
© 2021 Arm

Phil Ridley

phil.ridley@arm.com

3rd March 2021

Overview of the Arm ISA
for HPC

Centre for Development of Advanced Computing
(C-DAC) / National Supercomputing Mission

(NSM)
Arm in HPC Course

2 © 2021 Arm

Agenda
• Neon instructions

• SIMD on Arm
• Programming with Neon

• SVE
• Introduction to SVE and Registers

• VLA Programming
• How to Program SVE

• Simple Instructions
• Load / Store Operations
• Intrinsics with ACLE

© 2021 Arm

General Purpose Vector Instructions

4 © 2021 Arm

Arm Neon Vector Units
• SIMD Vector Extensions

• Advanced Single Instruction Multiple Data
• Fixed width at 128-bit

• As of Armv8-a
• 31x 64-bit general-purpose registers

– The 32-bit W register is lower half of 64-bit X register
• 32x 128-bit floating-point registers

– D is lower 64 bits of 128-bit Q registers

• Example:
• fadd v0.4s, v0.4s, v1.4s
• Addition of 4 x 32-bit floats

– 128-bit Neon/32-bit Int = 4 Lanes

SPSR: Saved Program State Register

64-bit register layout

5 © 2021 Arm

Arm Neon Vector Instructions
• Comprehensive set of vector operations

• Loads, stores and maths operations
• Scalar and floating point

FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Instruction Destination Operand 1 Operand 2

• <Vd> - Destination register, <T> - Type e.g. 4S or 2D

FADD V0.4S, V0.4S, V1.4S

• Add 4 single precision floating point values from V0 to V1 and store in V0
• V0 += V1

https://armv8.arm.com/v8-A/v8.6/isa64/ISA_A64_xml_v86A-2019-12/fadd_advsimd.xml
https://armv8.arm.com/v8-A/v8.6/isa64/ISA_A64_xml_v86A-2019-12/fadd_advsimd.xml
https://armv8.arm.com/v8-A/v8.6/isa64/ISA_A64_xml_v86A-2019-12/fadd_advsimd.xml
https://armv8.arm.com/v8-A/v8.6/isa64/ISA_A64_xml_v86A-2019-12/fadd_advsimd.xml
https://armv8.arm.com/v8-A/v8.6/isa64/ISA_A64_xml_v86A-2019-12/fadd_advsimd.xml
https://armv8.arm.com/v8-A/v8.6/isa64/ISA_A64_xml_v86A-2019-12/fadd_advsimd.xml

6 © 2021 Arm

Programming Neon

• .LBB0_4: Start with vector loop (and unroll)
• Load 8 x 32-bit values (into 2 x 128-bit registers)
• Subtract 8 from loop counter
• 2x Neon add instructions (register to itself => 2.0*a[i])
• Store pair of 128-bit registers back
• Update array offsets
• Loop if >=8 iterations left

• .LBB0_7: Remainder (fewer than 8 iterations left)
• Load a single scalar
• Add it to itself
• Store
• Loop if iterations left

7 © 2021 Arm

Ease of Use for Neon
Where to start

Neon Intrinsics (ACLE) Auto Vectorisation & Libraries

• Not everyone wants to hand code assembly

• Compilers will generate vector code
• Generally at optimization levels > -O2
• Supported in GCC, LLVM, Cray, Arm compiler
• Vectorisation reports will inform on success

• Designed for ease of use
• No big gains for Double precision
• 2x at *best* - but very unlikely

• Vectorised libraries
• Such as ArmPL maths library

• `#include arm_neon.h`
• Header file of neon intrinsics

• Map to assembly types and instruction names

float32x4_t va = vld1q_f32(&a[i]);
va = vmulq_n_f32(va, 2.0);
vst1q_f32(&a[i], va)

• Load 4x 32-bit floats into `va` from a[i]
• Multiply the floats in `va` by 2.0
• Store contents of `va` back into a[i]

8 © 2021 Arm

Limitations of Neon
• Neon is firstly only 128-bit

• Not much use to HPC / Scientific Computing

• Want bigger vectors
• To expand to 256-bit of 512-bit we would need separate instructions
• Arm like to offer flexibility to customers - Different vector lengths

– However it is a RISC architecture (32-bit instruction encoding)

• Suffers from same drawbacks as other vector implementations (AVX)
• Difficulty to auto-vectorise
• Remainder loops

© 2021 Arm

Scalable Vector Extension:
Today’s new Vectorisation Paradigm

10 © 2021 Arm

Scalable Vector Extension

• SVE is Vector Length Agnostic (VLA)

• Vector Length (VL) is a hardware implementation choice from 128 up to 2048 bits.

• New programming model allows software to scale dynamically to available vector length.

• No need to define a new ISA, rewrite or recompile for new vector lengths.

• SVE is not an extension of Advanced SIMD (aka Neon)

• A separate, optional extension with a new set of instruction encodings.

• Initial focus is HPC and general-purpose server, not media/image processing.

• SVE begins to tackle traditional barriers to auto-vectorization

• Software-managed speculative vectorization allows uncounted loops to be vectorized.

• In-vector serialised inner loop permits outer loop vectorization in the presence of dependencies.

11 © 2021 Arm

Arm’s Scalable Vector Extension (SVE)
What does the SVE ISA look like?

How SVE works SVE improves auto-vectorization

1 + 2 + 3 + 4

1 + 2

+

3 + 4

3 7
= =

=

=

1 2 3 4
5 5 5 5
1 0 1 0

6 2 8 4

+
=

pred

1 2 0 0
1 1 0 0

+
pred

1 2

CMPLT n
n-2
1 01 0

n-1 n n+1INDEX i

for (i = 0; i < n; ++i)

Gather-load and scatter-store

Per-lane predication

Predicate-driven loop control
and management

Vector partitioning and
software-managed speculation

Extended floating-point
horizontal reductions

The hardware sets the vector length…0 512

In software, vectors have no length

The exact same binary code runs on
hardware with different vector lengths

=A CB+

512b

512b
512b+ =

512b vector unit

256b

256b
256b+ =

256b vector unit

12 © 2021 Arm

SVE vs Traditional ISA
How do we compute data which has ten chunks of 4-bytes?

SVE (128-bit VLA vector engine)
q Three iterations over a 16-byte VLA register

with an adjustable predicate

Aarch64 (scalar)
q Ten iterations over a 4-byte register

Neon (128-bit vector engine)
q Two iterations over a 16-byte register + two

iterations of a drain loop over a 4-byte register

13 © 2021 Arm

How big can an SVE vector be?
Any multiple of 128 bits up to 2048 bits, and it can be dynamically reduced.

(A) VL = LEN x 128
(B) VL <= 2048

VL is implementation dependent,
can be reduced by the OS/Hypervisor.

?

14 © 2021 Arm

How can you program when the vector length is unknown?
SVE provides features to enable VLA programming from the assembly level and up

1 2 3 4
5 5 5 5
1 0 1 0

6 2 8 4

+

=
pred

Per-lane predication
Operations work on individual lanes under control of a
predicate register.

n-2
1 01 0CMPLT n

n-1 n n+1INDEX i
for (i = 0; i < n; ++i) Predicate-driven loop control and management

Eliminate scalar loop heads and tails by processing partial
vectors.

Vector partitioning & software-managed speculation
First Faulting Load instructions allow memory accesses to cross into
invalid pages.1 2 0 0

1 1 0 0
+

pred

1 2

15 © 2021 Arm

SVE Registers

• Scalable vector registers

• Z0-Z31 extending NEON’s 128-bit V0-V31.

• Packed DP, SP & HP floating-point elements.

• Packed 64, 32, 16 & 8-bit integer elements.

• Scalable predicate registers

• P0-P7 governing predicates for load/store/arithmetic.

• P8-P15 additional predicates for loop management.

• FFR first fault register for software speculation.

16 © 2021 Arm

SVE vector & predicate register organization

17 © 2021 Arm

SVE Predicate condition flags

SVE is a predicate-centric architecture
• Predicates are central, not an afterthought
• Support complex nested conditions and loops.
• Predicate generation also sets condition flags.
• Reduces vector loop management overhead.

Overloading the A64 NZCV condition flags
Flag SVE Condition

N First Set if first active element is true

Z None Set if no active element is true

C !Last Set if last active element is false

V Scalarized loop state, else zero

Condition
Test

A64
Name

SVE
Alias SVE Interpretation

Z=1 EQ NONE No active elements are true

Z=0 NE ANY Any active element is true

C=1 CS NLAST Last active element is not true

C=0 CC LAST Last active element is true

N=1 MI FIRST First active element is true

N=0 PL NFRST First active element is not true

C=1 & Z=0 HI PMORE More partitions: some
active elements are true but
not the last one

C=0 | Z=1 LS PLAST Last partition: last active
element is true or none are true

N=V GE TCONT Continue scalar loop

N!=V LT TSTOP Stop scalar loopReuses the A64 conditional instructions
• Conditional branches B.EQ → B.NONE
• Conditional select, set, increment, etc.

18 © 2021 Arm

SVE supports vectorization in complex code
Right from the start, SVE was engineered to handle codes that usually won’t vectorize

1 + 2 + 3 + 4
1 + 2

+

3 + 4

3 7
= =

=

= Extended floating-point horizontal reductions
In-order and tree-based reductions trade-off performance and repeatability.

Gather-load and scatter-store
Loads a single register from several non-contiguous memory locations.

© 2021 Arm

Vector Length Agnostic
Programming

20 © 2021 Arm

Vector Length Agnostic
programming model

VLA
Write once

Compile once

Vectorize more loops

21 © 2021 Arm

Open source support
• Arm actively posting SVE open source patches upstream

• Beginning with first public announcement of SVE at HotChips 2016

• Available upstream
• GNU Binutils-2.28: released Feb 2017, includes SVE assembler & disassembler
• GCC 8: Full assembly, disassembly and basic auto-vectorization
• LLVM 7: Full assembly, disassembly
• QEMU 3: User space SVE emulation
• GDB 8.2 HPC use cases fully included

• Under upstream review
• LLVM: Since Nov 2016, as presented at LLVM conference
• Linux kernel: Since Mar 2017, LWN article on SVE support

https://sourceware.org/ml/binutils/2017-02/msg00097.html
http://lists.llvm.org/pipermail/llvm-dev/2016-November/106819.html
https://lwn.net/Articles/717804/

22 © 2021 Arm

Quick Recap

• SVE enables Vector Length Agnostic (VLA) programming
• VLA enables portability, scalability, and optimization
• Predicates control which operations affect which vector lanes

• Predicates are not bitmasks
• You can think of them as dynamically resizing the vector registers

• The actual vector length is set by the CPU architect
• Any multiple of 128 bits up to 2048 bits
• May be dynamically reduced by the OS or hypervisor

• SVE was designed for HPC and can vectorize complex structures
• Many open source and commercial tools currently support SVE

n-2
1 01 0CMPLT n

n-1 n n+1INDEX i

for (i = 0; i < n; ++i)

1 2 0 0
1 1 0 0

+
pred

1 2

23 © 2021 Arm

Vector Length Agnostic Programming
A paradigm shift for developers

Advantages

• Not thinking about vector length
• Rather just vectorisation

• No peel/remainder loops
• All handled by predication

• Key is loop structures
• Predicates are powerful

Considerations

• Should not be writing fixed width
• Applies to data structures and instructions
• More portable for different hardware

• Can the compiler identify loop structure?
• Generate predicated instructions

• However: VLA *may* be slower
• Cost of generating predicates
• Near empty loops

© 2021 Arm

Introduction to SVE Instructions

25 © 2021 Arm

Simple Instructions: Generating Predicates
• PTRUE <Pd>.<T>

• Predicate of all 1’s
• Suffix of type single or double

X8 = #8, X2 = #11

• WHILELT <Pd>.<T>, <R><n>, <R><m>
• Counter less than
• Used for loops
• for(int i=8; i<11;++i)

26 © 2021 Arm

Simple Instructions: Loads
• LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

• Load double word (64-bit) into <Zt> register
• Using predicate <Pg>
• Load ‘zeros’ for all non active lanes of <Pg>
• From address of <Xn|SP> register

– With offset of counter <Xm>
– With a logical shift left of 3 (multiplied by 8)

255

NaN

192

0

31 24

191

19.92

128

1

23 16

127

-1.0

64

1

15 8

63

1.02

0

1

7 0

P0.D

Z0.D
255

0

192 191

19.92

128 127

-1.0

64 63

1.02

0

A[8]

X0 = double *A
X8 = #8
X2 = #11
WHILELT P0.D, X8, X2
LD1D { Z0.D }, P0/z, [X0, X8, LSL #3]

27 © 2021 Arm

How do you count by vector width?
No need for multi-versioning: one increment to rule all vector sizes

ld1w z1.s, p0/z, [x0,x4,lsl 2] // p0:z1=x[i]
ld1w z2.s, p0/z, [x1,x4,lsl 2] // p0:z2=y[i]
fmla z2.s, p0/m, z1.s, z0.s // p0?z2+=x[i]*a
st1w z2.s, p0, [x1,x4,lsl 2] // p0?y[i]=z2

incw x4 // i+=(VL/32)
// or
incd x4 // i+=(VL/64)

“Increment x4 by the number of 32-bit lanes (w) that fit in a VL.”
“Increment x4 by the number of 64-bit lanes (d) that fit in a VL.”

28 © 2021 Arm

Simple Instructions: Conditional Multiply
mov x8, xzr

ptrue p0.d

whilelo p1.d, xzr, x9

fmov z0.d, #1.50000000

.LBB0_2:

ld1d { z1.d }, p1/z, [x1, x8, lsl #3]

fcmgt p2.d, p1/z, z1.d, #0.0

fmul z1.d, p2/z, z1.d, z0.d

st1d { z1.d }, p2, [x1, x8, lsl #3]

incd x8

whilelo p1.d, x8, x9

b.mi .LBB0_2

1.5000 1.5000 1.5000 1.5000

P0 1 1 1 1

0 1 1 1P1
Z0

0 -3.0 2.0 -1.0Z1

NAN -3.0 2.0 -1.0Memory

0 0 1 0P2
0 0 3.0000 0Z1
NAN -3.0 3.000 -1.0Memory

A = {-1.0, 2.0, -3.0}
for(int i=0; i< N; ++i)

if(a[i] > 0) a[i] *=1.5;
255 192191 128127 64 63 0

P1 0 0 0 0

© 2021 Arm

Arm C Language
Extensions for SVE

Compiler Intrinsics for SVE

30 © 2021 Arm

SVE ACLE
SVE Arm C Language Extensions – aka C intrinsics

#include <arm_sve.h>

• VLA Data types:
• svfloat64_t, svfloat16_t, svuint32_t,
…

• sv<datatype><datasize>_t

• Predication:
• Merging: _m
• Zeroing: _z
• Don’t care: _x
• Predicate type: svbool_t

• Intrinsics are not 1-1 with the ISA.

• But Nearly one intrinsic per SVE instruction

• VLA functions:
• svfloat64_t svld1_f64(svbool_t pg, const

float64_t *base)
• svfloat32_t svadd[_n_f32]_z(svbool_t pg,

svfloat32_t op1,

float32_t op2);
• svbase[disambiguator][type0][type1]…[pred]
• base is the lower-case name of an SVE instruction
• disambiguator distinguishes between different forms of a

function
• typeN lists the types of vectors and predicates
• pred describes the inactive elements in the result of a

predicated operation

Arm C Language Extensions for SVE

https://static.docs.arm.com/100987/0000/acle_sve_100987_0000_00_en.pdf

31 © 2021 Arm

Vectorizing a scalar loop with ACLE
a[:] = 2.0 * a[:]

for (int i=0; i < N; ++i) {

a[i] = 2.0 * a[i];

}

Original Code

int i;

// vector loop

for (i=0; (i<N–3) && (N&~3); i+=4) {

float32x4_t va = vld1q_f32(&a[i]);

va = vmulq_n_f32(va, 2.0);

vst1q_f32(&a[i], va)

}

// drain loop

for (; i < N; ++i)

a[i] = 2.0 * a[i];

for (int i = 0 ; i<N ; i += svcntw()){

svbool_t Pg = svwhilelt_b32(i, N);

svfloat32_t va = svld1(Pg, &a[i]);

va = svmul_x(Pg, va, 2.0);

svst1(Pg, &a[i], va);

}

128-bit Neon ACLE SVE ACLE

Arm C Language Extensions for SVE

https://static.docs.arm.com/100987/0000/acle_sve_100987_0000_00_en.pdf

32 © 2021 Arm

Vectorizing A Scalar Loop With ACLE
a[:] = 2.0 * a[:]

Original Code

for (int i=0; i < N; ++i) {

a[i] = 2.0 * a[i];

}

128-bit Neon vectorization

int i;

// vector loop
for (i=0; (i<N–3) && (N&~3); i+=4) {
float32x4_t va = vld1q_f32(&a[i]);
va = vmulq_n_f32(va, 2.0);
vst1q_f32(&a[i], va)

}
// drain loop
for (; i < N; ++i)
a[i] = 2.0 * a[i];

This is Neon,
not SVE!

33 © 2021 Arm

Vectorizing A Scalar Loop With ACLE
a[:] = 2.0 * a[:]

128-bit Neon vectorization

int i;

// vector loop
for (i=0; (i<N–3) && (N&~3); i+=4) {
float32x4_t va = vld1q_f32(&a[i]);
va = vmulq_n_f32(va, 2.0);
vst1q_f32(&a[i], va)

}
// drain loop
for (; i < N; ++i)
a[i] = 2.0 * a[i];

SVE vectorization

for (int i = 0 ; i < N; i += svcntw()

)

{

svbool_t Pg = svwhilelt_b32(i, N);

svfloat32_t va = svld1(Pg, &a[i]);

va = svmul_x(Pg, va, 2.0);

svst1(Pg, &a[i], va);

}

for (int i=0; i < N; ++i) {
a[i] = 2.0 * a[i];

}

34 © 2021 Arm

Vectorizing A Scalar Loop With ACLE
a[:] = 2.0 * a[:]

SVE vectorization

for (int i = 0 ; i < N; i += svcntw()

)

{

svbool_t Pg = svwhilelt_b32(i, N);

svfloat32_t va = svld1(Pg, &a[i]);

va = svmul_x(Pg, va, 2.0);

svst1(Pg, &a[i], va);

}

SVE vectorization with fewer branches

svbool_t all = svptrue_b32();
svbool_t Pg;
for (int i=0;

svptest_first(all,
Pg=svwhilelt_b32(i, N));

i += svcntw())
{

svfloat32_t va = svld1(Pg, &a[i]);
va = svmul_x(Pg, va, 2.0);
svst1(Pg, &a[i], va);

}

for (int i=0; i < N; ++i) {
a[i] = 2.0 * a[i];

}

35 © 2021 Arm

Vectorizing A Scalar Loop With ACLE
a[:] = 2.0 * a[:]

SVE vectorization with fewer branches

svbool_t all = svptrue_b32();
svbool_t Pg;
for (int i=0;

svptest_first(all,
Pg=svwhilelt_b32(i, N));

i += svcntw())
{

svfloat32_t va = svld1(Pg, &a[i]);
va = svmul_x(Pg, va, 2.0);
svst1(Pg, &a[i], va);

}

Compiler Assembly

foo(float*, int): // @foo(float*, int)
cmp w1, #1 // =1
b.lt .LBB0_3
mov w9, w1
mov x8, xzr
whilelo p1.s, xzr, x9
ptrue p0.s

.LBB0_2: // =>This Inner Loop Header: Depth=1
ld1w { z0.s }, p1/z, [x0, x8, lsl #2]
fmul z0.s, p0/m, z0.s, #2.0
st1w { z0.s }, p1, [x0, x8, lsl #2]
incw x8
whilelo p1.s, x8, x9
b.mi .LBB0_2

.LBB0_3:
ret

for (int i=0; i < N; ++i) {
a[i] = 2.0 * a[i];

}

36 © 2021 Arm

Vectorizing A Scalar Loop With ACLE
a[:] = 2.0 * a[:]

SVE vectorization with fewer branches

svbool_t all = svptrue_b32();
svbool_t Pg;
for (int i=0;

svptest_first(all,
Pg=svwhilelt_b32(i, N));

i += svcntw())
{

svfloat32_t va = svld1(Pg, &a[i]);
va = svmul_x(Pg, va, 2.0);
svst1(Pg, &a[i], va);

}

Compiler Assembly

foo(float*, int): // @foo(float*, int)
cmp w1, #1 // =1
b.lt .LBB0_3
mov w9, w1
mov x8, xzr
whilelo p1.s, xzr, x9
ptrue p0.s

.LBB0_2: // =>This Inner Loop Header: Depth=1
ld1w { z0.s }, p1/z, [x0, x8, lsl #2]
fmul z0.s, p0/m, z0.s, #2.0
st1w { z0.s }, p1, [x0, x8, lsl #2]
incw x8
whilelo p1.s, x8, x9
b.mi .LBB0_2

.LBB0_3:
ret

for (int i=0; i < N; ++i) {
a[i] = 2.0 * a[i];

}

37 © 2021 Arm

SVE Gives You More
• SVE is really powerful (mainly due to predicates)

• Compilers can exploit this power
• Auto-vectorisation getting much better

• Power is also being able to vectorise new things
• Previously hard to vectorise
• Mapping IF statements to predicates

© 2021 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2021 Arm

