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ABSTRACT

AN ALGEBRAIC APPROACH TO ABSTRACTION
IN REINFORCEMENT LEARNING

FEBRUARY, 2004

BALARAMAN RAVINDRAN

B.E., MADURAI-KAMARAJ UNIVERSITY, INDIA

M.Sc.(Engg.), INDIAN INSTITUTE OF SCIENCE, BANGALORE, INDIA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

To operate effectively in complex environments learning agents require the ability

to form useful abstractions, that is, the ability to selectively ignore irrelevant details.

Stated in general terms this is a very difficult problem. Much of the work in this

field is specialized to specific modeling paradigms or classes of problems. In this

thesis we introduce an abstraction framework for Markov decision processes (MDPs)

based on homomorphisms relating MDPs. We build on classical finite-state automata

literature and develop a minimization framework for MDPs that can exploit structure

and symmetries to derive smaller equivalent models of the problem. Since employing

homomorphisms for minimization requires that the resulting abstractions be exact,

we introduce approximate and partial homomorphisms and develop bounds for the

loss that results from employing relaxed abstraction criteria.

Our MDP minimization results can be readily employed by reinforcement learn-

ing (RL) methods for forming abstractions. We extend our abstraction approach to

viii



hierarchical RL, specifically using the options framework. We introduce relativized

options, a generalization of Markov sub-goal options, that allow us to define options

without an absolute frame of reference. We introduce an extension to the options

framework, based on relativized options, that allows us to learn simultaneously at

multiple levels of the hierarchy and also employ hierarchy-specific abstractions. We

provide certain theoretical guarantees regarding the performance of hierarchical sys-

tems that employ approximate abstraction. We empirically demonstrate the utility

of relativized options in several test-beds.

Relativized options can also be interpreted as behavioral schemas. We demon-

strate that such schemas can be profitably employed in a hierarchical RL setting.

We also develop algorithms that learn the appropriate parameter binding to a given

schema. We empirically demonstrate the validity and utility of these algorithms.

Relativized options allow us to model certain aspects of deictic or indexical repre-

sentations. We develop a modification of our parameter binding algorithm suited to

hierarchical RL architectures that employ deictic representations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The ability to form abstractions is one of the features that allow humans to operate

effectively in complex environments. We systematically ignore information that we do

not need for performing the immediate task at hand. While driving, for example, we

ignore details regarding clothing and the state of our hair. On the other hand, while

preparing to attend a ball, we would want to pay special attention to our clothing

and hair. Researchers in artificial intelligence (AI), in particular machine learning

(ML), have long recognized that applying computational approaches to operating in

complex and real-world domains requires that we incorporate the ability to handle

and form various abstractions.

Researchers in many fields, ranging from various branches of mathematics to so-

cial network analysis, also recognize the utility of abstractions and have tried to

answer questions such as what is a useful abstraction and how to model abstractions.

Abstract representations keep recurring in various guises in the literature. For ex-

ample, statisticians use the notion of sufficient statistic, which is a function of the

observed data that summarizes the data so as to provides enough information for

solving the problem at hand, such as determining the probability of occurrence of a

certain event. Informally, one can define a good abstraction to be a function of the

observable features of a task such that it is a “sufficient statistic”.

Let us consider the blocks world task shown in Figure 1.1(a). There are a set of

blocks described by their color, location and label. Suppose the goal is to obtain a
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(a)

(b) (c)

Figure 1.1. (a) A blocks world task. The blocks are described by their color,
position and label. (b) One abstract representation that ignores the labels. (c)
Another abstract representation that ignores the colors.

green colored block. Then the label of the block is irrelevant and a representation that

pays attention only to the color and the position of the blocks is sufficient (Figure

1.1(b). On the other hand, if the goal is to obtain the block labeled B, the color of

the block is irrelevant and a representation with only the label and the position is

sufficient (Figure 1.1(c)). Thus the notion of sufficiency varies with the goal.

Determining sufficiency and providing ways of modeling abstractions are well stud-

ied problems in AI (e.g., Amarel, 1968; Popplestone and Grupen, 2000; Dean and

Givan, 1997; Knoblock, 1990; Dean and Lin, 1995). They are also difficult problems

when stated in general terms. Therefore, much of the work in this field is specialized

to particular classes of problems or specific modeling paradigms. In this work we

focus on Markov decision processes (MDPs) (Puterman, 1994), a formalism widely

employed in modeling and solving stochastic sequential decision problems.

Our goal in this thesis is to develop a general framework that can accommodate

different notions of abstractions employed with MDPs, including simple aggrega-
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tion (Boutilier and Dearden, 1994; Sutton and Barto, 1998), symmetries (Zinkevich

and Balch, 2001; Popplestone and Grupen, 2000), structured abstractions (Dean and

Kanazawa, 1989; Boutilier et al., 1999, 1995, 2001), projections and other feature

selection mechanisms. There is a large body of research in algebraic abstraction algo-

rithms for other modeling paradigms in the literature (e.g., Hartmanis and Stearns,

1966; Kemeny and Snell, 1960; Lee and Yannakakis, 1992; Whitt, 1978). We build on

this wealth of experience and develop a framework that provides additional intuition

into existing MDP abstraction approaches and extends them in ways not envisioned

earlier.

In particular, the algebraic approach we develop is amenable to modeling abstrac-

tions in reinforcement learning (RL) systems. Reinforcement learning (Sutton and

Barto, 1998) refers to a collection of learning techniques for approximate solution of

stochastic sequential decision problems and are often employed with MDP models of

the problems. RL techniques offer many advantages over other approximate solution

methods, such as maintaining a close relation to classical MDP solution methods,

and the ability to learn in real-time and focus on parts of the problem that are

most relevant. Not all RL algorithms require complete models of the environment

and frequently employ some form of abstraction and/or function approximation to

speed up learning, unlike many conventional approaches. They can also work with

extensions to the MDP formalism such as Semi-Markov decision processes (SMDPs)

and partially observable MDPs (POMDPs). Recent advances have led to hierarchical

learning algorithms that significantly broaden the applicability of RL (Sutton et al.,

1999; Parr and Russell, 1997; Dietterich, 2000a). Our abstraction framework extends

to hierarchical settings in a natural way.
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1.2 Outline of Thesis

Our approach to MDP abstraction is based on the notion of MDP homomorphisms.

This is an extension of machine homomorphisms from the finite state automata (FSA)

literature (Hartmanis and Stearns, 1966). Machine homomorphisms help establish

precise correspondences between automata that have similar behavior and identify

states that can be aggregated together to derive “smaller” equivalent models. We

extend the notion to MDPs by incorporating decision making and stochasticity. But

the power of our approach comes from employing a state-dependent action recoding.

This enables us to apply our results to a wider class of problems and extend existing

MDP abstraction frameworks in ways not possible earlier.

Our approach to abstraction belongs to the class of algorithms known as model

minimization methods. The goal of model minimization is to derive a reduced model

representation in which some key property of the original model is preserved. In the

case of MDPs, we require that some aspects of the dynamic structure of the MDP

is preserved in the reduced model. We show that this is sufficient to allow us to

solve the original problem modeled by the MDP. The MDP minimization approach

we present in this thesis can be viewed as an extension of the MDP minimization

framework proposed by Dean and Givan (Dean and Givan, 1997; Givan et al., 2003).

This earlier framework considers equivalence of states based on the notion of stochas-

tic bisimulations (Larsen and Skou, 1991), whereas we believe that homomorphisms

are a simpler notion than bisimulations and provide better insight into the mini-

mization process. Our proposed framework also supports powerful extensions to the

minimization process such as exploiting symmetries of MDPs.

To illustrate the concept of minimization, consider the simple gridworld shown in

Figure 1.2(a). The goal state is labeled G. Taking action E in state A is equivalent to

taking action N in state B, in the sense that they go to equivalent states that are both

one step closer to the goal. One can say that the state-action pairs (A, E) and (B,

4



G

A

B
S

W E

N

G

{A, B}

(a) (b)

Figure 1.2. (a) A symmetric gridworld problem. The goal state is G and there
are four deterministic actions. State-action pairs (A,E) and (B,N) are equivalent in
the sense described in the text. (b) A reduced model of the gridworld in (a). The
state-action pairs (A,E) and (B,N) in the original problem both correspond to the
pair ({A,B}, E) in the reduced problem. A solution to this reduced gridworld can
be used to derive a solution to the full problem.

N) are equivalent. One can exploit this notion of equivalence to construct a smaller

model of the gridworld (Figure 1.2(b)) that can be used to solve the original problem.

Figure 1.2 illustrates a situation in which the symmetry in the problem is exploited

in the abstraction, yet existing MDP minimization approaches do not explicitly ac-

commodate such symmetric reductions. Symmetries of a structure are characterized

traditionally by the symmetry group of the structure. This is the group of mappings

of the structure onto itself, such that some structural property is preserved. For ex-

ample, in the gridworld in Figure 1.2(a), such a mapping is given by reflecting the

states about the NE-SW diagonal and flipping actions N and E, and actions S and

W . This leaves the transition structure of the gridworld unaltered. We incorporate

this traditional group-theoretic definition into our framework to model symmetries

of MDPs. The goal of minimization methods is to derive the minimal model (or the

smallest model) equivalent to the given MDP. In general this is an NP-hard prob-

lem. Symmetry in the problem definition introduces additional structure that can be

exploited to derive compactly represented reductions in systems with some inherent

structure. For example, in Figure 1.2, the transformation can be expressed simply

as an exchange of the x and y co-ordinates and of the suitable pair of actions. We

exploit the additional structure associated with symmetries to derive a polynomial-
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time algorithm for minimization for structured problems modeled as factored MDPs

(Dean and Kanazawa, 1989).

While abstractions that lead to exact equivalences are very useful, they are often

difficult to achieve. In fact, to apply our approach to real-world problems we would

need to consider a variety of “relaxed” minimization criteria. For example, in the grid-

world in Figure 1.2 assume that the action E succeeds with probability 0.9 and the

action N succeeds with probability 0.8. When actions fail, you stay in the same cell.

We could still consider (A,E) and (B,N) equivalent for minimization purposes. We

explore various relaxations of our minimization framework to accommodate approxi-

mate equivalence of state-action pairs. We use results from Whitt (1978) and Givan

et al. (2000) to bound the loss in performance resulting from our approximations. We

also address issues of learning with approximate reduced models.

In large complex problem domains, it is often difficult to identify reduced models

of the entire problem. In such cases it is useful to consider partial equivalences that

do not hold over all parts of the state-action space. For instance, while navigating in

a building, there might be many rooms that can be treated equivalently, while each

wing in the building is unique and has to be considered separately. We extend our

definition of homomorphisms to accommodate this kind of partial equivalence. This

allows us to model context dependent equivalences as well. For example, for driving a

nail, a shoe may be the best example of a hammer available, although these objects

are not equivalent in general.

The minimization framework we develop for MDPs can be employed readily by RL

algorithms for spatial abstraction in “flat” systems. The options framework (Sutton

et al., 1999; Precup, 2000) enables RL algorithms to employ temporal abstractions

in the form of temporally extended actions, or options. Options are composed of

primitive actions are composed of primitive actions and take multiple time steps

to execute, but for the purposes of problem solving they are considered as a single
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action. Thus we can think of walk-to-the-door as a single action, while in reality it

is composed of a multitude of muscle twitches. Extending our algebraic framework

to a hierarchical RL setting, such as the options framework, opens up additional

possibilities.

We introduce relativized options, an extension to the option framework based on

partial homomorphisms that allows us to define option policies without an abso-

lute frame of reference. This widens the applicability of an option and also enables

more efficient knowledge transfer across tasks and more efficient use of experience.

Relativized options are related to the notion of relativized operators introduced by

Iba (1989) as a compact representation of a family of related macro-operators. We

also investigate the use of relativized options under approximate abstractions and in

complex domains.

Options introduce new “behaviors” that enable abstractions that were not possible

earlier. For example, consider a robot whose mission involves grasping a cylinder.

Let us define an option to grasp the cylinder starting from any state in which the

robot is physically close to the cylinder. Without such an option the robot would

need to execute a different set of actions to grasp the cylinder from different starting

states. Now it just needs to use the grasp-cylinder option. Therefore we can, under

suitable circumstances, consider all these state-option pairs as equivalent. We extend

our abstraction framework to employ definitions of homomorphisms and symmetry

groups over options which allow us to model such option induced abstractions.

Another interpretation of relativized options is as a framework for defining op-

tion schemas. Option schemas are abstract templates of how to respond to a given

situation. We model an abstract template as a partial homomorphic image of the

original problem. When an agent invokes a schema it appropriately allocates, or

binds, various resources and sensory capabilities to make the schema relevant to the

specific instance. We model this as choosing the appropriate homomorphism to apply
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in a given situation. We develop algorithms for learning the appropriate binding of

resources and empirically demonstrate the utility of employing option schemas.

Problems set in environments with objects often exhibit various symmetries and

considerable redundancy in the representation. One way to exploit such symmetry

is by employing representations known as indexical or deictic representations (Agre,

1988). The world is sensed via multiple pointers and the actions are specified with

respect to these pointers. In this work we show that in some cases employing such

deictic pointers is equivalent to identifying homomorphic reductions, and we develop

a principled deictic RL algorithm based on the relativized options framework.

We begin by providing some background regarding MDPs and RL in the next

chapter. We also introduce the notation that we will be using. In Chapter 3 we

introduce MDP homomorphisms and formulate the model minimization problem in

terms of homomorphisms. We develop the basic minimization algorithm and establish

the equivalence of MDP homomorphisms and stochastic bisimulations. In Chapter 4

we define symmetry groups of MDPs, and present methods that take advantage of

symmetry and structure. We also introduce approximate homomorphisms based on

relaxed minimization criteria and derive bounds in the loss of performance. Chapter

5 deals with several aspects of combining hierarchical RL and homomorphisms. We

introduce relativized options and present empirical demonstration of their utility. We

also explore the use of approximate homomorphisms in this setting. In Chapter 6 we

introduce option schemas and develop one approach to employing deictic represen-

tations within our framework. We present experimental results in complex domains.

We conclude in Chapter 7 by examining the import of this work and suggesting future

directions of research.
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CHAPTER 2

BACKGROUND AND NOTATION

In this chapter we introduce some notation that we will use in the thesis. We also

provide some background on minimization approaches for various modeling paradigms

and a limited introduction to reinforcement learning.

2.1 Markov Decision Processes

A finite Markov decision process is a tuple 〈S,A,Ψ, P, R〉, where S is the set of

states, A is the set of actions, Ψ ⊆ S × A is the set of admissible state-action pairs,

P : Ψ × S → [0, 1] is the transition probability function with P (s, a, s′) being the

probability of transition from state s to state s′ under action a, and R : Ψ → IR is

the expected reward function, with R(s, a) being the expected reward for performing

action a in state s. We assume that the rewards are bounded. Let As = {a|(s, a) ∈

Ψ} ⊆ A denote the set of actions admissible in state s. We assume that for all s ∈ S,

As is non-empty. In this work we assume that the set of states and set of actions are

finite, but the language of homomorphisms we employ extends to infinite spaces with

little work.

A stochastic policy π is a mapping from Ψ to the real interval [0, 1] s.t.
∑

a∈As
π(s, a)

= 1 for all s ∈ S. For any (s, a) ∈ Ψ, π(s, a) gives the probability of picking action a

in state s. The value of state s under policy π is the expected value of the discounted

sum of future rewards starting from state s and following policy π thereafter. The

value function V π corresponding to a policy π is the mapping from states to their
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values under π. It can be shown (e. g., Bertsekas, 1987) that V π satisfies the Bellman

equation:

V π(s) =
∑

a∈As

π(s, a)


R(s, a) + γ

∑

s′∈S

P (s, a, s′)V π(s′)


 ,

where 0 ≤ γ < 1 is a discount factor. This formulation is known as the discounted

sum of rewards criterion.

Similarly, the value of a state-action pair (s, a) under policy π is the expected

value of the discounted sum of future rewards starting from state s, taking action a,

and following π thereafter. The action value function Qπ corresponding to a policy

π is the mapping from state-action pairs to their values and satisfies:

Qπ(s, a) = R(s, a) + γ
∑

s′∈S

P (s, a, s′)V π(s′),

where 0 ≤ γ < 1 is a discount factor.

The solution of an MDP is an optimal policy π? that uniformly dominates all other

possible policies for that MDP. In other words V πstar(s) ≥ V π(s) for all s in S and

for all possible π. It can be shown (Bertsekas, 1987) that the value functions for all

optimal policies is the same. We denote this optimal value function by V ?. It satisfies

the Bellman optimality equation:

V ?(s) = max
a∈As

∑

s′∈S

P (s, a, s′) [R(s, a) + γV ?(s′)] .

Similarly the optimal action value function Q? satisfies:

Q?(s, a) =
∑

s′∈S

P (s, a, s′)

[
R(s, a) + γ max

a′∈As′

Q?(s′, a′)

]
.

These two optimal value functions are related by V ?(s) = maxaQ
?(s, a). Typically

MDPs are solved by approximating the solution to the Bellman optimality equations
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(e. g., Bertsekas, 1987; Sutton and Barto, 1998). Given the optimal action value

function, an optimal policy is given by

π?(s, a) ≥ 0 if Q?(s, a) = maxa′∈As
Q?(s, a′)

= 0 otherwise.

2.2 Semi-Markov Decision Processes

A finite discrete time semi-Markov decision process (SMDP) is a generalization

of a finite MDP in which actions can take variable amounts of time to complete. As

with an MDP, an SMDP is a tuple 〈S,A,Ψ, P, R〉, where S, A and Ψ are the sets

of states, actions and admissible state-action pairs; P : Ψ × S × IN → [0, 1] is the

transition probability function with P (s, a, s′, N) being the probability of transition

from state s to state s′ under action a in N time steps, and R : Ψ × IN → IR is the

expected discounted reward function, with R(s, a,N) being the expected reward for

performing action a in state s and completing it in N time steps.1 We are adopting

the formalism of Dietterich (2000a). The traditional approach (Howard, 1960) is

to use two distributions to describe the state transitions, one of which is the usual

next state distribution of MDPs and the other is a distribution of holding times.

The holding time distribution is usually a function of the current state and action

alone. We agree with Dietterich that the joint distribution formulation is more useful

in modeling various hierarchical learning architectures, some of which we introduce

shortly.

2.3 Reinforcement Learning

Reinforcement learning (RL) (Sutton and Barto, 1998) refers to a collection of

learning algorithms that seek to approximate solutions to stochastic sequential de-

1Here IN denotes the set of natural numbers.
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cision tasks with scalar evaluative feedback. RL algorithms are designed to operate

online and in close interaction with the environment in which the agent is operating.

When a stochastic sequential decision problem is modeled as an MDP, RL algorithms

try to estimate the optimal value function and/or optimal policy.

Many of the popular RL algorithms are based on the Q-learning (Watkins, 1989)

approach that seeks to approximate the optimal action value function through online

experience. After experiencing a transition from state s to s′ under action a and

observing a reward of r, Q-learning employs the following update:

Q?(s, a)← (1− α)Q?(s, a) + α

[
r + γ max

a′∈A(s′)
Q?(s′, a′)

]

where α is a learning rate between 0 and 1. It has been shown that under suitable

conditions Q-learning converges to the optimal action value function (Watkins and

Dayan, 1992).

Bradtke and Duff (1995) introduced a straightforward extension of Q-learning for

continuous time SMDPs, known as SMDP Q-learning. In the discrete time case,

after experiencing a transition from state s to s′ in k time steps under action a and

observing a sequence of rewards r1, · · · , rk, SMDP Q-learning employs the following

update:

Q?(s, a)← (1− α)Q?(s, a) + α

[
r + γk max

a′∈A(s′)
Q?(s′, a′)

]

where r =
∑k−1

j=0 γ
jrj+1 is the discounted return and α is a learning rate between 0 and

1. It has been shown that under the same conditions as Q-learning, SMDP Q-learning

converges to the optimal action value function (Parr, 1998).

2.4 Partitions, maps and equivalence relations

A partition B of a set X is a collection of disjoint subsets, or blocks, bi ⊆ X such

that
⋃

i bi = X. For any x ∈ X, [x]B denotes the block of B to which x belongs. Let
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B1 and B2 be partitions of X. We say that B1 is coarser than B2 (or B2 is a refinement

of B1), denoted B1 ≥ B2, if for all x, x′ ∈ X, [x]B2
= [x′]B2

implies [x]B1
= [x′]B1

.

The relation ≥ is a partial order on the set of partitions of X.

To any partition B of X there corresponds an equivalence relation, ≡
B
, on X with

x ≡
B
x′ if and only if [x]B = [x′]B for all x, x′ ∈ X. Any function f from a set X into

a set Y defines an equivalence relation on X with x ≡
f
x′ if and only if f(x) = f(x′).

We say that x and x′ are f -equivalent when x ≡
f
x′, and we denote the partition of

X corresponding to this equivalence relation by Bf .

Let B be a partition of Z ⊆ X × Y , where X and Y are arbitrary sets. For any

x ∈ X, let B(x) denote the set of distinct blocks of B containing pairs of which x

is a component, that is, B(x) = {[(w, y)]B | (w, y) ∈ Z,w = x}. The projection of

B onto X is the partition B|X of X such that for any x, x′ ∈ X, [x]B|X = [x′]B|X if

and only if B(x) = B(x′). In other words, x ≡
B|X

x′ if and only if every block of B

containing a pair in which x (x′) is a component also contains a pair in which x′ (x)

is a component.2 Note that if B1 and B2 are partitions of Z, then B1 ≥ B2 implies

that B1|X ≥ B2|X.

A partition of an MDP M = 〈S,A,Ψ, P, R〉 is a partition of Ψ. Given a partition

B of M, the block transition probability of M is the function T : Ψ × B|S → [0, 1]

defined by T (s, a, [s′]B|S) =
∑

s′′∈[s′]B|S
P (s, a, s′′). In other words, when applying

action a in state s, T (s, a, [s′]B|S) is the probability that the resulting state is in the

block [s′]B|S. It is clear that since B|S is a partition of S, each of these block transition

probabilities is in the interval [0, 1].

2The more traditional definition of a projection is: x ≡
B|X

x′ if and only if (x, y) ≡
B

(x′, y) for all
y ∈ Y . This projection is always a refinement of the our projection. We need the modified definition
to facilitate the development of some concepts below.

13



Example 1

Let M = 〈S,A,Ψ, P, R〉 be an MDP with S = {s1, s2, s3}, A = {a1, a2} and

Ψ = {(s1, a1), (s1, a2), (s2, a1), (s2, a2), (s3, a1)}. We give the projections under both

our definition and the traditional one (see footnote). The traditional projection does

not lead to aggregation of states in any of the cases, while our definition does in the

first two cases. In the last case both definitions result in singletons.

i) If B1 =
{
{(s1, a1), (s2, a2)}, {(s1, a2), (s2, a1), (s3, a1)}

}
,

then B1|S =
{
{s1, s2}, {s3}

}
(ours);

{
{s1}, {s2}, {s3}

}
(traditional).

ii) If B2 =
{
{(s2, a1)}, {(s1, a1), (s1, a2), (s2, a2), (s3, a1)}

}
,

then B2|S =
{
{s1, s3}, {s2}

}
;

{
{s1}, {s2}, {s3}

}
.

iii) If B3 =
{
{(s1, a1), (s2, a2)}, {(s1, a2), (s3, a1)}, {(s2, a1)}

}
,

then B3|S =
{
{s1}, {s2}, {s3}

}
;

{
{s1}, {s2}, {s3}

}
.

2
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CHAPTER 3

MDP HOMOMORPHISMS AND MINIMIZATION

In this chapter we develop the mathematical formulation that underlies our ap-

proach to abstraction. In particular we want a notion of equivalence among state-

action pairs that can capture the various intuitive notions of redundancy and sim-

ilarity, such as aggregate representations, symmetries, object replacement etc. The

notion we adopt is that of a MDP homomorphism.

In order to be able to model a wide class of abstractions, we introduce a broad no-

tion of equivalence under which two states are considered equivalent if for every action

admissible in one state there is some action, not necessarily the same, admissible in

the other state that produces similar results. Earlier notions of equivalence for MDPs

required that the same action produce similar results in both states. Referring back

to Figure 1.2(a), states A and B are considered equivalent since for every action from

A there is an equivalent, though different, action in B. We characterize our notion

of equivalence by certain conditions on the transition probabilities and the expected

immediate rewards. While many mathematical formalisms can be employed here, we

choose to extend the notion of machine homomorphisms from the FSA literature. We

develop MDP homomorphisms starting from a simple case working our way up.

3.1 Group Homomorphism

Informally, a homomorphism of a structured system is some transformation of the

system that preserves aspects of this structure. One simple structured mathematical

concept is a group. A group G is a set, together with an operator, denoted +. This

15



G×G -
+

G

?

f

?

f

G′ ×G′ -
+′

G′

Figure 3.1. A Group Homomorphism represented by Commutative Diagrams

associates with each pair of elements x and y of G another element x + y in G. A

group satisfies the properties of associativity ((x+ y) + z = x+ (y + z)), existence of

an identity e (x+e = e+x = x), and the existence of an inverse x−1 for each element

x (x + x−1 = x−1 + x = e). The set of integers with the operation of addition is an

example of a group, known as the additive group of integers.

Let G and G′ be two groups. A homomorphism, f , is a map from G to G′ having

the following property, for all x, y ∈ G:

f(x+ y) = f(x) +′ f(y)

The map f is said to commute with the group operator +. We can start with two

elements in G apply the operator and then f or we can apply f to each element

individually and then apply the operator in G′ and we end up the same result in G′.

This is illustrated in the commutative diagram shown in Figure 3.1. As an example,

consider the set of even integers. This is a group under addition. The function

f(x) = 2x from the additive group of integers to the additive group of even integers

is a homomorphism, since f(x+ y) = 2(x+ y) = 2x+ 2y = f(x) + f(y).

16



3.2 Machine Homomorphism

The finite state automata (FSA) literature is rich in algebraic approaches to min-

imizing and decomposing machines. Most approaches are based on the concept of

machine homomorphism and notions of equivalence (of states and of machines) de-

rived from it. This thesis extends the concept of machine homomorphism to an MDP

homomorphism and develops similar notions of equivalence applicable in RL. In the

case of FSA we want the homomorphism to preserve the transition behavior and

output characteristics of automata.

Formally, an FSA is given by F = 〈S, s0,Σ, Z, δ, O〉, where S is the set of states,

s0 is the start state, Σ the set of input symbols, Z the set of output symbols, δ :

S × Σ → S the transition function and O : S → Z the output function. A machine

(FSA) homomorphism from F = 〈S, s0,Σ, Z, δ, O〉 to F ′ = 〈S ′, s′0,Σ, Z, δ
′, O′〉 is a

surjection f from S to S ′ such that f(δ(s, σ)) = δ′(f(s), σ) and O(s) = O′(f(s)).1

The homomorphism f is said to commute with the dynamics and respect the output

function of F . We can depict this using commutative diagrams as shown in Figure 3.2.

Here horizontal and diagonal arrows represent system dynamics and vertical arrows

represent homomorphisms. Starting from a particular element in S, regardless of

the pair of arrows we follow we end up with the same element in S ′. Similarly, the

second diagram illustrates the commutative property for the output Z. A machine

homomorphism is also known as a dynamorphism in category theory (Arbib and

Manes, 1975).

The homomorphism f is only a surjection and often S ′ is much smaller than S.

In such cases, we can construct a reduced model of an FSA from the partition of

the state space induced by f . This reduced model will be equivalent to F ′ up to a

1If f is not a surjection then there exists a closed sub-machine of F ′ that is a homomorphic image
of F and we consider this sub-machine as the image of the homomorphism. Such a map f is also
known as a simulation.
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s1
-δ(·, σ)

s2

?

f

?

f

s′1
-δ′(·, σ)

s′2

s1
-O(·)

z

?

f

�
�

�
���

O′(·)

s′1

Figure 3.2. An FSA homomorphism represented by commutative diagrams.

relabeling of states and outputs and would have the same “block” transition behavior

as F .

3.3 MDP Homomorphism

We extend the notion of machine homomorphisms to MDPs by incorporating

stochasticity, decision making and rewards. An MDP homomorphism is a map on

Ψ that commutes with the system dynamics and preserves the reward structure.

Formally, we define it as:

Definition: An MDP homomorphism h from an MDP M = 〈S,A,Ψ, P, R〉 to an

MDP M′ = 〈S ′, A′,Ψ′, P ′, R′〉 is a surjection from Ψ to Ψ′, defined by a tuple of

surjections 〈f, {gs|s ∈ S}〉, with h((s, a)) = (f(s), gs(a)), where f : S → S ′ and

gs : As → A′
f(s) for s ∈ S, such that for all s, t ∈ S, and a ∈ As:

P ′(f(s), gs(a), f(t)) = T (s, a, [t′]Bh|S
), (3.1)

R′(f(s), gs(a)) = R(s, a). (3.2)

We callM′ the homomorphic image ofM under h. We use the shorthand h(s, a) to

denote h((s, a)). The surjection f maps states of M to states of M′, and since it

is generally many-to-one, it generally induces nontrivial equivalence classes of states

s of M: [s]f . Each surjection gs recodes the actions admissible in state s of M to
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(s, a) -P
Psa

?

h

?

h

(s′, a′) -P ′

P ′
s′a′

(s, a) -R
r

?

h

�
�

�
���

R′

(s′, a′)

Figure 3.3. An MDP Homomorphism represented by Commutative Diagrams

actions admissible in state f(s) ofM′. This state-dependent recoding of actions is a

key innovation of our definition, which we discuss in more detail below. Condition

(1) says that the transition probabilities in the simpler MDP M′ are expressible as

sums of the transition probabilities of the states ofM that f maps to that same state

in M′. This is the stochastic version of the standard condition for homomorphisms

of deterministic systems that requires that the homomorphism commutes with the

system dynamics (Hartmanis and Stearns, 1966). Condition (2) says that state-action

pairs that have the same image under h have the same expected reward.

Let Psa : S → [0, 1] be the distribution over states resulting from taking action a

in state s, i.e., Psa(t) = P (s, a, t) for any t in S. The aggregation hPsa, of Psa over the

homomorphism h, is the distribution over S ′ such that hPsa(s
′) =

∑
t∈f−1(s′) Psa(t)

for each s′ ∈ S ′. Here f−1(s′) = {s ∈ S|f(s) = s′} is the pre-image of s′ in S. A

homomorphism commutes with the one step dynamics of the MDP in the sense that

the aggregation hPsa is the same distribution as P ′
f(s)gs(a) for all (s, a) ∈ Ψ. We can

depict this using commutative diagrams shown in Figure 3.3.

MDP homomorphisms lead to the following notions of equivalence of states and

state-action pairs which, as shown in the next section, lead to the intuitive notion of

equivalence we are interested in modeling.
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Definition: State action pairs (s1, a1) and (s2, a2) ∈ Ψ are (homomorphically) equiv-

alent if for some homomorphism h ofM, (s1, a1) ≡h
(s2, a2).

Definition: States s1 and s2 ∈ S are equivalent if i) for every action a1 ∈ As1 ,

there is an action a2 ∈ As2 such that (s1, a1) and (s2, a2) are equivalent, and ii) for

every action a2 ∈ As2 , there is an action a1 ∈ As1 , such that (s1, a1) and (s2, a2) are

equivalent.

Thus the surjection f maps equivalent states of M onto the same image state in

M′, while gs is a state dependent mapping of the actions inM onto image actions in

M′. For example, if h = 〈f, {gs|s ∈ S}〉 is a homomorphism from the gridworld of

Figure 1.2(a) to that of Figure 1.2(b), then f(A) = f(B) is the state marked {A,B}

in Figure 1.2(b). Also gA(E) = gB(N) = E, gA(W ) = gB(S) = W , and so on.

The rest of the chapter, and in some sense the rest of the thesis, focuses on

answering the questions: How useful is this formulation of MDP homomorphisms?

Is it general enough to model a wide class of abstractions? Is it powerful enough

to result in computational savings? Is it well-defined—is the optimality of solutions

preserved? We start by looking at the last question in detail.

3.4 Minimization Framework

Our approach to abstraction can be considered an instance of a general approach

known as model minimization. The goal of MDP minimization is to form a reduced

model of a system by ignoring irrelevant information. Solving this reduced model

should then yield a solution to the original MDP. Frequently minimization is accom-

plished by identifying states and actions that are equivalent in a well-defined sense

and forming a “quotient” model by aggregating such states and actions. We build

a minimization framework, that is an extension of a framework by Dean and Givan
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(1997). It differs from their work in the notion of equivalence we employ based on

MDP homomorphisms.

In this section we show that homomorphic equivalence leads to preservation of

optimal solutions. We start with the following theorem on optimal value equivalence.

This theorem is an extension of the optimal value equivalence theorem developed in

Givan et al. (2003) for stochastic bisimulations.

Theorem 1: (Optimal value equivalence) Let M′ = 〈S ′, A′,Ψ′, P ′, R′〉 be the ho-

momorphic image of the MDP M = 〈S,A,Ψ, P, R〉 under the MDP homomorphism

h = 〈f, {gs|s ∈ S}〉. For any (s, a) ∈ Ψ, Q?(s, a) = Q?(f(s), gs(a)).

Proof: (Along the lines of Givan et al. (2003)) Let us define the m-step optimal

discounted action value function recursively for all (s, a) ∈ Ψ and for all non-negative

integers m as

Qm(s, a) = R(s, a) + γ
∑

s1∈S

[
P (s, a, s1) max

a1∈As1

Qm−1(s1, a1)

]

and set Q−1(s1, a1) = 0. Letting Vm(s1) = maxa1∈As1
Qm(s1, a1), we can rewrite this

as:

Qm(s, a) = R(s, a) + γ
∑

s1∈S

[P (s, a, s1)Vm−1(s1)] .

Now we prove by induction on m that the theorem is true. For the base case of

m = 0, we have that Q0(s, a) = R(s, a) = R′(f(s), gs(a)) = Q0(f(s), gs(a)). Now

let us assume that Qj(s, a) = Qj(f(s), gs(a)) for all values of j less than m and all

state-action pairs in Ψ. Now we have,

Qm(s, a) = R(s, a) + γ
∑

s′∈S

P (s, a, s′)Vm−1(s
′)

= R(s, a) + γ
∑

[s′]Bh|S∈Bh|S

T (s, a, [s′]Bh|S
)Vm−1(s

′)

= R′(f(s), gs(a)) + γ
∑

s′∈S′

P ′(f(s), gs(a), s
′)Vm−1(s

′)
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= Qm(f(s), gs(a))

The second and third lines use the fact that h is a homomorphism. Since R is bounded

it follows by induction that Q?(s, a) = Q?(f(s), gs(a)) for all (s, a) ∈ Ψ. 2

Corollaries:

1. For any h-equivalent (s1, a1), (s2, a2) ∈ Ψ, Q?(s1, a1) = Q?(s2, a2).

2. For all equivalent s1, s2 ∈ S, V ?(s1) = V ?(s2).

3. For all s ∈ S, V ?(s) = V ?(f(s)) .

Proof: Corollary 1 follows from Theorem 1. Corollaries 2 and 3 follow from Theorem

1 and the fact that V ?(s) = maxa∈As
Q?(s, a). 2

As shown by Givan et al. (2003), optimal value equivalence is not a sufficient

notion of equivalence for our stated minimization goal. In many cases even when

the optimal values are equal, the optimal policies might not be related and hence

we cannot easily transform solutions of M′ to solutions of M. But when M′ is a

homomorphic image, a policy inM′ can induce a policy inM that is closely related.

The following describes how to derive such an induced policy.

Definition: Let M′ be an image of M under homomorphism h = 〈f, {gs|s ∈ S}〉.

For any s ∈ S, g−1
s (a′) denotes the set of actions that have the same image a′ ∈ A′

f(s)

under gs. Let π′ be a stochastic policy in M′. Then π′ lifted to M is the policy π′
M

such that for any a ∈ g−1
s (a′), π′

M(s, a) = π′(f(s), a′)
/
|g−1

s (a′)|.

Note: It is sufficient that
∑

a∈g−1
s (a′) π

′
M(s, a) = π′(f(s), a′), but we use the above

definition to make the lifted policy unique.

Example 2

This example illustrates the process of lifting a policy from an image MDP to the

original MDP. Consider MDP M from example 1 and M′ = 〈S ′, A′,Ψ′, P ′, R′〉 with
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S ′ = {s′1, s
′
2}, A

′ = {a′1, a
′
2} and Ψ′ = {(s′1, a

′
1), (s′1, a

′
2), (s′2, a

′
1)}. Let h = 〈f, {gs|s ∈

S}〉 be a homomorphism fromM toM′ defined by

f(s1) = s′1 f(s2) = s′2 f(s3) = s′2

gs1(a1) = a′2 gs2(a1) = a′1 gs3(a1) = a′1

gs1(a2) = a′1 gs2(a2) = a′1

Let π′ be a policy inM′ with

π′(s′1, a
′
1) = 0.6 π′(s′1, a

′
2) = 0.4 π′(s′2, a

′
1) = 1.0

Now π′ lifted toM, the policy π′
M, is derived as follows:

π′
M(s1, a1) = π′(s′1, a

′
2) = 0.4 π′

M(s1, a2) = π′(s′1, a
′
1) = 0.6

π′
M(s2, a1) = π′(s′2, a

′
1)/2 = 0.5 π′

M(s2, a2) = π′(s′2, a
′
1)/2 = 0.5

π′
M(s3, a1) = π′(s′2, a

′
1) = 1.0

2

Theorem 2: LetM′ = 〈S ′, A′,Ψ′, P ′, R′〉 be the image ofM = 〈S,A,Ψ, P, R〉 under

the homomorphism h = 〈f, {gs|s ∈ S}〉. If π′? is an optimal policy for M′, then π′?
M

is an optimal policy forM.

Proof: Let π′? be an optimal policy in M′. Consider some (s, a) ∈ Ψ such that

π′?(f(s), gs1(a1)) is greater than zero. Then Q?(f(s1), gs1(a1)) is the maximum value

of the Q? function in state f(s1). From Theorem 1, we know that Q?(s, a) =

Q?(f(s), gs(a)) for all (s, a) ∈ Ψ. Therefore Q?(s1, a1) is the maximum value of

the Q? function in state s1. Thus a1 is an optimal action in state s1 and hence π′?
M is

an optimal policy forM. 2

Theorem 2 establishes that an MDP can be solved by solving one of its homomor-

phic images. To achieve the most impact, we need to derive a smallest homomorphic
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Figure 3.4. (a) Transition graph of example MDP M. This MDP is irreducible
under a traditional minimization framework. Our notion of homomorphic equivalence
allows us to minimize this further. (b) Transition graph of the minimal image of the
MDPM in (a).

image of the MDP, i.e., an image with the least number of admissible state-action

pairs. The following definition formalizes this notion.

Definition: An MDPM is a minimal MDP if for every homomorphic imageM′ of

M, there exists a homomorphism from M′ to M. A minimal image of an MDP M

is a homomorphic image ofM that is also a minimal MDP.

The model minimization problem can now be stated as: “find a minimal image

of a given MDP”. Since this can be computationally prohibitive, we frequently settle

for a reasonably reduced model, even if it is not a minimal MDP.

Illustration of Minimization: An Abstract MDP example

We illustrate our minimization framework on a very simple abstract MDP shown in

Figure 3.4(a). We will use this as a running example while we develop our framework

further. We chose such a simple example in order to make the presentation of the

computation involved in later stages easier. Note though that this MDP is irreducible

under the state-equivalence based MDP minimization framework of Dean and Givan.

The parameters of M = 〈S,A,Ψ, P, R〉 are S = {s1, s2, s3, s4}, A = {a1, a2}, Ψ =
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S × A, P defined as in Table 3.1 and R given by: R(s2, a1) = R(s3, a2) = 0.8 and

R(s2, a2) = R(s3, a1) = 0.2. For all other values of i and j, R(si, aj) equals zero.

to→
↓ from s1 s2 s3 s4

s1 0 0.8 0.2 0
s2 0.2 0 0 0.8
s3 0.8 0 0 0.2
s4 0 0 0 1.0

(i)
to→
↓ from s1 s2 s3 s4

s1 0 0.2 0.8 0
s2 0.8 0 0 0.2
s3 0.2 0 0 0.8
s4 0 0 0 1.0

(ii)

Table 3.1. Transition probabilities for the MDP M shown in Figure 3.4(a): (i)
under action a1. (ii) under action a2.

The MDP M′ shown in Figure 3.4(b) is a homomorphic image of M. It has

the following parameters: S ′ = {σ1, σ2, σ3}, A
′ = {α1, α2}, Ψ′ = {(σ1, α1), (σ2, α1),

(σ2, α2), (σ3, α1)}, P
′ as shown in Table 3.2 and R′ defined as follows: R′(σ2, α1) = 0.2,

R′(σ2, α2) = 0.8 and all other rewards are zero.

P ′(σ1, α1, σ2) = 1.0 P ′(σ3, α1, σ3) = 1.0
P ′(σ2, α1, σ1) = 0.8 P ′(σ2, α2, σ1) = 0.2
P ′(σ2, α1, σ3) = 0.2 P ′(σ2, α2, σ3) = 0.8

Table 3.2. The transition probabilities of the MDPM′ shown in Figure 3.4(b).

One can define a homomorphism 〈f, {gs|s ∈ S}〉 fromM toM′ as follows: f(s1) =

σ1, f(s2) = f(s3) = σ2, and f(s4) = σ3. gs1(ai) = gs4(ai) = α1, for i = 1, 2,

gs2(a1) = gs3(a2) = α2 and gs2(a2) = gs3(a1) = α1.
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3.5 Identifying Homomorphisms

Now that we have established that homomorphic equivalence is useful in deriving

reduced models, the natural next question is how do we identify homomorphisms?

Is it computationally feasible? In this section we develop the basic minimization

approach and introduce a simple minimization algorithm. This algorithm takes time

polynomial in the size of Ψ.

A homomorphism fromM = 〈S,A,Ψ, P, R〉 toM′ = 〈S ′, A′,Ψ′, P ′, R′〉 induces a

partition on Ψ. Classical FSA literature employs such partitions of the state set in

minimization of machines. Likewise, one approach to constructing a suitable image

MDP is to identify partitions of Ψ that correspond to equivalence classes of homo-

morphisms. For that we first need to establish conditions under which a partition

corresponds to a homomorphism.

Definition: A partition B of an MDP M = 〈S,A,Ψ, P, R〉 is said to be reward

respecting if BR ≥ B.2 In other words B is reward respecting if (s1, a1) ≡B
(s2, a2)

implies R(s1, a1) = R(s2, a2) for all (s1, a1), (s2, a2) ∈ Ψ.

Definition: A partition B of an MDPM = 〈S,A,Ψ, P, R〉 has the stochastic substi-

tution property if for all (s1, a1), (s2, a2) ∈ Ψ, (s1, a1) ≡B
(s2, a2) implies T (s1, a1, [s]B|S)

= T (s2, a2, [s]B|S) for all [s]B|S ∈ B|S.

In other words, the block transition probability is the same for all state-action pairs

in a given block. A partition that satisfies the stochastic substitution property is

an SSP partition. This is an extension of the substitution property for finite state

machines (Hartmanis and Stearns, 1966). The SSP block transition probability is the

function Tb : B × B|S → [0, 1], defined by Tb([(s1, a1)]B , [s]B|S) = T (s1, a1, [s]B|S).

This quantity is well-defined only for SSP partitions.

2Recall, BR is the partition of Ψ induced by the reward function.
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Theorem 3: Let h be an MDP homomorphism from an MDP M = 〈S,A,Ψ, P, R〉

to an MDP M′ = 〈S ′, A′,Ψ′, P ′, R′〉. Then Bh, the partition of Ψ induced by h, is a

reward respecting SSP partition.

Proof: Let h = 〈f, {gs|s ∈ S}〉 be the homomorphism from M to M′. We need to

show that the partition Bh is a reward respecting SSP partition.

First let us tackle the stochastic substitution property. Let (s1, a1), (s2, a2) ∈ Ψ, be

h-equivalent. From the definition of a homomorphism we have that f(s1) = f(s2) =

s′ ∈ S ′ and gs1(a1) = gs2(a2) = a′ ∈ A′
s′ . Thus, for any s ∈ S, T (s1, a1, [s]Bh|S

) =

P ′(s′, a′, f(s)) = T (s2, a2, [s]Bh|S
). Hence Bh is an SSP partition.

From condition 2 in the definition of a homomorphism, it is clear that the partition

induced is reward respecting. 2

Theorem 3 establishes that the partition induced by a homomorphism is a reward

respecting SSP partition. On the other hand, given any reward respecting SSP

partition B of M it is possible to construct a homomorphic image. Let η(s) be

the number of distinct classes of B that contain a state-action pair with s as the

state component, and let {[(s, ai)]B |i = 1, 2, · · · , η(s)} be the blocks. Note that if

[s1]B|S = [s2]B|S then η(s1) = η(s2), hence the following is well-defined.

Definition: Given a reward respecting SSP partition B of an MDPM = 〈S,A,Ψ, P ,

R〉, the quotient MDP M/B is the MDP 〈S ′, A′,Ψ′, P ′, R′〉, where S ′ = B|S; A′ =

⋃
[s]B|S∈S′ A′

[s]B|S
where A′

[s]B|S
= {a′1, a

′
2, · · · , a

′
η(s)} for each [s]B|S ∈ S

′; P ′ is given by

P ′([s]f , a
′
i, [s

′]f ) = Tb([(s, ai)]B , [s
′]B|S) and R′ is given by R′([s]B|S , a

′
i) = R(s, ai).

Theorem 4: LetB be a reward respecting SSP partition of MDPM = 〈S,A,Ψ, P, R〉.

The quotient MDPM/B is a homomorphic image ofM.
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Proof: Given a reward respecting SSP partition B of M, we show by construc-

tion that there exists a homomorphism h from M to the quotient MDP M/B =

〈S ′, A′,Ψ′, P ′, R′〉.

The homomorphism h = 〈f, {gs|s ∈ S}〉 betweenM andM/B is given by f(s) =

[s]B|S and gs(a) = a′i such that T (s, a, [s′]B|S) = P ′([s]B|S , a
′
i, [s

′]B|S) for all [s′]B|S ∈

B|S. In other words, if [(s, a)]B|S is the i-th unique block in the ordering used in

the construction of M/B, then gs(a) = a′i. It is easy to verify that h is indeed a

homomorphism. 2

The partition induced onM by h is only guaranteed to be a refinement of B and

is not always the same partition as B. In other words, B ≥ Bh. In fact, Bh is the

least coarse partition such that Bh|S = B|S, and M/B is the same MDP as M/Bh

up to a relabeling of states and actions. Thus the converse of the theorem, that for

every reward respecting SSP partition there exists a homomorphism that induces it,

is not always true.

It is easy to verify (by contradiction) that there exists a unique coarsest reward

respecting SSP partition for any MDP. Intuitively one would expect the quotient

MDP corresponding to the coarsest reward respecting SSP partition of an MDP M

to be a minimal image ofM. The following theorem states that formally.

Theorem 5: Let B be the coarsest reward respecting SSP partition of MDP M.

The quotient MDPM/B is a minimal image ofM.

Proof: The proof of this theorem is given in Appendix A.

Dean and Givan (1997) propose a polynomial time method to identify the coarsest

reward respecting SSP partition of an MDP. Though their method operates with

partitions on the state space only, it can easily be extended to Ψ. Given an MDP

M = 〈S,A,Ψ, P, R〉, the outline of a basic model-minimization algorithm is as follows:
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1. Start with any reward respecting partition B of Ψ. The most obvious choice is

to pick the one that is induced by the expected reward function R. This is the

coarsest possible reward respecting partition, but any suitable partition will do.

2. Pick some block bi of B that does not satisfy the SSP property and split bi so

that it does.

3. Repeat step 2 until all violations of the SSP property are resolved. Let Bh be

the resulting partition.

4. Form the quotient MDP M/Bh and identify the homomorphism between M

andM/Bh.

Now one can solveM/Bh and lift the optimal policy to get an optimal policy for

M. It can be shown (Dean and Givan, 1997) that step 2 has to be performed only

once for each block in the partition and hence the algorithm runs in time quadratic

in |Bh| and linear in |Ψ|. The algorithm converges to the coarsest reward respecting

SSP partition, provided we started with a suitable reward respecting partition.

Illustration of Minimization: An Abstract MDP example (revisited)

Let us return to the abstract MDP M from Figure 3.4(a), reproduced here in

3.5(a). We now derive the minimal model of this MDP. The admissible state action

pairs is given by S ×A. We start with the partition induced by the reward function:

BR =
{
{(s2, a1), (s3, a2)}, {(s2, a2), (s3, a1)}, {(s1, a1), (s1, a2), (s4, a1), (s4, a2)}

}
.

We denote the the blocks of the partition by b1, b2 and b3 respectively. Now BR|S =
{
{s1, s4}, {s2, s3}

}
, Tb(b1, {s1, s4}) = Tb(b2, {s1, s4}) = 1.0 and Tb(b1, {s2, s3}) =
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Figure 3.5. (a) Transition graph of example MDPM. Repeated from Figure 3.4(a).
(b) Transition graph of the quotient MDPM|B. See text for description. Note that
this is isomorphic to the MDP in Figure 3.4(b).

Tb(b2, {s2, s3}) = 0.0. Hence b1 and b2 satisfy the SSP property and do not need

to be split. Block b3 does violate the SSP property as can be seen below:

T (s1, a1, {s1, s4}) = 0 T (s4, a1, {s1, s4}) = 1.0

T (s1, a2, {s1, s4}) = 0 T (s4, a2, {s1, s4}) = 1.0

T (s1, a1, {s2, s3}) = 1.0 T (s4, a1, {s2, s3}) = 0

T (s1, a2, {s2, s3}) = 1.0 T (s4, a2, {s2, s3}) = 0

We can fix this by splitting b3 into
{
{(s1, a1), (s1, a2)}, {(s4, a1), (s4, a2)}

}
. It is easy

to see that the resulting partition B given by B =
{
{(s1, a1), (s1, a2)}, {(s2, a1),

(s3, a2)}, {(s2, a2), (s3, a1)}, {(s4, a1), (s4, a2)}
}

is a reward respecting SSP partition.

We can derive the quotient MDPM|B = 〈S ′, A′,Ψ′, P ′, R′〉 as follows:

S ′ = B|S =
{
{s1}, {s2, s3}, {s4}

}
are the states ofM/B.

Now, η(s1) = 1, η(s2) = η(s3) = 2 and η(s4) = 1. Let A′ = {a′1, a
′
2}. Hence we

set A′
{s1}

= {a′1}, A
′
{s2,s3}

= {a′1, a
′
2} and A′

{s4}
= {a′1}. Now P ′({s1}, a

′
1, {s2, s3}) =

P (s1, a1, s2) + P (s1, a1, s3) = P (s1, a2, s2) + P (s1, a2, s3) = 1.0. Proceeding similarly,

we have
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P ′({s1}, a
′
1, {s2, s3}) = 1.0 P ′({s4}, a

′
1, {s4}) = 1.0

P ′({s2, s3}, a
′
1, {s1}) = 0.8 P ′({s2, s3}, a

′
2, {s1}) = 0.2

P ′({s2, s3}, a
′
1, {s4}) = 0.2 P ′({s2, s3}, a

′
2, {s4}) = 0.8

R′({s2, s3}, a
′
1) = 0.2, R′({s2, s3}, a

′
2) = 0.8 and all other rewards are zero. Figure

3.5(b) shows the transition graph for M/B. Note that this MDP is the same as

that shown in Figure 3.4(b) except for a relabeling of states and actions. The two

MDPs are examples of isomorphic MDPs, a notion we will develop further in the next

chapter. Now we can define a homomorphism 〈f, {gs|s ∈ S}〉 from M to M/B as

follows: f(s1) = {s1}, f(s2) = {s2, s3}, f(s3) = {s2, s3} and f(s4) = {s4}. gs1(ai) =

gs4(ai) = a′1, for i = 1, 2, gs2(a1) = gs3(a2) = a′2 and gs2(a2) = gs3(a1) = a′1.

3.6 Relation to Stochastic Bisimulations

This approach to minimization is closely related to earlier work on MDP min-

imization be Dean and Givan (1997). Their framework is based on the notion of

stochastic bisimulation homogeneity (Givan et al., 2003). The basic mathematical

notion underlying their framework is that of a stochastic bisimulation (Hennessy and

Milner, 1985). Formally a stochastic bisimulation is defined as follows:

Definition: Let M = 〈S,A,Ψ, P, R〉 and M′ = 〈S ′, A,Ψ′, P ′, R′〉 be two MDPs

with the same action set, with every action being admissible in all the states. Let

E ⊆ S × S ′ be a relation. We use the notation E(s, s′) to indicate that (s, s′), s ∈ S

and s′ ∈ S ′, belongs to E. E is a stochastic bisimulation if each s ∈ S (and s′ ∈ S ′)

appears in some pair in E, and, whenever E(s, s′), both of the following hold for all

actions a ∈ A:

1. R([s]E|S , a) and R′([s′]E|S′ , a) are well defined and equal to each other.

2. For states t ∈ S and t′ ∈ S ′ s.t. E(t, t′), T (s, a, [t]E|S) = T ′(s′, a, [t′]E|S′).
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Here E|S is the reflexive, symmetric, transitive closure of E projected onto S. Sim-

ilarly E|S ′ is the reflexive, symmetric, transitive closure of E projected onto S ′.

R([s]E|S , a) is well defined if there exists some K ∈ IR, such that for every t ∈ [s]E|S,

R(t, a) = K. A stochastic bisimulation fromM toM is also an equivalence relation

on S and leads to a “homogeneous” partition of S. As we shall establish shortly, a

homogeneous partition is a reward respecting SSP partition and hence can be used to

construct a reduced model of the MDP as described above. Note that the above def-

inition of a stochastic bisimulation considers relations on the state sets. If we extend

the definition to relations on Ψ×Ψ′ we can model the same notion of equivalence as

that entailed by MDP homomorphisms.

We now formalize the relation between stochastic bisimulations and MDP ho-

momorphisms. For purposes of comparison we look at state homomorphisms, i.e.,

gs(a) = a for all (s, a) in Ψ. Hence we consider a MDP homomorphism to be a map

between state sets in this section. It can be argued that stochastic bisimulations are

a more expressive concept than homomorphisms. They allow us to establish a di-

rect correspondence between two MDPs that have some similarity in their transition

behavior. But that is not necessarily the case as the following result shows.

Theorem 6: A stochastic bisimulation exists between two MDPs M = 〈S,A,Ψ,

P,R〉 andM′ = 〈S ′, A,Ψ′, P ′, R′〉 if and only if there exists an MDPM′′ = 〈S ′′, A,Ψ′′,

P ′′, R′′〉 that is a (state) homomorphic image of bothM andM′.

Proof: (⇒) Let E ⊆ S×S ′ be a stochastic bisimulation betweenM = 〈S,A,Ψ, P, R〉

and M′ = 〈S ′, A,Ψ′, P ′, R′〉. We show by construction that there exists M′′ =

〈S ′′, A,Ψ′′, P ′′, R′′〉 which is a homomorphic image of bothM andM′.

First, we establish that E|S is a reward respecting SSP partition of M. By

definition of a stochastic bisimulation we have that R([s]E|S , a) is well-defined for all

a ∈ A. Hence E|S is reward respecting. Let s1, s2 ∈ S be s.t. [s1]E|S = [s2]E|S. This

implies that there exists a “path” in E from s1 to s2, ignoring arc directions. Without
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loss of generality let us assume that for every s′ ∈ S ′, if E(s1, s
′) then E(s2, s

′).3 For

every t ∈ S and t′ ∈ S ′ s.t. E(t, t′), the second condition of stochastic bisimulation

states that T (s1, a, [t]E|S) = T ′(s′, a, [t′]E|S′) = T (s2, a, [t]E|S) for all a ∈ A. Thus we

have T (s1, a, [t]E|S) = T (s2, a, [t]E|S) for all [t]E|S ∈ E|S and for all a ∈ A. Thus E|S

is an reward respecting SSP partition.

Let M′′ = 〈S ′′, A,Ψ′′, P ′′, R′′〉 be the quotient MDP M/E|S. Let f : S ′ → E|S,

be given by f(s′) = [s1]E|S if E(s1, s
′). The map f is a surjection, since for every

s′ ∈ S ′, there exists at least one s1 ∈ S s.t. E(s1, s
′). It is well defined: if there

exist s1, s2 ∈ S, s.t. E(s1, s
′) and E(s2, s

′), then [s1]E|S = [s2]E|S. From the second

condition of a stochastic bisimulation, for every t ∈ S and t′ ∈ S ′ s.t. E(t, t′) we have

T ′(s′, a, [t′]E|S′) = T (s1, a, [t]E|S) = P ′′([s1]E|S , a, [t]E|S) = P ′′(f(s′), a, f(t′)) for all

a ∈ A. From the first condition we have that R′(s′, a) = R(s1, a) = R′′([s1]E|S , a) =

R′′(f(s′), a) for all a ∈ A. Thus f is a homomorphism fromM′ toM/E|S.

Therefore M/E|S (similarly M′/E|S ′) is a homomorphic image of both M and

M′.

(⇐) LetM′′ be a homomorphic image ofM under f and a homomorphic image

of M′ under f ′. Define a relation E ⊆ S × S ′ s.t. E(s, s′) if and only if f(s) =

f ′(s′). Note that E|S is Bf and E|S ′ is Bf ′ . Therefore R([s]E|S , a) and R′([s′]E|S′ , a)

are well-defined. Also if E(s, s′) then R([s]E|S , a) = R′′(f(s), a) = R′′(f ′(s′), a) =

R′([s′]E|S′ , a) for all a ∈ A. For every t ∈ S and t′ ∈ S ′ s.t. E(t, t′) we have

T (s, a, [t]E|S) = T ′′(f(s), a, f(t)) = T ′′(f ′(s′), a, f ′(t′)) = T ′(s′, a, [t′]E|S′). Therefore

E is a stochastic bisimulation betweenM andM′. 2

3Strictly speaking we should consider induction on the length of the path in E in the proof. The
resulting properties are the same under the above assumption as under induction. In the interests
of clarity and brevity we make this assumption.
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Corollary: Let f : S → S ′ be a state homomorphism from M = 〈S,A,Ψ, P, R〉 to

M′ = 〈S ′, A,Ψ′, P ′, R′〉. The relation E ⊆ S × S ′, defined by E(s, s′) if and only if

f(s) = s′, is a stochastic bisimulation.

Proof: Given that f is a state homomorphism from M to M′. Every MDP is ho-

momorphic to itself under the identity map. ThusM andM′ share a homomorphic

image, namely M′. From the construction in the proof of Theorem 6, we have that

a stochastic bisimulation, E, between M and M′ is defined by the relation E(s, s′)

if an only if f(s) = f ′(s′), which in this case reduces to f(s) = s′. 2

The above results establish that every MDP state homomorphism induces a stochas-

tic bisimulation and every stochastic bisimulation can be modeled by a pair of MDP

state homomorphisms. It is straightforward to establish corresponding results for

MDP homomorphisms and stochastic bisimulations on the admissible state-action

pairs. Hence for the purposes of minimization, bisimulations do not provide any

additional power. But we believe MDP homomorphisms are a simpler notion than

bisimulations and help us to better understand the minimization process. Employing

homomorphisms allows us to easily cast various abstraction schemes as special cases

of MDP minimization.

3.7 Learning With Reduced Models

Traditionally minimization methods are thought of as a suitable pre-processing

step to planning methods, since both need complete specification of the model. As

has been demonstrated in the past, even in the presence of a complete model it is

advantageous to employ real-time dynamic programming or reinforcement leaning to

solve especially large MDPs, since these methods focus the search for the solution on

a relatively small but relevant area of the state space. Employing minimization as a

pre-processing step in such a scenario saves us further effort since we are now dealing

with a (possibly) smaller model.
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In the Section 4.2 we show that under certain conditions we can derive reduced

models without having to enumerate the entire state space. Even if we do not know

the complete system model apriori, we often have sufficient prior knowledge on struc-

tural redundancy to derive abstract representation of MDPs using minimization ideas.

In particular in Chapter 6 we explore an approach where we can derive the reduced

model with limited experience in the “real-world” and then employ this model in

learning policies in the original MDP. Also casting abstraction as a minimization prob-

lem helps us in achieving greater insight into many existing abstraction approaches

and in developing new ones, even if the approach itself does not conform exactly to

the parameters of a minimization technique. In other words, we obtain useful ab-

stract representations for the problem, but do not derive minimal models, and do not

require complete knowledge of the system model.

In this work we adopt the notion of homomorphic equivalence of state-action

pairs to derive reduced models. Other notions of equivalence have been adopted

in the literature,4 two of which are useful and in some sense more powerful than

homomorphic equivalence. The first is optimal value equivalence, where two state

action pairs are considered equivalent if their optimal action values are the same.

In other words, (s1, a1) ≡Q
? (s2, a2) if and only in Q?(s1, a1) = Q?(s2, a2). It can be

shown that the coarsest reward respecting SSP partition is a refinement of BQ
? . Thus

optimal value equivalence might lead to a smaller quotient model than homomorphic

equivalence. The chief drawback is that it is not possible to determine BQ
? from the

problem parameters directly. Most often we need to solve the problem before we can

determine BQ
? . Still it is a useful notion and some abstraction approaches try to

estimate BQ
? incrementally. They start with some coarse partition and successively

4Givan et al. (2003) discuss several such notions in some detail and put forth arguments as to why
stochastic bisimulation is a better notion of equivalence. Those arguments apply here too, since, as
demonstrated earlier, homomorphic equivalence is the same as stochastic bisimulation equivalence.

35



refine the partition with more learning or planning (e.g., Whitehead and Ballard,

1991; McCallum, 1995; Jonsson and Barto, 2001; Kim and Dean, 2001; Feng et al.,

2003).

The other notion of equivalence is optimal policy equivalence. Here two state

action pairs are considered equivalent if the probability of picking those actions in

those states under some optimal policy are same. In other words, (s1, a1) ≡π
? (s2, a2)

if and only if π?(s1, a1) = π?(s2, a2) for some π?. Both the coarsest reward respecting

SSP partition and BQ
? are refinements of Bπ

? . As with BQ
? , using Bπ

? requires that

we use some form of incremental estimation.

Both of these notions of equivalence are particularly attractive if we have little

prior knowledge about the structure of the problem being solved. We any way es-

timate the optimal policy and if we are using a value based solution approach, we

estimate the optimal value function. So why not use them as the basis for abstraction

also? But it is seldom the case that we start with absolutely no knowledge of the

problem. We often have some information about inherent symmetry in the problem

and we can also make certain independence assumptions about the various features

describing the problem. With such structural knowledge it is easier to specify reduced

images that exploit homomorphic equivalence than it is for other forms of equivalence.

We shall see examples of this in the later sections. However note that homomorphic

equivalence does imply both optimal value and optimal policy equivalence. We can

also combine different notions of equivalence and start with a reward respecting SSP

partition and coarsen it incrementally to achieve a more compact model corresponding

to BQ
? or Bπ

? .

3.8 Related Work

There has been extensive work in algebraic minimization of finite state machines.

Hartmanis and Stearns (1966) present a excellent introduction to the notions of ma-
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chine homomorphisms, SP partitions, FSA minimization and decomposition tech-

niques. The basic FSA minimization approach consists of identifying the coarsest

partition of the state set that satisfies the substitution property. This is the ana-

logue of the SSP property for deterministic FSA. Hartmanis and Stearns outline a

method to identifying the coarsest SP partitions based on the partial order on all

SP partitions. The method requires us to specify some SP partition of the system

before hand. Minimization algorithms for Markov chains follow similar lines, with

the equivalence criterion of lumpability, which is related to the substitution property.

Kemeny and Snell (1960) discusses equivalence of Markov chains in detail. They also

describe weak lumpability, a relaxation of the equivalence criterion.

Minimization approaches for other modeling paradigms, such as probabilistic au-

tomata (Paz, 1971) and probabilistic transition systems (Larsen and Skou, 1991), are

usually based on the notion of bisimulation and its stochastic extension. Bisimula-

tions were introduced by Hennessy and Milner (1985) and are a many to many map

between the state sets of two structures. They help to establish equivalence among

the elements, such that some aspect of the transition structure of the systems are

preserved when equivalent states are aggregated.

Checking models of concurrent processes, popularly called model checking, is an-

other field that widely employ minimization ideas (McMillan, 1993; Lee and Yan-

nakakis, 1992; Ip and Dill, 1996; Emerson and Sistla, 1996; Emerson and Trefler,

1998). Researchers employ various logical models of concurrent programs and sys-

tems and check them for correctness, i. e. if the program or system really does what

it is supposed to do. For example, if we are designing a system with an abort switch,

we want some assurance that when we throw the switch, the system really does abort

and does so in a “clean” way. The basic model checking process is not very relevant to

our work, but model checking systems frequently employ some form of minimization.

The goal is to derive a smaller model of the system, whose correctness implies the
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correctness of the original model. Lee and Yannakakis (1992) base their approach

to minimization on bisimulations and Dean and Givan (1997) extend it to MDP

minimization.

Dean, Givan and colleagues have explored MDP minimization in detail. Their

model minimization framework (Dean and Givan, 1997) is based on the notion of

bisimulation homogeneity, which is equivalent to the SSP property restricted to the

state set of the MDP. They develop a simple algorithm that successively refines vio-

lations of homogeneity and produces the coarsest homogeneous partition of the state

set. The quotient MDP may then be constructed along similar lines as in Section

3.4. They establish many theoretical results (Givan et al., 2003) on the equivalence

of value functions and on the correctness of their algorithm. Many of the results we

presented in this chapter are extensions of their results to our framework.

Dean and Givan also examine several MDP abstraction algorithms (Dean and Gi-

van, 1997; Givan et al., 2003; Givan and Dean, 1997) and show them to be instances

of their minimization approach applied to special representation schemes. The vari-

ous algorithms take advantage of the structure in the system to develop polynomial

time algorithms for minimization. Boutilier and Dearden’s (1994) state aggregation

method employs Boolean features to represent the state space and look for homo-

geneous partitions among those described by logic formulae on the features. This

is equivalent to searching for a homomorphism among projections onto a subset of

features. Structured policy iteration of Boutilier et al. (1995) is a policy iteration

algorithm that implicitly does state abstraction. They represent the MDP via DBNs

and the CPTs and value function as decision trees. Dean and Givan show that their

algorithm implicitly computes homogeneous partitions among those partitions repre-

sentable by decision trees on the state features. In a recent presentation Givan (Parr

and Givan, 2001) mentions that Boutilier et al.’s (2001) symbolic dynamic program-

ming (SDP) is also an instance of an implicit minimization algorithm. SDP employs
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situational calculus for state representations and searches for homogeneous partitions

among partitions representable as first order logic formulae in the calculus.

These approaches do not employ state-action equivalence, but Dean et al. (1998)

do consider homogeneous partitions of the state-action space in their minimization

algorithm. But they employ the traditional definition of projection of partitions. As

Example 1 in Chapter 2 demonstrated, this is a weaker concept and hence does not

lead to the greater reductions facilitated by our approach.
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CHAPTER 4

SYMMETRY, STRUCTURE AND APPROXIMATIONS

In this chapter we further explore the power of MDP homomorphisms. We de-

velop an inclusive definition of symmetries in MDPs and show that this results in

a special case of homomorphic equivalence. We then explore several special forms

of homomorphisms suited for structured MDPs, where we exploit independence be-

tween features describing the state set. In many cases, even when the homomorphism

conditions are not met exactly, we can form useful abstractions using some relaxed

notion of equivalence. We develop two forms of approximate homomorphisms that

allow us to bound the loss when forming such abstractions.

4.1 Modeling Symmetries

Researchers in AI have long recognized the usefulness of abstracting away sym-

metry (Amarel, 1968) in a problem description. Informally, a symmetric system is

one which is invariant under certain transformations onto itself. An obvious class of

symmetries is based on geometric transformations, such as reflections, rotations and

translations. An example of a reflectional symmetry in an MDP settings was shown

in the example in Figure 1.2. But invariance often arise due to many other properties

of a system, especially structural properties. One of the interesting class of such sym-

metries that we will revisit later in this thesis is that due to object interchangeability.

Informally, these classes of symmetry arise when you can replace some objects in the

world with other similar objects and the dynamics of the world does not change as

far as achieving your primary objective is concerned. Such systems are usually not
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thought of as being symmetric systems, but our definition of symmetry treats object

interchangeability the same way as it would reflection or rotation.

In this section we formalize the notion of MDP symmetries employing group theo-

retic concepts. Since we appeal to only the underlying mathematical structure of the

problem, this is a very inclusive definition of symmetry that is applicable to a variety

of problem domains. We also show that symmetric equivalence can be accommodated

naturally in our minimization framework and is in fact a special case of homomorphic

equivalence.

4.1.1 Symmetry Groups

Symmetries of a structure are usually characterized by the symmetry group — the

group of all automorphisms of the structure. Automorphisms are transformations of

a structure onto itself such that all the properties of the structure are preserved. We

first define MDP automorphisms and then symmetry groups of MDPs.

Definition: An MDP homomorphism h = 〈f, {gs|s ∈ S}〉 from MDPM = 〈S,A,Ψ,

P,R〉 to MDP M′ = 〈S ′, A′,Ψ′, P ′, R′〉 is an MDP isomorphism from M to M′ if

and only if f and gs, s ∈ S, are bijective. M is said to be isomorphic toM′ and vice

versa.

Note that property (1) of a homomorphism reduces to a simpler form in this case:

P (s, a, s′) = P ′(f(s), gs(a), f(s′)) for all s, s′ ∈ S and a ∈ As. Therefore, when two

MDPs are isomorphic, it means that the MDPs are the same except for a relabeling of

the states and a state-specific relabeling of the actions. Thus we can transfer policies

learned for one MDP to the other by simple transformations. Also note that an MDP

M is a minimal MDP if all M′ that are homomorphic to M are also isomorphic to

it.

Definition: An MDP isomorphism from an MDPM = 〈S,A,Ψ, P, R〉 to itself is an

automorphism ofM.
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Figure 4.1. (a) A symmetric gridworld problem. Reproduced from Figure 1.2. (b)
Reflection of the gridworld in (a) about the NE-SW diagonal.

Intuitively one can see that automorphisms can be used to describe symmetries

in a problem specification. In the example of Figure 1.2(a), a reflection of the states

about the NE-SW diagonal and a swapping of actions N and E and of actions S and

W is an automorphism. It is easy to see that this mapping captures the symmetry

discussed earlier. Figure 4.1 shows both the original and the reflected MDP.

Proposition: The set of all automorphisms of an MDPM, denoted by AutM, forms

a group under composition of homomorphisms. This group is the symmetry group of

M.

Let G be a subgroup of AutM denoted by G ≤ AutM. The subgroup G defines an

equivalence relation ≡
G

on Ψ: (s1, a1) ≡G
(s2, a2) if and only if there exists h ∈ G

such that h(s1, a1) = (s2, a2). Note that since G is a subgroup, this implies that there

exists a h−1 ∈ G such that h−1(s2, a2) = (s1, a1). Let B
G

be the partition of Ψ induced

by ≡
G
. We need the following lemma to prove Theorem 7:

Lemma: For any h = 〈f, {gs|s ∈ S}〉 ∈ G, f(s) ∈ [s]B
G
|S.

Proof: The lemma follows from the properties of groups (Lang, 1967), namely closure

and existence of an inverse. 2
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Theorem 7: Let G ≤ AutM be a subgroup of automorphisms ofM = 〈S,A,Ψ, P, R〉.

The partition B
G

is a reward respecting SSP partition ofM.

Proof: Consider (s1, a1), (s2, a2) ∈ Ψ such that (s1, a1) ≡G
(s2, a2). This implies that

there exists an h = 〈f, {gs|s ∈ S}〉 in G such that f(s1) = s2 and gs1(a1) = a2.

From the definition of an automorphism we have that for any s ∈ S, P (s1, a1, s)

= P (s2, a2, f(s)). Using the lemma,
∑

s′∈[s]B
G
|S
P (s1, a1, s

′) =
∑

s′∈[s]B
G
|S
P (s2, a2, s

′).

Since we chose s arbitrarily, this holds for all s in S. Hence B
G

is an SSP partition.

Again from the definition of an automorphism we have that R(s1, a1) = R(s2, a2).

Hence B
G

is reward respecting too. 2

Corollary 1: Let G ≤ AutM be a group of automorphisms ofM = 〈S,A,Ψ, P, R〉.

There exists a homomorphism hG from M to some M′, such that the equivalence

relation induced by hG, ≡
hG

, is the same relation as ≡
G
.

Proof: We can prove this by constructing a homomorphism hG from M to M|B
G
,

given by hG = 〈f, {gs|s ∈ S}〉 where f(s) = [s]B
G
|S and gs(a) = a′i such that

T (s, a, [s′]B
G
|S) = P ′([s]B

G
|S , a

′
i, [s

′]B
G
|S) for all [s′]B

G
|S ∈ B

G
|S. In other words, if

[(s, a)]B
G
|S is the i-th unique block in the ordering used in the construction ofM/B

G
,

then gs(a) = a′i. It is easy to verify that BhG = B
G
. 2

The image of M under hG is called the G-reduced image of M. We say state action

pairs (s1, a1) and (s2, a2) ∈ Ψ are symmetrically equivalent if for some G ≤ AutM,

(s1, a1) ≡G
(s2, a2).

Corollary 2: For any symmetrically equivalent (s1, a1), (s2, a2) ∈ Ψ, Q?(s1, a1) =

Q?(s2, a2) and hence the optimal action-value function of a symmetric MDP is also

symmetric, i. e., invariant under the transformations in the symmetry group ofM.

Corollary 3: If π′? is an optimal policy for some G-reduced image of MDPM, then

π′?
M is an optimal policy forM.
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Note that the converse of Theorem 7 is not true. It is possible to define SSP

partitions that are not generated by groups of automorphisms. Frequently the AutM-

reduced model of an MDP is a minimal image. We look to taking advantage of

structure inherent in a symmetry group and the related equivalence classes in deriving

symmetrically reduced images. This is a theme we will return to often in this work.

Illustration of Minimization: A Symmetric Abstract MDP Example

Let us return to the MDP M in Figure 3.5(a). The reduced MDP M/B shown

in Figure 3.5(b) is also the the AutM-reduced image of M. Let I be the identity

map on Ψ and let h be the automorphism on M defined by: h(s1, a1) = (s1, a2),

h(s2, a1) = (s3, a2), h(s2, a2) = (s3, a1) and h(s4, a1) = (s4, a2). The symmetry

group of M, AutM, is {I, h} with the composition operator. The partition in-

duced by the symmetry group is BAutM =
{
{(s1, a1), (s1, a2)}, {(s2, a1), (s3, a2)},

{(s2, a2), (s3, a1)}, {(s4, a1), (s4, a2)}
}
, which is the same as B from the previous ex-

ample.

Example of Reductions Not Modeled By Symmetry Groups

Figure 4.2(a) shows a very simple abstract MDP with a non-trivial symmetry

group. Each of the states depicted have just one action with the dynamics as shown

in the figure. The action causes a transition from state S to one of states A, B or C

with equal probability. From each of the states, the action transitions to the absorbing

state G with probability 1 and obtains a reward of +1. The symmetry group for this

MDP consists of all permutations of the states A, B and C. The coarsest reward

respecting partition for this MDP is:
{
{S}, {A,B,C}, {G}

}
. Since there is only one

action, we have not indicated that here. The minimal image of this MDP is shown

in Figure 4.2(c).

Figure 4.2(b) shows a similar MDP, with slightly different dynamics. Here the

action from state S causes transition to states A, B and C with different probabilities.
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Figure 4.2. (a) Transition graph of a symmetric MDP. (b) Transition graph of a
similar MDP, but with a trivial symmetry group. (c) Minimal image for both the
MDPs.

Therefore this MDP has only a trivial symmetry group consisting of just the identity

map. But, as with the other MDP, the coarsest reward respecting partition for this

MDP is:
{
{S}, {A,B,C}, {G}

}
. The MDP in Figure 4.2(c) is a minimal image of

this MDP also.

This example demonstrates that not all reductions are generated by symmetry

groups. Another point to note in this example is that the MDP which has a non-

trivial symmetry group has a repeated structure. When we aggregate states together

while constructing a reduced model, the homomorphism conditions require only that

for each action in a state there is some other action from an equivalent state which has

the same block transition behavior. When the reductions arise from symmetry groups

for each action in a state there is some other action from an equivalent state which has

the same transition behavior with respect to each member of a given block. Therefore

not only are the homomorphism conditions satisfied, but a stronger condition is met.

In practice though symmetric reductions arise often and can be identified by a cursory

examination of system properties unlike non-symmetric reductions. All the examples

we encounter in the later chapters employ symmetric reductions.

45



4.1.2 Discussion on Identifying Symmetry Groups

In this section we have established that abstracting away symmetry in a problem

is equivalent to finding a homomorphic image of the MDP. This implies that we

can treat symmetries as a special case of homomorphic reductions and do not need

special mechanisms to handle them. In reality we can take advantage of the repeated

structure in the problem that a symmetry group captures to derive more efficient

algorithms. It is interesting to note that most of the reductions we are interested in,

as we shall see in later chapters, arise from symmetries of a system, so much so that

people tend to confuse homomorphisms and symmetries.

In the previous section we outlined a polynomial time algorithm to identify re-

ward respecting SSP partitions. While that algorithm also detects partitions induced

by symmetry groups, it is not an easy task to specialize the algorithm to look for

symmetry groups of MDPs. We need to make certain structural assumptions about

the MDP to derive tractable algorithms for symmetry group identification. In the

next section we explore factored MDPs and introduce special forms of automorphisms

and homomorphisms. By restricting our search to such special forms, it is possible

to derive more efficient abstraction algorithms.

In a large family of tasks the symmetry groups are known beforehand or can

be specified by the designer through a superficial examination of the problem. In

Section 4.2 we present an algorithm that efficiently constructs a reduced MDP given

a symmetry group, without having to enumerate all the states and actions explicitly.

In learning problems, it is possible achieve some speedup in the process even if we

have incomplete knowledge of homomorphisms and symmetry groups of the problem.

We explore this direction in greater detail in Chapters 5 and 6.
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4.1.3 Related Work

The MDP minimization algorithms analyzed by Givan et al. (2003) do not consider

symmetries of MDPs. While it is possible to extend these algorithms to accommodate

symmetric equivalence of states, without considering state-action equivalence they

cannot model many interesting kinds of symmetry. Symmetry groups have been

employed in the minimization of other modeling paradigms. Jump (1969) employs

symmetry groups in decomposition of FSAs. His approach is an extension of an

approach proposed by Hartmanis and Stearns (1966) based on a notion related to

SP partitions. Glover (1991) employs symmetry groups for deriving shift invariant

models of Markov chains. The goal here is to form a representation of a Markov chain

that behaves similarly under sequences of inputs that are similar but shifted in time

by varying amounts.

Model checking literature abounds with examples of exploiting symmetry in mini-

mization. Most models of concurrent systems employ a factored representation, with

a feature for each process that indicates the current state of the process. The execu-

tion of the system is graphically modeled as a Kripke structure with the nodes of the

structure representing states of the system and the edges possible deterministic tran-

sitions (McMillan, 1993). Minimization algorithms for Kripke structures focus on the

special class of automorphisms that can be expressed as a permutation of the feature

values. Thus the symmetry group of concurrent process model will be given by per-

mutations of the feature values that leave the Kripke structure unaltered (Emerson

and Sistla, 1996; Ip and Dill, 1996; Emerson and Sistla, 1997; Emerson and Trefler,

1998; Emerson et al., 1997). Of particular interest to us is the work by Emerson and

Sistla (1996) in which they present an incremental algorithm for building a quotient

structure. In Table 4.2 we extend their algorithm to MDPs, by incorporating rewards

and stochasticity and are looking to further extend it to operate with a sample model.

Emerson and Trefler (1999) develop many relaxed symmetry criteria which lead to
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useful reductions in the problem size. We look to extending their results to factored

MDPs and achieving similar reductions in problem size.

Researchers in AI have long recognized the usefulness of abstracting away symme-

try. The body of relevant literature on approximation is huge and it is fairly impossible

to present a complete survey here. We just mention a couple of works, one old and

one recent to indicate the continuing interest in this area. Amarel (1968) discusses

the Missionaries and Cannibals problem in detail, exploring various representation

schemes that lead to increasingly more efficient solutions. One of the schemes ab-

stracts away the time reversal symmetry in the problem. It does not matter if you

are going from the left bank to right bank or vice versa. So we can partly solve the

problem of going from one bank to the other and derive the complete solution by

using the time reversed partial solution for going in the other direction. This leads

to significant speed up in the planning procedure. Popplestone and Grupen (2000)

take a system theoretic approach to modeling permutation symmetries in the same

problem domain, to abstract away the identity of the various people in the problem.

They model the system dynamics by generalized transfer functions (GTF) and exam-

ine how various symmetries in the problem domain can be modeled as symmetries of

the GTF. They look at classes of symmetries generated by permuting the inputs and

the outputs separately and then permuting both simultaneously. They employ the

symmetry in generating a quotient structure that ignores the identity of the persons

involved and works only with relative numbers.

While various abstraction techniques have been successfully employed with RL

algorithms, there is not much work on explicitly employing symmetries. Zinkevich

and Balch (2001) define symmetries of MDPs employing equivalence relations on the

state-action pairs, but they do not make connections to group theoretic concepts or

to minimization algorithms. They show that the optimal action-value function of a

symmetric system is symmetric and suggest that the symmetrically equal action-value
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function entries be duplicated. They also study in some detail symmetries that arise

in multi-agent systems. They restrict their analysis to flat RL systems and do not con-

sider hierarchical systems. Drummond (1998) employs a visual processing technique

to detect useful subgoals from the value function that a RL agent learns and defines

suitable macro-actions to achieve these subgoals. He employs various transformations

to the subgoals detected to identify similar situations and can detect symmetrically

equivalent situations also. But his method is limited to 2-D environments presently

and ones in which the symmetry is visually apparent in the value function. Hengst

(2002) presents AHRL, a hierarchical decomposition algorithm for factored MDPs.

AHRL can exploit symmetry in the environment to define subproblems, where sym-

metry is identified by “repeatability”. His approach presently is severely limited in

applicability and works only with special representation schemes.

4.2 Homomorphisms of Factored MDPs

The framework we have developed thus far assumes a monolithic representation of

an MDP. But many classes of problems that are modeled as MDPs often have some

inherent structure. We can exploit this structure using a feature based or factored

representation, and there are many efficient MDP solution techniques that take ad-

vantage of such representations (e.g. Boutilier et al., 1999). Similarly we can model

abstractions that arise from structured homomorphisms and exploit the structure to

derive more efficient minimization algorithms and compact representations of reduced

models and symmetry groups.

Another reason that drives us to look at special classes of homomorphisms is that

the polynomial time complexity of the algorithm presented in the previous chapter

results from assuming that determining membership in a block of a partition takes

constant time. This is not generally true and in fact, depending on how the MDP
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is represented, this might be NP-hard. Dean and Givan (1997) clearly demonstrate

this difficulty with certain representation schemes.

Let us consider one such scheme used by a state-aggregation method (Boutilier and

Dearden, 1994). The states of the MDP are represented by several boolean features.

Each state in the MDP is represented by a specific assignment to these boolean

features. The partitions then are represented as boolean formulae. Determining

membership in these partitions, to check if they are empty or not, is boolean formulae

satisfiability. This is known to be NP-complete and hence deriving the minimal image

of an MDP in such cases is NP-complete. Dean and Givan examine algorithms that

obtain reasonable reductions in polynomial time, in special cases which use structured

representations for the MDP parameters.

4.2.1 Structured MDPs

A structured MDP is described by the tuple 〈S,A,Ψ, P, R〉. The state set S is

now given by M features or variables, S ⊆
∏M

i=1 Si, where Si is the set of permissible

values for feature i. Thus any s ∈ S is of the form s = 〈s1, . . . , sM〉, where si ∈ Si for

all i.1 A state s can also be thought of as an unique assignment to the state variables

si.

The transition probability matrix P is usually described by two-slice dynamic

Bayesian networks (2-DBNs) (Dean and Kanazawa, 1989). A 2-DBN is a two layer

directed acyclic graph, one for each action, whose nodes are {s1, . . . , sM} and {s′1, . . .,

s′M}. Here si denotes the value of feature i at the present state and s′i denotes the

value of feature i in the resulting state. Many classes of structured problems, as in

the example below, may be modeled by a DBN in which the arcs are restricted to go

1The action set may also be similarly structured, defined via K components, A ⊆
∏

K

i=1
Ai, where

Ai is the set of permissible values for action component i. Presently, we only consider monolithic
actions.
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from nodes in the first set to those in the second. The state-transition probabilities

can be factored as:

P (s, a, s′) =
M∏

i=1

Prob(s′i|Parents(s′i, a))

where Parents(s′i, a) denotes the parents of node s′i in the DBN corresponding to

action a and each of the Prob(s′i|Parents(s′i, a)) is given by a conditional probability

table (CPT) associated with node s′i. This is the standard representation of transi-

tion probabilities in factored MDPs. In computing the conditional probabilities it is

implicitly assumed that the nodes in Parents(s′i,a) are assigned values according to

s. In cases we want to make the dependence of the probability on the previous state

explicit, we write Prob(s′i|Parentss(s
′
i, a)).

The reward function too may be similarly represented. Another representation

for the reward is to assume that the reward is the sum of linear functions on subset

of the features. Thus R(s, a) =
∑L

i=1 ri(s, a) where ri is linear and depends only on a

subset of features (Koller and Parr, 2000).

Example

Let us consider a toy robot domain to illustrate our ideas in this section. The

task of the robot is to deliver coffee to an office on a rainy day. The state of the robot

is described by the following boolean features: HC - the robot has coffee, Loc - true

when the robot is in the office, false if it is in the cafe, HU - the robot has an umbrella.

The robot has the following actions available: go - toggles the location of the robot

with probability 0.9, dc - deliver coffee, results in a reward of +1 if HC ∧Loc is true

and sets HC to false with probability 0.8, gu - get umbrella, sets HU to true, if Loc

is true, with probability 0.75, nop - do nothing. In cases the actions fail, they leave

the state unaltered. This is a modification of the problem described in Boutilier et al.
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Figure 4.3. (a) The DBN of the coffee robot domain described in the text. The a
node is the action node and can take values dc, go, gu, nop. (b) The DBN of the
homomorphic image generated by a simple projection on to a subset of features.

(1995). The transition dynamics of the system is given by the DBN shown in Figure

4.3(a). 2

4.2.2 Structured Morphisms

Adding structure to the state space representation allows us to consider morphisms

that are structured, i.e., surjections from one structured set to another. An example of

a structured morphism is a simple projection onto a subset of features. We introduce

some notation, after Zeigler (1972), to make the following definitions easier. Given

a structured set X ⊆
∏M

i=1Xi, the i-th projection of X is a mapping ρi : X → Xi,

defined by ρi(〈x1, . . . , xM〉) = xi. We extend this definition to that of a projection on

a subset of features. Given a set J ⊆ {1, . . . ,M} the J-projection of X is a mapping

ρJ : X →
∏

j∈J Xj, defined by ρJ =
∏

j∈J ρj.

Definition: A simple projection homomorphism h from a structured MDP M =

〈S,A,Ψ, P, R〉 to a structured MDP M′ = 〈S ′, A′,Ψ′, P ′, R′〉 is a surjection from Ψ

to Ψ′, defined by a tuple of surjections 〈f, {gs|s ∈ S}〉, with h(s, a) = (f(s), gs(a)),

where f = ρF : S → S ′, where F ⊆ {1, . . . ,M} and gs : As → A′
f(s) for s ∈ S, such
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that, ∀s, s′ ∈ S, a ∈ As:

P ′(f(s), gs(a), f(s′)) = T (s, a, [s′]Bh|S
) (4.1)

=
∏

j∈F

Prob(s′j|Parents(s′j, a)) (4.2)

R′(f(s), gs(a)) = R(s, a). (4.3)

The first condition implies that F must be such that for all j ∈ F and (s, a) ∈ Ψ,

si ∈ Parents(s′j, a) implies i ∈ F . In other words, the DBN of M′ is a sub-graph of

the DBN ofM, such that no incoming arc to the nodes in the sub-graph is cut. The

second condition requires that no incoming arc to the reward node is cut either.

Example Continued

Going back to our toy robot example, a projection onto the HC and Loc features

with gs(a) = a for all s ∈ S and a 6= gu and gs(gu) = nop for all s ∈ S is a projection

homomorphism. The DBN of the image MDP is shown in Figure 4.3(b).

An algorithm to determine simple projection homomorphisms of factored MDPs

that runs in time polynomial in the number of features is shown in Table 4.1. This

algorithm assumes that the MDP dynamics is specified as a 2-DBN. The intuition

behind the algorithm is similar to the minimization algorithm from Chapter 3. We

start with the reward node in the image MDP. Then we iteratively add nodes and

connections that directly influence the nodes in the image MDP. This is equivalent to

starting with the partition induced by the reward function and successively refining it,

till we achieve a reward respecting SSP partition of the state space. The difference in

this case is that we end up the coarsest simple projection image and not the minimal

image of the MDP.

It is evident that the space of simple projections is much smaller than that of

general maps and may not contain a homomorphism reducing a given MDP. A more
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1. Start the queue of nodes to be examined with the reward nodes of the DBN.

2. For node n in the queue, add to the set of nodes in the image DBN any node
si such that there exists an arc from si to n. Add s′i to the set of nodes in
the image DBN and to the queue. Add the arc from si to n and si to s′i (if
applicable) to the image DBN.

3. Repeat step 2 till queue is empty.

4. Form the CPTs for the image DBN by suitably marginalizing the original CPTs.

Table 4.1. Algorithm for finding simple projection homomorphisms assuming that
the MDP is completely specified.

general “structured projection” is one where each feature of S ′ is computed as a

function of a subset of features of S, and the subsets corresponding to each feature

of S ′ are disjoint (Zeigler, 1972). Without suitable constraints, often derived from

prior knowledge of the structure of the problem, searching for generalized structured

projections results in a combinatorial explosion. Boutilier and colleagues have inves-

tigated other forms of structured morphisms assuming various representations of the

CPTs of structured MDPs—when the morphism is defined by boolean formulae of

the features (Boutilier and Dearden, 1994), when it is defined by decision trees on the

features (Boutilier et al., 1995), and when it is defined by first-order logic formulae

(Boutilier et al., 2001).

4.2.3 Permutation Symmetry Groups

It can be shown that symmetry groups do not result in structured projection

homomorphisms, except in a few degenerate cases. A simple class of structured mor-

phisms that do lead to useful symmetry groups are those generated by permutations of

feature values. Let ΣM be the set of all possible permutations of {1, . . . ,M}. Given a

structured set X ⊆
∏M

i=1Xi and a permutation σ ∈ ΣM , we can define a permutation

on X by σ(〈x1, . . . , xM〉) = 〈xσ(1), . . . , xσ(M)〉, and it is a valid permutation on X if

xσ(i) ∈ Xi for all i and for all 〈x1, . . . , xM〉 ∈ X.
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(a) (b) (c)

Figure 4.4. Towers of Hanoi. The task is to move the disks from the darker position
to the lighter position. Panels (a), (b) and (c) show situations that are equivalent
under permutation symmetries.

Definition: A permutation automorphism h on a structured MDP 〈S,A,Ψ, P, R〉

is a bijection on Ψ defined by a tuple of bijections 〈f, {gs|s ∈ S}〉, with h(s, a) =

(f(s), gs(a)), where f ∈ ΣM : S → S is a valid permutation on S, and gs : As → A′
f(s)

for s ∈ S, such that:

P (f(s), gs(a), f(s′)) = P (s, a, s′), ∀s, s′ ∈ S, a ∈ As

=
M∏

i=1

Prob(s′f(i)|f(Parentsf(s)(s
′
f(i), a))

R(f(s), gs(a)) = R(s, a), ∀s ∈ S, a ∈ As

Here f(Parentsf(s)(s
′
i, a)) = {sf(j)|sj ∈ Parents(s′i, a)} with sf(j) assigned according

to f(s).

Permutation symmetries arise often in checking correctness of concurrent process

models, multi-agent systems and especially of interest to us, in environments with

objects in them, as in the towers of Hanoi problem (Figure 4.4 ). The symmetric MDP

shown in Figure 1.2(a) also has a permutation symmetry. If the states of the MDP

is described by the x and y co-ordinates, then exchanging these features and action

N with E and S with W is an automorphism on the MDP. This together with the

identity map, gives rise to the reflectional symmetry discussed earlier. Permutation

symmetries arise in such environments due to object interchangeability—when you

can exchange some objects in the world with other similar objects. This is represented

as a permutation in which the features corresponding to a object are permuted with
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that of another object. If this permutation is part of a symmetry group, then the

objects are interchangeable.

In general, a permutation symmetry group, G, does not give rise to an G-reduced

MDP that requires fewer features than the original to describe the state set. Therefore

permutation symmetry groups do not necessarily yield a more compact description of

the problem, even if there are fewer states in the reduced MDP than in the original.

Except in some degenerate cases it is difficult to stipulate conditions under which

there is a reduction in the size of the feature set. A straight forward approach to

minimization using permutation symmetry groups would require us to enumerate all

the state-action pairs of the MDP. Even given a symmetry group, G, constructing the

quotient MDP by explicitly enumerating all the state-action pairs of the MDP, takes

time proportional to |Ψ| · |G|.

Table 4.2 presents a more efficient incremental algorithm for constructing the

quotient MDP given a symmetry group or subgroup. This algorithm constructs the

quotient MDP directly without first generating the induced partition. Here we need

to examine only one representative from each block of the partition induced by the

symmetry group. Since applying a permutation to the feature values takes time linear

in the number of features, this algorithm could run in time polynomial in the number

of features and the size of Ψ′ in the best case. While in the worst case this algorithm

might take time proportional to |Ψ|, it will frequently run much faster than that.

This is an adaptation of an algorithm proposed by Emerson and Sistla (1996) for

constructing quotient models for concurrent systems. The algorithm as presented

assumes that all states of the MDP are reachable from any starting state. It is easy

to modify the algorithm to cases in which this is not true.
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GivenM = 〈S,A,Ψ, P, R〉 and G ≤ AutM,
constructM/BG = 〈S ′, A′,Ψ′, P ′, R′〉.
Set Q to some initial state {s0}, S

′ ← {s0}
While Q is non-empty

s = dequeue(Q)
For all a ∈ As

If (s, a) 6≡
G

(s′, a′) for some (s′, a′) ∈ Ψ′, then
Ψ′ ← Ψ′ ∪ (s, a)
R′(s, a) = R(s, a)
For all t such that P (s, a, t) > 0

If t ≡
G|S

s′, for some s′ ∈ S ′,

P ′(s, a, s′)← P ′(s, a, s′) + P (s, a, t)
else

S ′ ← S ′ ∪ t
P ′(s, a, t) = P (s, a, t)
add t to Q.

Table 4.2. Incremental algorithm for constructing the G-reduced image given MDP
M and some G ≤ AutM. Q is the queue of states to be examined. This algorithm
terminates when at least one representative from each equivalence class of G has been
examined.

4.2.4 Discussion

The structured morphisms we introduced in this section leverage the fact that

the state sets are structured and that the transition probabilities can be factored

and expressed as largely independent components. In order to further exploit the

structure in the transition dynamics we would employ more structure representations

of the CPT such as decision trees. Some of the existing work that operate with such

structured representations can be viewed as methods for incrementally determining

homomorphic projections. But such methods do not explicitly model the process as

a minimization approach. Givan et al. (2003) explore some methods that explicitly

exploit structure in minimization, but more work is needed in this direction. The

simple structured morphisms we introduced here are nevertheless powerful enough to

achieve reductions in a variety of problem domains, as illustrated by the examples
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earlier. In fact, many of the homomorphic reductions we consider later in the thesis

are in this class of structured morphisms. This class of morphisms is especially

useful when we consider partial reductions and reductions in a hierarchical setting.

For example, as we shall demonstrate later, Dietterich (2000a) considers the class

of simple projections in his work on safe-state abstraction in the MaxQ hierarchical

framework.

4.3 Approximate Equivalence

The MDP homomorphism conditions on which we base our notions of equivalence

are very strong conditions and are satisfied only in some restricted classes of problems.

Nevertheless in practice we frequently encounter problems for which we can derive

useful “approximate” reduced models by employing relaxed notions of equivalence.

We construct these approximate models by aggregating together states and actions

that differ slightly in their dynamics. For example, consider the gridworld shown in

Figure 4.5(a). This is a slightly modified version of the symmetric grid world from

Figure 1.2(a). While the MDP is more or less symmetric about the NE-SW diagonal

as before, there are a few states including A and B that are not symmetric. These

differences do not affect the optimal policy for reaching the goal significantly, and

we can form a reduced MDP (Figure 4.5(b)) which is similar to the MDP shown in

Figure 1.2(b). Here we need to treat the lightly shaded states differently, since these

are non-symmetric states.

In this section we introduce two concepts to model this approximate minimiza-

tion. An approximate homomorphism uses the average behavior of the aggregated

states and is particularly useful in learning, while a bounded homomorphism employs

Bounded-parameter MDPs (Givan et al., 2000) and allows us to derive bounds on the

loss of performance resulting from the approximation.
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Figure 4.5. (a) A slightly asymmetric gridworld problem. The goal state is G and
there are four deterministic actions. The problem is approximately symmetric about
the NE-SW diagonal. (b) A reduced model of the gridworld in (a). The state-
action pairs (A,E) and (B,N) in the original problem both correspond to the pair
({A,B}, E) in the reduced problem. A solution to this reduced gridworld can be used
to derive an approximate solution to the full problem.

4.3.1 Approximate Homomorphisms

In many circumstances we can aggregate together states and actions that have

slightly different dynamics to form a reduced model. The most straight forward

choice for the dynamics of the reduced model is an average, possibly a “weighted”

average, of the dynamics of the state-action pairs that belong to the same equivalence

class. In the absence of additional knowledge about the problem, a useful heuristic

is to consider a simple average of the aggregated dynamics. Formally we define an

approximate homomorphism as follows:

Definition: An approximate MDP homomorphism h from an MDPM = 〈S,A,Ψ, P ,

R〉 to an MDP M′ = 〈S ′, A′,Ψ′, P ′, R′〉 is a surjection from Ψ to Ψ′, defined by a

tuple of surjections 〈f, {gs|s ∈ S}〉, with h((s, a)) = (f(s), gs(a)), where f : S →S ′

and gs : As → A′
f(s) for s ∈ S, such that for all s, s′ in S and a ∈ As:

P ′(f(s), gs(a), f(s′)) =
1∣∣∣[(s, a)]Bh

∣∣∣

∑

(q,b)∈[(s,a)]Bh

T (q, b, [s′]Bh|S
) (4.4)

R′(f(s), gs(a)) =
1∣∣∣[(s, a)]Bh

∣∣∣

∑

(q,b)∈[(s,a)]Bh

R(q, b). (4.5)
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We call M′ the approximate homomorphic image of M under h. To determine the

transition probability P ′(f(s), gs(a), f(s′)) inM′ we first compute the block transition

probability from each element of [(s, a)]Bh
to the block [s′]Bh|S

. Then we set the

transition probability to be the average of these block transition probabilities. Note

that if h is a homomorphism, then the induced partition satisfies the SSP property

and each of the block transition probabilities we compute above are equal to one

another. We do a similar computation for the reward function as well.

When we employ such approximate reduced models to do planning or learning,

the appropriate aggregate dynamics to employ is a weighted average of the dynamics

of the state-action pairs that belong to a given equivalence class, the weights being

determined by the frequency with which each member of the class is encountered in

the course of the solution process. As we shall see in later chapters, while learning

with online experience it is sufficient to specify only the state, action and reward

spaces of the image MDP and the trajectories through state-action space the agent

experiences implicitly induce the transition probabilities. In such cases, the induced

transition probabilities of the image MDP will account for the frequency of visitation.

Example of an Approximate Homomorphism

Consider the MDP shown in Figure 4.6(a). This represents a spatial navigation

task. The goal is to reach the set of shaded states in the center of the environment.

The darker regions are obstacles, while the clear regions are open space. Consider the

four quadrants formed by the dotted lines in the figure, it is clear that the environment

is more or less symmetric. An approximate homomorphic image of this MDP can be

formed as shown in Figure 4.6(b). Once again, the clear regions are open space and

the dark regions like C are obstacles. The lightly shaded regions like A and B use

aggregate dynamics as described above. In particular, if we assume that the original
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Figure 4.6. (a) A spatial navigation problem. The goal is to reach the shaded
region in the center. The environment is approximately symmetric about the dotted
lines. (b) An approximate homomorphic image of the task in (a). Transitions into
the lightly shaded regions are determined either by aggregate dynamics or specified
as intervals. See text for more details.

problem was deterministic, then the probability of being able to move into region A

is one half and that of being able to move into region B is three quarters.

4.3.2 Bounding the Approximation Loss

With the relaxation of the homomorphism conditions we lose some of the guaran-

tees we established earlier. In particular the optimal value equivalence theorem is no

longer guaranteed to hold. A policy that is optimal in an approximate homomorphic

image is not necessarily optimal when lifted to the original MDP. But if the approxi-

mation is a reasonable one, the lifted policy is not too far from the optimal. We would

like to bound the “distance” between the true optimal policy and the policy lifted

from the image. We do this by deriving an upper limit on the maximum difference

between the optimal value function in the original MDP and the value function of

the lifted policy.

We adopt results from Whitt (1978) to derive this bound. Whitt explored the is-

sue of approximation and abstraction in the contraction mapping formulation of a dy-
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namic program due to Denardo (1967). This formulation is a generalization of MDPs,

stochastic games and other sequential decision making paradigms. Whitt explores the

issue of approximating a dynamic program from the point of optimal value preserva-

tion and considers state-action equivalence, along with state-action value functions.

He derives precise conditions for when an image accurately captures the optimal val-

ues of the original dynamic program and also looks at sequence of approximations

that in the limit converge to an exact image. He also derives bound on the loss in

the optimal value function when the image is an approximation. He specializes some

of the results to stochastic sequential decision problems, from which we can derive

the equivalent results for MDPs. More details of his results are in Appendix B. The

bounds depend on the differences in the resulting aggregate parameters and the ac-

tual parameters. Let h = 〈f, {gs|s ∈ S}〉 be an approximate homomorphism from

an MDP M = 〈S,A,Ψ, P, R〉 to an MDP M′ = 〈S ′, A′,Ψ′, P ′, R′〉. We define the

following quantities:

Kr = max
s∈S

a∈As

| R(s, a)−R′(f(s), gs(a)) |

Kp = max
s∈S

a∈As

∑

[s1]f∈Bf

∣∣∣ T (s, a, [s1]f )− P
′(f(s), gs(a), f(s1))

∣∣∣

δr′ = max
s′∈S′

a′∈A
s′

R′(s′, a′)− min
s′∈S′

a′∈A
s′

R′(s′, a′)

where Kr is the maximum difference between the aggregate block reward and the

actual reward, Kp is the maximum difference between the actual block transition

probabilities and the aggregate transition probabilities and δ ′r is the range of the

reward function in the image MDP. Then the following theorem holds:

Theorem 8: Let π′? be an optimal policy inM′ and π′?
M be that policy lifted toM.

Let γ be the discount factor. Then:

∥∥∥V ? − V π′?
M

∥∥∥ ≤
2

1− γ

(
Kr +

γ

1− γ
δr′
Kp

2

)
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.

Proof: Let h = 〈f, {gs|s ∈ S}〉 be the approximate homomorphism from M to the

image M′. Let V π′?
be the optimal value function in M′. Let Ṽ π′?

be the function

constructed by lifting V π′?
to M, i.e., Ṽ π′?

(s) = V π′?
(f(s)). Note that Ṽ π′?

is not

necessarily the same function as V π′?
M since h is only an approximate homomorphism.

Let

Q(s, a, V ) = R(s, a) + γ
∑

s′∈S

P (s, a, s′)V (s′),

for some real valued function V on S. From Theorem 6.1 of Whitt (1978) stated in

Appendix B, we have the following:

K(V π′?

) = max
a∈As
s∈S

∣∣∣Q(s, a, Ṽ π′?

)−Q(f(s), gs(a), V
π′?

)
∣∣∣ ≤ Kr +

γ

1− γ
δr′
Kp

2
.

SinceM andM′ are MDPs, we employ corollary (b) of Theorem 6.1 here. From the

corollary to Lemma 3.1 we have:

∥∥∥V ? − V π′?
M

∥∥∥ ≤
2

1− γ
K(V π′?

).

Since V π′?
is optimal in M′, we omit the terms that arise due to deviation from

optimality of the value function. We get the desired result put combining the above

two results. 2

Here the distance between the value functions is measured using the max-norm,

i.e., ‖V1 − V2‖ = maxs∈S |V1(s)− V2(s)|. Thus Theorem 8 allows us to bound the

maximum deviation from the true optimal function that results from using a partic-

ular approximate homomorphic image. This result holds only for values of γ < 1.

When γ is 1, it is possible to construct examples where the error is unbounded. For

small value of γ the overall error depends more on the difference in the immediate

reward, since the second term within the parenthesis is small. This is not surprising,
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since small γ leads to more myopic optimal policies. Similarly for large values of γ

the error depends more on the differences in the transition probabilities and the range

of the rewards function, since these quantities affect the long term return.

While the derivation of the bound does not depend on the details of the averaging

method used, the bounds themselves could vary, since how we average influences the

values of Kp, Kr and δr′ . Therefore these bounds can be computed beforehand if

we are using simple averages or some fixed weighted averaging scheme. If we want

to use the visitation frequencies in order to derive our reduced MDPs, we need to

dynamically recompute our bounds as we gather more information. In order to avoid

this we look at another formulation of approximate homomorphisms.

4.3.3 Bounded Approximate Homomorphisms

Approximate homomorphisms provide a convenient tool for deriving approximate

homomorphic images. When we do not have access to the visitation frequencies, the

uniform average formulation we have adopted is somewhat unsatisfying. We chose

this formulation in the absence of additional information as per Occam’s razor. While

this is not a issue while learning, as pointed out earlier, it is something that needs to

be addressed in certain situations like planning domains and when we try to derive

bounds on the loss in asymptotic performance a priori.

Dean et al. (1997) addressed the same problem in the context of their model

minimization framework. They developed the concept of a Bounded-parameter MDP

(BMDP) (Givan et al., 2000) that allows one to model the differences in the block

transition probabilities of the aggregated states. A BMDP is an MDP in which the

transition probabilities and the rewards are specified as intervals. Formally a BMDP

M′ is given by the tuple 〈S,A,Ψ, Pl, Rl〉 where S and A are the state and action

sets, Ψ is the set of admissible state-action pairs, Pl : Ψ × S → [0, 1] × [0, 1] with

Pl(s, a, s
′) = [Plow(s, a, s′), Phigh(s, a, s

′)], for all (s, a) in Ψ and s′ in S, is the range of
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values for the probability of transiting from s to s′ under action a andRl : Ψ→ IR×IR,

with Rl(s, a) = [Rlow(s, a), Rhigh(s, a)], for all (s, a) in Ψ, is the range of the expected

reward on performing action a in state s. We extend their work to our abstraction

framework and develop the notion of a bounded approximate homomorphism, that

gives us an alternate way of modeling the reduction shown in Figure 4.6.

Definition: A bounded approximate MDP homomorphism h from an MDP M =

〈S,A, Ψ, P, R〉 to a BMDP M′ = 〈S ′, A′,Ψ′, P ′
l, R

′
l〉 is a surjection from Ψ to Ψ′,

defined by a tuple of surjections 〈f, {gs|s ∈ S}〉, with h((s, a)) = (f(s), gs(a)), where

f : S → S ′ and gs : As → A′
f(s) for s ∈ S, such that, ∀s, s′ ∈ S and a ∈ As:

P ′
l(f(s), gs(a), f(s′)) =

[
min

t∈[s]Bh|S

T (t, a, [s′]Bh|S
), max

t∈[s]Bh|S

T (t, a, [s′]Bh|S
)

]
(4.6)

R′
l(f(s), gs(a)) =

[
min

t∈[s]Bh|S

R(t, a), max
t∈[s]Bh|S

R(t, a)

]
(4.7)

When aggregating states with slightly different block transition probabilities, we set

the transition probabilities in the image to be a range covering the maximum and

minimum of these block transition probabilities. As with an approximate homomor-

phism, if the block transition probabilities do not differ, then the above definition

reduces to that of a MDP homomorphism. In the example in Figure 4.6(b) if we

model the reduced MDP as the image of a bounded approximate homomorphism,

then the probability of being able to move into any of the lightly shaded regions is

given by the range [0, 1]. The clear regions indicate open space and the darkly shaded

regions obstacles as before.

Note that a bounded parameter MDP actually specifies a family of MDPs, each

member of which has transition probabilities and rewards drawn from the ranges

specified subject to the constraint that each row of P sum to 1. For example, if we use

aggregate dynamics to determine the parameters of the reduced MDP is Figure 4.6(b)

it is then a member of the family of BMDPs described by the bounded approximate
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(a) (b)

Figure 4.7. (a) Optimistic choice of parameters for the BMDP shown in Figure
4.6(b). (b) Pessimistic choice of parameters for the same BMDP. In both the figures,
dark squares are obstacles and the goal is to reach the shaded area in the lower right.
See text for explanation of parameter choices.

homomorphism. More generally, for any form of averaging we use in an approximate

MDP homomorphism the resulting image MDP is a member of this family.

The interval value iteration algorithm of Givan et al. (2000) allows us to derive

bounds for the optimal value function in a BMDP. These bounds can then be used

to bound the loss of performance that arises due to employing bounded approximate

homomorphisms. The basic idea behind interval value iteration is that at each time

step we assume that for the next iteration we pick parameters from the allowable range

that will give us the best (worst) possible returns to derive upper (lower) bounds on

the optimal policy. To illustrate this idea, let us return to the MDP in Figure 4.6(b).

The upper bound for the value function is given by solving the optimistic MDP shown

in Figure 4.7(a). Here all the light squares are considered as open space. The lower

bound is given by solving the pessimistic MDP shown in Figure 4.7(b). Here all the

light squares are considered obstacles.

The bounded optimal value function does not always tell us what the optimal

policy should be, such as in cases when the ranges of possible next state values

overlap. But these bounds do give us some intuition into whether the approximate

homomorphism we are using is a reasonable one. For example if the lower bound tells

us that for every policy in the MDP there is some selection of the parameters that
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renders the problem impossible to solve, then we cannot use the current reduction

profitably.

4.3.4 Discussion

The definition of an approximate homomorphism we introduced here is very inclu-

sive. In fact, it is possible to define an approximate homomorphism from any MDP to

any other arbitrary MDP. But the bounds given by Theorem 8 will be very loose and

there is no practical utility in defining such homomorphisms. An useful approximate

homomorphism should be one in which the values ofKr andKp are “reasonable”. One

measure of usefulness is to check if the loss in performance that results from lifting the

solution of the approximate image to the original problem is acceptable. In Chapters

5 and 6 we will see examples of such “acceptable” approximate homomorphisms.

Theorem 8 gives an upper bound on the loss of performance due to the approxi-

mation. The lower bound even when we use an approximate homomorphic image is

zero. In other words, it is still possible to recover the optimal solution of the origi-

nal problem by lifting the solution of an approximate homomorphic image. Such a

situation arises due to the fact that optimal policies when defined as acting greedily

with respect to the optimal value functions are sensitive only to the relative ordering

of the values. In fact, we need to identify correctly only the action with the highest

value in each state. This is possible in many situations when we apply approximate

homomorphic images and enhances the utility of such images. In Chapter 5 we see

an example of such an approximate homomorphic image.

Givan et al. (2000) developed the notion of a BMDP while studying approximate

minimization in the Dean and Givan minimization framework. They base their work

on related formulations of MDPs with imprecise parameters (e.g., Satia and Lave,

1973; White and Eldeib, 1986, 1994) from operations research. Apart from developing

BMDPs and the interval value iteration algorithm, Givan et al. also investigate in
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detail the question of constructing reduced BMDP models of given MDPs. They

conclude that it is not usually possible to specify a unique reduced BMDP model,

and that we have to resort to some heuristic to choose between several equally viable

alternatives. They also show that we cannot guarantee that there is a heuristic which

in all cases will lead to the best possible BMDP, i.e., one that gives the best bounds

on the value functions and the smallest reduced models. The utility of the bounded

approximate homomorphism formulation is as a tool for deriving a priori bounds,

loose bounds in many cases, on the loss in performance when we employ a particular

abstraction.

Whitt (1978) uses a notion of approximation similar to our definition of approx-

imate homomorphism. His motivation was to develop an abstraction framework for

dynamic programs. He outlines a method to derive homomorphic images of dynamic

programs by successively refining the approximate image so that the error bounds

become tighter. Kim and Dean (2001) have developed a similar method for MDPs.

They also successively construct better approximate images of a given MDP, but the

criterion they use to refine the image is the actual performance of the image MDPs’

solutions when lifted to the original MDP. We believe that this is a more promising

direction for developing iterative algorithms to finding minimal images of an MDP.
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CHAPTER 5

ABSTRACTION IN HIERARCHICAL SYSTEMS

One of the significant recent advances in RL has been the introduction of temporal

abstraction frameworks and hierarchical learning algorithms (Sutton et al., 1999; Di-

etterich, 2000a; Parr and Russell, 1997). Such frameworks allow us to systematically

ignore decisions at fine time scales and employ “temporally-extended” actions that

let us operate at coarser time scales. Humans routinely employ temporal abstrac-

tion. For example, consider the problem of getting a cup of coffee from a vending

machine. A typical plan would be “go to coffee machine, feed the machine change

and get coffee”. One does not plan at the level of individual steps or muscle twitches

or neuronal signals. The above policy can then be used for getting coffee as part of

a still higher level plan, say “get bagel, get coffee, go to conference room and start

meeting”. Being able to learn and reason at multiple temporal scales dramatically

widens the applicability of RL to large-scale, complex systems.

As discussed in Section 3.7, MDP homomorphisms can be readily employed by

RL algorithms for spatial abstraction in flat, or non-hierarchical systems modeled as

MDPs. Hierarchical organization of the learning architecture provides us with ad-

ditional opportunities for abstraction. One can consider abstractions specific to a

particular sub-problem in the hierarchy or to a family of sub-problems. In the repre-

sentation of higher level tasks, redundancy introduced by suitably defined lower level

problems in the hierarchy can be exploited. The lower level problems hide the small

differences in the one-step transition dynamics allowing us to capture higher level task
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structure. The notion of MDP homomorphism can be extended to a convenient and

powerful formalism for modeling abstraction schemes in hierarchical systems also.

While the popular hierarchical frameworks differ in many of the details, they have

one thing in common: all of them model the hierarchical system as a family of semi-

Markov decision processes (SMDPs). Extending the notion of MDP homomorphism

to SMDPs allows the modeling of abstractions at various levels of a hierarchy using

equivalence notions similar to those developed in Chapter 3.

Typically, sub-problems at different levels of a hierarchy are defined over a subset

of the state-action space of the original problem. To enable the modeling of abstrac-

tions in such sub-problems we introduce the notion of a “partial homomorphism”.

Informally a partial homomorphism is a surjection from an MDP, or an SMDP, to a

corresponding image, such that the homomorphism conditions hold only over subsets

of the state-action space. This notion is very useful when considering sub-task specific

abstraction and also in developing a hierarchical task decomposition framework that

extends the options framework (Sutton et al., 1999).

5.1 SMDP Homomorphisms

Recall from Chapter 2 that a discrete-time semi-Markov decision process (SMDP)

is a generalization of an MDP in which actions can take variable amounts of time to

complete. Specifically, an SMDP is a tuple 〈S,A,Ψ, P, R〉, where S, A and Ψ are the

sets of states, actions and admissible state-action pairs; P : Ψ×S× IN→ [0, 1] is the

transition probability function with P (s, a, s′, N) being the probability of transition

from state s to state s′ under action a in N time steps and R : Ψ × IN → IR is the

expected discounted reward function, with R(s, a,N) being the expected reward for

performing action a in state s and completing it in N time steps. Traditionally SMDP

transitions are modeled using two separate distributions—one for the next states and

one for the transition, or holding, times. We are adopting the formalism of Dietterich
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(2000a) since it is more suitable for modeling hierarchical RL frameworks. When the

SMDP has well defined terminal states, the future rewards are often not discounted.

In such cases an SMDP is equivalent to an MDP and the transition times can be

ignored.

The natural generalization of an MDP homomorphism to SMDPs is as follows:

Definition: An SMDP homomorphism h from an SMDP M = 〈S,A,Ψ, P, R〉 to

an SMDP M′ = 〈S ′, A′,Ψ′, P ′, R′〉 is a surjection from Ψ to Ψ′, defined by a tuple

of surjections 〈f, {gs|s ∈ S}〉, with h((s, a)) = (f(s), gs(a)), where f : S → S ′ and

gs : As → A′
f(s) for s ∈ S, such that ∀s, s′ ∈ S, a ∈ As and for all N ∈ IN:

P ′(f(s), gs(a), f(s′), N) =
∑

s′′∈[s′]f

P (s, a, s′′, N), (5.1)

R′(f(s), gs(a), N) = R(s, a,N). (5.2)

As before M′ is called a homomorphic image of M. Most of the results developed

in Chapter 3 for MDP homomorphisms hold for SMDP homomorphisms. The ho-

momorphism conditions, as discussed in Section 3.8, are rarely satisfied exactly in

practice and relaxed notions of equivalence have to be considered to obtain useful

abstractions. It is doubly difficult in the case of SMDPs to satisfy the homomor-

phism conditions exactly since the transition times are also considered. One useful

way to relax the equivalence notion, analogous to the earlier definition of approxi-

mate homomorphism, is to allow small variations in the transition times and assign a

suitable weighted average to the corresponding transitions in the image SMDP. Note

that since we are considering transitions that take multiple time steps, errors tend to

accumulate, and Theorem 8 on error bounds for approximate homomorphisms does

not apply. However, it is possible to derive similar, although looser, error bounds for

suitably defined relaxations of SMDP homomorphisms. But as we shall see later in

this chapter and the next, useful abstractions of SMDPs can be modeled using MDP
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homomorphisms, completely ignoring transition times. Dietterich (2000a) argues that

such abstractions are valid in finite horizon problems, where the discount factor can

be set to 1. They are also valid in settings where any solution achieved quickly is

more desirable than a costly search for the optimal solution.

5.2 Partial Homomorphisms

One of the chief obstacles to using abstraction approaches based on homomorphic

equivalence is that often there exists no surjection from one MDP to another such

that both conditions of a homomorphism hold for the entire Ψ space of the MDP.

Even in such cases it is sometimes possible to derive useful abstractions by restricting

attention to a subset of Ψ. For example, consider the problem of navigating in a grid

world like environment shown in Figure 5.1(a). Note that when the dark square is

the goal, the entire gridworld is homomorphic to the image shown in Figure 5.1(b).

If the goal is moved to one of the lighter squares, this is no longer true. In fact, it

is not possible to come up with non-trivial homomorphic images in these cases. But,

regardless of the position of the goal, it is possible to define a “partial” morphism

from the gridworld to the image shown in Figure 5.1(c), so that the homomorphism

conditions holds for the states in the room. All other state-action pairs are mapped

to a special absorbing state-action pair in the image, indicated by a dark oval and a

solid arrow.

Partial homomorphisms may also be formed by restricting the actions over which

the homomorphism conditions hold. This is especially useful in environments with

objects, where classes of objects would behave similarly under some set of actions

while not under others. For example, if the action under consideration is hitting a

nail, then both a hammer and a shoe behave similarly, while they are very dissimilar

in general. An analogous situation would be defining homomorphisms over only a

subset of actions. Formally, a partial homomorphism is defined as follows:
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(a) (b) (c)

Figure 5.1. (a) A gridworld task with rooms and the usual gridworld dynamics.
The dark square indicates the goal. The lighter squares are alternate locations for
the goal. (b) A homomorphic image when the dark square is the goal. The goal in
this image is the dark triangle at the bottom. The transitions wrap around the dotted
lines, i.e., actions W and S at the left edge will cause transitions to the right edge
and action E and N at the right edge cause transitions to the left edge. (c) A partial
homomorphic image restricted to the room states. The dark oval is an absorbing
state.

Definition: A partial MDP homomorphism from M = 〈S,A,Ψ, P, R〉 to M′ =

〈S ′, A′,Ψ′, P ′, R′〉, such that τ ∈ S ′, α ∈ A′, (τ, α) ∈ Ψ′ and P ′(τ, α, τ) = 1.0, is a

surjection from Υ ⊆ Ψ to Ψ′, defined by a tuple of surjections 〈f, {gs|s ∈ S}〉, with

h(s, a) = (f(s), gs(a)), where f : S → S ′ and gs : Υs → A′
f(s) for s ∈ S where Υs is

non-empty and given by Υs = {a|(s, a) ∈ Υ}, such that for all s ∈ f−1(S ′− τ), s′ ∈ S

and a ∈ Υs:

P ′(f(s), gs(a), f(s′)) = T (s, a, [s′]Bh|S
) (5.3)

R′(f(s), gs(a)) = R(s, a). (5.4)

M′ is called the partial homomorphic image ofM under h. Partial SMDP homomor-

phisms can be similarly defined with the conditions above extended to hold for joint
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distributions of next state and transition times. The state τ is an absorbing state in

M′ with one action α that transitions to τ with probability 1. The homomorphism

conditions hold only in states that do not map to τ . All the actions in states that map

to τ , map to α. Lifting policies defined inM′ yield policy fragments inM, with action

probabilities specified only for elements in the support of h, i. e., Υ = h−1(Ψ′−(τ, α)).

Similarly, the support of f is the subset of S given by f−1(S ′− τ). In the example in

Figure 5.1, τ corresponds to the state represented as a black oval in Figure 5.1(c) and

α is indicated by the solid arrow. All state-action pairs, with the state component in

the central hall, map to (τ, α) under the partial homomorphism. If the task in the

image MDP is treated as an episodic task, then an optimal way to exit the room can

be learned.

The above definition of a partial homomorphism facilitates the development of

the following material on hierarchical problem decomposition. In practice the exact

form of the above definition is seldom required. Partial homomorphisms are usually

employed in modeling abstraction in a particular sub-problem in a hierarchy. As

we shall see shortly, the description of the sub-task typically circumscribes the state

and action sets. Hence one can define homomorphisms that hold only over these

restricted sets, which when viewed with respect to the original MDP are partial

homomorphisms.

5.3 Sub-goal Options

In this work, the hierarchical framework we adopt is the options framework in-

troduced by Sutton et al. (1999). While the ideas developed here are more generally

applicable, we chose the options framework for the flexibility it offers.

In the options framework, in addition to the “primitive” actions that are part of

the problem definition, the learning agent can employ temporally extended actions

or options. For example, in addition to primitive actions such as, move one step
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north, south, east or west, we would consider “options” such as get coffee, go to

conference room, etc., as additional actions. Formally, an option (Sutton et al., 1999)

in an MDP M = 〈S,A,Ψ, P, R〉 is defined by the tuple O = 〈I, π, β〉, where the

initiation set I ⊆ S is the set of states in which the option can be invoked, π is

the policy to be followed while the option is executing, and the termination function

β : S → [0, 1] gives the probability of the option terminating in any given state. The

option policy can in general be a mapping from arbitrary sequences of state-action

pairs (or histories) to action probabilities. This allows us to model option policies

that are dependent of time, for example, do action a1 10 times. The set of states

over which the option policy is defined is known as the domain of the option. The

option policy might map to other options as well as primitive actions, in which case

the option is called a hierarchical option. An MDP with options is naturally modeled

as an SMDP with the transition time distributions induced by the option policies.

See Precup (2000) for more details on deriving the SMDP parameters and on learning

models of options.

While the options framework offers several advantages such as simplicity of rep-

resentation and flexibility in the hierarchical structure, it does not address several

key issues relating to hierarchical task decomposition. Specifically the framework as-

sumes that the option policies are fixed and does not address the question of learning

simultaneously at multiple levels of the hierarchy. Precup (2000) suggests a method

for learning the policies for a class of options, but it is largely an offline method and

does not address the issue of online learning. Other researchers have used standard

RL algorithms (McGovern and Barto, 2001; Jonsson and Barto, 2001) to learn option

policies in specific problem settings by but have not explored a general solution. This

issue is of particular interest to us, since our abstraction ideas not only lead to more

compact representations of the problem (and hence the policies) but also to more
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efficient solution methods. So to take full advantage of the abstract representation

we want to learn the option policies as well as the solution to the original problem.

We introduce a modification of the options framework which we call sub-goal

options, that facilitates learning at multiple levels of the hierarchy simultaneously

and also allows us to employ abstractions that are specific to a particular level in the

hierarchy. We consider the class of options whose policies satisfy the Markov property

and terminate on achieving a sub-goal. In such instances it is possible to implicitly

define the option policy as the solution to an option MDP. We adopt the following

definition of a sub-goal option:

Definition: An sub-goal option of an MDP M = 〈S,A,Ψ, P, R〉 is defined by O =

〈MO, I, β〉, where MO = 〈SO, AO,ΨO, PO, RO〉 is the option MDP, I ⊆ S is the

initiation set of the option, and β : SO → [0, 1], is the termination function.

The set SO is a subset of S and constitutes the domain of the option, AO is a subset

of A, and the reward function, RO, is chosen to reflect the sub-goal of the option.

The transition probabilities, PO, are induced by P . The option policy π is obtained

by solving MO, treating it as an episodic task with the possible initial states of the

episodes given by I and the termination of each episode determined by β.

Figure 5.2 shows an example of a Markov sub-goal option. The task in this domain

is to gather the objects in each of the rooms. The task is described in greater detail

later in the chapter. For the time being, consider the sub-task of collecting the object

in Room 1. An option can be defined to achieve this, using the option MDP shown in

Figure 5.2(b). The states in the MDP are the cells in Room 1 along with a boolean

variable indicating possession of the object. The reward function is +1 on exiting

the room with the object, and 0 otherwise. The initiation set is all the cells in Room

1 and β is set to 0 in the room and 1 elsewhere. The option policy is given by the

optimal policy in this MDP.
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Figure 5.2. (a) A simple rooms domain with similar rooms and usual stochastic
gridworld dynamics. The task is to collect all 5 objects (black diamonds) in the
environment and reach the central corridor. The shaded squares are obstacles. (b)
The option MDP corresponding to a get-object-and-leave-room option. See text for
full description.

Sub-goal options model sub-tasks whose policies map to only primitive actions.

Correspondingly one can define hierarchical sub-goal options with policies mapping

to other options as well as primitive actions.

Definition: A hierarchical sub-goal option is given by the tuple O = 〈MO, I, β〉,

where MO = 〈SO, AO,ΨO, PO, RO〉 is the option SMDP, and I and β are as defined

earlier.

The set SO is the domain of the option and AO contains other options as well as

primitive actions. As before, the reward function RO is chosen to reflect the sub-

goal of the option. The policies of the lower level options influences the transition

probabilities PO. Hence, to derive PO, it is assumed that the lower level options are

following fixed policies which are optimal in the corresponding option SMDPs.

Sub-goal options are only a special class of options and are not as inclusive as the

original definition of an option. But this class covers a wide range of useful options and
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more importantly, the policies of sub-goal options are easily learned using standard

RL approaches. While policies for Markov options that represent continuing tasks

and do not have a well defined sub-goal are also easy to learn, the utility of such

options in a hierarchical architecture is not clear. Such options do not yield control

to higher levels of the hierarchy. So except when such an option is at the root level

of the hierarchy, indefinitely continuing execution is not a desirable property for an

option in a hierarchical setting.

The above definition of a Hierarchical sub-goal option associates a SMDP with the

option. Partial SMDP homomorphisms can now be employed to model abstractions

specific to an option. In the next section we develop a formal mechanism for employing

abstractions in option SMDPs.

5.4 Relativized Options

An option SMDP MO can be expressed as a partial homomorphic image of the

MDP 〈S,A,Ψ, P, RO〉. To formally model MO as a partial homomorphic image, we

add an absorbing state τ to SO, an absorbing action α to AO and (τ, α) to ΨO. Now

the partial homomorphism h = 〈f, {gs|s ∈ S}〉 fromM toMO is defined as follows:

f(s) =





s, if s is in the domain of the option

τ , otherwise.

gs(a) =





a, if s is in the domain of the option and (s, a) ∈ ΨO

α, if s is not in the domain of the option.

gs(a) is not defined for (s, a) ∈ Ψ such that s is in the domain of the option and (s, a)

is not in ΨO. h is referred to as the option homomorphism corresponding to option

O. The equivalence classes of Ψ induced by h are mostly singletons, except for the

pre-image of (τ, α). Thus this partial homomorphism does not result in any useful

abstraction of the original state space. In many cases it is possible to define partial

78



homomorphisms on the MDP 〈S,A,Ψ, P, RO〉 with non-trivial equivalence classes.

By suitably modify the definition of a sub-goal option, the resulting image MDP can

be used as an option MDP along with the corresponding homomorphism, allowing

option specific abstractions. The structure and redundancy not present over the

entire problem but present only when considering a sub-task can then be exploited in

forming abstractions. Before formally extending the definition of a sub-goal option,

let us look at another implication of using homomorphic images as option MDPs.

Again consider the problem of navigating in the gridworld environment shown in

Figure 5.2(a). The goal is to reach the central corridor after collecting all the objects

in the environment. The main task is naturally broken into several sub-tasks, the

goal of each is to collect the object and exiting from a room. One could define 5 sub-

goal options to model each of these sub-tasks as discussed in the previous section.

However these sub-tasks are very similar to each other and in fact the option MDPs

of the corresponding sub-goal options are isomorphic to one another. This similarity

can be exploited to define a single partial homomorphism from the original MDP to

any of the option MDPs, one of which is shown in Figure 5.2(b). Employing such an

abstraction gives rise to a compact representation of a related family of options, in

this case the tasks of collecting objects and exiting each of the five rooms, using a

single option MDP. This compact sub-goal option is referred to as a relativized option.

Such abstractions are an extension of the notion of relativized operators introduced

by Iba (1989). Formally we define a relativized option as follows:

Definition: A relativized option of an SMDP M = 〈S,A,Ψ, P, R〉 is the tuple O =

〈h,MO, I, β〉, where MO = 〈SO, AO,ΨO, PO, RO〉 is the option SMDP, I ⊆ S is the

initiation set, β : SO → [0, 1] is the termination function and h = 〈f, {gs|s ∈ S}〉 is

a partial homomorphism from the SMDP 〈S,A,Ψ, P, RG〉 toMO with RG chosen to

describe the sub-goal.
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The set SO is the image of the domain of the option under f plus an absorbing state

τ , and ΨO = h(Ψ). The option policy π : ΨO → [0, 1] is obtained by solving MO by

treating it as an episodic task as before. Depending on the sub-task, h can be defined

only over a subset of Ψ, restricting the actions and options available in the option

SMDP.

The option policy π now encodes the policy for all the related sub-tasks in the

original problem that map onto the option SMDP. Going back to our example in

Figure 5.2(a), we can now define a single get-object-and-leave-room relativized option

using the option MDP of Figure 5.2(b). The policy learned in this option MDP can

then be suitable lifted toM to provide different policies in the different rooms. Thus,

if the optimal action in a particular state in the image MDP is E, it is lifted to give

E in Rooms 1 and 2, W in Rooms 3 and 4 and N in Room 5.

5.5 Hierarchical Problem Decomposition

Relativized options allow us to model a variety of abstract representations. As

described in the previous section, even a “regular” sub-goal option, i.e., one that

does not employ any abstraction, can be defined as a relativized option where the

option homomorphism is given by the identity map on the domain of the option and

a map to (τ, α) elsewhere. Given that relativized options facilitate hierarchy specific

abstractions, it is particularly desirable that we learn the option policies online, since

we can considerably speed up learning performance as we shall demonstrate shortly.

Although the options framework allows us great flexibility in specifying hierarchies, it

does not explicitly address the question of simultaneously learning at multiple levels

of the hierarchy.

In order to learn policies at different levels of the hierarchy we first need to specify

a suitable decomposition of the learning problem. We develop a hierarchical problem

decomposition approach, similar to MAXQ decomposition (Dietterich, 2000a), based
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on relativized options. The decomposition divides the learning problem into several

components— one component each for learning the various relativized option policies

and one root component for learning to solve the original task using the various option

policies.

Suppose we are given an SMDPM whose action set contains a set O of relativized

options, Oi = 〈hi,Mi, Ii, βi〉, i = 1, · · ·n. The relativized options may call other

options in O, subject to the constraint that there are no loops in the resulting call

graph. This implicitly encodes a hierarchy, with the options whose action sets consist

of only primitive actions being at the lowest level.

Definition: The hierarchical decomposition of M = 〈S,A,Ψ, P, R〉 is given by

{O0, O1, · · · , On}, where O0 = 〈h0,M0, I0, β0〉, is a relativized option describing the

root task, withM0 a homomorphic image ofM under h0. I0 is the set of start states

and β0, the termination function indicating the set of terminal states for the original

task.

Note that whileMi for i > 0 are partial homomorphic images ofM with the reward

function replaced by the suitable option reward, M0 is a homomorphic image of M

with the original reward function. If all the actions and options in A are considered

while defining O0 it frequently results in a very inefficient decomposition in which

solving the root task is equivalent to solving the entire problem. In such cases the

root task is defined by using a partial homomorphic image of an MDP formed from

M by restricting the homomorphism to some subset of Ψ. In other words, certain

options and actions are only allowed to be chosen in a smaller set of states than in

which they are admissible.

Consider the example in Figure 5.2(a). A single relativized option get-object-and-

leave-room which is admissible in all states in the rooms, including the doorways,

can be defined. The primitive actions are admissible everywhere. If the root task is
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formed by minimizing this MDP, the reduced task is the same as the original task.

Instead only the relativized option is allowed to be picked in the states in the room.

Remember that the option terminates on exiting the room. Thus, when it is invoked

in a room, there are four possible states the option can cause a transition to—the two

corridor cells adjacent to the doorway, with or without the object. The probabilities

of transitioning to these states varies with the location the options were started in

the room. Thus to achieve useful reductions, there is a need to consider approximate

homomorphisms. With suitable relaxations of the homomorphism criterion, an ap-

proximate image of the original task can be formed, which consists of only the hallway

and doorway states, with only the relativized option admissible in the doorway states.

The hierarchical decomposition for this example is given by the root task described

by the above approximate image and the get-object-and-leave-room option.

For the above example it is clear that some prior knowledge about the structure of

the task is needed before finding a suitable hierarchical decomposition. This has been

the bane of all hierarchical RL frameworks. Autonomously finding such decomposi-

tions has been the focus of recent work by McGovern and Barto (2001) and Hengst

(2002), but a universal task decomposer is unlikely to be developed in the near future.

5.5.1 Hierarchical Policies

Definition: A hierarchical policy inM with a hierarchical decomposition of {O0, · · ·,

On} is specified by the tuple π = 〈π0, π1, · · · , πn〉, i.e., a policy for each Oi. An

optimal hierarchical policy, π?, consists of the tuple of optimal policies in each of the

component options, i.e., π? = 〈π?
0, π

?
1, · · · , π

?
n〉.

Our definition of a hierarchical sub-goal option assumes that the lower level options

are following a fixed policy that is optimal in their respective option SMDPs. There-

fore the above notion of optimality is equivalent to that of recursive optimality (Di-

etterich, 2000a). A recursively optimal hierarchical policy is one in which policies at
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Figure 5.3. The modified option MDP corresponding to the get-object-and-leave-
room relativized option. The lightly shaded squares in the middle of the room indicate
states with a negative reward. The dashed line indicates the optimal policy for this
modified option MDP. The dotted line indicates a component of the hierarchically
optimal policy, when using this option in the task described by Figure 5.2

each level of the hierarchy is optimal given that the policies of all the lower level tasks

are (recursively) optimal. A recursively optimal hierarchical policy is not necessarily

the optimal policy of an MDP.

The hierarchical decomposition and the associated call graph restrict the class of

representable policies to only a subset of all possible policies over Ψ. Optimality in

this restricted space can be defined analogous to the definition for flat MDPs—a hier-

archical policy is said to be hierarchically optimal is it uniformly dominates all other

hierarchical policies consistent with the given hierarchical decomposition. Under this

definition lower level option policies need not be optimal in the corresponding op-

tion MDP. Recursive optimality is a still weaker form of optimality. Thus recursively

optimal policies are not guaranteed to be hierarchically optimal.

Returning to the example in Figure 5.2. Suppose that the sub-task modeled by the

option is modified by introducing a negative reward in the 4 states in the middle of the

room (Figure 5.3). Now the optimal policy for this option is to avoid these squares

and take a more circuitous route (dashed line in Figure 5.3). Thus, a hierarchical
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policy that is recursively optimal will use that policy for this option. But for the

overall goal of gathering all the objects, the policy that goes straight to the goal is

better (dotted line in Figure 5.3). Thus a hierarchically optimal policy will use that

policy for this option.

A hierarchically optimal policy usually yields a better performance on a particular

problem instance, while a recursively optimal policies lead to better option policies.

Learning better option policies is a desirable property when we are learning to solve

many related problems instead of a single instance of a problem. Therefore we adopt

recursive optimality as the optimality criterion in this work. Dietterich (2000a) in-

troduced these notions of optimality to the RL community and discussed the issue of

hierarchical versus recursive optimality in more detail.

The hierarchical decomposition framework is similar to the MAXQ task decompo-

sition framework (Dietterich, 2000a). MAXQ does allow simultaneous learning at all

levels in the hierarchy, but imposes a more rigid hierarchical structure on the possible

policies. MAXQ employs a form of value function decomposition in which the optimal

value function of a task is constructed as a combination of the optimal value function

of its children in the call graph. This is a compact representation of the value function

and is an essential part of the MAXQ-Q-learning algorithm. This requires that the

children maintain a value function that reflects the task objectives of their parent.

Dietterich uses a pseudo-reward function in addition to the task reward function to

specify the objectives of a sub-task. Thus, MAXQ requires that the sub-task policies

be optimal with respect to a combination of the sub-task objectives and the root task

objectives. This can in some cases inhibit sub-task sharing and reuse, since changes

in the root task’s objectives make the sub-task non-optimal. Since we focus only on

learning optimal policies in our framework, one consequence of adopting our approach

is that we cannot always recover the optimal value function in all the states for our

root task. If the root task is described by a homomorphism restricted to a subset of
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Ψ, the optimal value function of the root task will not be defined for the part of Ψ

over which the homomorphism is not defined. In order to recover the optimal value

function for all elements of Ψ we would need to formulate our framework to use a

MAXQ like value function decomposition. But we are not exploring that direction in

this thesis.

5.5.2 Learning with Hierarchical Decompositions

The simplest choice for a learning algorithm with our hierarchical decomposition

framework is to use Q-learning for learning the lowest level option policies and SMDP

Q-learning at the higher levels. Dietterich (2000b) calls this hierarchical SMDP Q-

learning. By arguments similar to that used by Dietterich (2000a) it can be shown

that the following result holds:

Theorem 9: LetM = 〈S,A,Ψ, P, R〉, be an episodic SMDP with well defined termi-

nal states and discount factor γ. Let {O0, O1, · · · , On} be a hierarchical decomposition

ofM. Let αt(i) > 0 be a sequence of constants for each option i such that

lim
T→∞

T∑

t=1

αi(t) =∞ and lim
T→∞

T∑

t=1

α2
i (t) <∞.

Let the exploration policy in each option be a GLIE policy (Jaakkola et al., 1994),

i.e., one such that: (i) each action/option is chosen infinitely often in each state

during learning and (ii) in the limit of infinite exploration they become greedy with

respect to the value function. Then with probability 1 hierarchical SMDP Q-learning

converges to a recursively optimal policy forM consistent with the given hierarchical

decomposition.

Proof: (sketch) This is a restatement of Theorem 3 from Dietterich (2000a). The

proof follows an argument similar to those introduced to prove the convergence of Q-

learning (Bertsekas and Tsitsiklis, 1996). The conditions on the learning rates, αt(i),

are required for the convergence of Q-learning and SMDP Q-learning. The reason the
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exploration policy needs to satisfy the above conditions is the following. Consider an

option in the hierarchy which in turn calls other options. If the lower level option

continues to execute a non-greedy exploratory policy, the dynamics perceived by the

higher level corresponds to that policy and not to the true optimal policy of the

option. Hence learning in the higher level option does not converge to a recursively

optimal solution. Given the above conditions the proof proceeds by induction from

the options at the lowest level to the root level task. 2

One consequence of Theorem 9 is that now learning can proceed simultaneously

at all levels of the hierarchical decomposition—the higher levels do not need to wait

until the lower levels converge before they begin learning. All that is required is

that the learning in the lower levels eventually converge to their optimal policies and

we are still guaranteed to converge overall to a recursively optimal policy. In all the

hierarchical learning results reported in this work we employ our hierarchical problem

decomposition framework with hierarchical SMDP Q-learning.

The question that naturally arises in this setting is how would one define option

homomorphisms if the lower level option policies are not known apriori. We answer

this criticism along similar lines as Dietterich (2000a). Often the designer has prior

knowledge of the structure of the problem and can identify some subgroup of the

symmetry group or a partial homomorphism to employ in minimization. For example,

in navigation tasks, regardless of the policies of the lower level tasks, it is possible to

define spatial symmetries. In Chapter 6 we present a experimental design in a control

framework in which a viable hierarchical control structure is available due to prior

design. In cases where this is not possible, we can employ online abstraction ideas such

as Jonsson and Barto (2001) to refine our option MDP homomorphism as learning

progresses. Such an approach would start from a very approximate homomorphic

image and successively refine the approximation till we obtain a satisfactory model.
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5.6 Illustrative Example

We now provide a complete description of the simple gridworld task in Figure

5.2(a) and some experimental results to illustrate the utility of relativized options

and our hierarchical decomposition. The agent’s goal is to collect all the objects in

the various rooms by occupying the same square as the object. Each of the rooms

is a 10 by 10 grid with certain obstacles in it. The actions available to the agent

are {N,S,E,W} with a 0.1 probability of failing, i.e., going randomly in a direction

other than the intended one. This probability of failing is referred to as the slip.

The state is described by the following features: the room number the agent is in,

with 0 denoting the corridor, the x and y co-ordinates within the room or corridor

with respect to the reference direction indicated in the figure and boolean variables

havei, i = 1, . . . , 5, indicating possession of object in room i. Thus the state with the

agent in the cell marked A in the figure and having already gathered the objects in

rooms 2 and 4 is represented by 〈3, 6, 8, 0, 1, 0, 1, 0〉. The goal is any state of the form

〈·, ·, ·, 1, 1, 1, 1, 1〉 and the agent receives a reward of +1 on reaching a goal state.

We compared the performance of an agent that employs relativized options with

that of an agent that uses multiple regular options. The “relativized” agent employs

a single relativized option, Or, whose policy can be suitably lifted to apply in each of

the 5 rooms. The relativized option MDP corresponds to a single room and is shown

in Figure 5.2(b). The state space S ′ of the option MDP is defined by 3 features: x

and y co-ordinates and a binary feature have, which is true if the agent has gathered

the object in the room. There is an additional absorbing state-action pair (τ, α),

otherwise the action set remains the same. The stopping criterion β is 1 at τ and

zero elsewhere. The initiation set consists of all states of the form 〈i, ∗〉, with i 6= 0.

There is a reward of +1 on transiting to τ from any state of the form 〈∗, 1〉, i.e. on

exiting the room with the object. One can see that lifting a policy defined in the

option MDP yields different policy fragments depending on the room in which the
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option is invoked. For example, a policy in the option MDP that picks E in all states

would lift to yield a policy fragment that picks W in rooms 3 and 4, picks N in room

5 and picks E in rooms 1 and 2.

The “regular” agent employs 5 regular options, O1, · · · , O5, one for each room.

Each of the option employs the same state space and stopping criterion as the rela-

tivized option. The initiation set for option Oi consists of states of the form 〈i, ∗〉.

There is a reward of +1 on exiting the room with the object. Both agents employ

SMDP Q-learning Bradtke and Duff (1995) at the higher level and Q-learning Watkins

(1989) at the option level.

In both cases the root task, O0 is described as follows: The state set of M0 is

described by the the room number the agent is in, the various havei features and if

the agent is in the central corridor, then the x and y co-ordinates of the agent; the

admissible actions are the primitive actions in the corridor and the corresponding

options in the room doorways; the transition and reward functions are those induced

by the original task and the option policies. The initiation set is the set of states in

the corridor with all havei features set to false. The termination condition is 1 for

states in the corridor with all havei features set to true. It is 0 elsewhere.

We also compared the performance of an agent that employs only the four prim-

itive actions. All the agents used a discount rate of 0.9, learning rate of 0.05 and

ε-greedy exploration, with an ε of 0.1. The results shown are averaged over 100 in-

dependent runs. The trials were terminated either on completion of the task or after

3000 steps. Figure 5.4(a) shows the asymptotic performance of the agents. This a

hard problem for the primitive action agent and it takes around 30,000 iterations

before it learns a reasonable policy and another 15,000 before it even approaches

optimality. This is often the case when employing RL on even moderately large prob-

lems and is one of the chief reason for choosing a hierarchical approach. Since we are

more interested in comparing the performance of the option agents, we do not present
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further results for the primitive action agent. In fact in some of the later tasks, the

primitive action agent does not learn to solve the task in any reasonable amount of

time.

Figure 5.4(a) also demonstrates that the option agents perform similarly in the

long run, with no significant difference in performance. This demonstrates that there

is no loss in performance due to the abstractions we employ here. This is not surprising

since the homomorphism conditions are met exactly in this domain.

Figure 5.4(b) shows the initial performance of the option agents. As expected, the

relativized agent significantly outperforms the regular agent in the early trials1. Fig-

ure 5.5 graphs the rate at which the agents improved over their initial performance.

The relativized agent achieved similar levels of improvement in performance signifi-

cantly earlier than the regular option. For example, the relativized agent achieved a

60% improvement in initial performance in 40 trials, while the regular agent needed

110 trials. These results demonstrate that employing relativized options significantly

speeds up initial learning performance, and if the homomorphism conditions hold

exactly, there is no loss in the asymptotic performance.

Employing a hierarchical approach results in a huge improvement in performance

over the primitive action agent. While there is a significant improvement in perfor-

mance while employing relativized options, this is not comparable the initial improve-

ment over primitive actions. One might ask is this improvement worth the additional

expense of relativizing the options. Our answer to this two fold. First, the relative

magnitudes of improvement is an artifact of this problem domain. In more com-

plex domains, with more redundancy a greater improvement in performance is to be

expected. In many cases employing some form of an hierarchy is the only feasible

approach and in such cases we can obtain further improvement in performance for

1All the significance tests were two sample t-tests with a p-value of 0.01.
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Figure 5.4. (a) Comparison of asymptotic performance of various learning agents on
the task shown in Figure 5.2. See text for description of the agents. (b) Comparison
of initial performance of the regular and relativized agents on the same task.

some additional cost by relativization. Second, using relativized option opens up the

possibility of being able to train an agent to perform a sub-task in some prototypical

environment. Once the agent acquires a reasonable policy in this training task then it

is able to generalize to all instance of this task. This is particularly useful if training

experience is expensive, for example in the case of real robotic systems.

5.7 Approximate Equivalence

The various rooms in the test bed above map exactly onto the option MDP in

Figure 5.2(b). In practice, such exact equivalences do not arise often. To study the

usefulness of relativized options in inexact settings, we conducted further experiments

in which the rooms had different dynamics. In the first task, the rooms had the same

set of obstacles, but had different slips. In the corridor actions fail with probability

0.1 and in rooms 1 through 5 with probabilities 0.2, 0.3, 0.25, 0.5 and 0.0, respectively.

The relativized option in this case used an approximate homomorphic image, with the

transition probabilities of the option MDP being determined by a weighted average of

the various slips, the weights being determined by how often the rooms were visited in
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Figure 5.5. Comparison of the rate of improvement to final performance of the
regular and relativized agents on the task shown in Figure 5.2.

a trial. When the learning converges the probabilities are determined by just a simple

average of the slips. Figure 5.6(b) shows the initial performance of the relativized

agent and the regular agent on this task. Again the relativized agent significantly

outperforms the regular agent initially and the asymptotic performance, Figure 5.6(a),

shows no significant difference.

In the second task, the rooms have differently shaped obstacles, as shown in Fig-

ure 5.7(a). The relativized option uses an approximate homomorphic image whose

transition probabilities were determined by the various obstacle locations and visi-

tation frequencies of each room. Again there is a significant improvement in initial

performance, but the asymptotic performance of the relativized agent is slightly, but

significantly, worse than the regular agent, as shown in Figures 5.8(a) and 5.8(b).

This loss in asymptotic performance is expected and is observed in other inexact sce-

narios we tested the agents on. This loss was not observed in the previous example

since there was a single policy that was optimal in all the rooms and in the option

MDP, despite the various slips. In some cases the loss due to approximation reaches
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Figure 5.6. (a) Comparison of asymptotic performance of the regular and rela-
tivized agents on the modified rooms task. See text for description of the task. (b)
Comparison of initial performance of the two agents on the same task.

unacceptable levels, with the relativized agent failing to successfully complete the

task on certain trials even after considerable training.

This loss can be bounded by modeling the relativized option using a bounded

approximate homomorphism from each of the rooms to the image BMDP shown in

Figure 5.7(b), where the probabilities of transitioning into the lightly colored states

range from 0 to 1. We can now use interval value iteration to bound the range of

the optimal value function. The tasks on which the agent fails would have zero lower

bounds that indicate that the task cannot be solved. In this example such a scenario

would arise if the obstacles in the various rooms were placed in such a way that there

was a chain of light and dark colored cells across the length of the room, cutting of

access to the object from the doorway. In the case shown in Figure 5.7(b) the lower

bound for the optimal value for the doorway states is γ28, pessimistically assuming

that all the light colored cells are obstacles. The upper bound is γ24, 24 being the

length of the shortest path to the goal, assuming that all the light colored cells are

clear.
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Figure 5.7. (a) A simple rooms domain with dissimilar rooms. The task is to
collect all 5 objects in the environment. (b) The option BMDP corresponding to a
get-object-and-leave-room option. See text for full description.

5.8 Relation to MAXQ Safe State-abstraction

Dietterich (2000a) introduced safe state-abstraction conditions for the MAXQ

architecture. He states a few intuitive “rules” to ignore certain features of the state

space. These conditions ensure that the resulting abstractions do not result in any

loss of performance. This was the first systematic study of abstraction in hierarchical

RL frameworks. He established that performing abstraction using these rules does

not change the value function learned, since there is no loss of necessary information.

Many of the conditions for safe abstraction are applicable only to the MAXQ value

function decomposition and to the particular form of MAXQ task decomposition. The

following condition is more universal and applies to the our hierarchical decomposition

framework as well:

Definition: A Projection ρJ is safe if: (i) for all (s, a) in Ψ and s′ in S, P (s, a, s′, N) =

Prob(ρJ(s′), N |ρJ(s), a) × Prob(ρM−J(s′)|s, a), and (ii) for all (s, a), (t, a) in Ψ, if

ρJ(s) = ρJ(t), then R(s, a,N) = R(t, a,N).
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Figure 5.8. (a) Comparison of asymptotic performance of the regular and relativized
agents on the task in Figure 5.7. (b) Comparison of initial performance of the two
agents on the same task.

Condition (i) states that the transition probability can be expressed as a product

of two probabilities, one of which describes the evolution of the subset of the fea-

tures describing the abstract state space and depends only on that subset. Condition

(ii) states that if two states project to the same abstract state, then they have the

same immediate reward. From our earlier definitions of projection and SMDP ho-

momorphisms (Equations 4.2, 4.3, 5.1 and 5.2), it is evident that a safe ρJ is also a

projection homomorphism. Thus, the above conditions are equivalent to the SMDP

homomorphism conditions restricted to simple projection homomorphisms and not

considering action remapping. Thus, the SMDP homomorphism conditions general-

ize Dietterich’s safe state-abstraction condition as applicable to the our hierarchical

problem decomposition.

5.9 Related Work

Hierarchical architectures enable hiding low level details, but much of recent work

on hierarchical RL has focused on hiding the temporal scale and not the spatial de-
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tails. To the best of our knowledge, ours is the first work to apply minimization

ideas and symmetry based reductions to hierarchical RL. We present our approach

using the options framework, but our ideas are equally applicable to the other ma-

jor hierarchical RL frameworks—MaxQ (Dietterich, 1998) and hierarchy of abstract

machines (HAMs) (Parr and Russell, 1997). In the MaxQ framework, the given

MDP is decomposed into a hierarchy of sub-MDPs and each MDP is treated as a

sub-task, that might employ the solutions of the MDPs at lower levels. The options

framework with Markov options that follow our definition is very close to the MaxQ

framework. But MaxQ imposes a rigid hierarchy on the various sub-MDPs, while the

options framework allows for a lot of flexibility in the formation of hierarchies during

learning.

While model minimization as such has not been applied to hierarchical RL, there

has been some work in hierarchy specific abstraction. We mentioned Dietterich’s

(2000c) results on “safe” abstraction in Section 6. He states a few intuitive “rules”

that allow us to ignore certain features of the state space. Some of the rules are

general, for example, ignore certain features at a particular level if they do not affect

the value function at that level. Other rules are specific to the MaxQ framework. He

establishes that performing abstraction using these rules does not change the value

function learned, since there is no loss of necessary information. Andre and Russel

(2001b) presents similar results for the HAM framework. While Dietterich’s general

rules apply to the options framework as well, their application to options has not

been studied in detail.

Jonsson and Barto (2001) develop an algorithm for automatically forming option

specific abstractions. Their algorithm is based on McCallum’s (1995) U-trees, a deci-

sion tree based automatic abstraction scheme for POMDPs. The U-trees algorithm

performs abstraction by using a decision tree over histories of experience and makes

sufficient distinctions so as to represent the value function accurately. Jonsson and
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Barto apply the algorithm to building option specific state abstractions, by modify-

ing the definition of histories to include information about the option being executed.

Hernandez-Gardiol and Mahadevan (2001) propose a hierarchical POMDP model that

at different levels of the hierarchy, considers histories that consist of decisions made

at that level. This too is a hierarchy specific abstraction scheme, but one tailored to

a POMDP setting.

Programmable HAMs (PHAMs) (Andre and Russel, 2001a) are an extension to

the HAM framework that among other things allow us to define parameterized HAMs.

For the purposes of this discussion we can assume that a HAM is equivalent to an

option with partly specified policies and during learning the agent needs to fill in the

unspecified parts of the policy. In the PHAM framework, a family of HAMs can be

specified as a single parameterized HAM, with the HAM policy also depending on

the value of the parameters passed from the higher level. The corresponding notion

of a parameterized option is yet to be proposed but it is fairly easy to conceptualize.

A relativized option is a special case of a parameterized option in which the policies

corresponding to various parameter settings are isomorphic to one another and hence

may be compactly represented in a relative space. We can similarly relativize a

parameterized HAM or a parameterized sub-MDP in the MaxQ framework.

Feudal reinforcement learning (FRL) (Dayan and Hinton, 1993) is an early hi-

erarchal RL framework that considers both spatial and temporal abstraction. FRL

assumes a rigid hierarchy, consisting of “super-managers”, “managers” and “sub-

managers”. A manager is aware only of the task it super-manager sets it and in turn

can assign some sub-task to its sub-managers that would help it accomplish its task.

Each manager is also aware of the state-space only at a granularity sufficient to be

able to accomplish the tasks set it. If it needs anything done at a finer level, then it

passes the control to one of its sub-managers. There is a significant amount of work

for the designer here, including specifying the hierarchy and also the granularity of
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the state space at various levels of the hierarchy. Dayan and Hinton do not provide

any insight as to how to design such a hierarchy or a useful measure of sufficient

granularity. The work is more in the nature of a preliminary investigation and is yet

to be taken further.

5.10 Summary

Partial and SMDP homomorphisms extend our abstraction framework to hierar-

chical RL architectures. We introduced relativized options as a way of compactly

representing a related family of sub-tasks in a hierarchical setting. Relativized op-

tions facilitate speed up in initial learning performance and enable greater transfer

of experience and knowledge between related problem instances. Hierarchical decom-

position provides a convenient RL framework that supports simultaneous learning at

multiple levels of an hierarchy. We illustrated the utility of relativized options and

hierarchical decomposition in a simple grid environment. Employing approximate

homomorphisms expands the applicability of relativized options to situations that

model a family of similar but not isomorphic tasks.

While relativized options are useful theoretical constructs how applicable are they

in practice? If we restrict ourselves to exact homomorphic images, we seldom have

situations where relativized options can be applied. But with approximate homomor-

phisms we can hope to profitably employ them in various problem settings. Rel-

ativized options can also form the basis for modeling more powerful abstraction

schemes. Abstractions that are useful in learning and adapting a range of skills

in the course of a learning agents lifetime. In the next chapter, we discuss some such

schemes.
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CHAPTER 6

OPTION SCHEMAS AND DEIXIS

In this chapter, we discuss two abstraction approaches that have their roots in

developmental models of learning and models of human cognition. Some aspects of

these representation can be modeled using extension of relativized options.

6.1 Relativized Options as Option Schemas

In the previous chapter, we introduced relativized options as a way of modeling

abstraction in a hierarchical framework. Each relativized option employed its own

abstract representation independent of the representation used by the other levels in

the hierarchy, and can compactly represent a related family of tasks, like the problems

of navigating the 5 rooms in Figure 5.2. We now look at another interpretation of

relativized options that is related their ability to model family of tasks.

Let us return to the rooms example from Section 5.6. The one relativized option

in the example represents the task of gathering the object in a room and exiting the

room. The state space of the option MDP is described by the x and y coordinates

and a boolean variable indicating the possession of the object in the room. There

are 4 actions: N, S, E, and W. Let us consider what it means when we say that the

agent is in the abstract state 〈3, 7, 0〉. Depending on the room in which the agent

invoked the option, this represents different states in the original MDP. In room 1,

this means that the agent is in location (3, 7) in the room without the object. In room

2, this means the agent is in location (3, 2) in the room, again without the object. In

room 5, this means that the agent is in location (7, 7), again sans object. Thus, the
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numbers 3 and 7 in the option MDP mean different things depending on the context

in which the option was invoked. They are in reality placeholders or variables that are

assigned values when the option is invoked. Thus, the state set of the option MDP

is described by a set of 10 x-coordinate variables, 10 y-coordinate variables and one

boolean feature. Similarly, the action set is described by 4 action variables that get

assigned different actions depending on the context. For example, in room 2, abstract

action N is assigned action S and abstract action S is assigned action N.

Thus, a relativized option can be viewed as an option schema where a skeleton of

an option policy is specified in an abstract space. Evans (1967) defines a schema as:

“... a characteristic of some population of objects, and consists of a set of rules serving

as instructions for producing a population prototype (the concept).” An option MDP

is the prototype for a family of problems, and the option homomorphism is the rule

for constructing the prototype. When the option is invoked, a particular instantiation

of the prototype is chosen by binding the appropriate resources to the schema.

Relativized options can be used to model certain behavioral schemas. Behavioral

schemas are abstract templates for how to respond to a given situation. When an

agent invokes a schema it appropriately allocates various resources and sensory ca-

pabilities to make the schema relevant to the specific instance. They provide a very

efficient mechanism for generalizing existing skills to new situations.

In the example from Section 5.6, the agent can be trained to navigate in room

1, say, and then in room 2, be instructed to use the same policy as in room 1, with

north and south exchanged. As an example closer to the real world, suppose the task

of a robot is to assemble different parts of an automobile which require repeated use

of a limited set of skills such as tightening a nut, screwing in a bolt, etc. The motor

commands required to tighten a nut is the same irrespective of the identity of the

nut, but depending on the location and size of the nut, the robot might be required

to use different resources, such as different sized wrenches. A robot can be trained to
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tighten a nut, nut1, of some given size. Once the robot learns the skill to a desired

level of proficiency, it can be given instructions in terms of the already learned policy,

such as “use the same policy as with nut nut1 but use a 6.2 head wrench”. Instead

of learning the policy from scratch, the robot learns to modify the existing policy to

accommodate the new situation.

The notion of behavior schemas is a very general one and does not require that

we limit our abstract models to homomorphic images of the original system. The

schema might take into consideration any arbitrary subset of the local features in-

volved. While it is straightforward to define a hierarchical framework that allows us

to represent arbitrary schemas, further analysis of such a framework is difficult and in

many cases the practical utility of such arbitrary definitions is not clear. Relativized

options that use strict homomorphic images seldom lead to useful schemas in practice.

But using approximate homomorphic images allows us to define behavioral schemas

in a wide variety of problem settings. In Section 6.3, we demonstrate the utility of a

“very” approximate homomorphic image in defining schemas.

6.2 Related Work

The notion of schemas have been widely employed to model a variety of psycholog-

ical and behavioral phenomena. Bartlett (1932) introduced schemas into psychology.

His thesis is that when people recount dreams, they do not do so via a rote memoriza-

tion of details. They try to “fit” the dream by binding to a set of familiar schemas.

Schmidt (1975) proposes a theory of humans motor skills acquisition based on memory

and schemas. The initial conditions, response, and consequences are gathered while

repeatedly performing some motor commands. Then the skill acquired is stored as a

schema specified using the common features of the data gathered across the various

trials. Piaget (1952, 1954) proposes a model of cognitive development in children that

is based on acquiring sensorimotor schemas. Piaget postulated that at a certain stage
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of their development children acquire sensorimotor schemas of the world that apply

to classes of related instances. When encountering a new situation, the child either

“assimilates” it as part of an existing schema or “accommodates” the novel features of

the instance by adapting the schemas, acquiring new ones if necessary. Sensorimotor

schemas are modeled as being grounded in physical activity and resulting perceptions.

Arbib (1995) proposes schema theory as a basis for distributed computing. This

theory builds on the robot schema language of Lyons and Arbib (1989). While Arbib

demonstrates the viability of the approach in the context of neural computation it

is a far more general theory. The basic approach consists of generating schemas,

representing interacting sub-problems, which can be combined to produce a solution

to the original task. The schemas can be combined sequentially, concurrently or even

hierarchically to achieve more complex goals.

In traditional AI literature, one can find notions that are similar to schemas. A

production rule can be converted to a rule schema (Russel and Norvig, 1995) by

incorporating variables in the pre and post conditions, resulting in a skeleton of a

rule. When applying this rule, it is instantiated with a particular assignment to the

variables. Knowledge frames (Russel and Norvig, 1995) can be also be considered as

schemas. A frame is a description of an scenario with slots for typical objects that

are part of the scenario. Assigning objects to these slots corresponds to instantiating

a schema.

Drescher (1991) introduces a schema mechanism aimed at emulating the construc-

tive model of cognitive development due to Piaget (1952). Drescher’s schema consists

of a context, an action and a result. The context and result are abstract represen-

tations, specified by assignments to a subset of the features describing the problem.

As with Arbib (1995), Drescher also provides a mechanism for generating hierarchi-

cal schemas. Composite schemas can be formed by concatenating simple schemas to

achieve a particular result. Once a composite schema is formed it may be used in con-
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structing other schemas. But representing stochasticity and probabilistic outcomes

in this setting is difficult.

One framework that can accommodate stochasticity and dynamics is the control

basis framework (Huber and Grupen, 1999). This framework is built on a set of

controllers formed by instantiating abstract control schemas, specified as artificial

potentials, with a set of sensors and effectors. The control basis approach is described

in more detail in Section 6.7. We also outline one approach to using relativized options

in deriving hierarchical option schemas in the control basis framework.

6.3 Choosing Transformations

Given an SMDP, defining a relativized option requires the use of extensive prior

knowledge, namely the transition and reward structure of the entire SMDP, at the

very least the parts of the SMDP spanned by the desired domain of the option,

the parameters of the option SMDP, and the homomorphism that maps the original

state and actions onto the option SMDP. It is not often that all this knowledge is

available a priori. Even when such knowledge is available, finding the correct option

homomorphism is in general NP-hard.

In the absence of complete knowledge about the system, we need methods for

learning some of the required components of a relativized options given the others.

One useful case is when the agent is given the parameters of the option SMDP and

is required to choose the right transformations that constitute the option homomor-

phism, without complete knowledge of the parameters of the original SMDP. We

assume that the agent has access to a set of candidate transformations. The agent

learns, using online experience, the right transformation to apply depending on the

circumstances under which an option is invoked. When combined, the chosen trans-

formations define the option homomorphism.
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Such a scenario would often arise in cases where an agent is trained in a small

prototypical environment and is required to later act in a complex environment where

skills learned earlier are useful. In the example from Section 5.6, the agent may

be trained to gather the object in a particular room and then be asked to gather

the objects in the different rooms in the environment. The problem of navigating

in each of these rooms can now be considered simply that of learning the suitable

transformation to apply to the policy learned in the first room. An appropriate set

of candidate transformations in this case are reflections and rotations of the room.

Learning the right homomorphism through experience, can also be viewed as on-

line minimization without a completely specified model. Recall from the previous

chapter, that an option SMDP, MO = 〈SO, AO,ΨO, PO, RO〉, is a homomorphic im-

age of the original MDP and hence is constructed from the reward respecting SSP

partition corresponding to the option homomorphism. Each element of ΨO is there-

fore an unique representative of some block of the partition induced by the option

homomorphism. Finding the right transformations is then equivalent to identifying

the other members of each of the blocks. Since the agent is restricted to a limited set

of transformations, the search for a reward respecting SSP partition of the original

SMDP is limited to some fixed family of partitions of ΨO.

The interpretation that is intuitively more appealing is the one afforded by viewing

relativized options as option schemas. Under this interpretation, the schema, i.e., the

option SMDP and the policy, is assumed to be given. The problem is then one of

choosing the right bindings to the abstract states and actions from a set of possible

bindings. This interpretation yields a better motivation for studying this particular

formulation involving insufficient prior knowledge. This is a natural interpretation

of our approach to choosing homomorphisms and suggests many problem domains in

which this approach may be used.
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6.3.1 A Bayesian Algorithm

Formally the problem maybe stated as: Given a set of candidate transformations

H and the option MDP MO = 〈SO, AO,ΨO, PO, RO〉, how do we choose the right

transformation to employ at each invocation of the option? We assume that M =

〈S,A,Ψ, P, R〉 is the MDP describing the actual task, and that P and R are not

known.1 Let ψ(s) be a function of the current state s that captures the features

necessary to distinguish the particular context in which the option is invoked. In

the example in Figure 5.2, the room number is sufficient, while in an object-based

environment some property of the target object, say color, might suffice. Often in

practice, ψ(s) is a simple function of s like a projection onto a subset of features, as

in the rooms example. The features, ψ(s), can be thought of as distinguishing various

instances of the family of sub-problems represented by the relativized option. The

problem of choosing the right transformation is formulated as a family of Bayesian

parameter estimation problems, one for each possible value of ψ(s).

There is one parameter, θ, that can take a finite number of values from H. Let

p(h, ψ(s)) denote the prior probability that θ = h, i.e., the prior probability that h is

the correct transformation to apply in the sub-problem represented by ψ(s). The set

of samples used for computing the posterior distribution is the sequence of transitions,

〈s1, a1, s2, a2, · · ·〉, observed when the option is executing. Note that the probability

of observing a transition from si to si+1 under ai for any i, is independent of the other

transitions in the sequence. Recursive Bayes learning is used to update the posterior

probabilities incrementally.

Let pn(h, ψ(s)) be the posterior probability that h is the correct transformation

to apply in the sub-problem represented by ψ(s) after n time steps from when the

option was invoked. Initialize p0(h, ψ(s)) = p(h, ψ(s)) for all h and ψ(s). Let En =

1We describe the algorithm in terms of MDPs for simplicity of exposition. The ideas extend to
SMDPs naturally.
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〈sn, an, sn+1〉 be the transition observed after n time steps of option execution. The

posteriors for all h = 〈f, {gs|s ∈ S}〉 are updated as follows:

pn(h, ψ(s)) =
Pr(En|h, ψ(s))pn−1(h, ψ(s))

N
, (6.1)

where Pr(En|h, ψ(s)) = PO(f(sn), gsn
(an), f(sn+1)) is the probability of observing the

h-projection of transition En in the option MDP and N =
∑

h′∈H PO((f ′(sn), g′sn
(a),

f ′(sn+1))pn−1(h
′, ψ(s)) is a normalizing factor. When an option is executing, at time

step n, ĥ = arg maxh pn(h, ψ(s)) is used to project the state to the option MDP and

lift the action to the original MDP. After experiencing a transition, the posteriors of

all the transformations in H are updated using equation 6.1.

The term Pr(En|h, ψ(s)) is a measure of how likely the transition En is in the

option MDP assuming that the agent is in the sub-problem represented by ψ(s) and h

is used to project the transition onto the option MDP. Accumulating this “likelihood”

over a sufficiently long sequence of transitions gives the best possible measure of how

correct a transformation is for a given sub-problem. N is a normalizing factor that

prevents the values of pn from decaying to very small numbers with large n. Without

normalization, pn’s are likely to decay to zero since the probability of observing any

long sequence of transitions is very low even under the correct transformations.

6.3.2 Experimental Illustration

We tested the algorithm on the gridworld in Figure 5.2. The agent, referred to as

the Bayesian agent, has one get-object-and-exit-room relativized option defined in the

option MDP in Figure 5.2(b). H consists of all possible combinations of reflections

about the x and y axes and rotations through integral multiples of 90 degrees. There

are only 8 unique transformations in H. Since the rooms delineate the sub-tasks

from one another, ψ(s) is set to room . For each of the rooms in the world, there is

one transformation in H that is the desired one. This is a contrived example chosen
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to illustrate the algorithm and reduction in problem size is possible in this domain

by more informed representation schemes. We will discuss, briefly, the relation of

such schemes to relativized options later in this section. As with earlier experiments

reported in Chapter 5, the agent employs hierarchical SMDP Q-learning with ε-greedy

exploration, with ε = 0.1. The learning rate is set at 0.01 and the discount factor, γ,

at 0.9. The root task description is the same as in Section 5.6. The priors in each of

the rooms were initialized to a uniform distribution with p0(h, ψ(s)) = 0.125 for all

h ∈ H and ψ(s). The trials were terminated either on completion of the task or after

3000 steps. The results shown in Figure 6.1 are averaged over 100 independent runs.

Recall from Section 5.6, that the probability that an action produces a move-

ment in a direction other than the desired one, is called the slip of the environment.

The greater the slip, the harder the problem, since the effects of the actions are

more stochastic. As shown in Figure 6.1 the agent rapidly learned to apply the

right transformation in each room under different levels of stochasticity. Compare

this performance to the agent learning with primitive actions alone (Figure 5.4(a)).

The primitive action agent didn’t start improving its performance until after 30,000

iterations and hence is not employed in further experiments. Figure 6.1 compares

the performance of the Bayesian agent with an agent that knew the right transfor-

mations apriori. As is illustrated in the figure, the difference in performance is not

significant.2 In this particular task our transformation-choosing algorithm manages

to identify the correct transformations without much loss in performance since there

is nothing catastrophic in the environment and the agent is able to recover quickly

from wrong initial choices.

Figure 6.2 shows how the various posteriors evolve during a typical run. The graph

plots the posteriors in room 5 for the transformations composed of pure rotations or

2All the significance tests were two sample t-tests, with a p-value of 0.01, on the distributions of
the learning times under the two algorithms.
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Figure 6.1. Comparison of initial performance of agents with and without knowledge
of the appropriate partial homomorphisms on the task shown in Figure 5.2 with
various levels of stochasticity.

reflections followed by rotations. The pure reflections were quickly discarded in this

case. As is evident, by iteration 10 the posteriors of the incorrect transformations

have decayed to 0. The posterior for transform 5, a rotation through 90 degrees,

converges to 1.0.

6.4 Handling Approximate Equivalence

The task in Figure 5.2(a) exhibits perfect symmetric equivalence. We return to

our modified task shown in Figure 5.7, reproduced as Figure 6.3. Here the different

rooms have differently shaped obstacles. As in the earlier experiments, the agent can

employ the same features for the option MDP described in Figure 5.2(b) and learn

the option policy online. Since the differences between the various rooms are ignored,

there is a slight loss in asymptotic performance. But as discussed earlier, this loss can

be bounded and reasonable performance can be obtained in this example. In general,

the quality of performance in a particular task would depend on the suitability of the

approximation employed and the corresponding error bounds.
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Figure 6.2. Typical evolution of posteriors for a subset of transforms in Room 5 in
Figure 5.2, with a slip of 0.1.

The method developed in the previous section for choosing the correct transfor-

mations cannot be applied with approximate homomorphisms. In some cases even

the correct transformation causes a state transition the agent just experienced to

project to an impossible transition in the image MDP, i.e., one with a PO value of

0. For example, consider moving south from the state marked A in Figure 5.7. This

is a valid transition in this room. But when projected onto the option MDP using

a rotation through 180 degrees, the correct transformation for this room, the result

is an invalid transition. Thus, the posterior probability of the correct transformation

might be set to zero, and once the posterior reaches 0, it stays there regardless of the

positive evidence that might accumulate later.

To overcome this problem a heuristic may be employed to update Equation 6.1 us-

ing a lower bound for PO values. A weight is computed for each of the transformations

using:

wn(h, ψ(s)) =
PO((f(s), gs(a), f(s′)) · wn−1(h, ψ(s))

N
(6.2)

where PO(s, a, s′) = max (ν, PO(s, a, s′)), and N =
∑

h′∈H PO((f ′(s), g′s(a), f
′(s′))

wn−1(h
′, ψ(s)) is the normalizing factor. This weight serves the role of the poste-
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rior probability. Thus, even if the projected transition has a probability of 0 in the

option MDP, a value of ν is used for the update. Initialize w0(h, ψ(s)) = p(h, ψ(s))

for all h and ψ(s). The weight wn(h, ψ(s)) is a measure of the likelihood of h being

the right transformation in ψ(s) after n transitions, and this weight is used instead

of the posterior probability.

We compared the performance of this heuristic on the gridworld in Figure 6.3 to

a relativized agent that knew the right transformations for each room. The same pa-

rameter settings as described in the previous section were used and the value of ν was

set to 0.01. As shown in Figure 6.4 the agent rapidly learns the correct transformation

to apply in each room. As was the case earlier, there is no significant difference in

performance compared to an agent that already knows the correct transformations.

Figure 6.5 shows the evolution of the weights in room 5 during a typical run. Note

that the weights decay more slowly than the posterior probabilities do in Figure 6.2.

We presently adopt a “winner take all” transformation selection mechanism, pick-

ing the transformation with the largest weight at each time instant. In some situations

it is profitable to use the weights as a probability distribution over transformations

and select the transformation to use in a given sub-problem by sampling from this

distribution. A desirable property of the update rule Equation 6.2 is that it allows the

correct transformation’s weight to converge to 1 if there is sufficient positive evidence.

Hence this heuristic is well suited if one wishes to employ the weights as a probability

distribution.

6.5 Experiments in a Complex Game Environment

The experiments reported earlier are more in the nature of a proof of concept. The

domains are very simple gridworlds and served to illustrate the concepts developed

thus far. Now these ideas are applied to a complex game environment inspired by

Pengi (Agre, 1988). Pengi is a learning agent that learns to play the video game
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Figure 6.3. A simple rooms domain with dissimilar rooms. The task is to collect all
5 objects in the environment.

Pengo. The protagonist of Pengo is a penguin whose objective is to survive in a

hostile world inhabited by killer bees. Pengi tries to outrun the bees and can also

slide around ice cubes that can be used to crush the bees. The earlier example s

modified by adding autonomous adversaries. The task of the agent in the game is to

avoid hostile robots while gathering certain objects (diamonds) in the environment.

It differs from Pengo in that the agent does not have any weapons available to it.

The layout of the game is shown in Figure 6.6. The environment has the usual

gridworld dynamics, i.e., 4 actions, each of which might fail with some probability.

When an action fails, it results in a movement in one of the four directions with

uniform probability. There are 4 rooms in the world connected by a corridor. The

goal of the agent is to collect all the 4 diamonds in the world, one in each room, and

return to the central corridor. The agent collects a diamond by occupying the same

square as the diamond.

Each room also has several autonomous adversaries. The adversaries may be of

two types—benign or delayer. If the agent happens to occupy the same square as
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Figure 6.4. Comparison of initial performance of agents with and without knowledge
of the appropriate partial homomorphisms on the task shown in Figure 5.7 with a
slip of 0.1.

the delayer it is captured and is prevented from moving for a random number of time

steps determined by a geometric distribution with parameter hold. Thus, at each time

instant the delayer might release the agent (move away) with probability (1.0−hold).

When not occupying the same square, the delayer pursues the agent with probability

chase. The benign robots execute random walks in the rooms and act as mobile

obstacles. None of the adversaries leave the rooms to which they are assigned. Thus,

the agent can escape the delayer in a particular room by exiting to the corridor.

The complete state of the game is described by (1) the position of the agent—the

number of the room in which it currently resides (the corridor being 0), and the x and

y coordinates in the room; (2) the position of each of the adversary—the number of

the room to which they are assigned and the x and y c-ordinates in the room; and (3)

boolean variables havei, i = 1, . . . , 4, indicating possession of the diamond in room i.

The agent is not aware of the identity of the delayer in each room.

Each room is a 20 by 20 grid, with the origin at the top left corner. The shaded

squares in Figure 6.6 are obstacles. The delayers are shown in black and the benign

ones are shaded. Note that room 2 does not have a delayer. Each adversary occupies
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Figure 6.5. Typical evolution of weights for a subset of transforms in Room 5 in
Figure 5.7, with a slip of 0.1.

Room slip hold chase
0 0.1 - -
1 0.15 0.6 0.6
2 0.15 - -
3 0.1 0.5 0.9
4 0.2 0.4 0.5

option 0.1 0.8 0.5

Table 6.1. Parameter settings in various rooms in Figure 6.6.

one cell in the room. The corridor is 41 cells long. The other parameters in each

of the rooms is shown in Table 6.1. The total number of states in this problem is

approximately 2.5× 1056.

Hierarchical decomposition

In the room example we saw earlier the reduction achieved was due to geometric

symmetries such as rotations and reflections. While these symmetries exist in this

domain also, we have another source of symmetry that arises dues to the presence

of the various adversaries. Therefore apart from considering the usual geometric

transformations, we also need to consider permutations of the features corresponding
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Figure 6.6. A game domain with interacting adversaries and stochastic actions.
The task is to collect all 4 objects, the black diamonds, in the environment. The
adversaries are of two types—benign (shaded) and delayers (black). See text for
more explanation.

to the adversaries. Since a delayer has a very different dynamics from a benign

adversary, the permutations should take a delayer’s features to another delayer’s

features. When forming a reduced image of the problem, we want the delayers in

each of the rooms to project onto the same adversary in the image.

Our agent has access to one get-object-and-leave-room relativized option. The

option MDP (Figure 6.7) is a symmetrical room with just one adversary—a delayer

with fixed chase and hold parameters. The features describing the state space of the

option MDP are the x and y coordinates, relative to the room, of the agent and of

the adversary, and a boolean variable indicating possession of the diamond. None of

the rooms in the game match the option MDP exactly and no adversary has the same

chase and hold parameters as this delayer. The initiation set for the option is the set
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of states in the room, including the doorways. The option terminates on entering the

hallway, with or without the diamond.

The root task is as described as follows. The state set of M0 is described by the

number of the room in which the agent currently resides, the various havei features

and if the agent is in the central corridor, then the x and y coordinates of the agent.

The admissible actions are the primitive actions in the corridor and the relativized

option in the room doorways. The transition and reward functions are those induced

by the original task and the option policy. The initiation set is the set of states

in the corridor with all havei features set to FALSE. The termination condition is

1 for states in the corridor with all havei features set to TRUE. It is 0 elsewhere.

This ignores the positions of the adversaries completely, since their positions are not

relevant to the root task, given the get-object-and-leave-room option.

Note that the option MDP employed here does not conform to either formulation

of an approximate homomorphic image we developed in Chapter 3. Both formulations

require prior knowledge of the transition dynamics of the MDP, or good estimates

of the transition probabilities. In addition, estimates of the visitation frequencies

can more accurately reflect the applicability of the option. Usually, when acquiring

option schemas access to just one instance of a family of problems is available. The

problem designers often have access to idealized models of the problem and can train

the agent only in such situations. The option MDP in this experiment was chosen

to model such a scenario. One way to overcome this problem is to allow the agent

to constantly update the option policy to adapt for situations not encountered in the

initial training. Piaget (1952) calls such adaptations of a schema as accommodation.

However, the results of Theorem 8 can still be used to bound the maximum loss in

this setting, provided the parameters of the original MDP are known.

The relativized agent, i.e., the agent that uses the relativized option, has access to

a set, H, of 40 transformations consisting of combinations of various spatial transfor-
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Figure 6.7. The option MDP corresponding to the sub-task get-object-and-leave-
room for the domain in Figure 6.6. There is just one delayer in the option MDP.
The state is described by the x and y coordinates of the agent and the delayer and a
boolean feature indicating possession of the diamond.

mations and projections. The spatial transformations consists of various reflections,

rotations and their compositions. The reflections are about the x and y axes and

about the x = y and x = −y lines. The rotations are through multiples of 90 degrees.

Compositions of these change the orientation of the rooms to which they are applied.

There are a total of 8 unique spatial transformations. To identify the delayer in each

room, the transformation takes the form of a projection, projecting the x and y co-

ordinates of the adversary under consideration onto the option MDP under suitable

spatial transformations. There are as many projections as there are adversaries in

the room, leading to a maximum of 5 projections. Thus, a total of 40 transformations

are available to the agent.

Learning Algorithm

The performance of an agent using one relativized option and 40 candidate trans-

formations s compared with an agent using 4 regular sub-goal options, one for each

room. Both the agents employ hierarchical SMDP Q-learning to simultaneously learn

the higher level policy and the option policies. The learning rate is set at 0.05 for the

higher level and 0.1 for the option. The discount factor γ is set to 0.9 and ε to 0.1
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for both the higher level and the option. The learning trials are terminated either on

completion of the task or after 6000 steps.

The prior weights are initialized for each of the transformations in each of the

rooms to a uniform distribution w0(h, ψ(s)) = 0.025 for all h ∈ H and for all ψ(s).

The agent uses equation 6.2 to update the weights for the transformations, with ν set

to 0.01. Since none of the rooms match the option MDP, keeping the option policy

fixed leads to very poor performance. So, as mentioned earlier, we allowed the agent

to continually modify the option’s policy while learning the correct transformations.

Results

The experiments are averaged over 10 independent runs. As shown in Figure

6.8, the agent using the heuristic shows rapid improvement in performance initially.

This supports the contention that it is easier to learn the correct transformations

than to learn the policies from scratch. As expected, the asymptotic performance

of the regular agent is better than the relativized agent. The heuristic could not be

compared against an agent that already knows the correct transformations since there

are no correct transformation in some of the cases. Figure 6.9 shows the evolution of

weights in room 4 during a typical run. The weights have not converged to their final

values after 600 updates, but transformation 12, the correct transformation in this

case, has the largest weight and is picked consistently. After about thousand updates

the weight for transformation 12 reach nearly 1 and stay there. Figure 6.10 shows

the evolution of weights in room 2 during a typical run. The weights oscillate a lot

during the runs, since none of the transforms are entirely correct in this room. In this

particular run, the agent converges to transformation 5 after about 1000 updates, but

that is not always the case. But the agent can solve the sub-task in room 2 as long as

it correctly identifies the orientation and employs any of transformations 1 through

5.
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Figure 6.8. Comparison of the performance of an agent with 4 regular options and
an agent using a relativized option and no knowledge of the correct transformation
on the task shown in Figure 6.6(a). The option MDP employed by the relativized
agent is shown in Figure 6.6(b).

Discussion

For some problems it is possible to choose representation schemes to implicitly

perform the required transformation depending on the sub-task. While employing

such representations largely simplifies the solution of a problem, they are frequently

very difficult to design. Our work is a first step toward systematizing the transfor-

mations needed to map similar sub-tasks onto each other in the absence of versatile

sensory mechanisms. The concepts developed here will also serve as stepping stones

to designing sophisticated representation schemes. Examples of such schemes include

ego-centric and deictic representations (Agre, 1988).

Agre (1988) used the Pengo environment to demonstrate the utility of deictic rep-

resentations. Deictic representation is a form of indexical representation and consists

of sensing the world through a set of pointers. In the Pengo domain, the agent used

pointers like bee-attacking-me, icecube-next-to-me etc., to model the world. In our do-

main, the option MDP models the behavior of a delayer, i.e., that of chasing the agent

and capturing it. Finding the right projection to the option MDP can be thought of
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Figure 6.9. Typical evolution of weights for a subset of transformations in Room 4
in Figure 6.6(a), with a slip of 0.1.

as trying to place a pointer on the adversary-chasing-me. Thus, relativized options

along with a mechanism for choosing the right transformations can be used to model

certain aspects of deictic representations.

6.6 Deictic Representation

A wide variety of complex tasks are naturally modeled as collections of objects,

their properties and their interactions. Objects might range from simple blocks and

tools to clouds and adversaries. One approach to describing such environments is by

a set of predicates, one for each property of a object that is relevant. Operators act on

one or more objects, changing certain properties of the objects. In an MDP framework

a naive way to represent such an environment is to model it as a structured MDP,

with the state set described by a huge array of features, one for each predicate needed

in a classical representation, and the actions affecting only a subset of such features.

In other words, in an object-based factored MDP,M = 〈S,A,Ψ, P, R〉, the state set

S is described by mN + B features, where m is the number of objects in the world,

N the number of predicates needed to describe each object and B is the number of
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Figure 6.10. Typical evolution of weights for a subset of transformations in Room
2 in Figure 6.6, with a slip of 0.1.

features needed to represent other aspects of the environment. Each action a ∈ A

acts only on one object and affects only a subset of these features. This is a special

case of a factored MDP, one in which there is a lot of independence among features

and effects of actions. The 2-TBNs representing such MDPs are largely decoupled

and hence amenable to various, possibly partial, homomorphic abstractions.

The above approach to modeling object-based environments invariably leads to

a plethora of features and associated problems. Researchers have employed various

ideas to make operating in such environments feasible (e.g. Boutilier et al., 2001;

Koller and Pfeffer, 1998; Getoor et al., 2001). Deictic representation (Agre, 1988; Agre

and Chapman, 1987; Ballard et al., 1996), based on pointing, is one such paradigm.

The environment is sensed via multiple pointers and actions are specified with respect

to these pointers. Consider the example in Figure 6.11. The task in Figure 6.11(a) is

to place block B on block A and in Figure 6.11(b) is to place block X on block Z. If

we have a pointer indicating the lower block (shown as a +) and a pointer indicating

the upper block (shown as a ×), then both the problems reduce to that of placing

the block pointed to by × on the block pointed to by +.
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In this example, the effective state of the system is represented by the attributes

of the blocks on which the pointers are placed, attributes like color and location.

Thus, in effect the pointers project the complete state of the system described by the

attribute of all the blocks in the domain, to an abstract space described the attributes

of two blocks. The blocks whose attributes are projected are determined by the two

pointers. Actions in this abstract space are of the form “move the + block to the top

of the × block”, “move the × block to the top of the table”, etc. Depending on the

actual location of the pointers, the blocks moved vary.

Deictic pointers might be simple physical locators like those above or maybe ar-

bitrarily complex. Agre and Chapman (1987) employ pointers that need substantial

pre-processing and domain knowledge, that let the agent precisely locate important

components of the system. While solving the arcade game Pengo, their agent Pengi

employs complex pointers such as bee-attacking-me, ice-cube-next-to-me, etc. The

actions of the agent are then defined with respect to these pointers, for e.g. push ice-

cube-next-to-me toward bee-attacking-me. This enables them to reduce an intractable

problem to a more manageable size and results in a satisfactory player.

In general, deictic representations can be used in rich environments with incredible

amounts of detail. Deixis helps limit the attention of the agent to a few features in the

environment that are relevant to the task at hand. It is also useful in systems where

there are physical limitations on the sensory capabilities and perforce they have to

use some form of attentional mechanism (Minut and Mahadevan, 2001).

6.6.1 Modeling Aspects of Deixis with Relativized Options

As mentioned briefly in Section 6.5, some transformations applied to the state

space of a MDP to project it onto an option MDP can be viewed as a form of deictic

representation. Looking at it from another perspective, some set of deictic pointers,

together with their possible configurations, specify a set of candidate transformations,
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Figure 6.11. Deixis in a simple blocks world domain: The task in (a) is to place
block B on A, while in (b) is to place X on Z. The two tasks reduce to that of placing
block pointed to by × over block pointed to by +.

or bindings, for an option schema. The agent learns to place the pointers in specific

configurations to effect the correct bindings to the schema. We call such option

schema together with the set of pointers a deictic option schema. Formally a deictic

option schema is defined as follows:

Definition: A deictic option schema of a factored SMDP M = 〈S,A,Ψ, P, R〉 is

the tuple 〈K,D, O〉, where O = 〈h,MO, I, β〉, is a relativized option inM, K is the

number of deictic pointers available andD = {D1, D2, · · · , DK} is the set of admissible

configurations of the deictic pointers. For all i, Di ⊆ 2{1,···,M} is the collection of all

possible subsets of indices of the features that pointer i can project onto the schema.

M is the number of features used to describe S.

The set Di indicates the set of objects that pointer i can point to in the envi-

ronment. In the blocks world example in Figure 6.11, this is the set of all blocks.

Therefore each element of D+ or D× comprises of the indices of the features corre-

sponding to the attributes of any one block in the environment. Thus, if features 1

and 2 are the color and position of block A, and features 3 and 4 are the color and

position of block B, and so on, the elements of Di are of the form {2j − 1, 2j} for

j = 1, · · ·m, where m is the number of blocks in the environment.

Recall from Chapter 5 that the option MDPMO is a partial homomorphic image

of the original SMDP with a suitable reward function. Let H denote the set of
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candidate transformations from among which the option homomorphism, h, should be

constructed. Each member ofH has a state transformation of the form
∏K

i=1 ρJi
, where

Ji ∈ Di for all i and ρJ is the projection of S onto the subset of features indexed by

J . If h is known a priori then the pointer configurations can be chosen appropriately

while learning. In the absence of prior knowledge the Bayesian algorithm developed

in Section 6.3.1 can be used to determine the correct bindings to the schema from

among the possible pointer configurations. But, the algorithm is not entirely suitable

for deictic option schemas for the following reason.

The algorithm assumes that the candidate transformations are not structured and

maintains a monolithic weight vector, wn(·, ·). In the case of deictic option schemas

the transformations are structured and it is advantageous to maintain a “factored”

weight vector, wn(·, ·) = 〈w1
n(·, ·), w2

n(·, ·), · · ·〉. Ideally each component of the weight

should be the likelihood of the corresponding pointer being in the right configuration.

But usually there is a certain degree of dependence among the pointers and the correct

configuration of one pointer depends on the configuration of other pointers.

Therefore, three cases need to be considered. Assume that there are only two

pointers, i and j, for the following discussion, but the concepts generalize to arbitrary

number of pointers.

1. Independent pointers: For every Ji ∈ Di, ρJi
satisfy the homomorphism con-

dition on transition probabilities given by equation 4.2. Then, the right as-

signment for pointer i is independent of the other pointers and there is one

component of the weight vector corresponding to pointer i and the updates for

this components depends only on the features indexed by some Ji.

2. Mutually dependent pointers: For each Ji ∈ Di and Jj ∈ Dj, ρJi
× ρJj

satisfies

equation 4.2. But ρJi
and ρJj

do not satisfy equation 4.2 for some Ji and Jj.

Thus, they cannot be treated separately and the composite projections given

by their cross-products has to be considered. There is one component of the
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weight vector that corresponds to this cross-product projection. The update for

this component will depend on the features indexed by some Ji and Jj.

3. Dependent pointer: For each Ji ∈ Di and Jj ∈ Dj, ρJi
× ρJj

satisfies equation

4.2, as does ρJi. But ρJj
does not satisfy equation 4.2 for at least some value of

Jj. This means pointer i is an independent pointer, while j is a dependent one.

There is a separate component of the weight vector that corresponds to pointer

j, but whose update depends on the features indexed by both Ji and Jj.

The weight vector is chosen such that there is one component for each independent

pointer, one for each dependent pointer and one for each set of mutually dependent

pointers. Let the resulting number of components be L. A modified version of

the update rule Equation 6.2 is used to update each component l of the weight

independently of the updates for the other components:

wl
n(hi, ψ(s)) =

P l
O((f i(s), gi

s(a), f
i(s′)) · wl

n−1(h
i, ψ(s))

K
(6.3)

where P l
O(s, a, s′) = max

(
ν, P l

O(s, a, s′)
)

and K =
∑

h′i∈H P
l
O(f ′i(s), g′is (a), f ′i(s′))

wn−1(h
′i, ψ(s)) is the normalizing factor. P l

O(s, a, s′) is a “projection” of PO(s, a, s′)

computed as follows. Let J be the set of features that is required in the computation

of wl
n(hi, ψ(s)). This is determined as described above for the various cases. Then

P l
O(s, a, s′) =

∏
j∈J

Prob(s′j|Parents(s′j, a)).

6.6.2 Experimental Illustration in a Complex Game Environment

We now apply a deictic option schema to learning in a modified version of the

game environment introduced in Section 6.6. The layout of the game is shown in

Figure 6.12. The environment has the usual gridworld dynamics as described earlier.

Unlike in the previous example there is just one room in the world and the goal of the
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Figure 6.12. A modified game domain with interacting adversaries and stochastic
actions. The task is to collect the black diamond. The adversaries are of three
types—benign (shaded), retriever (white) and delayers (black). See text for more
explanation.

agent is to collect the diamond in the room and exit it. The agent collects a diamond

by occupying the same square as the diamond.

The room also has 8 autonomous adversaries. The adversaries may be of three

types—benign, delayer or retriever. The behavior of the benign and delayer adver-

saries are as described earlier. The retriever behaves like the benign adversary till the

agent picks up the diamond. Once the agent picks up the diamond, the retriever’s

behavior switches to that of the delayer. The main difference is that once the retriever

occupies the same square as the agent, the diamond is returned to the original po-

sition and the retriever reverts to benign behavior. The adversary returns to benign

behavior if the agent is also “captured” by the delayer.

The complete state of the world is described by (1) the position of the agent—

the number of the room it is currently in (the corridor being 0), and the x and y

coordinates in the room; (2) the position of each of the adversaries given by the x

and y coordinates in the room; and (3) a boolean variable have indicating possession

of the diamond. The other parameters of the task are as defined earlier. The agent is

not aware of the identity of the delayer or the retriever. The shaded squares in Figure
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Figure 6.13. The option MDP corresponding to the sub-task get-object-and-leave-
room for the domain in Figure 6.12. There is just one delayer and one retriever in
this image MDP.

6.12 are obstacles. The delayers are shown in black, the retrievers in white and the

benign ones shaded.

The option MDP (Figure 6.13) is a symmetrical room with just two adversaries—a

delayer and a retriever with fixed chase and hold parameters. The features describing

the state space of the option MDP consists of the x and y coordinates relative to the

room of the agent and of the adversaries and a boolean variable indicating possession

of the diamond. The rooms in the world does not match the option MDP exactly and

no adversary in the world has the same chase and hold parameters as the adversaries

here. The root task is the same one described earlier in Section 6.6.

The deictic agent has access to 4 pointers: A self pointer that projects the agent’s

location onto the image MDP, a have pointer that projects the have feature onto the

image MDP, a delayer pointer that projects one of the adversaries onto the delayer in

the image MDP and a retriever pointer that projects one of the adversaries onto the

retriever in the image MDP. The self pointer is an independent pointer. The delayer

pointer is dependent on the self pointer and the retriever pointer is dependent on all

the other pointers. Note that the self and have pointers are fixed projections and

have very restricted domains. The sets Ddelayer Dretriever are given by the 8 pairs
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of features describing the adversary coordinates. Dself is a singleton consisting the

agent’s x and y coordinates with respect to the room and Dhave is also a singleton

consisting of the have feature.

Traditionally, such pointers are not viewed as deictic pointers, but would form

part of the “background” information provided to the agent. But we treat them as

special pointers in our formulation. The actions of the agent in the image can then

be expressed with respect to the self pointer. Note that since the option MDP is

an approximate homomorphic image, the homomorphism condition 4.2 is not strictly

met by any of the projections. Therefore, in computing the weight updates, the

influence of the features not used in the construction of the image MDP are ignored

by marginalizing over them.

Experimental Results

The performance of the deictic agent is compared with a relativized agent that

employs the same option MDP but chooses from a set H of 64 monolithic transfor-

mations, formed by the cross product of the 8 configurations of the deictic pointers.

Both agents employ hierarchical SMDP Q-learning, with the learning rates for the

option and the root task set to 0.1. The agents are both trained initially in the op-

tion MDP to acquire an approximate initial option policy that achieves the goal some

percentage of the trials, but is not optimal. Both agents use ε greedy exploration.

On learning trials both agents perform similarly, with the monolithic agent hav-

ing better initial performance. This is not surprising, if we look at the rate at which

the transformation weights converge. Figure 6.14 shows that the monolithic agent

identifies the right transformation rapidly just as the deictic agent identifies the de-

layer rapidly (Figure 6.15(a)). But as Figure 6.15(b) shows, identifying the retriever

takes much longer, and the deictic agent performs poorly till the retriever is correctly

identified consistently.
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Figure 6.14. Typical evolution of a subset of weights of the monolithic agent on the
task shown in Figure 6.12.

This result is not surprising, since the correct position for the retriever depends

on position of the delayer pointer. Therefore, while the delayer is being learned,

the weights for the retriever receive inconsistent updates and it takes a while for

the weights to get back on track. Further, the monolithic agent considers all possible

combinations of pointer configurations simultaneously. Therefore, while it takes fewer

update steps to converge to the right weights, both agents make comparable number

of weight updates, 1300 vs. 1550.

Discussion

The algorithm used above updates the weights for all the transformations after

each transition in the world. This is possible since the transformations are assumed

to be mathematical operations and the agent could use different transformations to

project the same transition onto to the option SMDP. But deictic pointers are often

implemented as physical sensors. In such cases, this is equivalent to sensing every

adversary in the world before making a move and then sensing them after making

the move, to gather the data required for the updates. Since the weights converge

127



0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Updates

N
or

m
al

iz
ed

 L
ik

el
ih

oo
d 

M
ea

su
re

Robot 3
Robot 6
Robot 4

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Updates

N
or

m
al

iz
ed

 L
ik

el
ih

oo
d 

M
ea

su
re

Robot 6
Robot 1
Robot 8

(a) (b)

Figure 6.15. (a) Typical evolution of a subset of the delayer weights of the deictic
agent on the task shown in Figure 6.12. (b) Typical evolution of a subset of the
retriever weights on the same task.

fairly rapidly, compared to the convergence of the policy, the time the agent spends

“looking around” would be a fraction of the total learning time.

6.6.3 Perceptual Aliasing with Deictic Representations

The power of deixis arises from its ability to treat many perceptually distinct

states in the same fashion, but it is also the chief difficulty in employing deictic

representations. Consider the example in Figure 6.16. In both situations depicted in

the figure, the pointers return the same information, and hence both situations are

considered equivalent. If the task is to stack three different colored blocks on top

of each other, we can move × block on top of + block in Figure 6.16(b), while in

the other case, moving + to the top of × is a better choice. Thus two qualitatively

different states are mapped onto the same representation here. This phenomenon is

known as perceptual aliasing (Whitehead and Ballard, 1991).

One approach to overcome perceptual aliasing is a class of methods known as

Consistent Representation Methods. These methods split the decision making into
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Figure 6.16. Perceptual aliasing in a simple blocks world domain: Both (a) and
(b) map to the same representation and are treated as equivalent. But the task is to
stack blocks of three different colors and the desired action in the two situations are
different.

two phases: in the perceptual phase the agent looks around the environment to

find a consistent representation of the underlying state. A consistent representation

(Whitehead and Ballard, 1991; Whitehead and Lin, 1995) of a state is one such that

all states that map to the representation have the same optimal action-value function.

In the overt phase the agent picks an action to apply to the environment based on

the current sensory input. Learning takes place in both phases. The Lion algorithm

(Whitehead and Ballard, 1991) is an example of a consistent representation algorithm.

Here Q-learning is used in the overt phase and a simple learning rule based on one

step error information is used to train the sensory phase. If the one step error in the

Q update rule for a particular configuration is negative then that representation is

considered perceptually aliased and is ignored in the future. This simple rule limits

the applicability of this algorithm to deterministic settings alone.

If the representation used is a homomorphic image then it is a consistent repre-

sentation, from Theorem 1. By restricting the definition of deictic option schema to

employ partial homomorphic images as option MDPs, it is guaranteed that a consis-

tent representation is always employed. In the absence of knowledge of the option

homomorphism, finding the right transformation to employ constitutes the search for

a consistent representation and we employ Bayes learning in this phase. As with the

Lion algorithm, a form of Q-learning is used in the overt phase.
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Another approach to dealing with perceptual aliasing is to use memory based

methods (McCallum, 1995; Finney et al., 2002). The basic idea is to remember suffi-

cient history information to be able to distinguish states that are perceptually aliased.

These methods use statistical tests to determine how much memory is required and to

selectively determine which experiences to retain. These can also be viewed as consis-

tent representation methods, since they aim to remember sufficient data so that the

current memory and sensory input together constitute a consistent representation.

6.6.4 Related Work

Deixis originates from the Greek word deiknynai which means to show or to point

out. It is employed by linguists (Jarvella and Klein, 1982) to denote the pointing

function of certain words, like here and that, whose meaning could change depending

on the context. Deictic representations are used in developing models of cognition and

visual attention (Land et al., 1998; Ballard et al., 1996; Howarth and Buxton, 1993).

Deixis was introduced to the AI community by Agre (1988). Agre and Chapman

(1987) used deictic representations to design an agent, Pengi, that plays the arcade

game Pengo. Pengi was designed to play the game from the view point of a human

player and hence used visuals from a computer screen as input. Agre employed

Ullman’s visual routines (Ullman, 1984) to extract information and maintain complex

deictic pointers such as bee-attacking-me. Chapman (1991) later designed Sonja, an

instruction taking agent that plays the game amazon, employing deictic commands

and representations.

Whitehead and Ballard (1991) were the first to use deictic representations in a

RL system, with their Lion algorithm. Unfortunately, the method the Lion algo-

rithm employs to determine consistency works only in deterministic environments.

McCallum (1995) takes a more direct approach to overcoming perceptual aliasing.

He employs deixis to solve a car driving task and models the problem as a partially
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observable MDP (Kaelbling et al., 1998). He uses a tree structure, known as U-trees,

for representing “states” and identifies the necessary distinctions so that the resulting

representation is consistent. But his approach is not divided into explicit perceptual

and overt phases. There has not been much work on using hierarchical RL and deixis.

The only work we are aware of is by Minut and Mahadevan (2001). They develop a

selective attention system that searches for a particular object in a room. It operates

by identifying the most salient object in the agent’s visual field and shifting its visual

field to center and focus on that object. They employ an option to identify the most

salient object in the current visual field. Though they do not state it thus, this is a

“deictic” option, whose effect depends on the current visual field.

Another recent successful application of deixis albeit in a carefully hand crafted

fashion is due to Cleary (1997). He solves a robot navigation task by programming a

small number of deictic commands and using expert knowledge to position the point-

ers required by these commands. He demonstrates that with a fairly small number of

deictic commands the robot is able to successfully navigate open environments such

as the college grounds.

A systematic study on using deictic representations with RL was reported by

Finney et al. (2002). They employ a straightforward deictic representation with

two pointers on a blocks world task. They use the G-algorithm to represent past

information as a tree. They report that their approach does not work well for a

variety of reasons. First the tree grows very large rapidly. The deictic commands are

defined with respect to the two focus pointers. When long sequences of actions are

required with a small number of pointers, it is easy to lose focus. While they try to

address this by redesigning the pointers, they do not have much success. One way to

alleviate this problem is by adopting a hierarchical approach as we do in this work.

If the number of pointers required by each deictic level to maintain focus is not large,

we can avoid some of the problems encountered by Finney et al. (2002).
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6.6.5 Discussion

While deixis is a powerful paradigm ideally suited for situations that are mainly

reactive, it is difficult to employ a purely deictic system to solve complex tasks that

require long-range planning. Our hierarchical deictic framework allows us to employ

deictic representations in lower levels of the problem to leverage their power and gen-

eralization capacities, while at the higher levels we retain global context information

in a non-deictic fashion. Mixing such representations allows us to exploit the best of

both worlds and to solve tasks that require maintaining long term focus. It is our

belief that there is no pure deictic system in nature. While it has been established

that humans employ deixis in a variety of settings (Ballard et al., 1996; Land et al.,

1998), we certainly maintain some higher level context information. While gathering

ingredients for making tea, we might be using deictic pointers for accessing various

containers (Land et al., 1998), but we also are continuously aware of the fact that we

are making tea.

The various approaches to learning with deictic pointers (Whitehead and Ballard,

1991; Finney et al., 2002) usually employ simple pointers similar to those in Figure

6.11. Agre (1988) uses complex pointers, but hand coded the policy for maintaining

the focus of these pointers. For example, a set of rules are used to determine which is

the bee-attacking-me and the pointer is moved suitably. Our approach falls somewhere

in between. We start by defining a set of simple pointers. As learning progresses the

agent learns to assign these pointers consistently that some of them take on complex

roles. We can then assign semantic labels to these pointers such as robot-chasing-me.

It should be noted that a homomorphic image implies a consistent representation

but the reverse is not true. The notion of a consistent representation is a more

general concept than a homomorphic image and corresponds to optimal-action value

equivalence discussed in Chapter 3. By restricting ourselves to homomorphic images

we are limiting the class of deictic pointers that we can model. Further work is needed
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to extend our framework to include richer classes of deictic pointers and to employ

memory based methods. Nevertheless in this thesis we have taken the first steps in

accommodating deictic representations in a hierarchical decision theoretic framework.

6.7 Applications of Homomorphisms in the Control Basis

Framework

Discrete MDPs and SMDPs are useful mathematical constructs that allow us to

model a variety of stochastic decision problems. Thus far, we have developed our

framework in settings that are idealized representations of the environment. This

enabled us to rigorously formulate the concepts of homomorphisms and abstraction.

In order to apply our ideas to real problems however, several steps that formalize the

domain knowledge are needed.

The problem must first be formulated as an MDP or SMDP. This involves selecting

a suitable state and action representation. Second, the problem must be hierarchically

structured. Any available knowledge about the various sub-problems of the original

task can be exploited in this step. In this section, we explore the applications of our

techniques in a domain that is modeled using the control basis framework, a flexible

and powerful hierarchical architecture. It is also possible to learn the hierarchical

structure, and this is an active research area (Digney, 1998, 1996; McGovern and

Barto, 2001; Pickett and Barto, 2002; Hengst, 2002). This hierarchical structure is

then be used to create appropriate option schemas.

Finally, a family of transformations for the option schema must be selected. Since

this family may consist of all plausible transformations, it is possible to specify it

with very little domain knowledge. In navigation tasks, it consists of all reasonable

geometric transformations, as in the rooms example. In worlds with objects, it con-

sists of all possible permutations among features corresponding to distinct objects,

followed by a suitable projection onto the option SMDP. Once the option schema is
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Figure 6.17. The UMass Torso holding a ball in a two handed grasp.

acquired, then the agent can learn to solve the task, using the Bayesian algorithm as

described in Section 6.3.

In this section, these issues are explored in the context of a robotics application

domain. The platform adopted is the UMass Torso (Platt Jr. et al., 2003, 2004), a

partial humanoid robot, with two hands, two arms and a stereo vision head (Figure

6.17). Successful robots must operate in open environments that are not completely

controllable. It is almost impossible to model the interaction of the UMass Torso with

its environment at a joint and sensor level as an MDP or SMDP. Therefore we turn

to a control architecture known as the control basis framework proposed by Huber

(2000). This control architecture has been used as the basis for learning walking gaits

on a quadruped walking platform (Huber and Grupen, 1999), learning multi-fingered

grasps (Coelho and Grupen, 1997), designing controllers for whole body grasps (Platt

Jr. et al., 2003, 2004), and in controlling ad hoc mobile robot networks (Sweeny,

2003).

6.7.1 Control Basis Framework

The control basis approach is a framework for combining closed loop controllers

in a systematic way to accomplish a variety of different objectives. In this approach
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a controller iΦS
E is constructed by associating, or binding, a set of sensors, S, and a

set of effectors, E , with an objective function, or artificial potential, iΦ. The artificial

potential describes the objective i, where i might be a stable leg configuration or a

firm grasp on an object. When the controller achieves the minimum potential it is

said to have converged (to its objective).

In terms of the terminology developed earlier, the artificial potential that describes

the control objective can be viewed as an option schema and the various sensor and

effector bindings are the transformations. For example, in the quadruped walking

task (Huber, 2000), a schema specifies how to achieve a stable 3 legged stance, and

the transformations choose 3 of the 4 legs of the robot to bind to the schema. Huber

achieves a turning gait by executing this schema repeatedly with a suitable sequence

of transformations.

This framework also allows two or more controllers to execute concurrently in

a prioritized manner. Since control actions are derived by descending artificial po-

tentials, a secondary control action will not interfere if it moves the robot along an

equipotential line of the primary control potential. This can be achieved if the sec-

ondary controller is constrained to operate in the null space of the primary controller.

The term subject to is used to describe this prioritization and iΦSi

Ei
/ jΦ

Sj

Ej
indicates

that iΦSi

Ei
operates subject to jΦ

Sj

Ej
.

Closed-loop controllers as defined above are robust to noise and transform a con-

tinuous state space into a set of discrete states corresponding to the convergent states

of the various controllers. For example, a controller for grasping an object descends

an artificial potential, such that the basin of attraction corresponds to a good grasp

configuration. When invoked, this controller causes a transition from an arbitrary

initial state to a state corresponding to a good grasp. If all the actions are drawn

from closed-loop controllers, only a discrete set of states comprising of the equilibrium

states of the controller need be considered. Thus the problem can be modeled at the
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level of the controllers as an MDP with a set of closed-loop controllers as the actions

and the states described by the convergence status of the controllers (Huber, 2000;

Huber and Grupen, 1999). The transition times of the primitive controllers can be

incorporated by modeling the problem as an SMDP. The next step in the design is

to specify a hierarchical task decomposition that uses these closed-loop controllers as

primitive actions.

6.7.2 Designing Option Schemas

For the purposes of this discussion we focus on tasks based on whole body grasping

(Platt Jr. et al., 2003, 2004). The goal is to achieve a certain objective that requires

the robot to manipulate objects while using different contact resources to maintain

a good grasp. Platt Jr. et al. (2004) define a set of controllers suitable for this

setting. They formulate this problem as an MDP and report preliminary learning

experiments in which a ball is either moved to a certain location or is rotated 180

degrees. The nature of the manipulation task is that certain classes of controllers

have to be executed in sequence to achieve an objective. The exact controllers used

depend on the nature of the object being manipulated and the objective. But there

is a higher level structure to the task that can be exploited to produce more efficient

generalization. Before examining this structure, let us look at some of the classes of

controllers used by Platt Jr. et al. (2004).

1. Localize, LΦ, uses the stereo vision system to locate a salient object, or a target

position, in the work space. If the localize controller is formed by binding to a

some feature of the object such as color or size, the resulting controller locates

an object with that attribute.

2. Contact, CΦ, places the specified effector(s) in contact with the last localized

object. The possible effectors are the left hand, l or the right hand, r or both,

lr. Since the states of the underlying MDP are given by convergence states of
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Figure 6.18. The UMass Torso holding a ball by opposing gravity with the left
hand.

the controllers, the sensory resources available are also denoted by the same

symbols as the controllers. Thus CΦl
l denotes the controller that makes contact

with an object using the left hand.

3. Grasp, GΦ, obtains a good grasp on the object the hand is currently in contact

with. In the whole body grasping domain, controllers are formed by binding

to a subset of one or both hands and gravity: {l, r, g}. For example, if the

robot grasps an object by placing it on its left palm, it is modeled as holding

it using the hand and gravity (Figure 6.18). The controller that achieves this

configuration is then denoted by GΦlg
l . Since gravity is not under the control of

the robot and it is not assigned as an effector.

4. Reach, RΦ, reaches to the last localized location. The sensors and effectors that

can be used to form controllers are the same as with the grasp controller.

Additional controllers may be formed by suitably combining these basic controllers

using the subject to constraint. Thus to move an object to a particular location while

holding it with both hands, the robot would employ RΦlr
lr/

GΦlr
lr. Two grasp controllers

can be combined, allowing the robot to change the grasp on an object. Thus to put
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Localize LΦ

Contact CΦl
l

CΦr
r

CΦlr
lr

Grasp GΦlr
lr

GΦlg
l

GΦrg
r

GΦlrg
lr

Reach RΦlr
lr

RΦl
l

RΦr
r

Grasp / Grasp GΦlg
l /

GΦlr
lr

GΦrg
r / GΦlr

lr
GΦlr

lr /
GΦlg

l
GΦlr

lr /
GΦrg

r

Reach / Grasp RΦlr
lr /

GΦlr
lr

RΦl
l /

GΦlg
l

RΦr
r /

GΦrg
r

RΦl
l /

GΦlr
lr

RΦr
r /

GΦlr
lr

Table 6.2. Subset of controllers for accomplishing two handed grasps of large objects.

an object that the robot is holding with both hands onto the left palm, it would

employ GΦlg
l /

GΦlr
lr.

Employing this set of controllers the robot can manipulate a variety of objects in

its workspace. As an example, the subset of controllers appropriate for two handed

manipulation is shown in Table 6.2. The state of the system is described by a vector

with one component for each controller. When actions are combined with subject to

constraint, two or more bits of this representation are affected. A transition graph

of a sub-task in the underlying MDP is shown in Figure 6.19. The task represented

here is to localize on some object and, depending on its location and size, use the

appropriate hand(s) to grasp it and move it to a specified target location. The left,

central and right branches correspond to the cases when the object is grasped using

the left hand, both hands and right hand respectively. Note that if the object is in

the center and is small, it can be grasped using either the right or left hand. For

large objects, both hands are needed. If a large object is in the right or left side of

the workspace, the robot fails to grasp it.

Obviously there is a lot of redundancy in this representation. While different

parameterization is needed for each branch in the graph, the over all structure of

each path is the same: a contact, followed by a grasp and a reach. We can exploit
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start

ΦL

ΦCΦC ΦC

ΦG ΦG ΦG

ΦRΦR ΦR

localize

grasp

lr

lr

reach

rl

contact

rl

l lr r

Figure 6.19. The transition structure of a family of sub-tasks for manipulating
objects in the workspace. A state labeled XΦj means that the controller XΦj

j has
converged in that state.

this structure to define a relativized option. The transition graph of the relativized

option that models this family of sub-tasks, parameterized by the object size and

location, is shown in Figure 6.20. The actions in the option MDP are the control

objectives or potentials, without a specific parameterization. Similarly the state is

represented by a vector with one component for each potential surface. The possible

transformations from the original sub-task to this schema are the set of possible

bindings to the basic potentials. The function ψ(s) returns the size and location of

the target object. Thus if there is a small object in the left side of the workspace, the

correct transformation is to bind the sensor and effectors to l. For a large object in

the center, the correct transformation is to bind to lr.
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localize

grasp

reach

contact

start

ΦC

ΦL

ΦG

ΦR

Figure 6.20. A relativized option that represents the family of tasks shown in Figure
6.19. A state labeled XΦ means that for some j, the controller XΦj

j has converged in
that state.

The relativized option is derived under the implicit assumption that the entire

workspace is reachable even holding an object with both hands. This is obviously not

true in general. If the task is to pick up an object in the left side of the workspace

and move it to right edge of the workspace, then the robot needs to transfer the left

handed grasp on the ball to a right handed one before executing a reach. Similarly

when picking up a large object and moving it to either edge of the field, a two handed

grasp must be changed to a single handed grasp with gravity. As mentioned earlier

this requires running a grasp controller subject to another grasp controller. This

additional manipulation is not captured in the relativized option shown.

We would like to incorporate this additional maneuvering while still maintain-

ing the transition structure shown in Figure 6.20, since it captures the underlying

structure when the additional maneuvering is not required. Robert Platt suggests
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the following solution.3 We introduce another relativized option with the transition

structure shown in Figure 6.21. We distinguish between two kinds of grasps, good

and bad. Good grasps are those that allow us to reach to the target location. The

actions in this MDP are regrasp and reach. The reach action is the same as before.

The regrasp action consists of controllers of the form GΦj
j′ /

GΦk
k′ , where j, j ′ and k, k′

are different parameterizations for the grasp controller. There are three states: good

grasp, poor grasp, and reach converged. The function ψ(s) returns the target loca-

tion, current location and size of the object. If no regrasping is required, the robot is

in the good grasp state and transitions to the terminal state by executing a reach. If

not the robot is in a poor grasp state and needs to execute the appropriate regrasp

action to acquire a good grasp. This relativized option replaces the reach action in

the option MDP in Figure 6.20.

We are currently working on validating this design on a simple task. The overall

task is to clear a workspace of different sized balls, ranging from tennis balls to beach

balls. There are two bins, one each at the left and right edges of the workspace. An

operator indicates the target location, i.e., which of the bins into which a ball should

be dropped. This task can be solved by repeatedly applying the relativized option

shown in Figure 6.20. Note that since the transformations are different bindings to

resources, effecting a change in the transformation is not as trivial as described in our

earlier experiments. In order to change the transformation a sequence of regrasping

actions have to be executed. Platt Jr. et al. (2004) address this issue in the context

of learning to regrasp a given object.

6.7.3 Discussion

We have described the preliminary design of a very simple experimental demon-

stration of our ideas. This design is joint work with Robert Platt and Roderic Gru-

3In private discussion.
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ΦG

ΦG
regrasp

ΦRj j

reach

bad

good

k

Figure 6.21. A relativized option that represents the regrasp before reach sub-task.
A state labeled XΦi means that the controller XΦi

i has converged in that state, where
i depends on the transformation chosen.

pen at the Laboratory for Perceptual Robotics at the University of Massachusetts,

Amherst. Though conceptually it is straightforward, conducting even this experiment

on the UMass Torso is not trivial. There are many issues to be addressed, including

designing the software architecture, handling of error conditions, and implementing

the transition choosing mechanism. With more experience on the real robot, the hier-

archical decomposition could also be refined further. If successful, this work will be a

first step in integrating the control basis architecture and our abstraction framework,

specifically option schemas. This interface we feel would facilitate greater collabora-

tion between the two approaches and lead to better synthesis of ideas. The abstraction

notions developed in this work are generally applicable to complex problem domains.

But in order to expand the applicability of our option schema framework we need to

further enrich its capabilities. We discuss some promising directions in Chapter 7.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

In this thesis we introduced MDP homomorphisms as a paradigm for expressing

various forms of abstractions in Markov decision processes. We showed that MDP

homomorphisms are powerful and flexible enough to represent a wide variety of ab-

stractions. We established theoretical guarantees as to the goodness of the abstract

model formed. In particular we showed that an optimal solution of the reduced model

can be used to induce an optimal solution for the original problem. This allows the

definition of “ideal” abstraction, one that results in no loss of information relevant to

solving the task at hand.

MDP homomorphism helps establish notions of equivalence—among states and

actions and also between MDPs. The crucial innovation in our definition of MDP

homomorphism is considering state-action equivalence. Much of the earlier work uses

just state equivalence. Expanding the notion of equivalence allows one to model a

wide class of abstractions as was established in this thesis.

Forming reduced models that preserve some aspect of the original system is the

goal of model minimization algorithms. We develop a model minimization algorithm

based on MDP homomorphisms. This algorithm is an extension of earlier work by

Dean and Givan (1997). We also show that the notion of stochastic bisimulation

homogeneity, which is the basis of the earlier framework, is equivalent to MDP homo-

morphism in the context of minimization. Employing state-action equivalence means

that our minimization framework is strictly more powerful than Dean and Givan’s.

143



We also extend a polynomial time minimization algorithm due to Lee and Yannakakis

(1992) and Dean and Givan (1997) to our minimization framework.

In Chapter 4 we introduce the notion of symmetry groups of MDPs based on

MDP homomorphisms and show that this can model symmetries of the system. This

definition uses the mathematical structure of the MDP and does not rely on any

special geometric properties of the system. While it can model usual notions of

symmetry such as reflections, rotations etc, it is not limited to them. In particular,

in problems with objects, symmetry groups can model symmetries arising for object

interchangeability.

Factored MDPs are a compact paradigm for representing MDPs with structure.

We explored certain forms of structured homomorphisms that can take advantage of

the inherent redundancy and independence in a factored MDP representation. The

minimal model of an MDP cannot usually be modeled by a structured homomorphic

image. But searching for reduced models in a restricted space imposed by some

structure is often the only feasible approach.

Factored symmetry groups do not necessarily lead to a smaller description of

the reduced MDP, and a complete enumeration of the state space is required to

derive the reduced model. We introduce a modification of an algorithm by Emerson

and Sistla (1996) that uses MDP symmetry groups and constructs a reduced model

incrementally without requiring complete enumeration of the state space.

The MDP homomorphism conditions are rather strict, and hence exact homo-

morphic equivalence is seldom obtained in practice. We introduce two notions of

approximate homomorphisms derived from Whitt (1978) and Givan et al. (2000)

that allow us to consider states that differ slightly in their dynamics as equivalent.

Reduced models constructed under a relaxed notion of equivalence no longer guaran-

tee the preservation of the optimality of solutions. We show how to bound the loss
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that result from approximations. These bound can be used as a guide in selecting

appropriate approximations.

In Chapter 5 we develop a hierarchical decomposition framework that combines

spatial abstraction with temporal abstraction. Partial SMDP homomorphisms form

the basis for spatial abstraction in this framework. We extend the options framework

(Sutton et al., 1999) to model temporal abstraction over Markov sub-goal tasks and

spatial abstraction specific to the sub-task represented by the option. We introduce

the notion of a relativized option that is a compact representation of a related family

of family of tasks. We also show that the abstraction conditions developed earlier by

Dietterich (2000a) for a related hierarchical framework are in fact a specialization of

the more general SMDP homomorphism conditions. The utility of relativized options

is empirically demonstrated on simple test beds.

In Chapter 6 we develop more sophisticated abstract representations based on

relativized options. First we develop the concept of option schema, a prototype

of an option, which is specified by an abstract state and action space. A learning

agent can acquire skills or policies in this prototypical setting and then generalize

them to other situations by suitably transforming this abstract space. We propose a

Bayesian algorithm for selecting the right transformation to apply in a given setting

and demonstrate that it is empirically correct. We apply option schemas to a complex

game problem inspired by the the Pengi domain (Agre, 1988).

We also introduce deictic option schemas, where the class of permissible trans-

formations applicable to the abstract space are defined via a set of pointers. Deixis

is an indexical representation introduced to AI by Agre (1988). We show that un-

der certain assumptions we can model methods that employ deictic representations

as attempting to identify homomorphic reductions. We empirically demonstrate the

utility of this view in a modification of the game domain.
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MDP homomorphisms provide a formalism for expressing various abstractions and

also guidelines for designing appropriate abstractions. Applying such abstractions in

real world problems requires much design, guided by domain knowledge. We explore

the design of an experimental setup involving a humanoid robot. We build on the

control basis framework (Huber and Grupen, 1999; Huber, 2000) for hierarchical con-

trol and introduce suitable relativized options that enable efficient knowledge transfer

at higher levels of the hierarchy.

7.2 Future Work

Efficient Minimization Algorithms

The minimization algorithms presented in this thesis do not explicitly exploit the

structure of symmetry groups. As outlined in Chapter 4, partitions that arise from

symmetry groups are structured. This is in addition to the structure modeled in

factored MDPs. It is our contention that taking advantage of this structure would

allow us to develop more efficient minimization algorithms.

The minimization algorithms presented in Chapters 3 and 4 assume the availabil-

ity of a complete system model. While this assumption is valid in planning problems,

a complete model is not available in typical learning formulations. The approach we

take to forming abstraction is to leverage domain knowledge to define a family of

transformations in which to search for homomorphisms. One could also incremen-

tally construct a reduced image based on experience gained by interacting with the

environment. McCallum (1995) and Jonsson and Barto (2001) approach the problem

of abstraction along similar lines but use a different notion of equivalence. One useful

direction of further research is to explore incremental construction techniques that

employ MDP homomorphisms.
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Automatic Discovery of Relativized Options

One of the chief difficulties in using relativized options, or any hierarchical RL

approach, is designing an appropriate hierarchal decomposition. Autonomously dis-

covering hierarchical structure is an active topic of research recently (Digney, 1998;

McGovern and Barto, 2001; Hengst, 2002; Pickett and Barto, 2002). Many of these

algorithms for hierarchy discovery require extensive experience, simulated or real.

This experience can be used to construct a model of the environment and, in combi-

nation with a minimization algorithm, can be used to derive a reduced representation

of the option discovered. This is a promising direction to pursue for constructing

useful relativized options. The model itself would be an approximation of the true

system dynamics and hence would introduce additional error while forming reduced

models. We can use the approach due to Kearns and Singh (1998), specifically their

simulation lemma, to characterize the accuracy of the constructed model.

Applications

This thesis lays the theoretical foundation for a flexible abstraction paradigm and

provides tools for constructing powerful representational idioms. As we saw in Section

6.7, applying these ideas to specific domains requires significant amounts of domain

knowledge and design. Relativized options and MDP homomorphisms provide us with

tools for efficiently using this domain knowledge. Applications using the control basis

framework are particularly suitable since much of the prior work that needs to be

done in codifying the domain knowledge is in place and we can use our framework to

build upon it. We desire to build general guidelines for exploiting domain knowledge

in other application domains as well.

Deictic Representations

Memoryless consistent representation (CR) algorithms are a weak approach to

learning with deictic representations. The only other memoryless CR algorithm, the
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Lion algorithm, works only in deterministic environments. We can employ deictic

option schemas in stochastic environments, but the assumption that the set of deictic

pointers available is sufficient to express a CR is a restrictive assumption. In the

Bayesian approach we employ in Chapter 5 we assume the existence of a fixed set

of correct pointer configurations that do not change during the execution of a sub-

task. This is seldom the case, especially when we assume that the transformations

are implemented by physical sensors and effectors. In order to make deictic option

schemas more flexible we need to allow the correct pointer configuration to change

during a sub-task. One approach is to incorporate more features in the parameter

estimation algorithm, which can evolve during the execution of a task. In addition to

the current pointer values, using memory to derive the abstract representation also

vastly enhances the power of deictic option schemas. More exploration is needed in

this direction in order to verify the plausibility of these ideas.

Extending the Bayesian Algorithm

We formulate the problem of identifying the right transformation to apply in a

given sub-task as a parameter estimation problem in which the agent chooses the right

value from a discrete set of transformations. We can extend this approach to cases

where the transformations are not known in advance, but a family of transformations

is determined by some set of parameters. Such situations arise especially in domains

with continuous system dynamics. The transformations may be determined by some

continuous valued parameters, which can then be estimated using a Bayesian approach

similar to the one presented in this thesis.

The algorithm presented in Chapter 5 considers only the transition dynamics. This

is sufficient in many cases to identify the correct transformations, as demonstrated

in the experiments. In some domains it becomes imperative to pay attention to

the reward structure also in order to choose the correct transformations. One way
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to achieve this is to keep track of the value of each transformation along with the

posterior probabilities. The values are updated using a stochastic approximation

rule, but with the immediate rewards weighted by the current posteriors for the

transformation. This is a simple intuitively appealing approach to incorporating

reward structure in our search for the right transformation, and we are presently

working on empirically validating it.

7.3 Closing Remarks

In this dissertation we developed an algebraic framework for describing abstrac-

tion in MDPs. One of the key insights in this work is that a wide variety of commonly

used abstractions are in fact different aspects of the same underlying mathematical

structure captured by MDP homomorphisms and symmetry groups of MDPs. This

work is largely theoretical in nature, with limited empirical validation. In the later

part of the dissertation we built powerful representational idioms, namely relativized

options, option schemas and deictic option schemas, based on the notion of homo-

morphic equivalence. We envision these representational idioms forming the part of

the basis for lifelong learning in a situated agent. The agent would build a reper-

toire of schemas and transformations based on past training and experience. When

confronted with a new situation the agent tries to use an existing schema under an

appropriate transformation or acquire a new schema, building on its already acquired

knowledge.
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APPENDIX A

PROOF OF THEOREM 5

Definition: Let h = 〈f, {gs|s ∈ S}〉 :M1 →M2 and h′ = 〈f ′, {g′s|s ∈ S}〉 :M2 →

M3 be two MDP homomorphisms. The composition of h and h′ denoted by h ◦ h′ is

a map fromM1 toM3, with (h ◦ h′)(s, a) = h′(h(s, a)) =
(
f ′(f (s)), g′f(s)(gs (a))

)
for

all (s, a) ∈ Ψ. It can be easily verified that h ◦ h′ is a homomorphism from M1 to

M3.

Theorem 5: Let B be the coarsest reward respecting SSP partition of MDP M =

〈S,A,Ψ, P, R〉. The quotient MDPM/B is a minimal image ofM.

Proof: We will prove this by proving the contrapositive: if M/B is not a minimal

image ofM, then B cannot be the coarsest reward respecting SSP partition ofM.

Let h be the homomorphism from M to M/B. If M/B is not a minimal MDP,

then there exists a homomorphism h′ (that is not an isomorphism) from M/B to

some MDP M′. Therefore there exists a homomorphism (h ◦ h′) from M to M′.

From the definition of composition, it is evident that Bh < B(h◦h′).

We need to show that B is not coarser than B(h◦h′). In other words we need to

show that either B < B(h◦h′) or they are not comparable. From the construction of a

quotient MDP it is clear that Bh|S = B|S since we use B|S as the states of M/B.

SinceM′ is a homomorphic image ofM/B but is not isomorphic to it, either (i)M′

has fewer states thanM/B or (ii) some states inM′ have fewer actions thanM/B.

In case (i) we have that B|S < B(h◦h′)|S. We know that this implies that B is not

coarser than B(h◦h′). In case (ii) we have that B|S = B(h◦h′)|S. Let [s]B (= [s]B(h◦h′)
)
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be a state with fewer admissible actions inM′. This implies that s appears in fewer

unique blocks in B(h◦h′) than in B. Thus B < B(h◦h′). Therefore B is not the coarsest

reward respecting SSP partition. HenceM/B is a minimal image if B is the coarsest

reward respecting partition ofM. 2
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APPENDIX B

SOME RESULTS ON APPROXIMATIONS OF DYNAMIC
PROGRAMS

In this appendix we present, without proofs, some results due to Whitt (1978) on

error bounds in approximations of dynamic programs. Whitt develops these bounds

for a general formulation of dynamic programs developed by Denardo (1967), known

as the monotone contraction operator model. MDPs are a special case of such operator

models. Much of the material presented in this section is derived from Whitt’s (1978)

paper.

B.1 Contraction Operator Model of Dynamic Programs

Definition: A dynamic program is defined by the tuple 〈S, {As, s ∈ S}, h, γ〉. Here

S is the (non-empty) set of states and As is the set of actions admissible in state

s. Let the policy space Π be the Cartesian product of the action spaces.1 Let V

be the set of all bounded real-valued functions on S, with the supremum norm:

‖V ‖ = sup{|V (s)| : s ∈ S}. The local income function h assigns a real number to

each triple (s, a, V ), with s ∈ S, a ∈ As and V ∈ V . The function h generates a return

operator Hπ on V for each π ∈ Π, with [Hπ(V )] (s) = h(s, π(s), V ). The following

assumptions are made about the return operators:

(B) Boundedness: There exist numbers K1 and K2 such that ‖HπV ‖ ≤ K1+K2‖V ‖

for all V ∈ V and π ∈ Π.

1This implies we are only considering deterministic policies.
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(M) Monotonicity: If V ≥ U in V , i.e., if V (s) ≥ U(s) for all s ∈ S, then HπV ≥

HπU in V for all π ∈ Π.

(C) Contraction: For 0 ≤ γ < 1, ‖HπU −HπV ‖ ≤ γ‖U − V ‖, for all U, V ∈ V and

π ∈ Π.

The contraction assumption implies that Hπ has a unique fixed point in V for each

π ∈ Π, denoted by V π and called the return function of π. Let V ? denote the optimal

return function defined by V ?(s) = sup{V π(s) : π ∈ Π}. Let H? be the maximization

operator on V defined by [H?(V )] (s) = sup{[Hπ(V )] (s) : π ∈ Π}. The key property

of this model is that the operator H? also has the properties (B), (M) and (C) and it

fixed point is the optimal value function V ?.

To make this more accessible, let us see how this model can represent an MDP,

M = 〈S,A,Ψ, P, R〉. The states and action sets of the MDP are the states and

actions of the corresponding dynamic program. The parameter γ has to be chosen

apriori as is usually done. We define the local return function corresponding to M

as follows:

h(s, a, V ) = R(s, a) + γ
∑

s′

P (s, a, s′)V (s′)

where V is a real valued function on S. If V corresponds to the value function for

some fixed policy π, then the function h is in fact the Q function corresponding to the

policy π. In traditional MDP notation, we restrict attention to only value functions

corresponding to some policies and do not consider all elements of V . Hence the

traditional notation depends only on the policy and not on the function V .

For a fixed policy π, the operator Hπ converges to the value function for the policy

in M. The operator models a technique known as iterative policy evaluation. The

maximization operator H? converges to the optimal value function forM and models

the MDP solution technique known as value iteration (Puterman, 1994).
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B.2 Whitt’s Approximation Results

We present a brief description of Whitt’s approximation framework for dynamic

programs and state just the results we use in this thesis. For a more complete de-

scription and the proofs see (Whitt, 1978). Let D = 〈S, {As, s ∈ S}, h, γ〉 and

D′ = 〈S ′, {A′
s′ , s

′ ∈ S ′}, h′, γ′〉 be two dynamic programs. We say D and D′ are com-

parable and D′ is an image of D is the following maps are well-defined: (1) a map f

from S onto S ′, (2) a map gs from As onto Af(s), (3) a map f ′ from S ′ into S such

that f (f ′(s′)) = s′ for all s′ ∈ S ′ and (4) a map g′s from Af(s) into As such that

gs (g′s(a
′)) = a′ for all a′ ∈ Af(s) and s ∈ S.

Given two comparable dynamic programs, the distance between them can be

expressed in terms of the following quantity, for all V ∈ V :

K(V ) = sup
a∈As
s∈S

|h(s, a, V )− h′(f(s), gs(a), f(V ))|

where f(V ) : S ′ → IR with f(V )(s′) = V (f ′(s′)) for each s′ ∈ S ′. We then define

K(V ′) = K(f ′(V ′)) where f ′(V ′) : S → IR with f ′(V ′)(s) = V ′(f(s)) for each s ∈ S.

We state the following without proof:

Lemma 3.1: For all U ′, V ′ ∈ V ′, |K(U ′)−K(V ′)| ≤ (γ + γ ′) ‖U ′ − V ′‖.

Corollary: If π′? is an ε-optimal policy in Π′ then:2

∥∥∥V ? − V π′?
D

∥∥∥ ≤
2

1− γ
K(V π′?

) +

(
1 +

γ + γ′

1− γ

)
ε

where π′?
D is the policy formed by lifting π′? to the dynamic program D.3

2If π is an ε-optimal policy, then ‖V ? − V π‖ ≤ ε.

3Under Whitt’s definition of lifting, we need to ensure that the lifted policy is also deterministic.
Hence instead of assigning equal probabilities to all the pre-image actions, we just pick one.
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The following result applies to stochastic sequential decision models like MDPs.

For the sake of simplicity we present the Theorem as it applies to finite MDPs. In the

previous section we saw how to construct a dynamic program to represent a MDP.

Let us define the following quantities:

Kr = max
s∈S

a∈As

| R(s, a)−R′(f(s), gs(a)) |

Kp = max
s∈S

a∈As

∑

[s1]f∈Bf

∣∣∣ T (s, a, [s1]f )− P
′(f(s), gs(a), f(s1))

∣∣∣

δ(V ) = max
s∈S

V (s)−min
s∈S

V (s)

δ(V ′) = δ(f ′(V ′))

δr′ = max
s′∈S′

a′∈A
s′

R′(s′, a′)− inf
s′∈S′

a′∈A
s′

R′(s′, a′)

Theorem 6.1 For any V ′ ∈ V ′, K(V ′) ≤ Kr + γ δ(V ′)Kp

2
.

Corollary: K(V π′?
) ≤ Kr + γ

1−γ
δr′

Kp

2
.
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