
Running AI Inference
On CPUs

Pradeep Ramachandran
Director and Head of Research,

Advanced Computing Labs,
KLA, India

1st October, 2021

KLA Non-Confidential | Unrestricted2

Why is Running AI Inference on CPUs Important?
§ Because it is there!

§ Every system typically has a powerful CPU to host system & legacy applications

§ Accelerators may not be available in the system used for inference
§ Accelerators (even GPUs) are still the “new kid in the block”; not all systems have them

§ System to be used in deployment may be unknown in certain use-cases; edge devices, cloud, etc.

§ Data for inference already in CPU-accessible memory; no need for data movement!

Data Source Connection
BW (GBps) [1][2]

Theoretical Practical

System Memory DDR4-3200 (8 ch) 204.8 171.5

GPU memory HBM2 1555.0 1250.0

CPU ó GPU
connect

Gen4 PCIe x16 32.0 26.2

CPU ó GPU
connect

NVLink (used by
SXM2)

300.0 240.0

[1] https://www.microway.com/knowledge-center-articles/performance-characteristics-of-common-transports-buses/
[2] https://www.nextplatform.com/micro-site-content/achieving-maximum-compute-throughput-pcie-vs-sxm2/

Big gap!

CPU System
Memory

GPU
GPU

Memory

https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31
https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31

KLA Non-Confidential | Unrestricted3

Compute & Data Patterns of AI Workloads

§ Observations about compute patterns
§ Multiplication followed-by addition (or reduction) is common

§ Most operations are repeated across several data elements with limited scalar operations in between

§ Observations about data patterns
§ Outputs of one layer serve as inputs to the next; but inputs aren’t reused

§ Only weights are reused across instances; no other information in shared (during inference)

Typical Operations in Dense Layers [3] Typical Operation in Convolution Layers [4]

[3] https://jcheminf.biomedcentral.com
[4] https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411

https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31
https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31

KLA Non-Confidential | Unrestricted4

CPU Support to Exploit Compute Patterns

§ Rest of the talk will focus on these three elements
§ Techniques that exploit the workloads’ data patterns is beyond the scope of this talk

Workload Pattern CPU Support Benefits

Multiplication + addition is
common

ISA natively supports fused
multiply-add (FMA)

Reduced cycle count for mult +
add; limited front-end
bottlenecks

Most operations are repeated
across several data elements

Width of Vector units (leveraged
by multimedia workloads)
increased

Significantly increased
throughput for AI loads

Networks use limited scalar
operations amidst parallel
operations

Thread ganging support Leverage single-thread
performance of CPU cores for
improved inference throughput

Inference
with CPU

Vector Units

KLA Non-Confidential | Unrestricted6

Vector Architectures – The Basics
§ Basic idea:

§ Read sets of data elements into “vector registers”
§ Operate on those registers
§ Disperse the results back into memory

§ Registers are controlled by compiler
§ Used to hide memory latency
§ Leverage memory bandwidth

§ Example: DAXPY (Ry = a * Rx + Ry) takes 6 instructions with vector; 100s with scalar [5]

L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4,V2,V3 ; vector-vector add
SV Ry,V4 ; store the result vector

[5] J. Hennessey, and D. Patterson, “Computer Architecture, a Quantiative Approach”, Sixth Edition, 2017

F0

F1

F2

…

V0

V1

V2

…

Scalar
reg file Vector reg file

https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31

KLA Non-Confidential | Unrestricted7

Vector Architecture – The Basics, Continued…
§ Operating on long- and short-vectors supported via dedicated registers

§ Variable length vectors supported with knowledge of max (mvl), and current vector length (vlr)
§ Use strip-mining to break vector into mvl-sized vectors that can be operated on in parallel

§ Vector mask register supports “disabling” some elements of vector during operation

§ Main challenge – real-world apps didn’t have as much vector parallelism!
§ Cray-1 implemented a vector-style architecture but moved away from subsequent generations

mvl mvl mvl mvl mvl mvl tail

vlrEach mvl-sized vector
operated upon in one iteration

Tail (size = vlr % mvl) handled
in last iteration

KLA Non-Confidential | Unrestricted8

Vector Architecture – The Practical SIMD Implementation
§ Two key observations led to practical adaptations of vector architectures

§ #1: Media workloads were the main “data parallel applications” until the last decade

§ #2: Media workloads operated on data that was 8b or 16; 64b was too long!
§ # bits per pixel dictated by accuracy of camera sensors; even today it isn’t common to go to 16

§ Providing vector registers of mvl * 64b wasn’t that useful

§ CPUs provide vector units that operate on “configurable” register files
§ Dedicated int and fp vector register file provided; can be configured for various vector lengths

§ Int file = n x 8b, or n/2 x 16b, or n/4 x 32b, or n/8 * 64b regs; fp file = 32b (single) or 64b (double) regs

§ Dedicated instructions in ISA to operate on vectors of different widths
§ E.g., vaddpd in AVX adds two double precision fp regs, while vaddps adds two single precision fp regs [6]

§ Implementations called SIMD (Single Instruction Multiple Data) vector units
§ Examples – MMX, SSE, AVX, AVX2, AVX512 in x86 processors, Neon in ARM, Altivec in POWER, etc.

[6] x86 Assembly Language Reference Manual - https://docs.oracle.com/cd/E37838_01/html/E61064/gntbd.html#scrolltoc

https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31

KLA Non-Confidential | Unrestricted9

Leveraging Vector Units: Case Study with Video Encoders
§ Video encoders are highly data-parallel & leverage vector units for SIMD parallelism

§ Pixels represented as 8bit or 16bit numbers; integer and fp operations (like SAD, MSE) typical

§ Study: How x264, and x265 (open source video codecs) gain from SIMD parallelism [7]

[7] https://software.intel.com/content/www/us/en/develop/articles/accelerating-x265-with-intel-advanced-vector-extensions-512-intel-avx-512.html

https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31

KLA Non-Confidential | Unrestricted10

Expanded Vector Architecture for AI Inference
§ AI workloads use convolutions that are matrix operations

§ Dense layers tend to be more vector-like, but may also leverage matrix

§ Modern CPUs adding matrix-units on top of vector-units
§ Intel released Advanced Matrix Extension (AMX) focused on AI loads [8]

§ Register file is a 2D “tile”; 8 regs * 1Kb per register

§ TMUL instruction operates on tiles performing multiply and accumulate (MAC)

§ Throughput increases from 256 à 2048 int8 ops / cycle / core!

Typical Operation in Convolution Layers [4]

[8] https://download.intel.com/newsroom/2021/client-computing/intel-architecture-day-2021-presentation.pdf

https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31

KLA Non-Confidential | Unrestricted11

Vectors: The Devil is In the Detail!
§ Vector (and matrix) implementations giveth throughput but…

§ … they taketh clock-speed away! [9]

§ ... and automatic generation isn’t practical to-date

§ Implementation can be long and arduous
§ Every new generation typically requires a rewrite of kernels

§ And enough kernels need rewrite to overcome freq hits [7]

[9] https://www.anandtech.com/show/13405/intel-10nm-cannon-lake-and-core-i3-8121u-deep-dive-review/5

https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31

KLA Non-Confidential | Unrestricted12

Vector Implementations – Recent Trends!
§ SIMD implementations a huge success, but has significantly complicated the ISA [10]

§ IA-32 instruction set has grown from 80 instructions in 1978 to ~1400 instructions largely due to SIMD!
§ Ensuring backwards compatibility of older instructions with wider new gen one of the key contributors

§ Complex ISA complicates decode, and make job of user (application writer / compiler) harder

§ RISC-V recently proposed going back to a vector-like ISA that uses vlr, and mlr
§ Registers 64b wide; operating them as 32b / 16b / 8b, and non-mlr-conformat vectors handled in HW

§ Significantly simplifies ISA, and book-keeping overhead when running in a loop

[10] https://www.sigarch.org/simd-instructions-considered-harmful/

https://www.sigarch.org/simd-instructions-considered-harmful/

Other CPU
Advancements

for Inference

KLA Non-Confidential | Unrestricted14

Extensions to ISA that Aid Inference
§ Most CPUs support Fused Multiply Add (FMA) instructions at low latency

§ Initially introduced for media workloads; extensions to 128b and 256b SIMD instructions [11]

§ Intel VNNI added specific AI-focused instructions that fuse AVX512 instructions [12]

§ Leveraged by compilers during back-end code-gen to optimize inference latency
§ Hand-coded intrinsics, or assembly functions can also use these instructions

[11] https://en.wikipedia.org/wiki/FMA_instruction_set
[12] https://www.intel.com/content/dam/www/public/us/en/documents/product-overviews/dl-boost-product-overview.pdf

https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31
https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31

KLA Non-Confidential | Unrestricted15

§ CPU cores may be “grouped” to improve utilization for multi-session inference [13]

§ Multi-session inference offers several advantages
§ Reduced synchronization overhead

§ Improved performance if work is grouped such that activations fit inside L2

§ Similar to the idea of Multi-Process Service (MPS) with CUDA for NVIDIA GPUs [14]

Running Multiple Inference Sessions on CPU

[13] Guokai Ma, “Tutorial: Deep Learning Inference Optimizations for CPU ”, Hot Chips 2021
[14] https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

https://medium.com/swlh/risc-v-vector-instructions-vs-arm-and-x86-simd-8c9b17963a31

KLA Non-Confidential | Unrestricted16

The CPU is Not New, Einstein!
§ Techniques used to improve inference performance in accelerators also apply here

§ Models that operate with reduced precisions at inference deployed on CPUs
§ CPUs can accelerate BF16 (16-bit block-float), int8, and lower precision inference using vector units

§ Throughput typically doubles with half the precision
§ Int8 throughput = 2X FP16 = 2X FP32 = 2X FP64 (typically)

§ Impact to model accuracy handled with techniques like calibration, centering, etc.

§ Fuse kernels to limit moving data between caches and system memory (DRAM)
§ Cache ó DRAM is arguably faster than GPU ó DRAM as there is no PCIe

§ Nevertheless, fusing enables reusing buffers in caches

§ Great candidate for auto-generation; compiler community is very excited!

§ And other learnings can also be applied…

KLA Non-Confidential | Unrestricted17

Why GPU based accelerated computing is winning …..

Traditional
CPU Algos

Deep
Learning
Networks

5-15X

Traditional
Image

Processing
3-6X

GPU GPU

GPUGPU

PCA, SVD, 2D-
Histograms

Small Matrix
Solvers

2-4X

EM Solvers,
3D

Tomography

2-4X

Newer CPU instructions
(like AMX) may narrow

CPUóGPU gap

KLA Non-Confidential | Unrestricted18

Two Incumbent Revolutions for AI Inference
§ Bringing CPUs and accelerators closer with better interconnect - the “HW Revolution”

§ CPUs and accelerators (GPUs ++) will continue to co-exist with specific advantages

§ Data movement is becoming THE bottleneck; problem exacerbated with bigger models!

§ Future bright for higher BW CPUóGPU links (Gen5 PCIe, CXL, NVLink, etc.), cache-coherent accelerators

§ Better auto-generated HPC code – the “SW revolution”
§ Current models leverage hand-tuned kernels to get practical performance

§ Hand-written in (intrinsics for CPU, or CUDA, SYCL for GPUs) expressed as custom-ops in TensorFlow (or similar)

§ Cannot scale as every new HW requires new kernels making it hard to even evaluate them!

§ Auto-generating performant code will enable quick real evaluation making systems more nimble
§ Enables quicker adoption of multiple accelerators; lots of work in this area (MLIR, C++, TVM, XLA)

KLA Non-Confidential | Unrestricted19

Conclusion
§ CPU can be considered as the first option to use for AI inference

§ Accelerators, while performant, aren’t default in HPC systems today

§ Many key innovations in the CPU space target faster AI inference
§ Improved vector units that treat matrices as first-order-citizens

§ Extensions to ISA to support AI operations like multiply + add, applying activation function, etc.

§ But sustained high-performance AI inference needs two revolutions!
§ HW revolution – Design better interconnect to bring CPU and accelerators closer

§ SW revolution – Auto-generate high-performance kernels; avoid hand-tuned low-level kernels

KLA Non-Confidential | Unrestricted20

Session Speaker Comments

Modern AI in manufacturing Kris Bhaskar Overview of the problem space

Challenges in Adopting ML in
manufacturing Jacob George Use-cases, algorithms, and challenges

AI Models in the Fab Steve Esbenshade Examples of how our images and data flows in our
tools

Minimizing copy overhead while
sharing GPUs on a single box Mark Ruolo Data movement challenges, GPU memory /

compute bandwidth imbalance, etc.

AI inference on CPUs Pradeep Discusses leveraging vector arch, and other recent
developments in CPU to aid inference

Recap Of The Workshop

KLA Non-Confidential | Unrestricted21

Conclusion (For the Workshop)
§ Semiconductor manufacturing revolutionized by AI & HPC technologies

§ Semiconductors are now a critical part of the global economy

§ Inspection and metrology require cutting-edge AI & HPC technologies to keep Moore’s law alive!

§ KLA is leveraging several solutions in this space in its products
§ eSL10TM is the industry-first manufacturing tool that leverages integrated

Artificial Intelligence with SMARTs™ deep learning algorithms

§ Exciting time to be an engineer at the intersection of AI, HPC, and manufacturing!
§ Exciting time to be an engineer at KLA

KLA Non-Confidential | Unrestricted22

Thank You

§ We’re actively looking for collaboration with academic partners in this space
§ Write to me at Pradeep.Ramachandran@klatencor.com

§ We’re hiring interns, and full-time engineers in this space (AI, HPC, Software)
§ KLA India –https://www.kla.com/careers/locations/india

§ KLA world-wide - https://www.kla.com/careers

mailto:Pradeep.Ramachandran@klatencor.com

