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Abstract

To operate effectively in complex environments
learning agents have to selectively ignore irrele-
vant details by forming useful abstractions. In
this article we outline a formulation of abstraction
for reinforcement learning approaches to stochas-
tic sequential decision problems modeled as semi-
Markov Decision Processes (SMDPs). Building on
existing algebraic approaches, we propose the con-
cept of SMDP homomorphism and argue that it
provides a useful tool for a rigorous study of ab-
straction for SMDPs. We apply this framework to
different classes of abstractions that arise in hier-
archical systems and discuss relativized options, a
framework for compactly specifying a related fam-
ily of temporally-extended actions. Additional de-
tails of this work are described in refs. [1, 2, 3].

1 Introduction

The ability to form abstractions is one of the fea-
tures that allows humans to operate effectively in
complex environments. We systematically ignore
information that we do not need for performing an
immediate task at hand. While driving, for ex-
ample, we can ignore details regarding our cloth-
ing and the state of our hair. Researchers in
artificial intelligence (AI), in particular machine
learning (ML), have long recognized that applying
computational approaches to operating and learn-
ing in complex and real-world environments re-
quires the ability to form and manipulate useful
abstractions. In this article we outline elements of
an algebraic approach to abstraction that builds
on early research on the algebraic theory of ab-
stract automata, adapting it to stochastic sequen-
tial decision problems modeled as Markov decision
processes (MDPs) and semi-Markov decision pro-
cesses (SMDPs). The latter formalism is widely

used in recent approaches to extending reinforce-
ment learning (RL) methods to hierarchical sys-
tems [4, 5, 6].

We introduce the concept of an SMDP homomor-

phism and argue that it provides a unified view of
key issues essential for a rigorous treatment of ab-
straction for stochastic dynamic decision processes.
The concept of a homomorphism between dynamic
systems, sometimes called a “dynamorphism” [7],
has played an important role in theories of abstract
automata [8], theories of modeling and simulation
[9], and is frequently used by researchers study-
ing model checking approaches to system valida-
tion [10]. Although those studying approximation
and abstraction methods for MDPs and SMDPs
have employed formalisms that implicitly embody
the idea of a homomorphism, they have not made
explicit use of the appropriate homomorphism con-
cept. We provide what we claim is the appropriate
concept and give examples of how it can be widely
useful as the basis of abstraction in stochastic dy-
namic settings. Additional details of this work are
described in refs. [1, 2, 3].

Informally, the kind of homomorphism we consider
is a mapping from one dynamic system to another
that eliminates state distinctions while preserving
the system’s dynamics. We present a definition of
homomorphism that is appropriate for SMDPs. In
ref. [2] we developed an MDP abstraction frame-
work based on MDP homomorphisms. This ex-
tended the MDP minimization framework proposed
by Dean and Givan [11] and enabled the accom-
modation of redundancies arising from symmetric
equivalence of the kind illustrated in Figure 1.

We then extend the notion of SMDP homomor-
phism to hierarchical systems. In particular, we
apply homomorphisms in the options framework
introduced by Sutton, Precup and Singh [4] to pro-
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Figure 1: (a) A symmetric gridworld problem. The
goal state is G and there are four deterministic actions.
This gridworld is symmetric about the NE-SW diago-
nal. For example, states A and B are equivalent since
for each action in A, there is an equivalent action in B.
Taking action E, say, in state A is equivalent to taking
action N in state B, in the sense that they go to equiva-
lent states that are each one step closer to the goal. (b)
An equivalent reduced model of the gridworld in (a).
The states A and B in the original problem correspond
to the single state {A, B} in the reduced problem. A
solution to this reduced gridworld can be used to derive
a solution to the full problem.

vide a formal basis for planning and learning with
temporally-extended actions. We argue that this
use of the SMDP homomorphism concept facili-
tates employing different abstractions at different
levels of a hierarchy. We also discuss relativized op-

tions, a framework for defining “option schema”.
Here an option is defined in a relative frame of ref-
erence and can be transformed to suit a particular
situation when it is invoked.

After introducing some notation (Section 2), we de-
fine SMDP homomorphisms and discuss modeling
symmetries (Section 3). Then we discuss our ap-
proach to abstraction in hierarchical systems (Sec-
tion 4) and conclude with some discussion of direc-
tions for future research (Section 5).

2 Notation

A (finite) Markov Decision Process is a tuple
〈S,A,Ψ, P,R〉, where S = {1, 2, · · · , n} is a set of
states, A is a finite set of actions, Ψ ⊆ S ×A is the
set of admissible state-action pairs, P : Ψ × S →
[0, 1] is the transition probability function with
P (s, a, s′) being the probability of transition from
state s to state s′ under action a, and R : Ψ → IR
is the expected reward function, with R(s, a) be-
ing the expected reward for performing action a in
state s. Let As = {a|(s, a) ∈ Ψ} ⊆ A denote the
set of actions admissible in state s. We assume that
for all s ∈ S, As is non-empty.

A discrete time semi-Markov decision process
(SMDP) is a generalization of an MDP in which
actions can take variable amounts of time to com-
plete. As with an MDP, an SMDP is a tuple

〈S,A,Ψ, P,R〉, where S, A and Ψ are the sets of
states, actions and admissible state-action pairs;
P : Ψ×S × IN → [0, 1] is the transition probability
function with P (s, a, s′, N) being the probability
of transition from state s to state s′ under action
a in N time steps, and R : Ψ × IN → IR is the ex-
pected discounted reward function, with R(s, a,N)
being the expected reward for performing action a

in state s and completing it in N time steps.1

A (stationary) stochastic policy, π, is a map-
ping from Ψ to the real interval [0, 1] with∑

a∈As
π(s, a) = 1 for all s ∈ S. For any (s, a) ∈ Ψ,

π(s, a) gives the probability of executing action a

in state s. The value of a state-action pair (s, a)
under policy π is the expected value of the sum
of discounted future rewards starting from state s,
taking action a, and following π thereafter. When
the SMDP has well defined terminal states, we of-
ten do not discount future rewards. In such cases
an SMDP is equivalent to an MDP and we will
ignore the transition times. The action-value func-

tion, Qπ, corresponding to a policy π is the map-
ping from state-action pairs to their values. The
solution of an MDP is an optimal policy, π?, that
uniformly dominates all other possible policies for
that MDP.

Let B be a partition of a set X. For any x ∈ X,
[x]B denotes the block of B to which x belongs.
Any function f from a set X to a set Y induces
a partition (or equivalence relation) on X, with
[x]f = [x′]f if and only if f(x) = f(x′).

3 SMDP Homomorphisms

A homomorphism from a dynamic system M to
a dynamic system M′ is a mapping that preserves
M’s dynamics, while in general eliminating some of
the details of the full system M. One can think of
M′ as a simplified model of M that is nevertheless
a valid model of M with respect to the aspect’s of
M’s state that it preserves [9]. The specific defini-
tion of homomorphism that we claim is most useful
for MDPs and SMDPs is as follows:

Definition: An SMDP homomorphism h from an
SMDP M = 〈S,A,Ψ, P,R〉 to an SMDP M′ =
〈S′, A′,Ψ′, P ′, R′〉 is a surjection from Ψ to Ψ′, de-
fined by a tuple of surjections 〈f, g1, g2, · · · , gn〉,
with h((s, a)) = (f(s), gs(a)), where f : S → S′

and gs : As → A′

f(s) for s ∈ S, such that ∀s, s′ ∈

1We are adopting the formalism of Dietterich [5].



S, a ∈ As and for all N ∈ IN:

P ′(f(s), gs(a), f(s′), N) =
∑

t∈[s′]f

P (s, a, t,N),(1)

R′(f(s), gs(a), N) = R(s, a,N). (2)

We call M′ the homomorphic image of M un-
der h, and we use the shorthand h(s, a) to denote
h((s, a)). The surjection f maps states of M to
states of M′, and since it is generally many-to-one,
it generally induces nontrivial equivalence classes
of states s of M: [s]f . Each surjection gs recodes
the actions admissible in state s of M to actions
admissible in state f(s) of M′.

This state-dependent recoding of actions is a key in-
novation of our definition, which we discuss in more
detail below. Condition (1) says that the transition
probabilities in the simpler SMDP M′ are express-
ible as sums of the transition probabilities of the
states of M that f maps to that same state in M′.
This is the stochastic version of the standard con-
dition for homomorphisms of deterministic systems
that requires that the homomorphism commutes
with the system dynamics [8]. Condition (2) says
that state-action pairs that have the same image
under h have the same expected reward. An MDP
homomorphism is similar to an SMDP homomor-
phism except that the conditions (1) and (2) apply
only to the states and actions and not to the tran-
sition times.

The state-dependent action mapping allows us
to model symmetric equivalence in MDPs and
SMDPs. For example, if h = 〈f, g1, g2, · · · , gn〉
is a homomorphism from the gridworld of Figure
1(a) to that of Figure 1(b), then f(A) = f(B)
is the state marked {A,B} in Figure 1(b). Also
gA(E) = gB(N) = E, gA(W ) = gB(S) = W , and
so on. Whereas Zinkevich and Balch [12] defined
symmetries of MDPs by employing equivalence re-
lations on the state-action pairs, we explicitly for-
malize the notion of SMDP symmetries employing
SMDP homomorphisms and group theoretic con-
cepts.

Definitions: An SMDP homomorphism h =
〈f, g1, g2, · · · , gn〉 from SMDP M = 〈S,A,Ψ, P,R〉
to SMDP M′ = 〈S′, A′,Ψ′, P ′, R′〉 is an SMDP iso-

morphism from M to M′ if and only if f and gs,
s ∈ S, are bijective. M is said to be isomorphic to
M′ and vice versa. An SMDP isomorphism from
an SMDP M to itself is an automorphism of M.

The set of all automorphisms of an SMDP M, de-
noted by AutM, forms a group under composition

of homomorphisms. This group is the symmetry

group of M. In the gridworld example of Figure 1,
the symmetry group consists of the identity map on
states and actions, a reflection of the states about
the NE-SW diagonal and a swapping of actions N
and E and of actions S and W. Any subgroup of
the symmetry group of an SMDP induces an equiv-
alence relation on Ψ, which can also be induced by
a suitably defined homomorphism [1]. Therefore
we can model symmetric equivalence as a special
case of homomorphic equivalence.

The notion of homomorphic equivalence immedi-
ately gives us an SMDP minimization framework.
In ref. [1] we extended the minimization frame-
work of Dean and Givan [11, 13] to include state-
dependent action recoding and showed that if two
state-action pairs have the same image under a
homomorphism, then they have the same optimal
value. We also showed that when M′ is a homo-
morphic image of an MDP M, a policy in M′ can
induce a policy in M that is closely related. Specif-
ically a policy that is optimal in M′ can induce an
optimal policy in M. Thus we can solve the orig-
inal MDP by solving a homomorphic image. It is
easy to extend these results to SMDP models.

While we can derive reduced models with a smaller
state set by applying minimization ideas, we do not
necessarily simplify the description of the problem
in terms of the number of parameters required. But
MDPs often have additional structure associated
with them that can be exploited to develop com-
pact representations. By specializing the definition
of SMDP homomorphism to systems whose states
are vectors of values of descriptive variables, we can
model abstraction schemes for structured MDPs.
In ref. [3] we present a simple example of such an
abstraction scheme that employs simple structured
homomorphisms. Without suitable constraints, of-
ten derived from prior knowledge of the structure
of the problem, searching for general structured ho-
momorphisms results in a combinatorial explosion.
Abstraction algorithms developed by Boutilier and
colleagues can be modeled as converging to con-
strained forms of structured morphisms assuming
various representations of the conditional probabil-
ity tables—when the space of morphisms is defined
by Boolean formulae of the features [14], when it is
defined by decision trees on the features [15], and
when it is defined by first-order logic formulae [16].

4 Abstraction in Hierarchical Systems

SMDP homomorphisms can readily be employed to
model various abstraction schemes in “flat” MDPs



and SMDPs. SMDP homomorphisms are a conve-
nient and powerful formalism for modeling abstrac-
tion schemes in hierarchical systems as well. Before
describing various abstraction approaches, we first
introduce a hierarchical architecture that supports
abstraction.

4.1 Hierarchical Markov Options

Recently several hierarchical reinforcement learn-
ing frameworks have been proposed [6, 4, 5] all
of which use the SMDP formalism. In this arti-
cle the hierarchical framework we adopt is the op-

tions framework [4], although the ideas developed
here are more generally applicable. Options are
actions that take multiple time steps to complete.
They are usually described by the following compo-
nents: the policy the agent follows while the option
is executing, the set of states in which the option
can begin execution, and a termination function,
β : S → [0, 1], which gives the probability with
which the option can terminate in each state. The
resulting system is naturally modeled as an SMDP
with the transition time distributions induced by
the option policies. We present an extension to the
options framework that readily facilitates modeling
abstraction at multiple levels of the hierarchy using
SMDP homomorphisms.

We consider the class of options known as Markov
options, whose policies satisfy the Markov property
and that terminate on achieving a certain sub-goal.
In such instances it is possible to implicitly define
the option policy as the solution to an option MDP,
or an option SMDP if the option has access to other
options, that is, if its policy can “call” other op-
tions. Accordingly we have the following definition:

Definition: A hierarchical Markov sub-goal option

of an SMDP M = 〈S,A,Ψ, P,R〉 is the tuple O =
〈MO, I, β〉, where I ⊆ S is the initiation set of the
option, β : S → [0, 1], is the termination function
and MO is the option SMDP.

The state set of MO is a subset of S and constitutes
the domain of the option. The action set of MO is
a subset of A and may contain other options as well
as “primitive” actions in A. The reward function of
MO is chosen to reflect the sub-goal of the option.
The transition probabilities of MO are induced by
P and the policies of lower level options. We as-
sume that the lower-level options are following fixed
policies which are optimal in the corresponding op-
tion SMDPs. The option policy π is obtained by
solving MO, treating it as an episodic task with
the possible initial states of the episodes given by
I and the termination of each episode determined

by the option’s termination function β.

As an example, refer to the simple gridworld task
shown in Figure 2(a). Here, an option to pick up
the object and exit room 1 can be defined as the
solution to the problem shown in 2(b), with a suit-
ably defined reward function. The domain and the
initiation set of the option consists of all the states
in the room, and the option terminates when the
agent exits the room with or without the object.

To learn with hierarchical Markov options we
may employ hierarchical SMDP Q-learning [17,
18], where the lowest levels of the hierarchy use
Q-learning and the higher levels use SMDP Q-
learning. In earlier work we showed empirically
that simultaneously learning at multiple levels of
the hierarchy converges to a recursively optimal so-
lution, i.e., a solution that is optimal given that all
the lower level solutions are recursively optimal. In
fact, it can be shown that under the usual assump-
tions on the learning rate and exploration policy,
hierarchical SMDP Q-learning with suitably de-
fined hierarchal Markov options always converges
to a recursively optimal policy, even when learning
simultaneously at all levels of the hierarchy. The
proof of this statement follows along the lines of
Dietterich [5].

4.2 Option Specific Abstraction

The homomorphism conditions (1) and (2) are very
strict and frequently we end up with trivial homo-
morphic images when deriving abstractions based
on a non-hierarchical SMDP. But it is often possible
to derive non-trivial reductions if we restrict atten-
tion to certain sub-problems, i.e., certain sub-goal
options. In such cases we can apply the ideas dis-
cussed in Section 3 to an option SMDP directly to
derive abstractions that are specific to that option.
The problem of learning the option policy is trans-
formed to the usually simpler problem of learning
an optimal policy for the homomorphic image.

Dietterich [5] introduced safe state-abstraction con-
ditions for the MaxQ architecture, a hierarchical
learning framework related to the options frame-
work. These conditions ensure that the resulting
abstractions do not result in any loss of perfor-
mance. He assumes that the sub-problems at dif-
ferent levels of the hierarchy are specified by fac-
tored MDPs. In ref. [3] we show that the homo-
morphism conditions are a generalization of Diet-
terich’s abstraction conditions as applicable to the
hierarchical Markov options framework.



4.3 Relativized Options

In this section we explore in more detail one of the
implications of employing homomorphic images as
option MDPs. Consider the problem of navigat-
ing in the gridworld environment shown in Figure
2(a). The goal is to reach the central corridor after
collecting all the objects in the environment. No
non-trivial homomorphic image exists of the entire
problem. But there are many similar components
in the problem, namely, the five sub-tasks of get-
ting the object and exiting roomi.

We can model these similar components by a “par-
tial” homomorphic image—where the homomor-
phism conditions are applicable only to states in
a given room. One such partial image is shown in
Figure 2(b). Employing such an abstraction lets
us compactly represent a related family of options,
in this case the tasks of collecting objects and ex-
iting each of the five rooms, using a single option
MDP. We refer to this compact option as a rela-

tivized option. Such abstractions are an extension
of the notion of relativized operators introduced by
Iba [19]. Formally we define a relativized option as
follows:

Definition: A relativized option of an SMDP
M = 〈S,A,Ψ, P,R〉 is the tuple O = 〈h,MO, I, β〉,
where I ⊆ S is the initiation set, β : S ′ → [0, 1] is
the termination function and h = 〈f, g1, g2, · · · , gn〉
is a partial homomorphism from the SMDP
〈S,A,Ψ, P,RO〉 to the option SMDP MO with RO

chosen based on the sub-task.

Here the state set of MO is S′ = f(SO), where
SO is the domain of the option, and the admissible
state-action set is h(Ψ). Going back to the exam-
ple in Figure 2(a), we can now define a single get-

object-and-leave-room relativized option using the
option MDP of Figure 2(b). The policy learned in
this option MDP can then be suitably lifted to M
to provide different policy fragments in the differ-
ent rooms. Figure 3 demonstrates the speed-up in
learning when using a single relativized option as
opposed to five regular options. In this experiment
the option policies and the higher level policy were
learned simultaneously. In ref. [2] we have reported
more detailed experiments in this setting.

5 Discussion

The equivalence classes induced by SMDP homo-
morphisms satisfy the stochastic version of the sub-
stitution property [8]. This property is also closely
related to lumpability in Markov chains [20] and
bisimulation homogeneity [13] in MDPs. We chose
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the SMDP homomorphism as our basic formalism
because we believe that it is a simpler notion and
provides a more intuitive explanation of various ab-
straction schemes.

The homomorphism conditions (1) and (2) are very
strict conditions that are often not met exactly in
practice. One approach is to relax the homomor-
phism conditions somewhat and allow small vari-
ations in the block transition probabilities and re-
wards. We have explored this issue in ref. [2], bas-
ing our approximate homomorphisms on the con-
cept of Bounded-parameter MDPs developed by Gi-
van, Leach and Dean [21]. We are currently work-
ing on extending approximate homomorphisms to
hierarchical systems so as to accommodate varia-
tions in transition-time distributions.

Although SMDP homomorphisms are powerful
tools for modeling abstraction, finding a minimal
image of a given SMDP is an NP-hard problem.
While taking advantage of structure allows us to



develop efficient algorithms in special cases, much
work needs to be done to develop efficient general
purpose algorithms. Currently we are investigat-
ing methods that allow us to determine homomor-
phisms given a set of candidate transformations in
a hierarchical setting.

In this article we described a novel definition
of SMDP homomorphism that employs state-
dependent recoding of actions. This allows us to ex-
tend existing minimization and abstraction meth-
ods to a richer class of problems. We then described
how this formulation of abstraction can be useful
in the construction of hierarchical learning archi-
tectures. We believe that SMDP homomorphism
can serve as the basis for modeling a variety of ab-
straction paradigms.
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