
gradient descent with mini-batches for training. We do not
need to load the entire data into memory at any point of
time.

5.3 Performance on the WebKB dataset
Previous experiment verified the superiority of PAE over

standard multi-view learning appraoaches in a dataset with
highly correlated views. However, in a traditional multi-
view setting, the views will be less correlated and even most
of the views will be weak.

In this experiment, we consider one such traditional multi-
view dataset - the WebKB dataset. In this experiment also,
we learnt 40 features using both CCA and PAE. The clas-
sifier used here is Decision Tree Classifier. The results for
this data set are as given in Table 2.

Table 2: WebKB results - F Measure
Model F1-measure

Canonical Correlation Analysis 0.60
Cotraining 0.57

PAE 0.68

Even in a dataset where one of the views is weak (hy-



Figure 3: 3C2 Model for three views

perlink view), it is found that PAE performs much better
than CCA and co-training. Also, the difference between the
performance of CCA and PAE is larger in this data. This
illustrates that PAE works well even with weak views.

5.4 Performance on RCV Multilingual Dataset
In the previous two experiments, we demonstrated the

performance of PAE on two view datasets. We will now
demonstrate the performance of the proposed k-PAE mod-
els with RCV Multilingual dataset. This dataset has three
views: English, German and French. We use a simple con-
catenation approach as our first baseline. Here, the features
if all the three views are concatenated to form a standard
machine learning problem with one view. We use the three-
view co-training approach as our second baseline. The third
baseline is the majority voting among k models each trained
with one of the k views.

5.4.1 3-PAE Model Results
In 3-PAE model there are a lot of ways to get the final fea-

tures that are used for classification. In the two-view PAE,
we projected the composite vector consisting of features of
both views into the shared space for the new features. This
was just plain intuition that more information would yield
better results. In this case we can either project features
of one, two or all three views to get the shared representa-
tion features for an instance. For this, we make a composite
vector of all three views and set the features of the views
we want to project to their actual values and those of the
views we don’t want to project to 0. So, the vector for only
English would be (v1e , · · · , vne , 0, · · · , 0, 0, · · · , 0) and that of
English-German would be (v1e , · · · , vne , 0, · · · , 0, v1g , · · · , vng ).
The results for all ways of projecting features of the three
languages into the shared space are tabulated. The results
for the complete projection of the features of all three lan-
guages are tabulated in the end.

It is interesting to see here that the English-German and

French-German projections performed better than the com-
plete feature projection. But we can’t attribute this to the
strength of the German features because we can see that the
German-only projection performed poorly. The results are
however not completely unexpected. The model seems to
be doing a fair job and it would be interesting to test it on
more datasets. It is observed that co-training with 3 views
performs poorly.

5.4.2 3C2 Model Results
In this experiment, we first tested for individual views.

Classifiers were built for only English, only French and only
German features. Table 4 shows the results. We then tested
for the 3C2 model. The results for the 3C2 model are also
tabulated. Rows 4,5 and 6 show the results of the two-view
PAE on each pair of languages. The majority voting for the
3C2 model was taken on the results of these three classifiers.

We can observe that the proposed model performs better
than the simple concatenation approach and those with indi-
vidual views. We have chosen these as our baseline strategies
since there are no standard algorithms for three views. We
cannot apply CCA for 3 views. However, due to the nature
of the dataset i.e being made through machine translation
rather than manually, there isn’t a great deal of extra in-
formation between views. This, we believe, has effected the
performance of the basic PAE units. Also, the dataset needs
to be bigger to enable the PAEs to learn more meaningful
shared representations.

6. CONCLUSIONS
In this work, we have explored how the Predictive Auto-

encoder introduced in [11] performs in a multiview setting.
It has performed better than two standard state-of-the-art
approaches - Co-training and CCA on the WebKB and the
Amazon reviews datasets.

We have also proposed an extension to this two-view PAE
model to cover datasets with n views. We tested the two



Table 3: Performance of 3-PAE in RCV Multilingual dataset
Model Precision Recall F1-Score

Projecting only English features 0.75 0.75 0.75
Projecting only French features 0.74 0.74 0.74

Projecting only German features 0.73 0.73 0.73
Projecting English and German features 0.78 0.78 0.77
Projecting English and French features 0.73 0.72 0.73
Projecting French and German features 0.78 0.78 0.78
Projecting features from all languages 0.75 0.75 0.75

Simple Concatenation - Baseline 1 0.77 0.77 0.77
Co-training - Baseline 2 0.59 0.59 0.58

Voting - Baseline 3 0.81 0.81 0.81

Table 4: Performance of 3C2-PAE in RCV Multilingual dataset
Model Precision Recall F1-Score

English View only 0.75 0.75 0.75
French View only 0.77 0.77 0.77

German View only 0.74 0.74 0.73
Eng-Ger Shared Representation 0.75 0.75 0.75
Eng-Fre Shared Representation 0.76 0.76 0.76
Fre-Ger Shared Representation 0.75 0.75 0.75

3C2 Model 0.82 0.82 0.82
Simple Concatenation - Baseline 1 0.77 0.77 0.77

Co-training - Baseline 2 0.59 0.59 0.58
Voting - Baseline 3 0.81 0.81 0.81

proposed approaches on a derived RCV dataset with three
views and the 3C2-PAE model performs quite well. The 3-
PAE model fared decently, but it still needs to be improved
to form a reliable method.

It would also be interesting to test the proposed n-view
PAE in the context of Natural Language Processing tasks
dealt with in [11], from where the original PAE model was
taken. Given sufficient manually processed data in multiple
languages, we could build a massive shared representation
for all the languages together. This model would then be
able to deal with any of the languages over a wide range of
applications. The shared representation would be an inter-
esting semantic space for a host of languages.
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