Identifying biological circuits capable of specific
functionalities using ML-based ODE solutions

Background

Living cells consist of complex networks of metabolism, signalling and regulation. With the advent of
synthetic biology, which involves the de novo design of biological networks, a common question that arises
is as to how one designs a biological network that performs a specific function. For example, how does one
design a circadian oscillator? Or, how does one design a (tuneable) switch? Also, are there any clear design
principles underlying the construction of these systems? Current approaches to designing such systems
are based on trial and error, or brute force explorations of the design space'. We have also developed

systems-theoretic approaches to design such networks’.

The classic approach by Ma et al. (2009)" involved the simulation of over 16,000 networks comprising three
proteins each, each with 10,000 different parameter realisations. Given this massive complexity, for even a
small three-node network, it becomes imperative to develop a more scalable approach, perhaps leveraging
ML approaches to solve the ODEs, or even identify topology-parameter combinations.

Methodology

Generating ODEs
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This figure from Ma et al.' shows (B) possible links between three proteins, resulting in 16,038
combinations, i.e. networks, (C) some example realisations from these 16K networks, and (D) an example
of translating a network to ODEs, which are then solved and evaluated for their “behaviour”, the behaviour
in this case being “perfect adaptation”, characterised by specific responses to perturbations, etc.

ML-based solution of ODEs

In recent years, several data-driven and data-free approaches for solving partial/ordinary differential
equations (PDEs/ODEs) have been proposed. The backbone of these approaches is the use of (deep) neural
networks, which have proven to be capable of learning complex non-linear relationships between the
inputs and the outputs. Current ML approaches are primarily data-driven where the training is performed
based on existing ODE simulation data. While a large fraction of data-free neural solvers are designed for
pointwise predictions® *, i.e., the networks in these cases take as input t in temporal domain (0, T], and
produces an output vector u, by calculating the value of state variable at each t. They exploit the ideas of
automatic differentiation to solve the ODE by minimizing the residual over a set of sampled points t. Due to
this implicit representation, these methods do not require entire time discretization and rely on
collocating points from the domain randomly. Apart from minimizing the residual, these approaches also
satisfy the prescribed initial conditions. Another data-free approach is based on full-field predictions>®,
where a neural network is trained for a parameter set of a family of ODEs i.e., for a given input control
parameter vector the network predicts all state variables for all the time steps in a single shot. In this
project, we will explore both data-driven and pointwise and full-field data-free deep learning methods.

Deliverables

e A scalable approach to solve 10K+ ODE systems (all inter-related, with mild variations), with many
many parameter realisations
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