
A Tutorial Survey of Reinforcement Learn�

ing

S SATHIYA KEERTHI and B RAVINDRAN
Department of Computer Science and Automation
Indian Institute of Science� Bangalore
e�mail� fssk�ravig�chanakya�csa�iisc�ernet�in
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� Introduction

Reinforcement Learning �RL�� a term borrowed from animal learning literature by
Minsky �	
��� 	

	�� refers to a class of learning tasks and algorithms in which the
learning system learns an associative mapping� � � X � A by maximizing a scalar
evaluation �reinforcement� of its performance from the environment �user�� Com�
pared to supervised learning� in which for each x shown the environment provides
the learning system with the value of ��x�� RL is more di�cult since it has to work
with much less feedback from the environment� If� at some time� given an x � X�
the learning system tries an a � A and� the environment immediately returns a
scalar reinforcement evaluation of the �x� a� pair �that indicates how far a is from
��x�� then we are faced with an immediate RL task� A more di�cult RL task is
delayed RL� in which the environment only gives a single scalar reinforcement eval�
uation� collectively for f�xt� at�g� a sequence of �x� a� pairs occuring in time during
the system operation� Delayed RL tasks commonly arise in optimal control of dy�
namic systems and planning problems of AI� In this paper our main interest is in the
solution of delayed RL problems� However� we also study immediate RL problems
because methods of solving them play an useful role in the solution of delayed RL
problems�

Delayed RL encompasses a diverse collection of ideas having roots in animal learn�
ing �Barto 	
��� Sutton � Barto 	
���� control theory �Bertsekas 	
�
� Kumar
	
���� and AI �Dean � Wellman 	

	�� Delayed RL algorithms were �rst employed
by Samuel �	
�
� 	

�� in his celebrated work on playing checkers� However� it
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Figure �� Navigating in a grid world�

was only much later� after the publication of Barto� Sutton and Anderson�s work
�Barto et al 	
��� on a delayed RL algorithm called adaptive heuristic critic and
its application to the control problem of pole balancing� that research on RL got
o� to a �ying start� Watkins� Q�Learning algorithm �Watkins 	
�
� made another
impact on the research� A number of signi�cant ideas have rapidly emerged during
the past �ve years and the �eld has reached a certain level of maturity� In this paper
we provide a comprehensive tutorial survey of various ideas and methods of delayed
RL� To avoid distractions and unnecessary clutter of notations� we present all ideas
in an intuitive� not�so�rigorous fashion� In preparing this tutorial� we have obtained
a lot of guidance from the works of Watkins �	
�
�� Barto� Sutton and Watkins
�	

��� Barto� Bradtke and Singh �	

��� Bradtke �	

��� and Barto �	

���

To illustrate the key features of a delayed RL task let us consider a simple example�

Example � Navigating a Robot

Figure 	 illustrates a grid world in which a robot navigates� Each blank cell on
the grid is called a state� Shaded cells represent barriers� these are not states� Let
X be the state space� i�e�� the set of states� The cell marked G is the goal state�
The aim is to reach G from any state in the least number of time steps� Navigation
is done using four actions� A � fN�S�E�Wg� the actions denoting the four possible
movements along the coordinate directions�

Rules of transition are de�ned as follows� Suppose that the robot is in state x
and action N is chosen� Then the resulting next state� y is the state directly to the
north of x� if there is such a state� otherwise y � x� For instance� choosing W at
the x shown in �gure 	 will lead to the system staying at x� The goal state is a
special case� By de�nition we will take it that any action taken from the goal state
results in a transition back to the goal state� In more general problems� the rules of
transition can be stochastic�
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The robot moves at discrete �integer� time points starting from t � �� At a time
step t� when the robot is at state� xt� we de�ne an immediate reward� as

r�xt� �

�
� if xt � G�
�	 otherwise�

In e�ect� the robot is penalized for every time step spent at non�goal states� It is
simple to verify that maximizing the total reward over time�

V �x� �
�X
t��

r�xt�

is equivalent to achieving minimum time navigation from the starting state� x� � x�
Let V ��x� denote the maximum achievable �optimal� value of V �x��

We are interested in �nding a feedback policy� � � X � A such that� if we start
from any starting state and select actions using � then we will always reach the goal
in the minimum number of time steps�

The usefulness of immediate RL methods in delayed RL can be roughly explained
as follows� Typical delayed RL methods maintain �V � an approximation of the op�
timal function� V �� If action a is performed at state x and state y results� then
�V �y� can be taken as an �approximate� immediate evaluation of the �x� a� pair��

By solving an immediate RL problem that uses this evaluation function we can ob�
tain a good sub�optimal policy for the delayed RL problem� We present relevant
immediate RL algorithms in x��

�

Delayed RL problems are much harder to solve than immediate RL problems for
the following reason� Suppose� in example 	� performance of a sequence of actions�
selected according to some policy� leads the robot to the goal� To improve the policy
using the experience� we need to evaluate the goodness of each action performed� But
the total reward obtained gives only the cumulative e�ect of all actions performed�
Some scheme must be found to reasonably apportion the cumulative evaluation to
the individual actions� This is referred to as the temporal credit assignment problem�
�In the previous paragraph we have already given a hint of how delayed RL methods
do temporal credit assignment��

Dynamic programming �DP� �Bertsekas 	
�
� Ross 	
��� is a well�known tool
for solving problems such as the one in example 	� It is an o��line method that
requires the availability of a complete model of the environment� But the concerns
of delayed RL are very di�erent� To see th clearly let us return to example 	 and
impose the requirement that the robot has no knowledge of the environment and
that the only way of learning is by on�line experience of trying various actions�

and thereby visiting many states� Delayed RL algorithms are particularly meant for
such situations and have the following general format�
Delayed RL Algorithm

Initialize the learning system�
Repeat

�Sometimes r is referred to as the primary reinforcement� In more general situations� r is a
function of xt as well as at� the action at time step t�

�An optimal action at x is one that gives the maximum value of V ��y��
�During learning this is usually achieved by using a �stochastic� exploration policy for choosing

actions� Typically the explorationpolicy is chosen to be totally randomat the beginningof learning
and made to approach an optimal policy as learning nears completion�
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�� With the system at state x� choose an action a according to an exploration
policy and apply it to the system�

�� The environment returns a reward� r� and also yields the next state� y�

�� Use the experience� �x� a� r� y� to update the learning system�

�� Set x �� y�

Even when a model of the environment is available� it is often advantageous to
avoid an o��line method such as DP and instead use a delayed RL algorithm� This
is because� in many problems the state space is very large� while a DP algorithm
operates with the entire state space� a delayed RL algorithm only operates on parts
of the state space that are most relevant to the system operation� When a model is
available� delayed RL algorithms can employ simulation mode of operation instead
of on�line operation so as to speed�up learning and avoid doing experiments using
hardware� In this paper� we will use the term� real time operation to mean that
either on�line operation or simulation mode of operation is used�

In most applications� representing functions such as V � and � exactly is infea�
sible� A better alternative is to employ parametric function approximators� e�g��
connectionist networks� Such approximators must be suitably chosen for use in a
delayed RL algorithm� To clarify this� let us take V � for instance and consider a
function approximator� �V ���w� � X � R� for it� Here R denotes the real line and w
denotes the vector of parameters of the approximator that is to be learnt so that �V
approximates V � well� Usually� at step � of the delayed RL algorithm� the learning
system uses the experience to come up with a direction� � in which �V �x�w� has to be
changed for improving performance� Given a step size� �� the function approximator
must alter w to a new value� wnew so that

�V �x�wnew� � �V �x�w� � �� �	�

For example� in multilayer perceptrons �Hertz et al 	

	� w denotes the set of
weights and thresholds in the network and� their updating can be carried out using
backpropagation so as to achieve �	�� In the rest of the paper we will denote the
updating process in �	� as

�V �x�w� �� �V �x�w� � �� ���

and refer to it as a learning rule�
The paper is organized as follows� Section � discusses immediate RL� In x� we

formulate Delayed RL problems and mention some basic results� Methods of esti�
mating total reward are discussed in x�� These methods play an important role in
delayed RL algorithms� DP techniques and delayed RL algorithms are presented in
x�� Section 
 addresses various practical issues� We make a few concluding remarks
in x��

� Immediate Reinforcement Learning

Immediate RL refers to the learning of an associative mapping� � � X�A given a
reinforcement evaluator� To learn� the learning system interacts in a closed loop
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with the environment� At each time step� the environment chooses an x � X
and� the learning system uses its function approximator� �����w� to select an action�
a � ���x�w�� Based on both x and a� the environment returns an evaluation or
�reinforcement�� r�x� a� � R� Ideally� the learning system has to adjust w so as to
produce the maximum possible r value for each x� in other words� we would like ��
to solve the parametric global optimization problem�

r�x� ���x�w�� � r��x�
def
� max

a�A
r�x� a� �x � X ���

Supervised learning is a popular paradigm for learning associative mappings
�Hertz et al 	

	�� In supervised learning� for each x shown the supervisor pro�
vides the learning system with the value of ��x�� Immediate RL and supervised
learning di�er in the following two important ways�

� In supervised learning� when an x is shown and the supervisor provides a �
��x�� the learning system forms the directed information� � � a� ���x�w� and
uses the learning rule� ���x�w� �� ���x�w� � ��� where � is a �positive� step
size� For immediate RL such directed information in not available and so it
has to employ some strategy to obtain such information�

� In supervised learning� the learning system can simply check if � � � and hence
decide whether the correct map value has been formed by �� at x� However�
in immediate RL� such a conclusion on correctness cannot be made without
exploring the values of r�x� a� for all a�

Therefore� immediate RL problems are much more di�cult to solve than supervised
learning problems�

A number of immediate RL algorithms have been described in the literature�
Stochastic learning automata algorithms �Narendra � Thathachar 	
�
� deal with
the special case in which X is a singleton� A is a �nite set� and r � ��� 	 � The
Associative Reward�Penalty �AR�P � algorithm �Barto � Anandan 	
��� Barto et
al 	
��� Barto � Jordan 	
��� Mazzoni et al 	

�� extends the learning automata
ideas to the case where X is a �nite set� Williams �	
�
� 	
��� has proposed a
class of immediate RL methods and has presented interesting theoretical results�
Gullapalli �	

�� 	

�a� has developed algorithms for the general case in which X�
A are �nite�dimensional real spaces and r is real valued� Here we will discuss only
algorithms which are most relevant to� and useful in delayed RL�

One simple way of solving ��� is to take one x at a time� use a global optimization
algorithm �e�g�� complete enumeration� to explore the A space and obtain the correct
a for the given x� and then make the function approximator learn this �x� a� pair�
However� such an idea is not used for the following reason� In most situations
where immediate RL is used as a tool �e�g�� to approximate a policy in delayed
RL�� the learning system has little control over the choice of x� When� at a given
x� the learning system chooses a particular a and sends it to the environment for
evaluation� the environment not only sends a reinforcement evaluation but also
alters the x value� Immediate RL seeks approaches which are appropriate to these
situations�

Let us �rst consider the case in which A is a �nite set� A � fa�� a�� � � � � amg� Let
Rm denote the m�dimensional real space� The function approximator� �� is usually
formed as a composition of two functions� a function approximator� g���w� � X�Rm
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and a �xed function� M � Rm�A� The idea behind this set�up is as follows� For
each given x� z � g�x�w� � Rm gives a vector of merits of the various ai values� Let
zk denote the k�th component of z� Given the merit vector z� a � M �z� is formed
by the max selector�

a � ak where zk � max
��i�m

zi ���

Let us now come to the issue of learning �i�e�� choosing a w�� At some stage� let x
be the input� z be the merit vector returned by g� and ak be the action having the
largest merit value� The environment returns the reinforcement� r�x� ak�� In order
to learn we need to evaluate the goodness of zk �and therefore� the goodness of ak��
Obviously� we cannot do this using existing information� We need an estimator� call
it �r�x� v�� that provides an estimate of r��x�� The di�erence� r�x� ak�� �r�x� v� is a
measure of the goodness of ak� Then a simple learning rule is

gk�x�w� �� gk�x�w� � ��r�x� ak� � �r�x� v�� ���

where � is a small �positive� step size�
Learning �r requires that all members of A are evaluated by the environment at

each x� Clearly� the max selector� ��� is not suitable for such exploration� For
instance� if at some stage of learning� for some x� g assigns the largest merit to a
wrong action� say ak� and �r gives� by mistake� a value smaller than r�x� ak�� then no
action other than ak is going to be generated by the learning system at the given x�
So we replace ��� by a controlled stochastic action selector that generates actions
randomly when learning begins and approaches ��� as learning is completed� A
popular stochastic action selector is based on the Boltzmann distribution�

pi�x�
def
� Probfa � aijxg �

exp�zi�T �P
j exp�zj�T �

�
�

where T is a nonnegative real parameter �temperature� that controls the stochas�
ticity of the action selector� For a given x the expected reinforcement of the action
selector is

!r�x�
def
� E�r�x� a�jx� �

X
i

pi�x�r�x� ai�

As T�� the stochastic action selector approaches the max selector� ���� and�
!r�x��r��x�� Therefore we train �r to approximate !r �instead of r��� This is easy
to do because� for any �xed value of T � !r can be estimated by the average of the
performance of the stochastic action selector over time� A simple learning rule that
achieves this is

�r�x� v� �� �r�x� v� � ��r�x� a� � �r�x� v�� ���

where � is a small �positive� step size�
Remark Two important comments should be made regarding the convergence

of learning rules such as ��� �we will come across many such learning rules later�
which are designed to estimate an expectation by averaging over time�

� Even if �r � !r� r�x� a�� �r�x� v� can be non�zero and even large in size� This is
because a is only an instance generated by the distribution� p�x�� Therefore�
to avoid unlearning as �r comes close to !r� the step size� � must be controlled
properly� The value of � may be chosen to be 	 when learning begins� and
then slowly decreased to � as learning progreses�
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� For good learning to take place� the sequence of x values at which ��� is carried
out must be such that it covers all parts of the space� X as often as possible�
Of course� when the learning system has no control over the choice of x� it can
do nothing to achieve such an exploration� To explore� the following is usually
done� Learning is done over a number of trials� A trial consists of beginning
with a random choice of x and operating the system for several time steps� At
any one time step� the system is at some x and the learning system chooses
an action� a and learns using ���� Depending on x� a and the rules of the
environment a new x results and the next time step begins� Usually� when
learning is repeated over multiple trials� the X space is thoroughly explored�

Let us now consider the case in which A is continuous� say a �nite dimensional
real space� The idea of using merit values is not suitable� It is better to directly
deal with a function approximator� h���w� from X to A� In order to do exploration
a controlled random perturbation� � is added to h�x�w� to form a � ���x�� A
simple choice is to take � to be a Gaussian with zero mean and having a standard
deviation� ��T � that satis�es� ��T ��� as T��� The setting�up and training of
the reinforcement estimator� �r is as in the case when A is discrete� The function
approximator� h can adopt the following learning rule�

h�x�w� �� h�x�w� � ��r�x� a�� �r�x� v��� ���

where � is a small �positive� step size� In problems where a bound on r� is available�
this bound can be suitably employed to guide exploration� i�e�� choose � �Gullapalli
	

���

Jordan and Rumelhart �	

�� have suggested a method of "forward models� for
continuous action spaces� If r is a known di�erentiable function� then a simple�
deterministic learning law based on gradient ascent can be given to update ���

���x�w� �� ���x�w� � �
	r�x� a�

	a
�
�

If r is not known� Jordan and Rumelhart suggest that it is learnt using on�line
data� and �
� be used using this learnt r� If for a given x� the function r�x� �� has
local maxima then the ���x� obtained using learning rule� �
� may not converge to
��x�� Typically this is not a serious problem� The stochastic approach discussed
earlier does not su�er from local maxima problems� However� we should add that�
because the deterministic method explores in systematic directions and the stochas�
tic method explores in random directions� the former is expected to be much faster�
The comparison is very similar to the comparison of deterministic and stochastic
techniques of continuous optimization�

� Delayed Reinforcement Learning

Delayed RL concerns the solution of stochastic optimal control problems� In this
section we discuss the basics of such problems� Solution methods for delayed RL will
be presented in x� and x�� In these three sections we will mainly consider problems
in which the state and control spaces are �nite sets� This is because the main issues
and solution methods of delayed RL can be easily explained for such problems� We
will deal with continuous state and#or action spaces brie�y in x��
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Consider a discrete�time stochastic dynamic system with a �nite set of states�
X� Let the system begin its operation at t � �� At time t the agent �controller	
observes state� xt and� selects �and performs� action at from a �nite set� A�xt�� of
possible actions� Assume that the system is Markovian and stationary� i�e��

Probfxt�� � y j x�� a�� x�� a�� � � � � xt � x� at � ag

� Probfxt�� � yjxt � x� at � ag
def
� Pxy�a�

A policy is a method adopted by the agent to choose actions� The objective of
the decision task is to �nd a policy that is optimal according to a well de�ned sense�
described below� In general� the action speci�ed by the agent�s policy at some time
can depend on the entire past history of the system� Here we restrict attention
to policies that specify actions based only on the current state of the system� A
deterministic policy� � de�nes� for each x � X an action ��x� � A�x�� A stochastic
policy� � de�nes� for each x � X a probability distribution on the set of feasible
actions at x� i�e�� it gives the values of Probf��x� � ag for all a � A�x�� For the
sake of keeping the notations simple we consider only deterministic policies in this
section� All ideas can be easily extended to stochastic policies using appropriate
detailed notations�

Let us now precisely de�ne the optimality criterion� While at state x� if the agent
performs action a� it receives an immediate payo
 or reward� r�x� a�� Given a policy
� we de�ne the value function� V � � X�R as follows�

V ��x� � Ef
�X
t��


tr�xt� ��xt��jx� � xg �	��

Here future rewards are discounted by a factor 
 � ��� 	�� The case 
 � 	 is avoided
only because it leads to some di�culties associated with the existence of the sum�
mation in �	��� Of course� these di�culties can be handled by putting appropriate
assumptions on the problem solved� But� to avoid unnecessary distraction we do
not go into the details� see �Bradtke 	

�� Bertsekas � Tsitsiklis 	
�
��

The expectation in �	�� should be understood as

V ��x� � lim
N��

Ef
N��X
t��


tr�xt� ��xt��jx� � xg

where the probability with which a particular state sequence� fxtg
N��
t�� occurs is

taken in an obvious way using x� � x and repeatedly employing � and P � We wish
to maximize the value function�

V ��x� � max
�

V ��x� �x �		�

V � is referred to as the optimal value function� Because � � 
 � 	� V ��x� is
bounded� Also� since the number of ��s is �nite V ��x� exists�

�If the state is not completely observable then a method that uses the observable states and
retains past information has to be used� see �Bacharach ����� Bacharach ���	� Chrisman ���	�
Mozer 
 Bacharach ����a� ����b� Whitehead and Ballard ������
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How do we de�ne an optimal policy� ��$ For a given x let �x�� denote a policy that
achieves the maximumin �		�� Thus we have a collection of policies� f�x�� � x � Xg�
Now �� is de�ned by picking only the �rst action from each of these policies�

���x� � �x���x� � x � X

It turns out that �� achieves the maximum in �		� for every x � X� In other words�

V ��x� � V �� �x� � x � X �	��

This result is easy to see if one looks at Bellman�s optimality equation � an important
equation that V � satis�es�

V ��x� � max
a�A�x	

�
�r�x� a� � 


X
y�X

Pxy�a�V ��y�

�
� �	��

The fact that V � satis�es �	�� can be explained as follows� The term within square
brackets on the right hand side is the total reward that one would get if action a is
chosen at the �rst time step and then the system performs optimally in all future
time steps� Clearly� this term cannot exceed V ��x� since that would violate the
de�nition of V ��x� in �		�� also� if a � �x���x� then this term should equal V ��x��
Thus �	�� holds� It also turns out that V � is the unique function from X to R that
satis�es �	�� for all x � X� This fact� however� requires a non�trivial proof� details
can be found in �Ross 	
��� Bertsekas 	
�
� Bertsekas � Tsitsiklis 	
�
��

The above discussion also yields a mechanism for computing �� if V � is known�

���x� � arg max
a�A�x	

�
�r�x� a� � 


X
y�X

Pxy�a�V ��y�

�
�

A di�culty with this computation is that the system model� i�e�� the function� Pxy�a�
must be known� This di�culty can be overcome if� instead of the V �function we
employ another function called the Q�function� Let U � f�x� a� � x � X� a � A�x�g�
the set of feasible �state�action� pairs� For a given policy �� let us de�ne Q� � U�R
by

Q��x� a� � r�x� a� � 

X
y�X

Pxy�a�V ��y� �	��

Thus Q��x� a� denotes the total reward obtained by choosing a as the �rst action and
then following � for all future time steps� Let Q� � Q�� � By Bellman�s optimality
equation and �	�� we get

V ��x� � max
a�A�x	

�Q��x� a� �	��

It is also useful to rewrite Bellman�s optimality equation using Q� alone�

Q��x� a� � r�x� a� � 

X
y�X

Pxy�a�f max
b�A�y	

Q��y� b�g �	
�

Using Q� we can compute ���

���x� � arg max
a�A�x	

�Q��x� a� �	��
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Thus� if Q� is known then �� can be computed without using a system model� This
advantage of the Q�function over the V �function will play a crucial role in x� for
deriving a model�free delayed RL algorithm called Q�Learning �Watkins 	
�
��

Let us now consider a few examples that give useful hints for problem formulation�
These examples are also commonly mentioned in the RL literature�
Example � Navigating a Robot with Dynamics
In example 	 the robot is moved from one cell to another like the way pieces are

moved in a chess board� True robot motions� however� involve dynamics� the e�ects
of velocity and acceleration need to be considered� In this example we will include
dynamics in a crude way� one that is appropriate to the grid world� Let ht and vt
denote the horizontal and vertical coordinates of the cell occupied by the robot at
time t� and� %ht and %vt denote the velocities� The vector� �ht� vt� %ht� %vt� denotes the
system state at time t� each one of the four components is an integer� The goal state
is xG � �hG� vG� �� �� where �hG� vG� is the coordinate vector of the goal cell G� In
other words� the robot has to come to rest at G� Let %hmax and %vmax be limits on
velocity magnitudes� Thus the state space is given by

!X � fx � �h� v� %h� %v�j �h� v� is a blank cell�

j %hj � %hmax� and j %vj � %vmaxg

We will also include an extra state� f called failure state to denote situations where
a barrier �shaded� cell is entered or a velocity limit is exceeded� Thus

X � !X 	 ffg

The accelerations 
 along the horizontal and vertical directions� respectively ah

and av� are the actions� To keep h and v as integers let us assume that each of
the accelerations takes only even integer values� Let amax be a positive even integer
that denotes the limit on the magnitude of accelerations� Thus a � �ah� av� is an
admissible action if each of ah and av is an even integer lying in ��amax� amax �

As in example 	 state transitions are deterministic� They are de�ned as follows�
If barrier cells and velocity limits are not present� then application of action �ah� av�
at xt � �ht� vt� %ht� %vt� will lead to the next state x�t�� � �h�t��� v

�
t���

%h�t��� %v�t��� given
by

h�t�� � ht � %ht � ah�� � v�t�� � vt � %vt � av��
%h�t�� � %ht � ah � %v�t�� � %vt � av

Let C denote the curve in the grids world resulting during the transition from �ht� vt�
at time t to �h�t��� v

�
t��� at time �t � 	�� i�e�� the solution of the di�erential equa�

tions� d�h�d�� � ah� d�v�d�� � av� � � �t� t�	 � h�t� � ht� dh�d� j� � %ht� v�t� � vt�
dv�d� j� � %vt� If� either C cuts across a barrier cell or � %h�t��� %v�t��� is an inadmissi�
ble velocity vector� then we say failure has occured during transition� Thus state
transitions are de�ned as

xt�� �

����
��	

f if xt � f
f if failure occurs during transition
xG if xt � xG

x�t�� otherwise

�Negative acceleration will mean deceleration�
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The primary aim is to avoid failure� Next� among all failure�avoiding trajec�
tories we would like to choose the trajectory which reaches the goal state� xG �
�hG� vG� �� �� in as few time steps as possible� These aims are met if we de�ne

r�x� a� �

��
	

�	 if x � f�
	 if x � xG�
� otherwise�

The following can be easily checked�

� V ��x� � � i� there does not exist a trajectory starting from x that avoids
failure�

� V ��x� � � i�� starting from x� there exists a failure�avoiding trajectory� but
there does not exist a trajectory that reaches G�

� V ��x� 
 � i�� starting from x� there exists a failure�avoiding trajectory that
also reaches G� also� an optimal policy �� leads to the generation of a trajectory
that reaches G in the fewest number of steps from x while avoiding failure�

�

Example � Playing Backgammon
Consider a game of backgammon �Magriel 	
�
� between players A and B� Let

us look at the game from A�s perspective� assuming that B follows a �xed policy�
Now A can make a decision on a move only when the current board pattern as well
as its dice roll are known� Therefore a state consists of a �board pattern� dice roll�
pair� Each action consists of a set of marker movements� State transition is de�ned
as follows�

� A moves its markers in accordance with the chosen action� This step is deter�
ministic� and results in a new board pattern�

� B rolls the dice� This step is stochastic�

� B moves its markers according to its policy� This step can be deterministic or
stochastic depending on the type of B�s policy�

� A rolls the dice� This step is stochastic�

The set of states that correspond to A�s win is the set of goal states� G to be
reached� We can de�ne the reward as� r�x� a� � 	 if x is a goal state� and r�x� a� � �
otherwise� If 
 � 	� then for a given policy� say �� the value function V ��x� will
denote the probability that A will win from that state�

�

Example � Pole Balancing
We now deviate from our problem formulation and present an example that in�

volves continuous state#action spaces� A standard problem for learning controllers
is that of balancing an inverted pendulum pivoted on a trolley� a problem similar to
that of balancing a stick on one�s hand �Barto et al 	
���� The system comprises
a straight horizontal track� like a railway track� with a carriage free to move along
it� On the carriage is an axis� perpendicular to the track and pointing out to the
side� about which a pendulum is free to turn� The controller�s task is to keep the
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θ

h

Figure �� Pole balancing�

pendulum upright� by alternately pulling and pushing the carriage along the track�
Let h and � be as shown in �gure �� We say balancing has failed if anyone of the
following inequalities is violated�

h � hmax� h 
 �hmax� � � �max� � 
 ��max

where hmax and �max are speci�ed bounds on the magnitudes of h and �� The aim
is to balance without failure for as long a time as possible�

The state of the system is the ��tuple� �h� %h� �� %��� where %h and %� are the time
derivatives of h and � respectively� The action is the force applied to the carriage�
It takes real values in the interval� ��Fmax� Fmax � To simplify the problem solution�
sometimes the action space is taken to be f�Fmax� Fmaxg �Michie � Chambers
	

�� Barto et al 	
��� Anderson 	
�
�� A discrete time formulation of the problem
is obtained by cutting continuous time �non�negative real line� into uniform time
intervals� each of duration &� and taking the applied force to be constant within
each interval�� The state of the system at the continuous time instant� t& is taken
to be xt� the discrete time state at the t�th time step� The mechanical dynamics of
the system de�nes state transition� except for one change� once failure occurs� we
will assume� for the sake of consistent problem formulation� that the system stays
at failure for ever�

As in example � we will take the state space to be X � !X 	 ffg� where

!X � fx � �h� %h� �� %��j � hmax � h � hmax� ��max � � � �maxg

and f is the failure state that collectively represents all states not in !X � Since the

�This constant is the action for the time step corresponding to that interval�
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aim is to avoid failure� we choose

r�x� a� �

�
�	 if x � f�
� otherwise�

�

� Methods of Estimating V � and Q�

Delayed RL methods use a knowledge of V � �Q�� in two crucial ways� �	� the
optimality of � can be checked by seeing if V � �Q�� satis�es Bellman�s optimality
equation� and ��� if � is not optimal then V � �Q�� can be used to improve �� We
will elaborate on these details in the next section� In this section we discuss� in some
detail� methods of estimating V � for a given policy� �� �Methods of estimating Q�

are similar and so we will deal with them brie�y at the end of the section�� Our aim
is to �nd �V ��� v�� a function approximator that estimates V � � Much of the material
in this section is taken from the works of Watkins �	
�
�� Sutton �	
��� 	
��� and
Jaakkola et al �	

���

To avoid clumsiness we employ some simplifying notations� Since � is �xed we
will omit the superscript from V � and so call it as V � We will refer to r�xt� ��xt��
simply as rt� If p is a random variable� we will use p to denote both� the random
variable as well as an instance of the random variable�

A simple approximation of V �x� is the n�step truncated return�

V �n
�x� �
n��X
���


� r� � �V �x� v� � E�V �n
�x�� �	��

�Here it is understood that x� � x� Thus� throughout this section � will denote
the number of time steps elapsed after the system passed through state x� It is for
stressing this point that we have used � instead of t� In a given situation� the use
of time � is it "actual system time� or "time relative to the occurence of x� � will
be obvious from the context�� If rmax is a bound on the size of r then it is easy to
verify that

max
x

j�V �x� v�� V �x�j �

nrmax

�	� 
�
�	
�

Thus� as n��� �V �x� v� converges to V �x� uniformly in x�
But �	�� su�ers from an important drawback� The computation of the expecta�

tion requires the complete enumeration of the probability tree of all possible states
reachable in n time steps� Since the breadth of this tree may grow very large with n�
the computations can become very burdensome� One way of avoiding this problem
is to set

�V �x� v� � V �n
�x� ����

where V �n
�x� is obtained via either Monte�Carlo simulation or experiments on the
real system �the latter choice is the only way to systems for which a model is
unavailable�� The approximation� ���� su�ers from a di�erent drawback� Because
the breadth of the probability tree grows with n� the variance of V �n
�x� also grows
with n� Thus �V �x� v� in ���� will not be a good approximation of E�V �n
�x�� unless
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it is obtained as an average over a large number of trials�� Averaging is achieved if
we use a learning rule �similar to �����

�V �x� v� �� �V �x� v� � �
h
V �n
�x�� �V �x� v�

i
��	�

where � � ��� 	� is a small step size� Learning can begin with a random choice of v�
Eventually� after a number of trials� we expect the �V resulting from ��	� to satisfy
�	
��

In the above approach� an approximation of V � �V is always available� Therefore�
an estimate that is more appropriate than V �n
�x� is the corrected n�step truncated
return�

V �n	�x� �
n��X
���


� r� � 
n �V �xn� v� ����

where xn is the state that occurs n time steps after the system passed through state
x� Let us do some analysis to justify this statement�

First� consider the ideal learning rule�

�V �x� v� �� E�V �n	�x�� � x ����

Suppose v gets modi�ed to vnew in the process of satisfying ����� Then� similar to
�	
� we can easily derive

max
x

j�V �x� vnew�� V �x�j � 
n max
x

j�V �x� v� � V �x�j

Thus� as we go through a number of learning steps we achieve �V�V � Note that this
convergence is achieved even if n is �xed at a small value� say n � 	� On the other
hand� for a �xed n� the learning rule based on V �n
� i�e�� �	��� is only guaranteed to
achieve the bound in �	
�� Therefore� when a system model is available it is best to
choose a small n� say n � 	� and employ ���	�

Now suppose that� either a model is unavailable or ���� is to be avoided because
it is expensive� In this case� a suitable learning rule that employs V �n	 and uses
real�time data is�

�V �x� v� �� �V �x� v� � �
h
V �n	�x� � �V �x� v�

i
����

Which is better� ��	� or ����$ There are two reasons as to why ���� is better�

� Suppose �V is a good estimate of V � Then a small n makes V �n	 ideal� V �n	�x�
has a mean close to V �x� and it also has a small variance� Small variance
means that ���� will lead to fast averaging and hence fast convergence of �V
to V � On the other hand n has to be chosen large for V �n
�x� to have a mean
close to V �x�� but then� V �n
�x� will have a large variance and ��	� will lead
to slow averaging�

� If �V is not a good estimate of V then both V �n	 and V �n
 will require a large
n for their means to be good� If a large n is used� the di�erence between V �n	

and V �n
� i�e�� 
n �V is negligible and so both ��	� and ���� will yield similar
performance�

�As already mentioned� a trial consists of starting the system at a random state and then
running the system for a number of time steps�
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The above discussion implies that it is better to employ V �n	 than V �n
� It is
also clear that� when V �n	 is used� a suitable value of n has to be chosen dynami�
cally according to the goodness of �V � To aid the manipulation of n� Sutton �	
���
suggested a new estimate constructed by geometrically averaging fV �n	�x� � n 
 	g�

V ��x� � �	 � ��
�X
n��

�n��V �n	�x� ����

Here �	 � �� is a normalizing term� Sutton referred to the learning algorithm that
uses V � as TD���� Here TD stands for "Temporal Di�erence�� The use of this name
will be justi�ed below� Expanding ���� using ���� we get

V ��x� � �	� ��


V ��	�x� � �V ��	�x� � ��V ��	�x� � � � �

�
� r� � 
�	 � �� �V �x�� v� �


�
h
r� � 
�	 � �� �V �x�� v� �


�
h
r� � 
�	 � �� �V �x�� v� �

� � �

��
�

Using the fact that r� � r�x� ��x�� the above expression may be rewritten recursively
as

V ��x� � r�x� ��x�� � 
�	 � �� �V �x�� v� � 
�V ��x�� ����

where x� is the state occuring a time step after x� Putting � � � gives V � � V ��	

and putting � � 	 gives V � � V � which is the same as V ��	� Thus� the range of
values obtained using V �n	 and varying n from 	 to � is approximately achieved by
using V � and varying � from � to 	� A simple idea is to use V � instead of V �n	� begin
the learning process with � � 	� and reduce � towards zero as learning progresses
and �V becomes a better estimate of V � If � is properly chosen then a signi�cant
betterment of computational e�ciency is usually achieved when compared to simply
using � � � or � � 	 �Sutton 	
���� In a recent paper� Sutton and Singh �	

�� have
developed automatic schemes for doing this assuming that no cycles are present in
state trajectories�

The de�nition of V � involves all V �n	s and so it appears that we have to wait for
ever to compute it� However� computations involving V � can be nicely rearranged
and then suitably approximated to yield a practical algorithm that is suited for
doing learning concurrently with real time system operation� Consider the learning
rule in which we use V � instead of V �n	�

�V �x� v� �� �V �x� v� � �
h
V ��x�� �V �x� v�

i
����

De�ne the temporal di
erence operator� & by

&�x� � r�x� ��x�� � 
 �V �x�� v�� �V �x� v� ��
�

&�x� is the di�erence of predictions �of V ��x�� at two consecutive time steps�
r�x� ��x�� � 
 �V �x�� v� is a prediction based on information at � � 	� and �V �x� v� is
a prediction based on information at � � �� Hence the name� "temporal di�erence��
Note that &�x� can be easily computed using the experience within a time step� A
simple rearrangement of the terms in the second line of ��
� yields

V ��x� � �V �x� v� � &�x� � �
��&�x�� � �
���&�x�� � � � � ����
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Even ���� is not in a form suitable for use in ���� because it involves future terms�
&�x��� &�x��� etc�� extending to in�nite time� One way to handle this problem is to
choose a large N � accumulate &�x�� &�x��� � � �� &�xN��� in memory� truncate the
right hand side of ���� to include only the �rst N terms� and apply ���� at � � N�	�
i�e�� �N � 	� time steps after x occured� However� a simpler and approximate way
of achieving ���� is to include the e�ects of the temporal di�erences as and when
they occur in time� Let us say that the system is in state x at time t� When the
systems transits to state x� at time �t� 	�� compute &�x� and update �V according
to� �V �x� v� �� �V �x� v� � ��
��&�x��� When the system transits to state x� at time
�t���� compute &�x�� and update �V according to� �V �x� v� �� �V �x� v����
���&�x��
and so on� The reason why this is approximate is because �V �x� v� is continuously
altered in this process whereas ���� uses the �V �x� v� existing at time t� However�
if � is small and so �V �x� v� is adapted slowly� the approximate updating method is
expected to be close to �����

One way of implementing the above idea is to maintain an eligibility trace� e�x� t��
for each state visited �Klopf 	
��� Klopf 	
��� Klopf 	
��� Barto et al 	
��� Watkins
	
�
�� and use the following learning rule at time t�

�V �x� v� �� �V �x� v� � �e�x� t�&�xt� � x ��	�

where xt is the system state at time t� The eligibility traces can be adapted according
to

e�x� t� �

��
	

� if x has never been visited

�e�x� t � 	� if xt �� x
	 � 
�e�x� t� 	� if xt � x

����

Two important remarks must be made regarding this implementation scheme�

� Whereas the previous learning rules �e�g�� ��	�� ���� and ����� update �V only
for one x at a time step� ��	� updates the �V of all states with positive eligibility
trace� at a time step� Rule ��	� is suitable for connectionist implementation�
but not so for implementations on sequential computers� A more e�cient way
is to keep track of the last k states visited and update �V for them only� The
value of k should depend on �� If � is small� k should be small� If � � � then
k � 	�

� The rule for updating eligibility traces� ���� assumes that learning takes place
in a single trial� If learning is done over multiple trials then all eligibility traces
must be reset to zero just before each new trial is begun�

The remark made below equation ��� applies as well to the learning rules� ��	��
����� ���� and� ��	�� Dayan and Sejnowski �	

��� and Jaakkola et al �	

�� have
shown that� if the real time TD��� learning rule� ��	� is used� then under appro�
priate assumptions on the variation of � in time� as t��� �V converges to V � with
probability one� Practically� learning can be achieved by doing multiple trials and
decreasing � towards zero as learning progresses�

Thus far in this section we have assumed that the policy� � is deterministic� If
� is a stochastic policy then all the ideas of this section still hold with appropriate
interpretations� all expectations should include the stochasticity of �� and� the ��x�
used in ����� ��
� etc� should be taken as instances generated by the stochastic
policy�
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Let us now come to the estimation of Q� � Recall from �	�� that Q��x� a� denotes
the total reward obtained by choosing a as the �rst action and then following � for
all future time steps� Details concerning the extension of Q� are clearly described in
a recent report by Rummery and Niranjan �	

��� Let �Q�x� a� v� be the estimator of
Q��x� a� that is to be learnt concurrently with real time system operation� Following
the same lines of argument as used for the value function� we obtain a learning rule
similar to ��	��

�Q�x� a� v� �� �Q�x� a� v� � �eQ�x� a� t�&Q�xt� at� � �x� a� ����

where� xt and at are� respectively� the system state and the action chosen at time t�

&Q�x� a� � r�x� a� � 
 �Q�x�� ��x��� v� � �Q�x� a� v�� ����

and

eQ�x� a� t� �

��
	

� if �x� a� has never been visited

�eQ�x� a� t� 	� if �xt� at� �� �x� a�
	 � 
�eQ�x� a� t� 	� if �xt� at� � �x� a�

����

As with e� all eQ�x� a� t��s must be reset to zero whenever a new trial is begun from
a random starting state�

If � is a stochastic policy then it is better to replace ���� by

&Q�x� a� � r�x� a� � 
 !V �x��� �Q�x� a� v� ��
�

where
!V �x�� �

X
b�A�x�	

Probf��x� � bg �Q�x�� b� v� ����

Rummery and Niranjan �	

�� suggest the use of ���� even if � is stochastic� in
that case� the ��x�� in ���� corresponds to an instance generated by the stochastic
policy at x�� We feel that� as an estimate of V ��x��� !V �x�� is better than the term
�Q�x�� ��x��� v� used in ����� and so it �ts�in better with the de�nition of Q� in �	���
Also� if the the size of A�x�� is small then the computations of !V �x�� is not much
more expensive than that of �Q�x�� ��x��� v��

� Delayed Reinforcement Learning Methods

Dynamic Programming �DP� methods �Ross 	
��� Bertsekas 	
�
� are well known
classical tools for solving the stochastic optimal control problem formulated in x��
Since delayed RL methods also solve the same problem� how do they di�er from DP
methods$� Following are the main di�erences�

� Whereas DP methods simply aim to obtain the optimal value function and
an optimal policy using o��line iterative methods� delayed RL methods aim
to learn the same concurrently with real time system operation and improve
performance over time�

�The connection between DP and delayed RL was �rst established by Werbos ���
�� ��
��
���	� and Watkins ���
���
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� DP methods deal with the complete state space� X in their computations�
while delayed RL methods operate on !X� the set of states that occur during
real time system operation� In many applications X is very large� but !X is
only a small� manageable subset of X� Therefore� in such applications� DP
methods su�er from the curse of dimensionality� but delayed RL methods do
not have this problem� Also� typically delayed RL methods employ function
approximators �for value function� policy etc�� that generalize well� and so�
after learning� they provide near optimal performance even on unseen parts of
the state space�

� DP methods fundamentally require a system model� On the other hand� the
main delayed RL methods are model�free� hence they are particularly suited
for the on�line learning control of complicated systems for which a model is
di�cult to derive�

� Because delayed RL methods continuously learn in time they are better suited
than DP methods for adapting to situations in which the system and goals
are non�stationary�

Although we have said that delayed RL methods enjoy certain key advantages� we
should also add that DP has been the fore�runner from which delayed RL methods
obtained clues� In fact� it is correct to say that delayed RL methods are basically
rearrangements of the computational steps of DP methods so that they can be
applied during real time system operation�

Delayed RL methods can be grouped into two categories� model�based methods
and model�free methods� Model based methods have direct links with DP� Model�
free methods can be viewed as appropriate modi�cations of the model based methods
so as to avoid the model requirement� These methods will be described in detail
below�

��� Model Based Methods

In this subsection we discuss DP methods and their possible modi�cation to yield
delayed RL methods� There are two popular DP methods� value iteration and policy
iteration� Value iteration easily extends to give a delayed RL method called "real
time DP�� Policy iteration� though it does not directly yield a delayed method� it
forms the basis of an important model�free delayed RL method called actor�critic�

����� Value Iteration

The basic idea in value iteration is to compute V ��x� as

V ��x� � lim
n��

V �
n �x� ����

where V �
n �x� is the optimal value function over a �nite�horizon of length n� i�e��

V �
n �x� is the maximum expected return if the decision task is terminated n steps

after starting in state x� For n � 	� the maximum expected return is just the
maximum of the expected immediate payo��

V �
� �x� � max

a�A�x	
r�x� a� � x ��
�
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Then� the recursion��

V �
n���x� � max

a�A�x	

�
r�x� a� � 


X
y

Pxy�a�V �
n �y�



� x ����

can be used to compute V �
n�� for n � 	� �� � � �� �Iterations can be terminated after

a large number �N � of iterations� and V �
N can be taken to be a good approximation

of V ���
In value iteration� a policy is not involved� But it is easy to attach a suitable policy

with a value function as follows� Associated with each value function� V � X�R is
a policy� � that is greedy with respect to V � i�e��

��x� � arg max
a�A�x	

�
r�x� a� � 


X
y

Pxy�a�V �y�



� x ��	�

If the state space� X has a very large size �e�g�� size�kd� where d� number of
components of x� k�number of values that each component can take� d 
 	��
k 
 	��� then value iteration is prohibitively expensive� This di�culty is usually
referred to as the curse of dimensionality�

In the above� we have assumed that ���� is correct� Let us now prove this conver�
gence� It turns out that convergence can be established for a more general algorithm�
of which value iteration is a special case� We call this algorithm as generalized value
iteration�
Generalized Value Iteration

Set n � 	 and V �
� 
 an arbitrary function over states�

Repeat

�� Choose a subset of states� Bn and set

V �
n���x� �

�
maxa�A�x	

h
r�x� a� � 


P
y Pxy�a�V �

n �y�
i

if x � Bn

V �
n �x� otherwise

����

�� Reset n �� n� 	�

If we choose V �
� as in ��
� and take Bn � X for all n� then the above algorithm

reduces to value iteration� Later we will go into other useful cases of generalized
value iteration� But �rst� let us concern ourselves with the issue of convergence� If
x � Bn� we will say that the value of state x has been backed up at the n�th iteration�
Proof of convergence is based on the following result �Bertsekas � Tsitsiklis 	
�
�
Watkins 	
�
� Barto et al 	

���
Local Value Improvement Theorem

Let Mn � maxx jV
�
n �x�� V ��x�j� Then maxx�Bn

jV �
n���x�� V ��x�j � 
Mn�

Proof� Take any x � Bn� Let a� � ���x� and a�n � ��n�x�� where ��n is a policy
that is greedy with respect to V �

n � Then

V �
n���x� 
 r�x� a�� � 


P
y Pxy�a��V �

n �y�


 r�x� a�� � 

P

y Pxy�a�� �V ��y� �M  

� V ��x� � 
Mn

	One can also view the recursion as doing a �xed�point iteration to solve Bellman�s optimality
equation� �����
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Similarly�

V �
n���x� � r�x� a�n� � 


P
y Pxy�a�n�V �

n �y�

� r�x� a�n� � 

P

y Pxy�a�n� �V ��y� �M  

� V ��x� � 
Mn

and so the theorem is proved� �

The theorem implies that Mn�� � Mn where Mn�� � maxx jV
�
n���x� � V ��x�j�

A little further thought shows that the following is also true� If� at the end of
iteration k� K further iterations are done in such a way that the value of each state
is backed up at least once in these K iterations� i�e�� 	k�Kn�k��Bn � X� then we get
Mk�K � 
Mk� Therefore� if the value of each state is backed up in�nitely often�
then ���	 holds��� In the case of value iteration� the value of each state is backed
up at each iteration and so ���� holds�

Generalized value iteration was proposed by Bertsekas �	
��� 	
�
� and devel�
oped by Bertsekas and Tsitsiklis �	
�
� as a suitable method of solving stochastic
optimal control problems on multi�processor systems with communication time de�
lays and without a common clock� If N processors are available� the state space
can be partitioned into N sets � one for each processor� The times at which each
processor backs up the values of its states can be di�erent for each processor� To
back up the values of its states� a processor uses the �present� values of other states
communicated to it by other processors�

Barto� Bradtke and Singh �	

�� suggested the use of generalized value iteration
as a way of learning during real time system operation� They called their algorithm
as Real Time Dynamic Programming �RTDP�� In generalized value iteration as
specialized to RTDP� n denotes system time� At time step n� let us say that the
system resides in state xn� Since V �

n is available� an is chosen to be an action that
is greedy with respect to V �

n � i�e�� an � ��n�xn�� Bn� the set of states whose values
are backed up� is chosen to include xn and� perhaps some more states� In order
to improve performance in the immediate future� one can do a lookahead search to
some �xed search depth �either exhaustively or by following policy� ��n� and include
these probable future states in Bn� Because the value of xn is going to undergo
change at the present time step� it is a good idea to also include� in Bn� the most
likely predecessors of xn �Moore � Atkeson 	

���

One may ask� since a model of the system is available� why not simply do value
iteration or� do generalized value iteration as Bertsekas and Tsitsiklis suggest$ In
other words� what is the motivation behind RTDP$ The answer is simple� In most
problems �e�g�� playing games such as checkers and backgammon� the state space is
extremely large� but only a small subset of it actually occurs during usage� Because
RTDP works concurrently with actual system operation� it focusses on regions of
the state space that are most relevant to the system�s behaviour� For instance�
successful learning was accomplished in the checkers program of Samuel �	
�
� and
in the backgammon program� TDgammon of Tesauro �	

�� using variations of
RTDP� In �Barto et al 	

��� Barto� Bradtke and Singh also use RTDP to make
interesting connections and useful extensions to learning real time search algorithms
in Arti�cial Intelligence �Korf 	

���

The convergence result mentioned earlier says that the values of all states have to

�
If � � �� then convergence holds under certain assumptions� The analysis required is more
sophisticated� See �Bertsekas 
 Tsitsiklis ��
�� Bradtke ����� for details�
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be backed up in�nitely often�� in order to ensure convergence� So it is important to
suitably explore the state space in order to improve performance� Barto� Bradtke
and Singh have suggested two ways of doing exploration��� �	� adding stochasticity
to the policy� and ��� doing learning cumulatively over multiple trials�

If� only an inaccurate system model is available then it can be updated in real
time using a system identi�cation technique� such as maximum likelihood estimation
method �Barto et al 	

��� The current system model can be used to perform the
computations in ����� Convergence of such adaptive methods has been proved by
Gullapalli and Barto �	

���

����� Policy Iteration

Policy iteration operates by maintaining a representation of a policy and its value
function� and forming an improved policy using them� Suppose � is a given policy
and V � is known� How can we improve �$ An answer will become obvious if we
�rst answer the following simpler question� If � is another given policy then when
is

V ��x� 
 V ��x� � x ����

i�e�� when is � uniformly better than �$ The following simple theorem �Watkins
	
�
� gives the answer�
Policy Improvement Theorem

The policy � is uniformly better than policy � if

Q��x� ��x�� 
 V ��x� � x ����

Proof� To avoid clumsy details let us give a not�so�rigorous proof �Watkins 	
�
��
Starting at x� it is better to follow � for one step and then to follow �� than it is to
follow � right from the begining� By the same argument� it is better to follow � for
one further step from the state just reached� Repeating the argument we get that
it is always better to follow � than �� See Bellman and Dreyfus �	

�� and Ross
�	
��� for a detailed proof� �

Let us now return to our original question� given a policy � and its value function
V � � how do we form an improved policy� �$ If we de�ne � by

��x� � arg max
a�A�x	

Q��x� a� � x ����

then ���� holds� By the policy improvement theorem � is uniformly better than ��
This is the main idea behind policy iteration�
Policy Iteration

Set � �
 an arbitrary initial policy and compute V ��
Repeat

�� Compute Q� using ���	�

�� Find � using ���	 and compute V ��

��For good practical performance it is su�cient that states that are most relevant to the system�s
behaviour are backed up repeatedly�

��Thrun ���
�� has discussed the importance of exploration and suggested a variety of methods
for it
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�� Set� � �� � and V � �� V ��

until V � � V � occurs at step ��
Nice features of the above algorithm are� �	� it terminates after a �nite num�

ber of iterations because there are only a �nite number of policies� and ��� when
termination occurs we get

V ��x� � max
a

Q��x� a� �x

�i�e�� V � satis�es Bellman�s optimality equation� and so � is an optimal policy� But
the algorithm su�ers from a serious drawback� it is very expensive because the entire
value function associated with a policy has to be recalculated at each iteration �step
��� Even though V � may be close to V �� unfortunately there is no simple short cut
to compute it� In x��� we will discuss a well�known model�free method called the
actor�critic method which gives an inexpensive approximate way of implementing
policy iteration�

��� Model�Free Methods

Model�free delayed RL methods are derived by making suitable approximations
to the computations in value iteration and policy iteration� so as to eliminate the
need for a system model� Two important methods result from such approximations�
Barto� Sutton and Anderson�s actor�critic �Barto et al 	
���� and Watkins� Q�
Learning �Watkins 	
�
�� These methods are milestone contributions to the optimal
feedback control of dynamic systems�

����� Actor�Critic Method

The actor�critic method was proposed by Barto� Sutton and Anderson �	
��� �in
their popular work on balancing a pole on a moving cart� as a way of combining� on
a step�by�step basis� the process of forming the value function with the process of
forming a new policy� The method can also be viewed as a practical� approximate
way of doing policy iteration� perform one step of an on�line procedure for estimating
the value function for a given policy� and at the same time perform one step of an on�
line procedure for improving that policy� The actor�critic method�� is best derived
by combining the ideas of x� and x� on immediate RL and estimating value function�
respectively� Details are as follows�
Actor ��� Let m denote the total number of actions� Maintain an approximator�

g���w� � X�Rm so that z � g�x�w� is a vector of merits of the various feasible ac�
tions at state x� In order to do exploration� choose actions according to a stochastic
action selector such as �
����

Critic �V �� Maintain an approximator� �V ���w� � X�R that estimates the value
function �expected total reward� corresponding to the stochastic policy mentioned
above� The ideas of x� can be used to update �V �

Let us now consider the process of learning the actor� Unlike immediate RL�
learning is more complicated here for the following reason� Whereas� in immediate

��A mathematical analysis of this method has been done by Williams and Baird �������
��In their original work on pole�balancing� Barto� Sutton and Anderson suggested a di�erent

way of including stochasticity�
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RL the environment immediately provides an evaluation of an action� in delayed RL
the e�ect of an action on the total reward is not immediately available and has to
be estimated appropriately� Suppose� at some time step� the system is in state x
and the action selector chooses action ak� For g the learning rule that parallels ���
would be

gk�x�w� �� gk�x�w� � �
h
��x� ak�� �V �x� v�

i
��
�

where ��x� ak� is the expected total reward obtained if ak is applied to the system at
state x and then policy � is followed from the next step onwards� An approximation
is

��x� ak� 
 r�x� ak� � 

X
y

Pxy�ak� �V �y� v� ����

This estimate is unavailable because we do not have a model� A further approxima�
tion is

��x� ak� 
 r�x� ak� � 
 �V �x�� v� ����

where x� is the state occuring in the real time operation when action ak is applied
at state x� Using ���� in ��
� gives

gk�x�w� �� gk�x�w� � �&�x� ��
�

where & is as de�ned in ��
�� The following algorithm results�
Actor�Critic Trial

Set t � � and x �a random starting state�
Repeat �for a number of time steps	

�� With the system at state� x� choose action a according to ��	 and apply it to
the system� Let x� be the resulting next state�

�� Compute &�x� � r�x� a� � 
 �V �x�� v�� �V �x� v�

�� Update �V using �V �x� v� �� �V �x� v� � �&�x�

�� Update gk using ���	 where k is such that a � ak�

The above algorithm uses the TD��� estimate of V �� To speed�up learning the
TD��� rule� ��	� can be employed� Barto� Sutton and Anderson �	
��� and others
�Gullapalli 	

�a� Gullapalli et al 	

�� use the idea of eligibility traces for updating
g also� They give only an intuitive explanation for this usage� Lin �	

�� has
suggested the accumulation of data until a trial is over� update �V using ���� for all
states visited in the trial� and then update g using ��
� for all �state�action� pairs
experienced in the trial�

����� Q�Learning

Just as the actor�critic method is a model�free� on�line way of approximately im�
plementing policy iteration� Watkins� Q�Learning algorithm is a model�free� on�line
way of approximately implementing generalized value iteration� Though the RTDP
algorithm does generalized value iteration concurrently with real time system oper�
ation� it requires the system model for doing a crucial operation� the determination
of the maximum on the right hand side of ����� Q�Learning overcomes this problem
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elegantly by operating with the Q�function instead of the value function� �Recall�
from x�� the de�nition of Q�function and the comment on its advantage over value
function��

The aim of Q�Learning is to �nd a function approximator� �Q��� �� v� that approx�
imates Q�� the solution of Bellman�s optimality equation� �	
�� in on�line mode
without employing a model� However� for the sake of developing ideas systemati�
cally� let us begin by assuming that a system model is available and consider the
modi�cation of the ideas of x��	�	 to use the Q�function instead of the value func�
tion� If we think in terms of a function approximator� �V �x� v� for the value function�
the basic update rule that is used throughout x��	�	 is

�V �x� v� �� max
a�A�x	

�
r�x� a� � 


X
y

Pxy�a� �V �y� v�




For the Q�function� the corresponding rule is

�Q�x� a� v� �� r�x� a� � 

X
y

Pxy�a� max
b�A�y	

�Q�y� b� v� ����

Using this rule� all the ideas of x��	�	 can be easily modi�ed to employ the Q�
function�

However� our main concern is to derive an algorithm that avoids the use of a
system model� A model can be avoided if we� �	� replace the summation term in
���� by maxb�A�x�	 �Q�x�� b� v� where x� is an instance of the state resulting from
the application of action a at state x� and ��� achieve the e�ect of the update rule
in ���� via the �averaging� learning rule�

�Q�x� a� v� �� �Q�x� a� v� � �

�
r�x� a� � 
 max

b�A�x�	

�Q�x�� b� v�� �Q�x� a� v�

�
��	�

If ��	� is carried out we say that the Q�value of �x� a� has been backed up� Using
��	� in on�line mode of system operation we obtain the Q�Learning algorithm�
Q�Learning Trial

Set t � � and x 
 a random starting state�
Repeat �for a number of time steps	

�� Choose action a � A�x� and apply it to the system� Let x� be the resulting
state�

�� Update �Q using ���	�

�� Reset x �� y�

The remark made below equation� ��� in x� is very appropriate for the learning
rule� ��	�� Watkins showed�
 that if the Q�value of each admissible �x� a� pair is
backed up in�nitely often� and if the step size� � is decreased to zero in a suitable
way then as t��� �Q converges to Q� with probability one� Practically� learning can
be achieved by� �	� using� in step 	� an appropriate exploration policy that tries all

��A revised proof was given by Watkins and Dayan ����	�� Tsitsiklis ������ and Jaakkola et al

� ������ have given other proofs�
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actions��� ��� doing multiple trials to ensure that all states are frequently visited�
and ��� decreasing � towards zero as learning progresses�

We now discuss a way of speeding up Q�Learning by using the TD��� estimate
of the Q�function� derived in x�� If TD��� is to be employed in a Q�Learning trial�
a fundamental requirement is that the policy used in step 	 of the Q�Learning Trial
and the policy used in the update rule� ��	� should match �note the use of � in ����
and ������ Thus TD��� can be used if we employ the greedy policy�

��x� � arg max
a�A�x	

�Q�x� a� v� ����

in step 	��� But� this leads to a problem� use of the greedy policy will not allow
exploration of the action space� and hence poor learning can occur� Rummery and
Niranjan �	

�� give a nice comparitive account of various attempts described in the
literature for dealing with this con�ict� Here we only give the details of an approach
that Rummery and Niranjan found to be very promising�

Consider the stochastic policy �based on the Boltzmann distribution and Q�
values��

Probf��x� � ajxg �
exp� �Q�x� a� v��T �P

b�A�x	 exp�
�Q�x� b� v��T �

� a � A�x� ����

where T � ������ When T�� all actions have equal probabilities and� when T��
the stochastic policy tends towards the greedy policy in ����� To learn� T is started
with a suitable large value �depending on the initial size of the Q�values� and is
decreased to zero using an annealing rate� at each T thus generated� multiple Q�
learning trials are performed� This way� exploration takes place at the initial large
T values� The TD��� learning rule� ��
� estimates expected returns for the policy at
each T � and� as T��� �Q will converge to Q�� The ideas here are somewhat similar
to those of simulated annealing�

��� Extension To Continuous Spaces

Optimal control of dynamic systems typically involves the solution of delayed RL
problems having continuous state#action spaces� If the state space is continuous but
the action space is discrete then all the delayed RL algorithms discussed earlier can
be easily extended� provided appropriate function approximators that generalize a
real time experience at a state to all topologically nearby states are used� see x

for a discussion of such approximators� On the other hand� if the action space
is continuous� extension of the algorithms is more di�cult� The main cause of
the di�culty can be easily seen if we try extending RTDP to continuous action
spaces� the max operation in ���� is non�trivial and di�cult if A�x� is continuous�
�Therefore� even methods based on value iteration need to maintain a function
approximator for actions�� In the rest of this subsection we will give a brief review of

��Note that step � does not put any restriction on choosing a feasible action� So� any stochastic
exploration policy that� at every x generates each feasible action with positive probability can be
used� When learning is complete� the greedy policy� ��x� � argmaxa�A�x�

�Q�x�a�v� should be

used for optimal system performance�
��If more than one action attains the maximum in ��	� then for convenience we take � to be a

stochastic policy that makes all such maximizing actions equally probable�
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various methods of handling continuous action spaces� Just to make the presentation
easy� we will make the following assumptions�

� The system being controlled is deterministic� Let

xt�� � f�xt� at� ����

describe the transition���

� There are no action constraints� i�e�� A�x� �an m�dimensional real space for
every x�

� All functions involved �r� f � �V � �Q etc�� are continuously di�erentiable�

Let us �rst consider model�based methods� Werbos �	

�b� has proposed a variety
of algorithms� Here we will describe only one important algorithm� the one that
Werbos refers to as Backpropagated Adaptive Critic� The algorithm is of the actor�
critic type� but it is somewhat di�erent from the actor�critic method of x����	�
There are two function approximators� �����w� for action� and� �V ��� v� for critic�
The critic is meant to approximate V ��� at each time step� it is updated using the
TD��� learning rule� ��	� of x�� The actor tries to improve the policy at each time
step using the hint provided by the policy improvement theorem in ����� To be
more speci�c� let us de�ne

Q�x� a�
def
� r�x� a� � 
 �V �f�x� a�� v� ����

At time t� when the system is at state xt� we choose the action� at � ���xt�w��
leading to the next state� xt�� given by ����� Let us assume �V � V �� � so that
V ���xt� � Q�xt� at� holds� Using the hint from ����� we aim to adjust ���xt�w� to
give a new value� anew such that

Q�xt� a
new� 
 Q�xt� at� ��
�

A simple learning rule that achieves this requirement is

���xt�w� �� ���xt�w� � �
	Q�xt� a�

	a
ja�at ����

where � is a small �positive� step size� The partial derivative in ���� can be evaluated
using

	Q�xt� a�

	a
�
	r�xt� a�

	a
� 


	 �V �y� v�

	y
jy�f�xt�a	

	f�xt� a�

	a
����

Let us now come to model�free methods� A simple idea is to adapt a function
approximator� �f for the system model function� f � and use �f instead of f in Werbos�
algorithm� On�line experience� i�e�� the combination� �xt� at� xt���� can be used to

learn �f � This method was proposed by Brody �	

��� actually as a way of overcoming
a serious de�ciency�� associated with an ill�formed model�free method suggested by
Jordan and Jacobs �	

��� A key di�culty associated with Brody�s method is that�

until the learning system adapts a good �f � system performance does not improve

��Werbos �����b� describes ways of treating stochastic systems�
�	This de�ciency was also pointed out by Gullapalli ����	b��
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at all� in fact� at the early stages of learning the method can perform in a confused
way� To overcome this problem Brody suggests that �f be learnt well� before it is
used to train the actor and the critic�

A more direct model�free method can be derived using the ideas of x����	 and
employing a learning rule similar to ��� for adapting ��� This method was pro�
posed and successfully demonstrated by Gullapalli �Gullapalli 	

�a� Gullapalli et
al 	

��� Since Gullapalli�s method learns by observing the e�ect of a randomly
chosen perturbation of the policy� it is not as systematic as the policy change in
Brody�s method�

We now propose a new model�free method that systematically changes the policy
similar to what Brody�s method does� and� avoids the need for adapting a system
model� This is achieved using a function approximator� �Q��� �� v� for approximating
Q��� the Q�function associated with the actor� The TD��� learning rule in ����
can be used for updating �Q� Also� policy improvement can be attempted using the
learning rule �similar to ������

���xt�w� �� ���xt�w� � �
	 �Q�xt� a�

	a
ja�at ��
�

We are currently performing simulations to study the performance of this new
method relative to the other two model�free methods mentioned above�

Werbos� algorithm and our Q�Learning based algorithm are deterministic� while
Gullapalli�s algorithm is stochastic� The deterministic methods are expected to be
much faster� whereas the stochastic method has better assurance of convergence to
the true solution� The arguments are similar to those mentioned at the end of x��

� Other Issues

In this section we discuss a number of issues relevant to practical implementation
of RL algorithms� A nice discussion of these �and other� issues has been presented
by Barto �	

���

��� Function�Approximation

A variety of function approximators has been employed by researchers to practically
solve RL problems� When the input space of the function approximator is �nite�
the most straight�forward method is to use a look�up table �Singh 	

�a� Moore �
Atkeson 	

��� All theoretical results on the convergence of RL algorithms assume
this representation� The disadvantage of using look�up table is that if the input
space is large then the memory requirement becomes prohibitive��� Continuous in�
put spaces have to be discretized when using a look�up table� If the discretization
is done �nely so as to obtain good accuracy we have to face the "curse of dimen�
sionality�� One way of overcoming this is to do a problem�dependent discretization�
see� for example� the "BOXES� representation used by Barto� Sutton and Anderson
�	
��� and others �Michie � Chambers 	

�� Gullapalli et al 	

�� Rosen et al 	

	�
to solve the pole balancing problem�

�
Buckland and Lawrence ������ have proposed a new delayed RL method called Transition
point DP which can signi�cantly reduce the memory requirement for problems in which optimal
actions change infrequently in time�
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Non look�up table approaches use parametric function approximation methods�
These methods have the advantage of being able to generalize beyond the training
data and hence give reasonable performance on unvisited parts of the input space�
Among these� connectionist methods are the most popular� Connectionist methods
that have been employed for RL can be classi�ed into four groups� multi�layer per�
ceptrons� methods based on clustering� CMAC� and recurrent networks� Multi�layer
perceptrons have been successfully used by Anderson �	
�
� 	
�
� for pole balanc�
ing� Lin �	

	a� 	

	b� 	

	c� 	

�� for a complex test problem� Tesauro �	

��
for backgammon� Thrun �	

�� and Millan and Torras �	

�� for robot navigation�
and others �Boyen 	

�� Gullapalli et al 	

��� On the other hand� Watkins �	
�
��
Chapman �	

	�� Kaelbling �	

�� 	

	�� and Shepanski and Macy �	
��� have re�
ported bad results� A modi�ed form of Platt�s Resource Allocation Network �Platt
	

	�� a method based on radial basis functions� has been used by Anderson �	

��
for pole balancing� Many researchers have used CMAC �Albus 	
��� for solving
RL problems� Watkins �	
�
� for a test problem� Singh �	

	� 	

�b� 	

�d� and
Tham and Prager �	

�� for a navigation problem� Lin and Kim �	

	� for pole
balancing� and Sutton �	

�� 	

	b� in his "Dyna� architecture� Recurrent networks
with context information feedback have been used by Bacharach �	

	� 	

�� and
Mozer and Bacharach �	

�a� 	

�b� in dealing with RL problems with incomplete
state information�

A few non�connectionist methods have also been used for RL� Mahadevan and
Connell �	

	� have used statistical clustering in association withQ�Learning for the
automatic programming of a mobile robot� A novel feature of their approach is that
the number of clusters is dynamically varied� Chapman and Kaelbling �	

	� have
used a tree�based clustering approach in combination with a modi�ed Q�Learning
algorithm for a di�cult test problem with a huge input space�

The function approximator has to exercise care to ensure that learning at some
input point� x does not seriously disturb the function values for y �� x� It is often
advantageous to choose a function approximator and employ an update rule in such
a way that the function values of x and states "near� x are modi�ed similarly while
the values of states "far� from x are left unchanged� Such a choice usually leads to
good generalization� i�e�� good performance of the learnt function approximator even
on states that are not visited during learning� In this respect� CMAC and methods
based on clustering� such as RBF� statistical clustering� etc�� are more suitable than
multi�layer perceptrons�

The e�ect of errors introduced by function approximators on the optimal per�
formance of the controller has not been well understood��� It has been pointed
out by Watkins �	
�
�� Bradtke �	

��� and others �Barto 	

��� that� if function
approximation is not done in a careful way� poor learning can result� In the con�
text of Q�Learning� Thrun and Schwartz �	

�� have shown that errors in function
approximation can lead to a systematic over estimation of the Q�function� Linden
�	

�� points out that in many problems the value function is discontinuous and so
using continuous function approximators is inappropriate� But he does not suggest
any clear remedies for this problem� Overall� it must be mentioned that much work
needs to be done on the use of function approximators for RL�

��Bertsekas���
�� and Singh and Yee ������ have derived some theoretical bounds for errors in
value function in terms of function approximator error�
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��� Modular and Hierarchical Architectures

When applied to problems with large task space or sparse rewards� RL methods
are terribly slow to learn� Dividing the problem into simpler subproblems� using a
hierarchical control structure� etc�� are ways of overcoming this�
Sequential task decomposition is one such method� This method is useful when a

number of complex tasks can be performed making use of a �nite number of �ele�
mental� tasks or skills� say� T�� T�� � � � � Tn� The original objective of the controller
can then be achieved by temporally concatenating a number of these elemental tasks
to form what is called a �composite� task� For example�

Cj � �T �j� 	�� T �j� ��� � � � � T �j� k� � where T �j� i� � fT�� T�� � � � � Tng

is a composite task made up of k elemental tasks that have to be performed in the
order listed� Reward functions are de�ned for each of the elemental tasks� making
them more abundant than in the original problem de�nition�

Singh �	

�a� 	

�b� has proposed an algorithm based on a modular connectionist
network �Jacobs et al 	

	�� making use of these ideas� In his work the controller is
unaware of the decomposition of the task and has to learn both the elemental tasks�
and the decomposition of the composite tasks simultaneously� Tham and Prager
�	

�� and Lin �	

�� have proposed similar solutions� Mahadevan and Connell
�	

	� have developed a method based on the subsumption architecture �Brooks
	
�
� where the decomposition of the task is speci�ed by the user before hand� and
the controller learns only the elemental tasks� while Maes and Brooks �	

�� have
shown that the controller can be made to learn the decomposition also� in a similar
framework� All these methods require some external agency to specify the problem
decomposition� Can the controller itself learn how the problem is to be decomposed$
Though Singh �	

�d� has some preliminary results� much work needs to be done
here�

Another approach to this problem is to use some form of hierarchical control
�Watkins 	
�
�� Here there are di�erent �levels� of controllers��� each learning
to perform a more abstract task than the level below it and directing the lower
level controllers to achieve its objective� For example� in a ship a navigator decides
in what direction to sail so as to reach the port while the helmsman steers the
ship in the direction indicated by the navigator� Here the navigator is the higher
level controller and the helmsman the lower level controller� Since the higher level
controllers have to work on a smaller task space and the lower level controllers are
set simpler tasks improved performance results�

Examples of such hierarchical architectures are Feudal RL by Dayan and Hinton
�	

�� and Hierarchical planning by Singh �	

�a� 	

�c�� These methods too�
require an external agency to specify the hierarchy to be used� This is done usually
by making use of some �structure� in the problem�

Training controllers on simpler tasks �rst and then training them to perform
progressively more complex tasks using these simpler tasks� can also lead to better
performance� Here at any one stage the controller is faced with only a simple learning
task� This technique is called shaping in animal behaviour literature� Gullapalli
�	

�a� and Singh �	

�d� have reported some success in using this idea� Singh
shows that the controller can be made to �discover� a decomposition of the task by
itself using this technique�

��Controllers at di�erent levels may operate at di�erent temporal resolutions�
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��� Speeding�Up Learning

Apart from the ideas mentioned above� various other techniques have been suggested
for speeding�up RL� Two novel ideas have been suggested by Lin �	

	a� 	

	b�
	

	c� 	

��� experience playback� and teaching� Let us �rst discuss experience
playback� An experience consists of a quadruple �occuring in real time system
operation�� �x� a� y� r�� where x is a state� a is the action applied at state x� y is
the resulting state� and r is r�x� a�� Past experiences are stored in a �nite memory
bu�er� P� An appropriate strategy can be used to maintain P� At some point in
time let � be the �current� �stochastic� policy� Let

E � f�x� a� y� r� � P j Probf��x� � ag 
 �g

where � is some chosen tolerance� The learning update rule is applied� not only to
the current experience� but also to a chosen subset of E � Experience playback can be
especially useful in learning about rare experiences� In teaching� the user provides
the learning system with experiences so as to expedite learning�

Incorporating domain speci�c knowledge also helps in speeding�up learning� For
example� for a given problem� a �nominal� controller that gives reasonable per�
formance may be easily available� In that case RL methods can begin with this
controller and improve its performance �Singh et al 	

��� Domain speci�c infor�
mation can also greatly help in choosing state representation and setting up the
function approximators �Barto 	

�� Millan � Torras 	

���

In many applications an inaccurate system model is available� It turns out to be
very ine�cient to discard the model and simply employ a model�free method� An
e�cient approach is to interweave a number of �planning� steps between every two
on�line learning steps� A planning step may be one of the following� a time step
of a model�based method such as RTDP� or� a time step of a model�free method
for which experience is generated using the available system model� In such an
approach� it is also appropriate to adapt the system model using on�line experience�
These ideas form the basis of Sutton�s Dyna architectures �Sutton 	

�� 	

	b� and
related methods �Moore � Atkeson 	

�� Peng � Williams 	

���

� Conclusion

In this paper we have tried to give a cohesive overview of existing RL algorithms�
Though research has reached a mature level� RL has been successfully demonstrated
only on a few practical applications �Gullapalli et al 	

�� Tesauro 	

�� Mahadevan
� Connell 	

	� Thrun 	

��� and clear guidelines for its general applicability do
not exist� The connection between DP and RL has nicely bridged control theorists
and AI researchers� With contributions from both these groups on the pipeline�
more interesting results are forthcoming and it is expected that RL will make a
strong impact on the intelligent control of dynamic systems�
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