
C3 Reinforcement LearningS. Sathiya Keerthi1 and B. Ravindran2Department of Computer Science and AutomationIndian Institute of Science, BangaloreAbstractThis chapter gives a compact, self{contained tutorial survey of reinforcement learn-ing, a tool that is increasingly �nding application in the development of intelligentdynamic systems. Research on reinforcement learning during the past decade has led tothe development of a variety of useful algorithms. This chapter surveys the literatureand presents the algorithms in a cohesive framework.C3.1 IntroductionReinforcement Learning (RL), a term borrowed from animal learning literature by Min-sky (1954, 1961), refers to a class of learning tasks and algorithms in which the learningsystem learns an associative mapping, � : X ! A by maximizing a scalar evaluation (re-inforcement) of its performance from the environment (user). Compared to supervisedlearning, in which for each x shown the environment provides the learning system with thevalue of �(x), RL is more di�cult since it has to work with much less feedback from theenvironment. If, at some time, given an x 2 X , the learning system tries an a 2 A and,the environment immediately returns a scalar reinforcement evaluation of the (x; a) pair(that indicates how far a is from �(x)) then we are faced with an immediate RL task. Amore di�cult RL task is delayed RL, in which the environment only gives a single scalarreinforcement evaluation, collectively for f(xt; at)g, a sequence of (x; a) pairs occuring intime during the system operation. Delayed RL tasks commonly arise in optimal control ofdynamic systems and planning problems of AI. In this chapter our main interest is in thesolution of delayed RL problems. However, we also study immediate RL problems becausemethods of solving them play an useful role in the solution of delayed RL problems.Delayed RL encompasses a diverse collection of ideas having roots in animal learning(Barto 1985; Sutton & Barto 1987), control theory (Bertsekas 1989; Kumar 1985), and AI(Dean & Wellman 1991). Delayed RL algorithms were �rst employed by Samuel (1959,1967) in his celebrated work on playing checkers. However, it was only much later, afterthe publication of Barto, Sutton and Anderson's work (Barto et al 1983) on a delayed RLalgorithm called adaptive heuristic critic and its application to the control problem of polebalancing, that research on RL got o� to a 
ying start. Watkins' Q-Learning algorithm(Watkins 1989) made another impact on the research. A number of signi�cant ideas haverapidly emerged during the past �ve years and the �eld has reached a certain level ofmaturity. In this chapter we provide a comprehensive tutorial survey of various ideas andmethods of delayed RL. To avoid distractions and unnecessary clutter of notations, wepresent all ideas in an intuitive, not-so-rigorous fashion. In preparing this tutorial, we have1e-mail: ssk@chanakya.csa.iisc.ernet.in2e-mail: ravi@chanakya.csa.iisc.ernet.in 1
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Figure 1. Navigating in a grid world.obtained a lot of guidance from the works of Watkins (1989), Barto, Sutton and Watkins(1990), Barto, Bradtke and Singh (1992), Bradtke (1994), and Barto (1992).To illustrate the key features of a delayed RL task let us consider a simple example.Example 1 Navigating a RobotFigure 1 illustrates a grid world in which a robot navigates. Each blank cell on the gridis called a state. Shaded cells represent barriers; these are not states. Let X be the statespace, i.e., the set of states. The cell marked G is the goal state. The aim is to reach Gfrom any state in the least number of time steps. Navigation is done using four actions:A = fN; S;E;Wg, the actions denoting the four possible movements along the coordinatedirections.Rules of transition are de�ned as follows. Suppose that the robot is in state x and actionN is chosen. Then the resulting next state, y is the state directly to the north of x, if thereis such a state; otherwise y = x. For instance, choosing W at the x shown in �gure 1 willlead to the system staying at x. The goal state is a special case. By de�nition we will takeit that any action taken from the goal state results in a transition back to the goal state.In more general problems, the rules of transition can be stochastic.The robot moves at discrete (integer) time points starting from t = 0. At a time step t,when the robot is at state, xt, we de�ne an immediate reward3 asr(xt) = ( 0 if xt = G;�1 otherwise:3Sometimes r is referred to as the primary reinforcement. In more general situations, r is a function ofxt as well as at, the action at time step t. 2



In e�ect, the robot is penalized for every time step spent at non-goal states. It is simple toverify that maximizing the total reward over time,V (x) = 1Xt=0 r(xt)is equivalent to achieving minimum time navigation from the starting state, x0 = x. LetV ?(x) denote the maximum achievable (optimal) value of V (x).We are interested in �nding a feedback policy, � : X ! A such that, if we start from anystarting state and select actions using � then we will always reach the goal in the minimumnumber of time steps.The usefulness of immediate RL methods in delayed RL can be roughly explained asfollows. Typical delayed RL methods maintain V̂ , an approximation of the optimal function,V ?. If action a is performed at state x and state y results, then V̂ (y) can be taken asan (approximate) immediate evaluation of the (x; a) pair.4 By solving an immediate RLproblem that uses this evaluation function we can obtain a good sub{optimal policy for thedelayed RL problem. We present relevant immediate RL algorithms in xC3.2. 2Delayed RL problems are much harder to solve than immediate RL problems for thefollowing reason. Suppose, in example 1, performance of a sequence of actions, selectedaccording to some policy, leads the robot to the goal. To improve the policy using theexperience, we need to evaluate the goodness of each action performed. But the totalreward obtained gives only the cumulative e�ect of all actions performed. Some schememust be found to reasonably apportion the cumulative evaluation to the individual actions.This is referred to as the temporal credit assignment problem. (In the previous paragraphwe have already given a hint of how delayed RL methods do temporal credit assignment.)Dynamic programming (DP) (Bertsekas 1989; Ross 1983) is a well{known tool for solvingproblems such as the one in example 1. It is an o�{line method that requires the availabilityof a complete model of the environment. But the concerns of delayed RL are very di�erent.To see this clearly let us return to example 1 and impose the requirement that the robot hasno knowledge of the environment and that the only way of learning is by on{line experienceof trying various actions5 and thereby visiting many states. Delayed RL algorithms areparticularly meant for such situations and have the following general format.Delayed RL AlgorithmInitialize the learning system.Repeat1. With the system at state x, choose an action a according to an exploration policy andapply it to the system.2. The environment returns a reward, r, and also yields the next state, y.4An optimal action at x is one that gives the maximum value of V ?(y).5During learning this is usually achieved by using a (stochastic) exploration policy for choosing actions.Typically the exploration policy is chosen to be totally random at the beginning of learning and made toapproach an optimal policy as learning nears completion.3



3. Use the experience, (x; a; r; y) to update the learning system.4. Set x := y.Even when a model of the environment is available, it is often advantageous to avoidan o�{line method such as DP and instead use a delayed RL algorithm. This is because,in many problems the state space is very large; while a DP algorithm operates with theentire state space, a delayed RL algorithm only operates on parts of the state space that aremost relevant to the system operation. When a model is available, delayed RL algorithmscan employ simulation mode of operation instead of on{line operation so as to speed{uplearning and avoid doing experiments using hardware. In this chapter, we will use the term,real time operation to mean that either on{line operation or simulation mode of operationis used.In most applications, representing functions such as V ? and � exactly is infeasible. Abetter alternative is to employ parametric function approximators, e.g., neural networks.Such approximators must be suitably chosen for use in a delayed RL algorithm. To clarifythis, let us take V ? for instance and consider a function approximator, V̂ (�;w) : X ! R, forit. Here R denotes the real line and w denotes the vector of parameters of the approximatorthat is to be learnt so that V̂ approximates V ? well. Usually, at step 3 of the delayed RLalgorithm, the learning system uses the experience to come up with a direction, � in whichV̂ (x;w) has to be changed for improving performance. Given a step size, �, the functionapproximator must alter w to a new value, wnew so thatV̂ (x;wnew) = V̂ (x;w) + �� (1)For example, in multilayer perceptrons (Hertz et al 1991, Haykin 1994) w denotes the setof weights and thresholds in the network and, their updating can be carried out usingbackpropagation so as to achieve (1). In the rest of the chapter we will denote the updatingprocess in (1) as V̂ (x;w) := V̂ (x;w) + �� (2)and refer to it as a learning rule.The chapter is organized as follows. Section 2 discusses immediate RL. In xC3.3 weformulate Delayed RL problems and mention some basic results. Methods of estimatingtotal reward are discussed in xC3.4. These methods play an important role in delayed RLalgorithms. DP techniques and delayed RL algorithms are presented in xC3.5. Section C3.6addresses various practical issues. We make a few concluding remarks in xC3.7.C3.2. Immediate Reinforcement LearningImmediate RL refers to the learning of an associative mapping, � : X!A given areinforcement evaluator. To learn, the learning system interacts in a closed loop with theenvironment. At each time step, the environment chooses an x 2 X and, the learning systemuses its function approximator, �̂(�;w) to select an action: a = �̂(x;w). Based on both xand a, the environment returns an evaluation or \reinforcement", r(x; a) 2 R. Ideally, thelearning system has to adjust w so as to produce the maximum possible r value for each x;in other words, we would like �̂ to solve the parametric global optimization problem,r(x; �̂(x;w)) = r?(x) def= maxa2A r(x; a) 8x 2 X (3)4



Supervised learning is a popular paradigm for learning associative mappings (Hertz etal 1991, Haykin 1994). In supervised learning, for each x shown the supervisor provides thelearning system with the value of �(x). Immediate RL and supervised learning di�er in thefollowing two important ways.� In supervised learning, when an x is shown and the supervisor provides a = �(x), thelearning system forms the directed information, � = a� �̂(x;w) and uses the learningrule: �̂(x;w) := �̂(x;w) + ��, where � is a small (positive) step size. For immediateRL such directed information in not available and so it has to employ some strategyto obtain such information.� In supervised learning, the learning system can simply check if � = 0 and hence decidewhether the correct map value has been formed by �̂ at x. However, in immediateRL, such a conclusion on correctness cannot be made without exploring the values ofr(x; a) for all a.Therefore, immediate RL problems are much more di�cult to solve than supervised learningproblems.A number of immediate RL algorithms have been described in the literature. Stochasticlearning automata algorithms (Narendra & Thathachar 1989) deal with the special case inwhich X is a singleton, A is a �nite set, and r 2 [0; 1]. The Associative Reward-Penalty(AR�P ) algorithm (Barto & Anandan 1985; Barto et al 1985; Barto & Jordan 1987; Mazzoniet al 1990) extends the learning automata ideas to the case where X is a �nite set. Williams(1986, 1987) has proposed a class of immediate RL methods and has presented interestingtheoretical results. Gullapalli (1990, 1992a) has developed algorithms for the general casein which X , A are �nite-dimensional real spaces and r is real valued. Here we will discussonly algorithms which are most relevant to, and useful in delayed RL.One simple way of solving (3) is to take one x at a time, use a global optimizationalgorithm (e.g., complete enumeration) to explore the A space and obtain the correct afor the given x, and then make the function approximator learn this (x; a) pair. However,such an idea is not used for the following reason. In most situations where immediateRL is used as a tool (e.g., to approximate a policy in delayed RL), the learning systemhas little control over the choice of x. When, at a given x, the learning system chooses aparticular a and sends it to the environment for evaluation, the environment not only sendsa reinforcement evaluation but also alters the x value. Immediate RL seeks approacheswhich are appropriate to these situations.Let us �rst consider the case in which A is a �nite set: A = fa1; a2; � � � ; amg. Let Rmdenote the m{dimensional real space. The function approximator, �̂ is usually formed asa composition of two functions: a function approximator, g(�;w) : X!Rm and a �xedfunction, M : Rm!A. The idea behind this set-up is as follows. For each given x, z =g(x;w) 2 Rm gives a vector of merits of the various ai values. Let zk denote the k{thcomponent of z. Given the merit vector z, a = M(z) is formed by the max selector,a = ak where zk = max1�i�m zi (4)Let us now come to the issue of learning (i.e., choosing a w). At some stage, let x bethe input, z be the merit vector returned by g, and ak be the action having the largest5



merit value. The environment returns the reinforcement, r(x; ak). In order to learn we needto evaluate the goodness of zk (and therefore, the goodness of ak). Obviously, we cannotdo this using existing information. We need an estimator, call it r̂(x; v), that provides anestimate of r?(x). The di�erence, r(x; ak)� r̂(x; v) is a measure of the goodness of ak. Thena simple learning rule isgk(x;w) := gk(x;w) + �(r(x; ak)� r̂(x; v)) (5)where � is a small (positive) step size. If r̂(�; v)� r? and (5) is repeated a number of timesfor each (x; k) combination, then it should be clear that all non{optimal aks will get largenegative merit values while an optimal ak will retain its initial merit value.Learning r̂ requires that all members of A are evaluated by the environment at each x.Clearly, the max selector, (4) is not suitable for such exploration. For instance, if at somestage of learning, for some x, g assigns the largest merit to a wrong action, say ak, and r̂gives, by mistake, a value smaller than r(x; ak), then no action other than ak is going to begenerated by the learning system at the given x. So we replace (4) by a controlled stochasticaction selector that generates actions randomly when learning begins and approaches (4)as learning is completed. A popular stochastic action selector is based on the Boltzmanndistribution, pi(x) def= Probfa = aijxg = exp(zi=T )Pj exp(zj=T ) (6)where T is a nonnegative real parameter (temperature) that controls the stochasticity ofthe action selector. For a given x the expected reinforcement of the action selector is~r(x) def= E(r(x; a)jx) =Xi pi(x)r(x; ai)As T!0 the stochastic action selector approaches the max selector, (4), and,~r(x)!r?(x). The ideas here are somewhat similar to those of simulated annealing. Thereforewe train r̂ to approximate ~r (instead of r?). This is easy to do because, for any �xed valueof T , ~r can be estimated by the average of the performance of the stochastic action selectorover time. A simple learning rule that achieves this isr̂(x; v) := r̂(x; v) + �(r(x; a)� r̂(x; v)) (7)where � is a small (positive) step size.Remark Two important comments should be made regarding the convergence of learn-ing rules such as (7) (we will come across many such learning rules later) which are designedto estimate an expectation by averaging over time.� Even if r̂(�; v) � ~r, r(x; a) � r̂(x; v) can be non-zero and even large in size. This isbecause a is only an instance generated by the distribution, p(x). Therefore, to avoidunlearning as r̂ comes close to ~r, the step size, � must be controlled properly. Thevalue of � may be chosen to be slightly smaller than 1 when learning begins, and thenslowly decreased to 0 as learning progresses.6



� For good learning to take place, the sequence of x values at which (7) is carried outmust be such that it covers all parts of the space, X as often as possible. Of course,when the learning system has no control over the choice of x, it can do nothing toachieve such an exploration. To explore, the following is usually done. Learning isdone over a number of trials. A trial consists of beginning with a random choiceof x and operating the system for several time steps. At any one time step, thesystem is at some x and the learning system chooses an action, a and learns using(7). Depending on x, a and the rules of the environment a new x results and the nexttime step begins. Usually, when learning is repeated over multiple trials, the X spaceis thoroughly explored.Let us now consider the case in which A is continuous, say a �nite dimensional realspace. The idea of using merit values is not suitable. It is better to directly deal with afunction approximator, h(�;w) fromX to A. In order to do exploration a controlled randomperturbation, � is added to h(x;w) to form a = �̂(x). A simple choice is to take � to be aGaussian with zero mean and having a standard deviation, �(T ) that satis�es: �(T )!0 asT!0. The setting-up and training of the reinforcement estimator, r̂ is as in the case whenA is discrete. The function approximator, h can adopt the following learning rule:h(x;w) := h(x;w) + �(r(x; a)� r̂(x; v))� (8)where � is a small (positive) step size. In problems where a bound on r? is available, thisbound can be suitably employed to guide exploration, i.e., to choose � (Gullapalli 1990).Jordan and Rumelhart (1990) have suggested a method of `forward models' for con-tinuous action spaces. If r is a known di�erentiable function, then a simple, deterministiclearning law based on gradient ascent can be given to update �̂:�̂(x;w) := �̂(x;w) + �@r(x; a)@a (9)If r is not known, Jordan and Rumelhart suggest that it is learnt using on{line data, and(9) be used using this learnt r. If for a given x, the function r(x; �) has local maximathen the �̂(x) obtained using learning rule, (9) may not converge to �(x). Typically thisis not a serious problem. The stochastic approach discussed earlier does not su�er fromlocal maxima problems. However, we should add that, because the deterministic methodexplores in systematic directions and the stochastic method explores in random directions,the former is expected to be much faster. The comparison is very similar to the comparisonof deterministic and stochastic techniques of continuous optimization.C3.3. Delayed Reinforcement LearningDelayed RL concerns the solution of stochastic optimal control problems. In this sectionwe formulate and discuss the basics of such problems. Solution methods for delayed RL willbe presented in xC3.4 and xC3.5. In these three sections we will mainly consider problemsin which the state and control spaces are �nite sets. This is because the main issues andsolution methods of delayed RL can be easily explained for such problems. We will dealwith continuous state and/or action spaces brie
y in xC3.5.7



Consider a discrete-time stochastic dynamic system with a �nite set of states, X . Letthe system begin its operation at t = 0. At time t the agent (controller) observes state6 xtand, selects (and performs) action at from a �nite set, A(xt), of possible actions. Assumethat the system is Markovian and stationary, i.e.,Probfxt+1 = y j x0; a0; x1; a1; � � � ; xt = x; at = ag= Probfxt+1 = yjxt = x; at = ag def= Pxy(a)A policy is a method adopted by the agent to choose actions. The objective of thedecision task is to �nd a policy that is optimal according to a well de�ned sense, describedbelow. In general, the action speci�ed by the agent's policy at some time can depend onthe entire past history of the system. Here we restrict attention to policies that specifyactions based only on the current state of the system. A deterministic policy, � de�nes,for each x 2 X an action �(x) 2 A(x). A stochastic policy, � de�nes, for each x 2 Xa probability distribution on the set of feasible actions at x, i.e., it gives the values ofProbf�(x) = ag for all a 2 A(x). For the sake of keeping the notations simple we consideronly deterministic policies in this section. All ideas can be easily extended to stochasticpolicies using appropriate detailed notations.Let us now precisely de�ne the optimality criterion. While at state x, if the agentperforms action a, it receives an immediate payo� or reward, r(x; a). Given a policy � wede�ne the value function, V � : X!R as follows:7V �(x) = Ef 1Xt=0 
tr(xt; �(xt))jx0 = xg (10)Here future rewards are discounted by a factor 
 2 [0; 1). The case 
 = 1 is avoidedonly because it leads to some di�culties associated with the existence of the summation in(10). Of course, these di�culties can be handled by putting appropriate assumptions onthe problem solved. But, to avoid unnecessary distraction we do not go into the details; see(Bradtke 1994; Bertsekas & Tsitsiklis 1989).The expectation in (10) should be understood asV �(x) = limN!1 EfN�1Xt=0 
tr(xt; �(xt))jx0 = xgwhere the probability with which a particular state sequence, fxtgN�1t=0 occurs is taken in anobvious way using x0 = x and repeatedly employing � and P . We wish to maximize thevalue function: V ?(x) = max� V �(x) 8x (11)6If the state is not completely observable then a method that uses the observable states and retains pastinformation has to be used; see (Bacharach 1991; Bacharach 1992; Chrisman 1992; Mozer & Bacharach1990a, 1990b; Whitehead and Ballard 1990). See Jaakkola, Singh and Jordan 1995, and Singh, Jaakkolaand Jordan 1994, for a direct treatment of partially observable Markovian decision processes.7Most RL researchers have concerned themselves with the optimization of the expected total discountedreward in (10). See Hager 1994, for a discussion of an alternative objective function: the minimax criterion.8



V ? is referred to as the optimal value function. Because 0 � 
 < 1, V �(x) is bounded.Also, since the number of �'s is �nite V ?(x) exists.How do we de�ne an optimal policy, �?? For a given x let �x;? denote a policy thatachieves the maximum in (11). Thus we have a collection of policies, f�x;? : x 2 Xg. Now�? is de�ned by picking only the �rst action from each of these policies:�?(x) = �x;?(x) ; x 2 XIt turns out that �? achieves the maximum in (11) for every x 2 X . In other words,V ?(x) = V �?(x) ; x 2 X (12)This result is easy to see if one looks at Bellman's optimality equation { an importantequation that V ? satis�es:V ?(x) = maxa2A(x)24r(x; a) + 
 Xy2X Pxy(a)V ?(y)35 (13)The fact that V ? satis�es (13) can be explained as follows. The term within square bracketson the right hand side is the total reward that one would get if action a is chosen at the�rst time step and then the system performs optimally in all future time steps. Clearly, thisterm cannot exceed V ?(x) since that would violate the de�nition of V ?(x) in (11); also, ifa = �x;?(x) then this term should equal V ?(x). Thus (13) holds. It also turns out that V ?is the unique function from X to R that satis�es (13) for all x 2 X . This fact, however,requires a non-trivial proof; details can be found in (Ross 1983; Bertsekas 1989; Bertsekas& Tsitsiklis 1989).The above discussion also yields a mechanism for computing �? if V ? is known:�?(x) = arg maxa2A(x)24r(x; a) + 
Xy2X Pxy(a)V ?(y)35A di�culty with this computation is that the system model, i.e., the function, Pxy(a) mustbe known. This di�culty can be overcome if, instead of the V {function we employ anotherfunction called the Q-function. Let U = f(x; a) : x 2 X; a 2 A(x)g, the set of feasible(state,action) pairs. For a given policy �, let us de�ne Q� : U!R byQ�(x; a) = r(x; a) + 
 Xy2X Pxy(a)V �(y) (14)Thus Q�(x; a) denotes the total reward obtained by choosing a as the �rst action and thenfollowing � for all future time steps. Let Q? = Q�? . By Bellman's optimality equation and(12) we get V ?(x) = maxa2A(x)[Q?(x; a)] (15)It is also useful to rewrite Bellman's optimality equation using Q? alone:Q?(x; a) = r(x; a) + 
Xy2X Pxy(a)fmaxb2A(y)Q?(y; b)g (16)9



Using Q? we can compute �?: �?(x) = arg maxa2A(x)[Q?(x; a)] (17)Thus, if Q? is known then �? can be computed without using a system model. This advan-tage of the Q{function over the V {function will play a crucial role in xC3.5 for deriving amodel{free delayed RL algorithm called Q{Learning (Watkins 1989).Let us now consider a few examples that give useful hints for problem formulation.These examples are also commonly mentioned in the RL literature.Example 2 Navigating a Robot with DynamicsIn example 1 the robot is moved from one cell to another like the way pieces are movedin a chess board. True robot motions, however, involve dynamics; the e�ects of velocity andacceleration need to be considered. In this example we will include dynamics in a crudeway, one that is appropriate to the grid world. Let ht and vt denote the horizontal andvertical coordinates of the cell occupied by the robot at time t, and, _ht and _vt denote thevelocities. The vector, (ht; vt; _ht; _vt) denotes the system state at time t; each one of thefour components is an integer. The goal state is xG = (hG; vG; 0; 0) where (hG; vG) is thecoordinate vector of the goal cell G. In other words, the robot has to come to rest at G.Let _hmax and _vmax be limits on velocity magnitudes. Thus the state space is given by~X = fx = (h; v; _h; _v)j (h; v) is a blank cell;j _hj � _hmax; and j _vj � _vmaxgWe will also include an extra state, f called failure state to denote situations where a barrier(shaded) cell is entered or a velocity limit is exceeded. ThusX = ~X [ ffgThe accelerations 8 along the horizontal and vertical directions, respectively ah and av,are the actions. To keep h and v as integers let us assume that each of the accelerationstakes only even integer values. Let amax be a positive even integer that denotes the limiton the magnitude of accelerations. Thus a = (ah; av) is an admissible action if each of ahand av is an even integer lying in [�amax; amax].As in example 1 state transitions are deterministic. They are de�ned as follows. Ifbarrier cells and velocity limits are not present, then application of action (ah; av) at xt =(ht; vt; _ht; _vt) will lead to the next state x0t+1 = (h0t+1; v0t+1; _h0t+1; _v0t+1) given byh0t+1 = ht + _ht + ah=2 ; v0t+1 = vt + _vt + av=2_h0t+1 = _ht + ah ; _v0t+1 = _vt + avLet C denote the curve in the grids world resulting during the transition from (ht; vt) at timet to (h0t+1; v0t+1) at time (t+1), i.e., the solution of the di�erential equations: d2h=d�2 = ah,d2v=d�2 = av, � 2 [t; t + 1], h(t) = ht, dh=d� j� = _ht, v(t) = vt, dv=d� j� = _vt. If, either8Negative acceleration will mean deceleration. 10



C cuts across a barrier cell or ( _h0t+1; _v0t+1) is an inadmissible velocity vector, then we sayfailure has occured during transition. Thus state transitions are de�ned asxt+1 = 8>>><>>>: f if xt = ff if failure occurs during transitionxG if xt = xGx0t+1 otherwiseThe primary aim is to avoid failure. Next, among all failure-avoiding trajectories wewould like to choose the trajectory which reaches the goal state, xG = (hG; vG; 0; 0) in asfew time steps as possible. These aims are met if we de�ner(x; a) = 8><>: �1 if x = f;1 if x = xG;0 otherwise:The following can be easily checked.� V ?(x) < 0 i� there does not exist a trajectory starting from x that avoids failure.� V ?(x) = 0 i�, starting from x, there exists a failure-avoiding trajectory, but theredoes not exist a trajectory that reaches G.� V ?(x) > 0 i�, starting from x, there exists a failure-avoiding trajectory that alsoreaches G; also, an optimal policy �? leads to the generation of a trajectory thatreaches G in the fewest number of steps from x while avoiding failure. 2Example 3 Playing BackgammonConsider a game of backgammon (Magriel 1976) between players A and B. Let us lookat the game from A's perspective, assuming that B follows a �xed policy. Now A can makea decision on a move only when the current board pattern as well as its dice roll are known.Therefore a state consists of a (board pattern, dice roll) pair. Each action consists of a setof marker movements. State transition is de�ned as follows.� A moves its markers in accordance with the chosen action. This step is deterministic,and results in a new board pattern.� B rolls the dice. This step is stochastic.� B moves its markers according to its policy. This step can be deterministic or stochas-tic depending on the type of B's policy.� A rolls the dice. This step is stochastic.The set of states that correspond to A's win is the set of goal states, G to be reached.We can de�ne the reward as: r(x; a) = 1 if x is a goal state; and r(x; a) = 0 otherwise. If
 = 1, then for a given policy, say �, the value function V �(x) will denote the probabilitythat A will win from that state. 211
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hFigure 2. Pole balancing.Example 4 Pole BalancingWe now deviate from our problem formulation and present an example that involvescontinuous state/action spaces. A standard problem for learning controllers is that ofbalancing an inverted pendulum pivoted on a trolley, a problem similar to that of balancinga stick on one's hand (Barto et al 1983). The system comprises a straight horizontal track,like a railway track, with a carriage free to move along it. On the carriage is an axis,perpendicular to the track and pointing out to the side, about which a pendulum is freeto turn. The controller's task is to keep the pendulum upright, by alternately pulling andpushing the carriage along the track. Let h and � be as shown in �gure 2. We say balancinghas failed if anyone of the following inequalities is violated:h � hmax; h � �hmax; � � �max; � � ��maxwhere hmax and �max are speci�ed bounds on the magnitudes of h and �. The aim is tobalance without failure for as long a time as possible.The state of the system is the 4{tuple, (h; _h; �; _�), where _h and _� are the time derivativesof h and � respectively. The action is the force applied to the carriage. It takes real values inthe interval, [�Fmax; Fmax]. To simplify the problem solution, sometimes the action spaceis taken to be f�Fmax; Fmaxg (Michie & Chambers 1968; Barto et al 1983; Anderson 1989).A discrete time formulation of the problem is obtained by cutting continuous time (non-negative real line) into uniform time intervals, each of duration �, and taking the appliedforce to be constant within each interval.9 The state of the system at the continuous time9This constant is the action for the time step corresponding to that interval.12



instant, t� is taken to be xt, the discrete time state at the t{th time step. The mechanicaldynamics of the system de�nes state transition, except for one change: once failure occurs,we will assume, for the sake of consistent problem formulation, that the system stays atfailure for ever.As in example 2 we will take the state space to be X = ~X [ ffg, where~X = fx = (h; _h; �; _�)j � hmax � h � hmax; ��max � � � �maxgand f is the failure state that collectively represents all states not in ~X. Since the aim isto avoid failure, we choose r(x; a) = ( �1 if x = f;0 otherwise: 2C3.4. Methods of Estimating V � and Q�Delayed RL methods use a knowledge of V � (Q�) in two crucial ways: (1) the optimalityof � can be checked by seeing if V � (Q�) satis�es Bellman's optimality equation; and (2)if � is not optimal then V � (Q�) can be used to improve �. We will elaborate on thesedetails in the next section. In this section we discuss, in some detail, methods of estimatingV � for a given policy, �. (Methods of estimating Q� are similar and so we will deal withthem brie
y at the end of the section.) Our aim is to �nd V̂ (�; v), a function approximatorthat estimates V �. Much of the material in this section is taken from the works of Watkins(1989), Sutton (1984, 1988) and Jaakkola et al (1994).To avoid clumsiness we employ some simplifying notations. Since � is �xed we will omitthe superscript from V � and so call it as V . We will refer to r(xt; �(xt)) simply as rt. If p isa random variable, we will use p to denote both, the random variable as well as an instanceof the random variable.A simple approximation of V (x) is the n{step truncated return,V [n](x) = n�1X�=0 
�r� ; V̂ (x; v) = E(V [n](x)) (18)(Here it is understood that x0 = x. Thus, throughout this section � will denote the numberof time steps elapsed after the system passed through state x. It is for stressing this pointthat we have used � instead of t. In a given situation, the use of time { is it `actual systemtime' or `time relative to the occurence of x' { will be obvious from the context.) If rmax isa bound on the size of r then it is easy to verify thatmaxx jV̂ (x; v)� V (x)j � 
nrmax(1� 
) (19)Thus, as n!1, V̂ (x; v) converges to V (x) uniformly in x.But (18) su�ers from an important drawback. The computation of the expectationrequires the complete enumeration of the probability tree of all possible states reachable in13



n time steps. Since the breadth of this tree may grow very large with n, the computationscan become very burdensome. One way of avoiding this problem is to setV̂ (x; v) = V [n](x) (20)where V [n](x) is obtained via either Monte-Carlo simulation or experiments on the realsystem (the latter choice is the only way to systems for which a model is unavailable.)The approximation, (20) su�ers from a di�erent drawback. Because the breadth of theprobability tree grows with n, the variance of V [n](x) also grows with n. Thus V̂ (x; v) in(20) will not be a good approximation of E(V [n](x)) unless it is obtained as an average overa large number of trials.10 Averaging is achieved if we use a learning rule (similar to (7)):V̂ (x; v) := V̂ (x; v) + � hV [n](x)� V̂ (x; v)i (21)where � is a small (positive) step size. Learning can begin with a random choice of v.Eventually, after a number of trials, we expect the V̂ resulting from (21) to satisfy (19).In the above approach, an approximation of V , V̂ is always available. Therefore, anestimate that is more appropriate than V [n](x) is the corrected n{step truncated return,V (n)(x) = n�1X�=0 
�r� + 
nV̂ (xn; v) (22)where xn is the state that occurs n time steps after the system passed through state x. Letus do some analysis to justify this statement.First, consider the ideal learning rule,V̂ (x; v) := E(V (n)(x)) 8 x (23)Suppose v gets modi�ed to vnew in the process of satisfying (23). Then, similar to (19) wecan easily derive maxx jV̂ (x; vnew)� V (x)j � 
nmaxx jV̂ (x; v)� V (x)jThus, as we go through a number of learning steps we achieve V̂!V . Note that thisconvergence is achieved even if n is �xed at a small value, say n = 1. On the other hand,for a �xed n, the learning rule based on V [n], i.e., (18), is only guaranteed to achieve thebound in (19). Therefore, when a system model is available it is best to choose a small n,say n = 1, and employ (23).Now suppose that, either a model is unavailable or (23) is to be avoided because it isexpensive. In this case, a suitable learning rule that employs V (n) and uses real{time datais: V̂ (x; v) := V̂ (x; v) + � hV (n)(x)� V̂ (x; v)i (24)Which is better: (21) or (24)? There are two reasons as to why (24) is better.10As already mentioned, a trial consists of starting the system at a random state and then running thesystem for a number of time steps. 14



� Suppose V̂ is a good estimate of V . Then a small n makes V (n) ideal: V (n)(x) has amean close to V (x) and it also has a small variance. Small variance means that (24)will lead to fast averaging and hence fast convergence of V̂ to V . On the other handn has to be chosen large for V [n](x) to have a mean close to V (x); but then, V [n](x)will have a large variance and (21) will lead to slow averaging.� If V̂ is not a good estimate of V then both V (n) and V [n] will require a large n fortheir means to be good. If a large n is used, the di�erence between V (n) and V [n], i.e.,
nV̂ is negligible and so both (21) and (24) will yield similar performance.The above discussion implies that it is better to employ V (n) than V [n]. It is also clearthat, when V (n) is used, a suitable value of n has to be chosen dynamically according tothe goodness of V̂ . To aid the manipulation of n, Sutton (1988) suggested a new estimateconstructed by geometrically averaging fV (n)(x) : n � 1g:V �(x) = (1� �) 1Xn=1�n�1V (n)(x) (25)Here (1� �) is a normalizing term. Sutton referred to the learning algorithm that uses V �as TD(�). Here TD stands for `Temporal Di�erence'. The use of this name will be justi�edbelow. Expanding (25) using (22) we getV �(x) = (1� �) �V (1)(x) + �V (2)(x) + �2V (3)(x) + � � ��= r0 + 
(1� �)V̂ (x1; v) +
� hr1 + 
(1� �)V̂ (x2; v) +
� hr2 + 
(1� �)V̂ (x3; v) +� � � (26)Using the fact that r0 = r(x; �(x)) the above expression may be rewritten recursively asV �(x) = r(x; �(x))+ 
(1� �)V̂ (x1; v) + 
�V �(x1) (27)where x1 is the state occuring a time step after x. Putting � = 0 gives V 0 = V (1) andputting � = 1 gives V 1 = V , which is the same as V (1). Thus, the range of values obtainedusing V (n) and varying n from 1 to 1 is approximately achieved by using V � and varying� from 0 to 1. A simple idea is to use V � instead of V (n), begin the learning process with� = 1, and reduce � towards zero as learning progresses and V̂ becomes a better estimateof V . If � is properly chosen11 then a signi�cant betterment of computational e�ciency isusually achieved when compared to simply using � = 0 or � = 1 (Sutton 1988). In a recentpaper, Sutton and Singh (1994) have developed automatic schemes for doing this assumingthat no cycles are present in state trajectories.The de�nition of V � involves all V (n)s and so it appears that we have to wait for ever tocompute it. However, computations involving V � can be nicely rearranged and then suitablyapproximated to yield a practical algorithm that is suited for doing learning concurrently11For example, if the underlying dynamic system is deterministic then a value of � close to 1 is appropriate;on the other hand, if the system is highly stochastic then a value of � near zero is better.15



with real time system operation. Consider the learning rule in which we use V � instead ofV (n): V̂ (x; v) := V̂ (x; v) + � hV �(x)� V̂ (x; v)i (28)De�ne the temporal di�erence operator, � by�(x) = r(x; �(x))+ 
V̂ (x1; v)� V̂ (x; v) (29)�(x) is the di�erence of predictions (of V �(x)) at two consecutive time steps: r(x; �(x))+
V̂ (x1; v) is a prediction based on information at � = 1, and V̂ (x; v) is a prediction basedon information at � = 0. Hence the name, `temporal di�erence'. Note that �(x) can beeasily computed using the experience within a time step. A simple rearrangement of theterms in the second line of (26) yieldsV �(x)� V̂ (x; v) = �(x) + (
�)�(x1) + (
�)2�(x2) + � � � (30)Even (30) is not in a form suitable for use in (28) because it involves future terms, �(x1),�(x2), etc., extending to in�nite time. One way to handle this problem is to choose a largeN , accumulate �(x), �(x1), � � �, �(xN�1) in memory, truncate the right hand side of (30)to include only the �rst N terms, and apply (28) at � = N + 1, i.e., (N + 1) time stepsafter x occured. However, a simpler and approximate way of achieving (30) is to includethe e�ects of the temporal di�erences as and when they occur in time. Let us say thatthe system is in state x at time t. When the systems transits to state x1 at time (t + 1),compute �(x) and update V̂ according to: V̂ (x; v) := V̂ (x; v) + �(
�)�(x1). When thesystem transits to state x2 at time (t + 2), compute �(x1) and update V̂ according to:V̂ (x; v) := V̂ (x; v)+�(
�)2�(x2) and so on. The reason why this is approximate is becauseV̂ (x; v) is continuously altered in this process whereas (30) uses the V̂ (x; v) existing at timet. However, if � is small and so V̂ (x; v) is adapted slowly, the approximate updating methodis expected to be close to (28).One way of implementing the above idea is to maintain an eligibility trace, e(x; t), foreach state visited (Klopf 1972; Klopf 1982; Klopf 1988; Barto et al 1983; Watkins 1989),and use the following learning rule at time t:V̂ (x; v) := V̂ (x; v) + �e(x; t)�(xt) 8 x (31)where xt is the system state at time t. The eligibility traces can be adapted according toe(x; t) = 8><>: 0 if x has never been visited
�e(x; t� 1) if xt 6= x1 + 
�e(x; t� 1) if xt = x (32)Two important remarks must be made regarding this implementation scheme.� Whereas the previous learning rules (e.g., (21), (24) and (28)) update V̂ only for onex at a time step, (31) updates the V̂ of all states with positive eligibility trace, at atime step. Rule (31) is suitable for neural hardware implementation, but not so forimplementations on sequential computers. In that case one of the following ideas canbe tried. 16



1. Keep track of the last k states visited and update V̂ for them only. The value ofk should depend on �. If � is small, k should be small. If � = 0 then k = 1.2. The following idea is due to Cichosz (1995). Choose a nonnegative integer mdepending on the decay rate 
�) and truncate the right hand side of (30) to keeponly the �rst (m+ 1) terms and getV̂ (x; v) := V̂ (x; v) + � �(x)where �(x) = �(x) + (
�)�(x1) + � � �+ (
�)m�(xm)Thus, if x is the state occuring at time step t, V̂ (x; v) gets updated at the endof time step (t + m) and, more importantly, x is the only state for which V̂ isupdated at time step (t+m). The recursion,�(x1) = [�(x)��(x)]=(
�) + (
�)m�(xm+1)can be employed so that the � computation can be done in constant time evenif m is large. Cichosz (1995) has suggested (with good justi�cation) anotherupdate rule based on truncation which is even better than the idea describedabove.� The rule for updating eligibility traces, (32) assumes that learning takes place in asingle trial. If learning is done over multiple trials then all eligibility traces must bereset to zero just before each new trial is begun.The remark made below equation (7) applies as well to the learning rules, (21), (24),(28) and, (31). Dayan and Sejnowski (1993), and Jaakkola et al (1994) have shown that,if the real time TD(�) learning rule, (31) is used, then under appropriate assumptions onthe variation of � in time, as t!1, V̂ converges to V � with probability one. Practically,learning can be achieved by doing multiple trials and decreasing � towards zero as learningprogresses.Thus far in this section we have assumed that the policy, � is deterministic. If � is astochastic policy then all the ideas of this section still hold with appropriate interpretations:all expectations should include the stochasticity of �, and, the �(x) used in (27), (29) etc.should be taken as instances generated by the stochastic policy.Let us now come to the estimation of Q� . Recall from (14) that Q�(x; a) denotes thetotal reward obtained by choosing a as the �rst action and then following � for all futuretime steps. Details concerning the extension of Q� are clearly described in a recent reportby Rummery and Niranjan (1994). Let Q̂(x; a; v) be the estimator of Q�(x; a) that is to belearnt concurrently with real time system operation. Following the same lines of argumentas used for the value function, we obtain a learning rule similar to (31):Q̂(x; a; v) := Q̂(x; a; v) + �eQ(x; a; t)�Q(xt; at) 8 (x; a) (33)where: xt and at are, respectively, the system state and the action chosen at time t;�Q(x; a) = r(x; a) + 
Q̂(x1; �(x1); v)� Q̂(x; a; v); (34)17



and eQ(x; a; t) = 8><>: 0 if (x; a) has never been visited
�eQ(x; a; t� 1) if (xt; at) 6= (x; a)1 + 
�eQ(x; a; t� 1) if (xt; at) = (x; a) (35)As with e, all eQ(x; a; t)'s must be reset to zero whenever a new trial is begun from a randomstarting state.If � is a stochastic policy then it is better to replace (34) by�Q(x; a) = r(x; a) + 
 ~V (x1)� Q̂(x; a; v) (36)where ~V (x1) = Xb2A(x1)Probf�(x) = bgQ̂(x1; b; v) (37)Rummery and Niranjan (1994) suggest the use of (34) even if � is stochastic; in that case,the �(x1) in (34) corresponds to an instance generated by the stochastic policy at x1. Wefeel that, as an estimate of V �(x1), ~V (x1) is better than the term Q̂(x1; �(x1); v) used in(34), and so it �ts-in better with the de�nition of Q� in (14). Also, if the the size ofA(x1) is small then the computation of ~V (x1) is not much more expensive than that ofQ̂(x1; �(x1); v).C3.5. Delayed Reinforcement Learning MethodsDynamic Programming (DP) methods (Ross 1983; Bertsekas 1989) are well known clas-sical tools for solving the stochastic optimal control problem formulated in xC3.3. Sincedelayed RL methods also solve the same problem, how do they di�er from DP methods?12Following are the main di�erences.� Whereas DP methods simply aim to obtain the optimal value function and an optimalpolicy using o�{line iterative methods, delayed RL methods aim to learn the sameconcurrently with real time system operation and improve performance over time.� DP methods deal with the complete state space, X in their computations, whiledelayed RL methods operate on ~X , the set of states that occur during real time systemoperation. In many applications X is very large, but ~X is only a small, manageablesubset of X . Therefore, in such applications, DP methods su�er from the curse ofdimensionality, but delayed RL methods do not have this problem. Also, typicallydelayed RL methods employ function approximators (for value function, policy etc.)that generalize well, and so, after learning, they provide near optimal performanceeven on unseen parts of the state space.� DP methods fundamentally require a system model. On the other hand, the maindelayed RL methods are model-free; hence they are particularly suited for the on-linelearning control of complicated systems for which a model is di�cult to derive.12The connection between DP and delayed RL was �rst established by Werbos (1987, 1989, 1992) andWatkins (1989). 18



� Because delayed RL methods continuously learn in time they are better suited than DPmethods for adapting to situations in which the system and goals are non-stationary.Although we have said that delayed RL methods enjoy certain key advantages, we shouldalso add that DP has been the fore-runner from which delayed RL methods obtained clues.In fact, it is correct to say that delayed RL methods are basically rearrangements of thecomputational steps of DP methods so that they can be applied during real time systemoperation.Delayed RL methods can be grouped into two categories: model-based methods andmodel{free methods. Model based methods have direct links with DP. Model{free methodscan be viewed as appropriate modi�cations of the model based methods so as to avoid themodel requirement. These methods will be described in detail below.C3.5.1 Model Based MethodsIn this subsection we discuss DPmethods and their possible modi�cation to yield delayedRL methods. There are two popular DP methods: value iteration and policy iteration.Value iteration easily extends to give a delayed RL method called `real time DP'. Policyiteration, though it does not directly yield a delayed method, it forms the basis of animportant model{free delayed RL method called actor{critic.C3.5.1.1 Value iterationThe basic idea in value iteration is to compute V ?(x) asV ?(x) = limn!1V ?n (x) (38)where V ?n (x) is the optimal value function over a �nite-horizon of length n, i.e., V ?n (x) isthe maximum expected return if the decision task is terminated n steps after starting instate x. For n = 1, the maximum expected return is just the maximum of the expectedimmediate payo�: V ?1 (x) = maxa2A(x) r(x; a) 8 x (39)Then, the recursion,13V ?n+1(x) = maxa2A(x) "r(x; a) + 
Xy Pxy(a)V ?n (y)# 8 x (40)can be used to compute V ?n+1 for n = 1; 2; � � �. (Iterations can be terminated after a largenumber (N) of iterations, and V ?N can be taken to be a good approximation of V ?.)In value iteration, a policy is not involved. But it is easy to attach a suitable policywith a value function as follows. Associated with each value function, V : X!R is a policy,� that is greedy with respect to V , i.e.,�(x) = arg maxa2A(x)"r(x; a) + 
Xy Pxy(a)V (y)# 8 x (41)13One can also view the recursion as doing a �xed-point iteration to solve Bellman's optimality equation,(13). 19



If the state space, X has a very large size (e.g., size=kd, where d= number of componentsof x, k=number of values that each component can take, d � 10, k � 100) then valueiteration is prohibitively expensive. This di�culty is usually referred to as the curse ofdimensionality.In the above, we have assumed that (38) is correct. Let us now prove this convergence.It turns out that convergence can be established for a more general algorithm, of whichvalue iteration is a special case. We call this algorithm as generalized value iteration.Generalized Value IterationSet n = 1 and V ?1 = an arbitrary function over states.Repeat1. Choose a subset of states, Bn and setV ?n+1(x) = ( maxa2A(x) hr(x; a) + 
Py Pxy(a)V ?n (y)i if x 2 BnV ?n (x) otherwise (42)2. Reset n := n+ 1.If we choose V ?1 as in (39) and take Bn = X for all n, then the above algorithm reducesto value iteration. Later we will go into other useful cases of generalized value iteration.But �rst, let us concern ourselves with the issue of convergence. If x 2 Bn, we will say thatthe value of state x has been backed up at the n-th iteration. Proof of convergence is basedon the following result (Bertsekas & Tsitsiklis 1989; Watkins 1989; Barto et al 1992).Local Value Improvement TheoremLet Mn = maxx jV ?n (x)� V ?(x)j. Then maxx2Bn jV ?n+1(x)� V ?(x)j � 
Mn.Proof: Take any x 2 Bn. Let a? = �?(x) and a?n = �?n(x), where �?n is a policy that isgreedy with respect to V ?n . ThenV ?n+1(x) � r(x; a?) + 
Py Pxy(a?)V ?n (y)� r(x; a?) + 
Py Pxy(a?) [V ?(y)�M ]= V ?(x)� 
MnSimilarly, V ?n+1(x) = r(x; a?n) + 
Py Pxy(a?n)V ?n (y)� r(x; a?n) + 
Py Pxy(a?n) [V ?(y) +M ]= V ?(x) + 
Mnand so the theorem is proved. 2The theorem implies that Mn+1 � Mn where Mn+1 = maxx jV ?n+1(x)� V ?(x)j. A littlefurther thought shows that the following is also true. If, at the end of iteration k, K furtheriterations are done in such a way that the value of each state is backed up at least once inthese K iterations, i.e., [k+Kn=k+1Bn = X , then we get Mk+K � 
Mk. Therefore, if the valueof each state is backed up in�nitely often, then (38) holds.14 In the case of value iteration,the value of each state is backed up at each iteration and so (38) holds.14If 
 = 1, then convergence holds under certain assumptions. The analysis required is more sophisticated.See (Bertsekas & Tsitsiklis 1989; Bradtke 1994) for details.20



Generalized value iteration was proposed by Bertsekas (1982, 1989) and developed byBertsekas and Tsitsiklis (1989) as a suitable method of solving stochastic optimal controlproblems on multi-processor systems with communication time delays and without a com-mon clock. If N processors are available, the state space can be partitioned into N sets {one for each processor. The times at which each processor backs up the values of its statescan be di�erent for each processor. To back up the values of its states, a processor uses the\present" values of other states communicated to it by other processors.Barto, Bradtke and Singh (1992) suggested the use of generalized value iteration as away of learning during real time system operation. They called their algorithm as Real TimeDynamic Programming (RTDP). In generalized value iteration as specialized to RTDP, ndenotes system time. At time step n, let us say that the system resides in state xn. Since V ?nis available, an is chosen to be an action that is greedy with respect to V ?n , i.e., an = �?n(xn).Bn, the set of states whose values are backed up, is chosen to include xn and, perhapssome more states. In order to improve performance in the immediate future, one can do alookahead search to some �xed search depth (either exhaustively or by following policy, �?n)and include these probable future states in Bn. Because the value of xn is going to undergochange at the present time step, it is a good idea to also include, in Bn, the most likelypredecessors of xn (Moore & Atkeson 1993).One may ask: since a model of the system is available, why not simply do value iterationor, do generalized value iteration as Bertsekas and Tsitsiklis suggest? In other words, whatis the motivation behind RTDP? The answer, which is simple, is something that we havestressed earlier. In most problems (e.g., playing games such as checkers and backgammon)the state space is extremely large, but only a small subset of it actually occurs duringusage. Because RTDP works concurrently with actual system operation, it focusses onregions of the state space that are most relevant to the system's behaviour. For instance,successful learning was accomplished in the checkers program of Samuel (1959) and in thebackgammon program, TDgammon of Tesauro (1992) using variations of RTDP. In (Bartoet al 1992), Barto, Bradtke and Singh also use RTDP to make interesting connections anduseful extensions to learning real time search algorithms in Arti�cial Intelligence (Korf1990).The convergence result mentioned earlier says that the values of all states have to bebacked up in�nitely often15 in order to ensure convergence. So it is important to suitablyexplore the state space in order to improve performance. Barto, Bradtke and Singh havesuggested two ways of doing exploration16: (1) adding stochasticity to the policy; and (2)doing learning cumulatively over multiple trials.If, only an inaccurate system model is available then it can be updated in real time usinga system identi�cation technique, such as maximum likelihood estimation method (Bartoet al 1992). The current system model can be used to perform the computations in (42).15For good practical performance it is su�cient that states that are most relevant to the system's behaviourare backed up repeatedly.16Thrun (1986) has discussed the importance of exploration and suggested a variety of methods for it21



Convergence of such adaptive methods has been proved by Gullapalli and Barto (1994).C3.5.1.2 Policy iterationPolicy iteration operates by maintaining a representation of a policy and its value func-tion, and forming an improved policy using them. Suppose � is a given policy and V � isknown. How can we improve �? An answer will become obvious if we �rst answer thefollowing simpler question. If � is another given policy then when isV �(x) � V �(x) 8 x (43)i.e., when is � uniformly better than �? The following simple theorem (Watkins 1989) givesthe answer.Policy Improvement TheoremThe policy � is uniformly better than policy � ifQ�(x; �(x)) � V �(x) 8 x (44)Proof: To avoid clumsy details let us give a not-so-rigorous proof (Watkins 1989).Starting at x, it is better to follow � for one step and then to follow �, than it is to follow� right from the begining. By the same argument, it is better to follow � for one furtherstep from the state just reached. Repeating the argument we get that it is always better tofollow � than �. See Bellman and Dreyfus (1962) and Ross (1983) for a detailed proof. 2Let us now return to our original question: given a policy � and its value function V �,how do we form an improved policy, �? If we de�ne � by�(x) = arg maxa2A(x)Q�(x; a) 8 x (45)then (44) holds. By the policy improvement theorem � is uniformly better than �. This isthe main idea behind policy iteration.Policy IterationSet � := an arbitrary initial policy and compute V �.Repeat1. Compute Q� using (14).2. Find � using (45) and compute V �.3. Set: � := � and V � := V �.until V � = V � occurs at step 2.Nice features of the above algorithm are: (1) it terminates after a �nite number ofiterations because there are only a �nite number of policies; and (2) when terminationoccurs we get V �(x) = maxa Q�(x; a) 8x(i.e., V � satis�es Bellman's optimality equation) and so � is an optimal policy. But thealgorithm su�ers from a serious drawback: it is very expensive because the entire valuefunction associated with a policy has to be recalculated at each iteration (step 2). Even22



though V � may be close to V �, unfortunately there is no simple short cut to compute it.In xC3.5.2 we will discuss a well-known model{free method called the actor-critic methodwhich gives an inexpensive approximate way of implementing policy iteration.C3.5.2 Model{Free MethodsModel{free delayed RL methods are derived by making suitable approximations to thecomputations in value iteration and policy iteration, so as to eliminate the need for asystem model. Two important methods result from such approximations: Barto, Suttonand Anderson's actor{critic (Barto et al 1983), and Watkins' Q{Learning (Watkins 1989).These methods are milestone contributions to the optimal feedback control of dynamicsystems.C3.5.2.1 Actor-Critic methodThe actor-critic method was proposed by Barto, Sutton and Anderson (1983) (in theirpopular work on balancing a pole on a moving cart) as a way of combining, on a step-by-step basis, the process of forming the value function with the process of forming a newpolicy. The method can also be viewed as a practical, approximate way of doing policyiteration: perform one step of an on-line procedure for estimating the value function for agiven policy, and at the same time perform one step of an on-line procedure for improvingthat policy. The actor-critic method17 is best derived by combining the ideas of xC3.2 andxC3.4 on immediate RL and estimating value function, respectively. Details are as follows.Actor (�) Letm denote the total number of actions. Maintain an approximator, g(�;w) :X!Rm so that z = g(x;w) is a vector of merits of the various feasible actions at state x.In order to do exploration, choose actions according to a stochastic action selector such as(6).18Critic (V �) Maintain an approximator, V̂ (�;w) : X!R that estimates the value func-tion (expected total reward) corresponding to the stochastic policy mentioned above. Theideas of xC3.4 can be used to update V̂ .Let us now consider the process of learning the actor. Unlike immediate RL, learning ismore complicated here for the following reason. Whereas, in immediate RL the environmentimmediately provides an evaluation of an action, in delayed RL the e�ect of an action on thetotal reward is not immediately available and has to be estimated appropriately. Suppose,at some time step, the system is in state x and the action selector chooses action ak. For gthe learning rule that parallels (5) would begk(x;w) := gk(x;w) + � h�(x; ak)� V̂ (x; v)i (46)where �(x; ak) is the expected total reward obtained if ak is applied to the system at statex and then policy � is followed from the next step onwards. An approximation is�(x; ak) � r(x; ak) + 
Xy Pxy(ak)V̂ (y; v) (47)17A mathematical analysis of this method has been done by Williams and Baird (1990).18In their original work on pole-balancing, Barto, Sutton and Anderson suggested a di�erent way ofincluding stochasticity. 23



This estimate is unavailable because we do not have a model. A further approximation is�(x; ak) � r(x; ak) + 
V̂ (x1; v) (48)where x1 is the state occuring in the real time operation when action ak is applied at statex. Since the right hand side of (48) is an unbiased estimate of the right hand side of (47),using this approximation in the averaging learning rule (46) will not lead to errors. Using(48) in (46) gives gk(x;w) := gk(x;w) + ��(x) (49)where � is as de�ned in (29). The following algorithm results.Actor{Critic TrialSet t = 0 and x =a random starting state.Repeat (for a number of time steps)1. With the system at state, x, choose action a according to (6) and apply it to thesystem. Let x1 be the resulting next state.2. Compute �(x) = r(x; a) + 
V̂ (x1; v)� V̂ (x; v)3. Update V̂ using V̂ (x; v) := V̂ (x; v) + ��(x)4. Update gk using (49) where k is such that a = ak.The above algorithm uses the TD(0) estimate of V �. To speed{up learning the TD(�)rule, (31) can be employed. Barto, Sutton and Anderson (1983) and others (Gullapalli1992a; Gullapalli et al 1994) use the idea of eligibility traces for updating g also. They giveonly an intuitive explanation for this usage. Lin (1992) has suggested the accumulation ofdata until a trial is over, update V̂ using (28) for all states visited in the trial, and thenupdate g using (49) for all (state,action) pairs experienced in the trial.C3.5.2.2 Q{LearningJust as the actor{critic method is a model-free, on-line way of approximately imple-menting policy iteration, Watkins' Q{Learning (Watkins 1989) algorithm is a model-free,on-line way of approximately implementing generalized value iteration. Though the RTDPalgorithm does generalized value iteration concurrently with real time system operation, itrequires the system model for doing a crucial operation: the determination of the maximumon the right hand side of (42). Q{Learning overcomes this problem elegantly by operatingwith the Q{function instead of the value function. (Recall, from xC3.3, the de�nition ofQ{function and the comment on its advantage over value function.)The aim of Q{Learning is to �nd a function approximator, Q̂(�; �; v) that approximatesQ?, the solution of Bellman's optimality equation, (16), in on-line mode without employinga model. However, for the sake of developing ideas systematically, let us begin by assumingthat a system model is available and consider the modi�cation of the ideas of xC3.5.1.1to use the Q{function instead of the value function. If we think in terms of a functionapproximator, V̂ (x; v) for the value function, the basic update rule that is used throughoutxC3.5.1.1 is V̂ (x; v) := maxa2A(x) "r(x; a) + 
Xy Pxy(a)V̂ (y; v)#24



For the Q{function, the corresponding rule isQ̂(x; a; v) := r(x; a) + 
Xy Pxy(a) maxb2A(y) Q̂(y; b; v) (50)Using this rule, all the ideas of xC3.5.1.1 can be easily modi�ed to employ the Q{function.However, our main concern is to derive an algorithm that avoids the use of a sys-tem model. A model can be avoided if we: (1) replace the summation term in (50) bymaxb2A(x1) Q̂(x1; b; v) where x1 is an instance of the state resulting from the application ofaction a at state x; and (2) achieve the e�ect of the update rule in (50) via the \averaging"learning rule,Q̂(x; a; v) := Q̂(x; a; v) + � �r(x; a) + 
 maxb2A(x1) Q̂(x1; b; v)� Q̂(x; a; v)� (51)If (51) is carried out we say that the Q{value of (x; a) has been backed up. Using (51) inon-line mode of system operation we obtain the Q{Learning algorithm.Q{Learning TrialSet t = 0 and x = a random starting state.Repeat (for a number of time steps)1. Choose action a 2 A(x) and apply it to the system. Let x1 be the resulting state.2. Update Q̂ using (51).3. Reset x := y.The remark made below equation, (7) in xC3.2 is very appropriate for the learningrule, (51). Watkins showed19 that if the Q{value of each admissible (x; a) pair is backed upin�nitely often, and if the step size, � is decreased to zero in a suitable way then as t!1,Q̂ converges to Q? with probability one. Practically, learning can be achieved by: (1) using,in step 1, an appropriate exploration policy that tries all actions;20 (2) doing multiple trialsto ensure that all states are frequently visited; and (3) decreasing � towards zero as learningprogresses.We now discuss a way of speeding up Q{Learning by using the TD(�) estimate of the Q{function, derived in xC3.4. If TD(�) is to be employed in a Q{Learning trial, a fundamentalrequirement is that the policy used in step 1 of the Q{Learning Trial and the policy usedin the update rule, (51) should match (note the use of � in (34) and (37)). Thus TD(�)can be used if we employ the greedy policy,�(x) = arg maxa2A(x) Q̂(x; a; v) (52)19A revised proof was given by Watkins and Dayan (1992). Tsitsiklis (1993) and Jaakkola et al (1994)have given other proofs.20Note that step 1 does not put any restriction on choosing a feasible action. So, any stochastic explorationpolicy that, at every x generates each feasible action with positive probability can be used. When learning iscomplete, the greedy policy, �(x) = arg maxa2A(x) Q̂(x; a; v) should be used for optimal system performance.25



in step 1.2122 But, this leads to a problem: use of the greedy policy will not allow explorationof the action space, and hence poor learning can occur. Rummery and Niranjan (1994) givea nice comparitive account of various attempts described in the literature for dealing withthis con
ict. Here we only give the details of an approach that Rummery and Niranjanfound to be very promising.Consider the stochastic policy (based on the Boltzmann distribution and Q-values),Probf�(x) = ajxg = exp(Q̂(x; a; v)=T )Pb2A(x) exp(Q̂(x; b; v)=T ) ; a 2 A(x) (53)where T 2 [0;1). When T!1 all actions have equal probabilities and, when T!0 thestochastic policy tends towards the greedy policy in (52). To learn, T is started with asuitable large value (depending on the initial size of the Q{values) and is decreased to zerousing an annealing rate; at each T thus generated, multiple Q{learning trials are performed.This way, exploration takes place at the initial large T values. The TD(�) learning rule,(36) estimates expected returns for the policy at each T , and, as T!0, Q̂ will converge toQ?.An important remark needs to be made regarding the application of Q-Learning toRL problems which result from the time-discretization of continuous-time problems. As thediscretization time period goes to zero it turns out that the Q-function tends to an identicallyzero function and hence it is unsuitable to use Q-Learning for continuous-time problems.For such problems Baird (1993) has suggested the use of an appropriate modi�cation of theQ-function called the Advantage function.C3.5.3 Extension To Continuous SpacesOptimal control of dynamic systems typically involves the solution of delayed RL prob-lems having continuous state/action spaces. If the state space is continuous but the actionspace is discrete then all the delayed RL algorithms discussed earlier can be easily ex-tended, provided appropriate function approximators that generalize a real time experienceat a state to all topologically nearby states are used; see xC3.6 for a discussion of suchapproximators. On the other hand, if the action space is continuous, extension of the al-gorithms is more di�cult. The main cause of the di�culty can be easily seen if we tryextending RTDP to continuous action spaces: the max operation in (42) is non{trivial anddi�cult if A(x) is continuous. (Therefore, even methods based on value iteration need tomaintain a function approximator for actions.) In the rest of this subsection we will givea brief review of various methods of handling continuous action spaces. Just to make thepresentation easy, we will make the following assumptions.� The system being controlled is deterministic. Letxt+1 = f(xt; at) (54)21Although the greedy policy de�ned by (52) keeps changing during a trial, the TD(�) estimate can stillbe used because Q̂ is varied slowly.22If more than one action attains the maximum in (52) then for convenience we take � to be a stochasticpolicy that makes all such maximizing actions equally probable.26



describe the transition.23� There are no action constraints, i.e., A(x) =an m{dimensional real space for every x.� All functions involved (r, f , V̂ , Q̂ etc.) are continuously di�erentiable.Let us �rst consider model-based methods. Werbos (1990b) has proposed a variety ofalgorithms. Here we will describe only one important algorithm, the one that Werbos refersto as Backpropagated Adaptive Critic. The algorithm is of the actor{critic type, but itis somewhat di�erent from the actor{critic method of xC3.5.2.1. There are two functionapproximators: �̂(�;w) for action; and, V̂ (�; v) for critic. The critic is meant to approximateV �̂; at each time step, it is updated using the TD(�) learning rule, (31) of xC3.4. Theactor tries to improve the policy at each time step using the hint provided by the policyimprovement theorem in (44). To be more speci�c, let us de�neQ(x; a) def= r(x; a) + 
V̂ (f(x; a); v) (55)At time t, when the system is at state xt, we choose the action, at = �̂(xt;w), leading tothe next state, xt+1 given by (54). Let us assume V̂ = V �̂, so that V �̂(xt) = Q(xt; at) holds.Using the hint from (44), we aim to adjust �̂(xt;w) to give a new value, anew such thatQ(xt; anew) > Q(xt; at) (56)A simple learning rule that achieves this requirement is�̂(xt;w) := �̂(xt;w) + �@Q(xt; a)@a ja=at (57)where � is a small (positive) step size. The partial derivative in (57) can be evaluated using@Q(xt; a)@a = @r(xt; a)@a + 
 @V̂ (y; v)@y jy=f(xt;a)@f(xt; a)@a (58)Let us now come to model{free methods. A simple idea is to adapt a function approx-imator, f̂ for the system model function, f , and use f̂ instead of f in Werbos' algorithm.On{line experience, i.e., the combination, (xt; at; xt+1), can be used to learn f̂ . This methodwas proposed by Brody (1992), actually as a way of overcoming a serious de�ciency24 as-sociated with an ill{formed model{free method suggested by Jordan and Jacobs (1990). Akey di�culty associated with Brody's method is that, until the learning system adapts agood f̂ , system performance does not improve at all; in fact, at the early stages of learningthe method can perform in a confused way. To overcome this problem Brody suggests thatf̂ be learnt well, before it is used to train the actor and the critic.A more direct model{free method can be derived using the ideas of xC3.5.2.1 and em-ploying a learning rule similar to (8) for adapting �̂. This method was proposed andsuccessfully demonstrated by Gullapalli (Gullapalli 1992a; Gullapalli et al 1994). Since23Werbos (1990b) describes ways of treating stochastic systems.24This de�ciency was also pointed out by Gullapalli (1992b).27



Gullapalli's method learns by observing the e�ect of a randomly chosen perturbation of thepolicy, it is not as systematic as the policy change in Brody's method.We now propose a new model{free method that systematically changes the policy similarto what Brody's method does, and, avoids the need for adapting a system model. This isachieved using a function approximator, Q̂(�; �; v) for approximating Q�̂, the Q{functionassociated with the actor. The TD(�) learning rule in (33) can be used for updating Q̂.Also, policy improvement can be attempted using the learning rule (similar to (57)),�̂(xt;w) := �̂(xt;w) + �@Q̂(xt; a)@a ja=at (59)We are currently performing simulations to study the performance of this new methodrelative to the other two model{free methods mentioned above.Werbos' algorithm and our Q-Learning based algorithm are deterministic, while Gulla-palli's algorithm is stochastic. The deterministic methods are expected to be much faster,whereas the stochastic method has better assurance of convergence to the true solution.The arguments are similar to those mentioned at the end of xC3.2.C3.6 Use of Neural and Other Function{Approximators in RLA variety of function approximators has been employed by researchers to practicallysolve RL problems. When the input space of the function approximator is �nite, the moststraight{forward method is to use a look{up table (Singh 1992a; Moore & Atkeson 1993).Almost all theoretical results on the convergence of RL algorithms assume this representa-tion. The disadvantage of using look{up table is that if the input space is large then thememory requirement becomes prohibitive.25 Continuous input spaces have to be discretizedwhen using a look{up table. If the discretization is done �nely so as to obtain good accu-racy we have to face the `curse of dimensionality'. One way of overcoming this is to do aproblem{dependent discretization; see, for example, the `BOXES' representation used byBarto, Sutton and Anderson (1983) and others (Michie & Chambers 1968; Gullapalli et al1994; Rosen et al 1991) to solve the pole balancing problem.Non look{up table approaches use parametric function approximation methods. Thesemethods have the advantage of being able to generalize beyond the training data and hencegive reasonable performance on unvisited parts of the input space. Among these, neuralmethods are the most popular. Connectionist methods that have been employed for RLcan be classi�ed into four groups: multi{layer perceptrons; methods based on clustering;CMAC; and recurrent networks. Multi{layer perceptrons have been successfully used byAnderson (1986, 1989) for pole balancing, Lin (1991a, 1991b, 1991c, 1992) for a complextest problem, Tesauro (1992) for backgammon, Thrun (1993) and Millan and Torras (1992)for robot navigation, and others (Boyen 1992; Gullapalli et al 1994). On the other hand,Watkins (1989), Chapman (1991), Kaelbling (1990, 1991), and Shepanski and Macy (1987)have reported bad results. A modi�ed form of Platt's Resource Allocation Network (Platt1991), a method based on radial basis functions, has been used by Anderson (1993) for25Buckland and Lawrence (1994) have proposed a new delayed RL method called Transition point DPwhich can signi�cantly reduce the memory requirement for problems in which optimal actions change infre-quently in time. 28



pole balancing. Many researchers have used CMAC (Albus 1975) for solving RL problems:Watkins (1989) for a test problem; Singh (1991, 1992b, 1992d) and Tham and Prager (1994)for a navigation problem; Lin and Kim (1991) for pole balancing; and Sutton (1990, 1991b)in his `Dyna' architecture. Recurrent networks with context information feedback have beenused by Bacharach (1991, 1992) and Mozer and Bacharach (1990a, 1990b) in dealing withRL problems with incomplete state information.A few non{neural methods have also been used for RL. Mahadevan and Connell (1991)have used statistical clustering in association with Q{Learning for the automatic program-ming of a mobile robot. A novel feature of their approach is that the number of clustersis dynamically varied. Chapman and Kaelbling (1991) have used a tree{based clusteringapproach in combination with a modi�ed Q{Learning algorithm for a di�cult test problemwith a huge input space.The function approximator has to exercise care to ensure that learning at some inputpoint, x does not seriously disturb the function values for y 6= x. It is often advantageous tochoose a function approximator and employ an update rule in such a way that the functionvalues of x and states `near' x are modi�ed similarlywhile the values of states `far' from x areleft unchanged.26 Such a choice usually leads to good generalization, i.e., good performanceof the learnt function approximator even on states that are not visited during learning. Inthis respect, CMAC and methods based on clustering, such as RBF, statistical clustering,etc., are more suitable than multi{layer perceptrons.The e�ect of errors introduced by function approximators on the optimal performance ofthe controller has not been well understood.27 It has been pointed out by Watkins (1989),Bradtke (1993), Bertsekas (1994) and others (Barto 1992), that, if function approximation isnot done in a careful way, poor learning can result. In the context ofQ{Learning, Thrun andSchwartz (1993) have shown that errors in function approximation can lead to a systematicover estimation of theQ{function. Linden (1993) points out that in many problems the valuefunction is discontinuous and so using continuous function approximators is inappropriate.But he does not suggest any clear remedies for this problem.Mance Harmon of Wright-Patterson Air Force Base, Ohio, has pointed out to us thefollowing explanation as to why function approximators used with RL have di�culties. Thegeneralization that takes place when updating the approximation systems can, as a sidee�ect, change the target value. For instance, when the update rule (31), which is based on�(xt), is performed, the resulting change in V̂ together with generalization can lead to asizeable change in �(xt). We are then, in e�ect, shooting at a moving target. This is acause of instability, and the propensity of the weights, in many cases, to grow to in�nity.To overcome this problem Baird and Harmon (1993) have suggested a residual gradientapproach in which gradient descent is performed on the mean square of residuals such as26The criterion for `nearness' must be chosen properly depending on the problem being solved. Forinstance, in example 1 (see �gure 1) two states on opposite sides of the barrier but whose coordinate vectorsare near, have vastly di�erent optimal `cost-to-go' values. Hence the function approximator should notgeneralize the value at one of these states using the value at the other. Dayan (1993) gives a generalapproach for choosing a suitable `nearness' criterion so as to improve generalization.27Bertsekas(1989), Singh and Yee (1993), and Williams and Baird (1993b) have derived some generaltheoretical bounds for errors in value function in terms of function approximator error. Tsitsiklis and VanRoy (1994) have derived bounds for errors when feature-based function approximators are used.29



�(xt). Then one can expect convergence in a way similar to how convergence takes placein the backpropagation algorithm. A similar approach has also been suggested by Werbos(1987).Overall, it must be mentioned that much work needs to be done on the use of functionapproximators for RL, and clear guidelines are yet to emerge.C3.7 Modular and Hierarchical ArchitecturesWhen applied to problems with large task space or sparse rewards, RL methods areterribly slow to learn. Dividing the problem into simpler subproblems, using a hierarchicalcontrol structure, etc., are ways of overcoming this.Sequential task decomposition is one such method. This method is useful when a numberof complex tasks can be performed making use of a �nite number of \elemental" tasks orskills, say, T1; T2; � � � ; Tn. The original objective of the controller can then be achievedby temporally concatenating a number of these elemental tasks to form what is called a\composite" task. For example,Cj = [T (j; 1); T (j; 2); � � � ; T (j; k)] ; where T (j; i) 2 fT1; T2; � � � ; Tngis a composite task made up of k elemental tasks that have to be performed in the orderlisted. Reward functions are de�ned for each of the elemental tasks, making them moreabundant than in the original problem de�nition.Singh (1992a, 1992b) has proposed an algorithm based on a modular neural network(Jacobs et al 1991), making use of these ideas. In his work the controller is unaware ofthe decomposition of the task and has to learn both the elemental tasks, and the decom-position of the composite tasks simultaneously. Tham and Prager (1994) and Lin (1993)have proposed similar solutions. Mahadevan and Connell (1991) have developed a methodbased on the subsumption architecture (Brooks 1986) where the decomposition of the task isspeci�ed by the user before hand, and the controller learns only the elemental tasks, whileMaes and Brooks (1990) have shown that the controller can be made to learn the decom-position also, in a similar framework. All these methods require some external agency tospecify the problem decomposition. Can the controller itself learn how the problem is to bedecomposed? Though Singh (1992d) has some preliminary results, much work needs to bedone here.Another approach to this problem is to use some form of hierarchical control (Watkins1989). Here there are di�erent \levels" of controllers28, each learning to perform a moreabstract task than the level below it and directing the lower level controllers to achieve itsobjective. For example, in a ship a navigator decides in what direction to sail so as to reachthe port while the helmsman steers the ship in the direction indicated by the navigator.Here the navigator is the higher level controller and the helmsman the lower level controller.Since the higher level controllers have to work on a smaller task space and the lower levelcontrollers are set simpler tasks improved performance results.Examples of such hierarchical architectures are Feudal RL by Dayan and Hinton (1993)and Hierarchical planning by Singh (1992a, 1992c). These methods too, require an external28Controllers at di�erent levels may operate at di�erent temporal resolutions.30



agency to specify the hierarchy to be used. This is done usually by making use of some\structure" in the problem.Training controllers on simpler tasks �rst and then training them to perform progres-sively more complex tasks using these simpler tasks, can also lead to better performance.Here at any one stage the controller is faced with only a simple learning task. This techniqueis called shaping in animal behaviour literature. Gullapalli (1992a) and Singh (1992d) havereported some success in using this idea. Singh shows that the controller can be made to\discover" a decomposition of the task by itself using this technique.C3.8 Speeding{Up LearningApart from the ideas mentioned above, various other techniques have been suggested forspeeding{up RL. Two novel ideas have been suggested by Lin (1991a, 1991b, 1991c, 1992):experience playback; and teaching. Let us �rst discuss experience playback. An experienceconsists of a quadruple (occuring in real time system operation), (x; a; y; r), where x is astate, a is the action applied at state x, y is the resulting state, and r is r(x; a). Pastexperiences are stored in a �nite memory bu�er, P . An appropriate strategy can be usedto maintain P . At some point in time let � be the \current" (stochastic) policy. LetE = f(x; a; y; r) 2 P j Probf�(x) = ag � �gwhere � is some chosen tolerance. The learning update rule is applied, not only to thecurrent experience, but also to a chosen subset of E . Experience playback can be especiallyuseful in learning about rare experiences. In teaching, the user provides the learning systemwith experiences so as to expedite learning.Incorporating domain speci�c knowledge also helps in speeding{up learning. For exam-ple, for a given problem, a \nominal" controller that gives reasonable performance may beeasily available. In that case RL methods can begin with this controller and improve itsperformance (Singh et al 1994). Domain speci�c information can also greatly help in choos-ing state representation and setting up the function approximators (Barto 1992; Millan &Torras 1992).In many applications an inaccurate system model is available. It turns out to be veryine�cient to discard the model and simply employ a model{free method. An e�cientapproach is to interweave a number of \planning" steps between every two on-line learningsteps. A planning step may be one of the following: a time step of a model{based methodsuch as RTDP; or, a time step of a model{free method for which experience is generatedusing the available system model. In such an approach, it is also appropriate to adaptthe system model using on{line experience. These ideas form the basis of Sutton's Dynaarchitectures (Sutton 1990, 1991b) and related methods (Moore & Atkeson 1993; Peng &Williams 1993).C3.9. ConclusionIn this chapter we have given a cohesive overview of existing RL algorithms. Thoughresearch has reached a mature level, RL has been successfully demonstrated only on a fewpractical applications (Gullapalli et al 1994; Tesauro 1992; Mahadevan & Connell 1991;Thrun 1993), and clear guidelines for its general applicability do not exist. The connection31
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