1104.3791v1 [cs.SI] 19 Apr 2011

arxXiv

Fast matrix computations for pair-wise and column-wise
commute times and Katz scores

Francesco Bonchi Pooya Esfandiar David F. Gleich
Yahoo! Research Univ. of British Columbia Sandia National
Barcelona, Spain Vancouver, BC Laboratories

bonchi@yahoo-inc.com pooyae@cs.ubc.ca Livermore, CA

dfgleic@sandia.gov

Chen Greif Laks V. S. Lakshmanan
Univ. of British Columbia Univ. of British Columbia
Vancouver, BC Vancouver, BC
greif@cs.ubc.ca laks@cs.ubc.ca

April 20, 2011

Abstract

We first explore methods for approximating the commute time and Katz score
between a pair of nodes. These methods are based on the approach of matrices, mo-
ments, and quadrature developed in the numerical linear algebra community. They
rely on the Lanczos process and provide upper and lower bounds on an estimate of
the pair-wise scores. We also explore methods to approximate the commute times
and Katz scores from a node to all other nodes in the graph. Here, our approach for
the commute times is based on a variation of the conjugate gradient algorithm, and
it provides an estimate of all the diagonals of the inverse of a matrix. Our technique
for the Katz scores is based on exploiting an empirical localization property of the
Katz matrix. We adopt algorithms used for personalized PageRank computing to
these Katz scores and theoretically show that this approach is convergent. We eval-
uate these methods on 17 real world graphs ranging in size from 1000 to 1,000,000
nodes. Our results show that our pair-wise commute time method and column-wise
Katz algorithm both have attractive theoretical properties and empirical perfor-
mance.

1 Introduction

Commute times [Gobel and Jagers, 1974] and Katz scores [Katz, 1953] are two topo-
logical measures defined between any pair of vertices in a graph that capture their re-
lationship due to the link structure. Both of these measures have become important
because of the their use in social network analysis as well as applications such as link

http://arxiv.org/abs/1104.3791v1

prediction [Liben-Nowell and Kleinberg, 2003], anomalous link detection [Rattigan and
Jensen, 2005], recommendation [Sarkar and Moore, 2007], and clustering [Saerens et al.,
2004].

For example, Liben-Nowell and Kleinberg [2003] identify a variety of topological
measures as features for link prediction: the problem of predicting the likelihood of
users/entities forming new connections in the future, given the current state of the net-
work. The measures they studied fall into two categories — neighborhood-based measures
and path-based measures. The former are cheaper to compute, yet the latter are more ef-
fective at link prediction. Katz scores were among the most effective path-based measures
studied by Liben-Nowell and Kleinberg [2003], and the commute time also performed well.

Standard algorithms to compute these measures between all pairs of nodes are often
based on direct solution methods and require cubic time and quadratic space in the
number of nodes of the graph. Such algorithms are impractical for modern networks
with millions of vertices and tens of millions of edges. We explore algorithms to compute
a targeted subset of scores that do scale to modern networks.

Katz scores measure the affinity between nodes via a weighted sum of the number of
paths between them. Formally, the Katz score between node ¢ and j is

oo
K= Zaépathsl(:v,),
=1

where paths,(z,y) denotes the number of paths of length ¢ between i to j and o < 1is an
attenuation parameter. Now, let A be the symmetric adjacency matrix, corresponding to
a undirected and connected graph, and recall that (AE)L ; is the number of paths between
node ¢ and j. Then computing the Katz scores for all pairs of nodes is equivalent to the
following computation:

K=0A+ad’A*+...=(T-aA) ' -1

Herein, we refer to K as the Katz matrix. We shall only study this problem when I —a A
is positive definite, which occurs when o < 1/0max(A) and also corresponds to the case
where the series expansion converges.

In order to define the commute time between nodes, we must first define the hitting
time between nodes. Formally, the commute time between nodes is defined as the sum
of hitting times from ¢ to j and from j to i, and the hitting time from node ¢ to j is
the expected number of steps for a random walk started at i to visit j for the first time.
The hitting time is computed via first-transition analysis on the random walk transition
matrix associated with a graph. To be precise, let A, again, be the symmetric adjacency
matrix. Let D be the diagonal matrix of degrees:

ZU Ai,v { :j

Di,j = .
0 otherwise.

Table 1 — Notation

the symmetric adjacency matrix for a connected, undirected graph
the diagonal matrix of node degrees

the number of vertices in A

the vector of all ones

a vector of zeros with a 1 in the ith position

the combinatorial Laplacian matrix of a graph, L = D — A

the adjusted combinatorial Laplacian, L=L+ %eeT

the damping parameter in Katz

the Katz matrix, K = (I — aA)™!

the commute time matrix

NQR2? N0 0 3 g

a “general” matrix, usually I — aA or L

The random walk transition matrix is given by P = D~ A. Let H; ; be the hitting time
from node ¢ and j. Based on the Markovian nature of a random walk, H; ; must satisfy:

Hyj=1+Y Hi,P,, and H,;;=0.

That is, the hitting time between ¢ and j is 1 more than the hitting time between ¢ and
v, weighted by the probability of transitioning between v and j, for all v. The minimum
non-negative solution H that obeys this equation is thus the matrix of hitting times.
The commute time between node 7 and j is then:

C@j =H;;+H;,.

As a matrix C = H + H”, and we refer to C as the commute time matrix. An
equivalent expression follows from exploiting a few relationships with the combinato-
rial graph Laplacian matrix: L = D — A [Fouss et al., 2007]. Each element C;; =
Vol(G)(L;f)i - 2L;‘)j + L;)j) where Vol(G) is the sum of elements in A and L' is the
pseudo-inverse of L. The null-space of the combinatorial graph Laplacian has a well
known expression in terms of the connected components of the graph G. This relation-
ship allows us to write
L' =(L+ %eeT)*1 — %eeT
———

L

for connected graphs [Saerens et al., 2004], where e is the vector of all ones, and n
is the number of nodes in the graph. The commute time between nodes in different
connected components is infinite, and thus we only need to consider connected graphs.
We summarize the notation thus far, and a few subsequent definitions in Table 1.
Computing either Katz scores or commute times between all pairs of nodes involves

inverting a matrix:

(I—aA)™t or (L—l—leeT)*l.
n

Standard algorithms for a matrix inverse require O(n3) time and O(n?) memory. Both
of these requirements are inappropriate for a large network (see Section 2 for a brief
survey of existing alternatives). Inspired by applications in anomalous link detection
and recommendation, we focus on computing only a single Katz score or commute time
and on approximating a column of these matrices. In the former case, our goal is to
find the score for a given pair of nodes and in the latter, it is to identify the most
related nodes for a given node. In our vision, the pair-wise algorithms should help
in cases where random pair-wise data is queried, for instance when checking random
network connections, or evaluating user similarity scores as a user explores a website.
For the column-wise algorithms, recommending the most similar nodes to a query node
or predicting the most likely links to a given query node are both obvious applications.
One way to compute a single score — what we term the pair-wise problem — is to find

the value of a bilinear form:
ul'z v

)

where Z = (I — aA) or Z = L. An interesting approach to estimate these bilinear
forms, and to derive computable upper and lower bounds on the value, arises from the
relationship between the Lanczos/Stieltjes procedure and a quadrature rule [Golub and
Meurant, 1994]. This relationship and the resulting algorithm for a quadratic form
(u” Z7!u) is described in Section 4.1. Prior to that, and because it will form the basis of
a few algorithms that we use, Section 3 first reviews the properties of the Lanczos method.
We state the pairwise procedure for commute times and Katz scores in Section 4.2 and 4.3.

The column-wise problem is to compute, or approximate, a column of the matrix C

or K. A column of the commute time matrix is:

c; = Ce; = vol(G)|[(e; — ev)Tffl(ei —e,):1<v<n).
A difficulty with this computation is that it requires all of the diagonal elements of i_l,
as well as the solution of the linear system i_lei. We can use a property of the Lanczos
procedure and its relationship with the conjugate gradient algorithm to solve E_lei and
estimate all of the diagonals of the inverse simultaneously [Paige and Saunders, 1975,
Chantas et al., 2008].
A column of the Katz matrix is Ke;, which corresponds to solving a single linear

system:
ki = Kei = (I — OAA)_lei — €;.

Empirically, we observe that the solutions of the Katz linear system are often localized.
That is, there are only a few large elements in the solution vector, and many negligible
elements. See Table 2 for an example of this localization over a few graphs. In order
to capitalize on this phenomenon, we use a generalization of “push”-style algorithms
for personalized PageRank computing [McSherry, 2005, Andersen et al., 2006, Berkhin,
2007]. These methods only access the adjacency information for a limited number of

vertices in the graph. In Section 5.2, we explain the generalization of these methods,
the adaptation to Katz scores, and utilize the theory of coordinate descent optimization
algorithms to establish convergence. As we argue in that section, these techniques might
also be called “Gauss-Southwell” methods, based on historical precedents.

One of the advantages of Lanczos-based algorithms is that the convergence is of-
ten much faster than a worst-case analysis would suggest. This means studying their
convergence by empirical means and on real data sets is important. We do so for 17
real-world networks in Section 6, ranging in size from approximation 1,000 vertices to
1,000,000 vertices. These experiments highlight both the strengths and weaknesses of our
approaches, and should provide a balanced picture of our algorithms. In particular, our
algorithms run in seconds or milliseconds — significantly faster than many techniques that
use preprocessing to estimate all of the scores simultaneously, which can take minutes.

Straightforward approaches based on the conjugate gradient technique are often com-
petitive with our techniques. However, our algorithms have other desirable properties,
such as upper and lower bounds on the solution or exploiting sparsity in the solution
vector, which conjugate gradient does not. These experiments also shed light on a recent
result from von Luxburg et al. [2010] on the relationship between commute time and the
degree distribution.

Literature directly related to the problems we study and the techniques we propose
is discussed throughout the paper, in context. However, we have isolated a small set of
core related papers and discuss them in the next section.

In the spirit of reproducible research, we make our data, computational codes, and fig-
ure plotting codes available for others: http://cs.purdue.edu/homes/dgleich/publications/
2011/codes/fast-katz/.

2 Related work

This paper is about algorithms for computing commute times and Katz scores over
networks with hundreds of thousands to millions of nodes. Most existing techniques
determine the scores among all pairs of nodes simultaneously [Acar et al., 2009, Wang
et al., 2007, Sarkar and Moore, 2007] (discussed below). These methods tend to involve
some preprocessing of the graph using a one-time, rather expensive, computation. We
instead focus on quick estimates of these measures between a single pair of nodes and
between a single node and all other nodes in the graph. In this vein, a recent paper [Li
et al., 2010] studies efficient computation of SimRank [Jeh and Widom, 2002] for a given
pair of nodes.

A highly related paper is Benzi and Boito [2010], where they investigate entries
in functions of the adjacency matrix, such as the exponential, using quadrature-based
bounds. A priori upper and lower bounds are obtained by employing a few Lanczos steps
and the bounds are effectively used to observe the exponential decay behavior of the

exponential of an adjacency matrix.

In Sarkar and Moore [2007], an interesting and efficient approach is proposed for
finding approximate nearest neighbors with respect to a truncated version of the commute
time measure. Spielman and Srivastava [2008] develop a technique for computing the
effective resistance of all edges (which is proportional to commute time) in O(mlogn)
time. Both of these procedures involve some preprocessing.

Standard techniques to approximate Katz scores include truncating the series expan-
sion to paths of length less than ¢, [Foster et al., 2001, Wang et al., 2007] and low-rank
approximation [Liben-Nowell and Kleinberg, 2003, Acar et al., 2009]. Only the former
technique, when specialized to compute only a pair or top-k set, has performance com-
parable to our algorithms. However, when we tested an adapted algorithm based on the
Neumann series expansion, it required much more work than the techniques we propose.

As mentioned in the introduction, both commute times and Katz scores were studied
by Liben-Nowell and Kleinberg [2003] for the task of link prediction, and were found
to be effective. Beyond link prediction, Yen et al. [2007] use a commute time kernel
based approach to detect clusters and show that this method outperforms other kernel
based clustering algorithms. The authors use commute time to define a distance mea-
sure between nodes, which in turn is used for defining a so-called intra-cluster inertia.
Intuitively, this inertia measures how close nodes within a cluster are to each other. The
algorithm we propose for computing the Katz and commute time score for a given pair of
nodes x, y extends to the case where one wants to find the aggregate score between a node
x and a set of nodes S. Consequently, this work has applications for finding the distance
between a point and a cluster as well as for finding intra-cluster inertia. For applica-
tions to recommender systems, Sarkar et al. [2008] used their truncated commute time
measure for link prediction over a collaboration graph and showed that it outperforms
personalized PageRank [Page et al., 1999].

3 The Lanczos Process

The Lanczos algorithm [Lanczos, 1950] is a procedure applied to a symmetric matrix,
which works particularly well when the given matrix is large and sparse. A sequence of
Lanczos iterations can be thought of as “truncated” orthogonal similarity transforma-
tions. Given an n X n matrix Z, we construct a matrix @ with orthonormal columns,
one at a time, and perform only a small number of steps, say k, where k < n. The input
for the algorithm is the matrix Z, an initial vector q and a number of steps k. Upon
exit, we have an n x (k + 1) matrix @, ; with orthonormal columns and a (k + 1) x k
tridiagonal matrix T'y41 x, that satisfy the relationship

ZQk = Qk+1Tk+1,ka

Algorithm 1 Lanczos(Z, q, k).
1. q; = q/|‘q||2760 = quO =0

Algorithm 2 LanczosStep(Z,q(™), q, 3(7)).

2: for j =1to k do LZZZ?
. _Z 2: O[:q Zz
o 52— 7— aq— B)q)
T P z= q-p'"q
4: Ozj:qu
5: Z:Z;Oé'q-—ﬂ-,lq- 4: B:HZH2
Y J—195-1 5 i 5= 0.q") =0
6: ﬂj:HZHQ 6 else (+)_Z/ﬁ
7. if §; =0,q;,, = 0 and quit ' . a (_ 5
7: return (q, «a,
8: elseq;; =2/5; q

where @, is the n x k matrix that contains the first & columns of Q;,, and Tj 1 =
tri(B;, a;, B;) is tridiagonal.

What makes the Lanczos procedure attractive are the good approximation properties
that it has for £ < n. The matrix T4 is small when k£ < n, but the eigenvalues
of its k X k upper part — a matrix we will refer to as T'; in the subsequent section —
approximate the extremal eigenvalues of the large n x n matrix Z. This can be exploited
not only for eigenvalue computations but also for solving a linear system [Lanczos, 1952,
Paige and Saunders, 1975]. Another attractive feature is that the matrix Z does not
necessarily have to be provided explicitly; the algorithm only uses Z via matrix-vector
products.

The Lanczos procedure is given in Algorithm 1. For expositional purposes we define
the core of the algorithm as Algorithm 2. We will later incorporate that part into other
algorithms — see Section 4.

4 Pairwise Algorithms

Consider the commute time and Katz score between a single pair of nodes:

Oi,j = Vol(G)(eZ — ej)TLT (ei — ej) and Ki,j = eT(I — aA)flej — 51'_0'.

i
In these expressions, e; and e; are vectors of zeros with a 1 in the ith and jth posi-
tion, respectively; and d; ; is the Kronecker delta function. A straightforward means of
computing them is to solve the linear systems

~—1

L y=e—e; and (I—-aA)x=e,.
Then C; ; = Vol(G)(e; —e;)Ty and K; ; = efx—6; ;. Tt is possible to compute the pair-
wise scores by solving these linear systems. In what follows, we show how a technique
combining the Lanczos iteration and a quadrature rule [Golub and Meurant, 1994, 1997]
produces the pair-wise commute time score or the pair-wise Katz score as well as upper
and lower bounds on the estimate.

4.1 Matrices moments and quadrature

Both of the pairwise computations above are instances of the general problem of esti-
mating a bilinear form:
ul f(Z)v,

where Z is symmetric positive definite (for Katz, this occurs by restricting the value of «,
and for commute times, the adjusted Laplacian Lis always positive definite), and f(z)
is an analytic function on the region containing the eigenvalues of Z. The only function
f(x) we use in this paper is f(z) = 1, although we treat the problem more generally for
part of this section.

Golub and Meurant [1994, 1997] introduced elegant computational techniques for
evaluating such bilinear forms. They provided a solid mathematical framework and a
rich collection of possible applications. These techniques are well known in the numer-
ical linear algebra community, but they do not seem to have been used in data mining
problems. We adapt this methodology to the pairwise score problem, and explain how to
do so in an efficient manner in a large scale setting. The algorithm has two main compo-
nents, combined together: Gauss-type quadrature rules for evaluating definite integrals,
and the Lanczos algorithm for partial reduction to symmetric tridiagonal form. In the
following discussion, we treat the case of u = v. This form suffices thanks to the identity

W F(Z)y = [+)T F(Z) - v) — (=) F(Z) - v)].

Because Z is symmetric positive definite, it has a unitary spectral decomposition,
Z = QAQT, where Q is an orthogonal matrix whose columns are eigenvectors of Q with
unit 2-norms, and A is a diagonal matrix with the eigenvalues of @Q along its diagonal.
We use this decomposition only for the derivation that follows, it is never computed in
our algorithm. Given this decomposition, for any analytic function f,

n

u f(Z)u=u"Qf(A)QTu =" f(N)iZ,
where @t = Q7 u. The last sum is equivalent to the Stieltjes integral

Y
uT u = 1) .
1(2) /_ £V dw(N) (1)

Here w(\) is a piecewise constant measure, which is monotonically increasing, and its
values depend directly on the eigenvalues of Z. Both A and X are values that are lower
and higher than the extremal eigenvalues of Z, respectively. Let

D<M < h<...<\,

be the eigenvalues of Z. Note that A < A\; and A > \,. Now, w(A) takes the following
form:
0 A<\
w\) =342 N <A< A
S UE An <A

g 1 U
The first of Golub and Meurant’s key insights is that we can compute an approxima-
tion for an integral of the form (1) using a quadrature rule, e.g.,

/f o)~ Y f(ny)

j=1

where 7;,w; are the nodes and weights of a Gaussian quadrature rule. The second
insight is that the Lanczos procedure constructs the quadrature rule itself. Since we use
a quadrature rule, an estimate of the error is readily available, see for example Davis and
Rabinowitz [1984]. More importantly, we can use variants of the Gaussian quadrature to
obtain both lower and upper bounds and “trap” the value of the element of the inverse
that we seek between these bounds.

The ability to estimate bounds for the value is powerful and provides effective stop-
ping criteria for the algorithm — we shall see this in the experiments in Section 6.2. It
is important to note that such component-wise bounds cannot be easily obtained if we
were to extract the value of the element from a column of the inverse, by solving the
corresponding linear system, for example. Indeed, typically for the solution of a linear
system, norm-wise bounds are available, but obtaining bounds pertaining to the compo-
nents of the solution is significantly more challenging and results of this sort are harder
to establish. It should also be noted that bounds of the sort discussed here cannot be
obtained for general non-symmetric matrices.

Returning to the procedure, let f(\) be a function where the (2k + 1)st derivative
has a negative sign for all A < A < X. Note that f(\) = 1/\ satisfies this condition
because all odd derivatives are negative when A > 0. As a high level algorithm, the
Golub-Meurant procedure for estimating bounds

(=l

b<u’f(Z)u<

is given by the following steps.
1. Let o = ||ul|.
2. Compute T, from k steps of the Lanczos procedure applied to Z and u/o.
3. Compute T';, which the matrix T';, extended with another row and column crafted
to add the eigenvalue X to the eigenvalues of T'j. This new matrix is still tridiagonal.
4. Set b = o%el f(T,)e;. This estimate corresponds to a (k + 1)-point Gauss-Radau
rule with a prescribed point of .

5. Compute T, which the matrix T, extended with another row and column crafted
to add the eigenvalue A to the eigenvalues of T';. Again, this new matrix is still
tridiagonal.

6. Set b = o%el f(T\)e;. This estimate corresponds to a (k + 1)-point Gauss-Radau
rule with a prescribed point of \.

Based on the theory of Gauss-Radau quadrature, the fact that these are lower and upper
bounds on the quadratic form u” f(Z)u follows because the sign of the error term changes
when prescribing a node in this fashion. See Golub and Meurant [2010, Theorem 6.4] for
more information. As k increases, the upper and lower bounds converge.

While this form of the algorithm is convenient for understanding the high level prop-
erties and structure of the procedure, it is not computationally efficient. If f(A) = 1/A
and if we want to compute a more accurate estimate by increasing k, then we need to
solve two inverse eigenvalue problems (steps 3 and 5), and solve two linear systems (steps
4 and 6). Each of these steps involves O(k) work because the matrices involved are tridi-
agonal. However, a constant-time update procedure is possible. The set of operations
to efficiently update b and b after a Lanczos step (Algorithm 2) is given by Algorithm 3.
Please see Golub and Meurant [1997] for an explanation of this procedure. Using Algo-
rithms 2 and 3 as sub-routines, it is now straightforward to state the pairwise commute
time and Katz procedures.

4.2 Pairwise commute scores
The bilinear form that we need to estimate a commute time is
~—1

b= (ei —ej)TL (ei —ej).
For this problem, we apply Algorithm 2 to step through the Lanczos process and then
use Algorithm 3 to update the upper and lower bounds on the score. This combination
is explicitly described in Algorithm 4. Note that we do not need to apply the final
correction with Zee” because e’ (e; — e;) = 0.
4.3 Pairwise Katz scores
The bilinear form that we need to estimate for a Katz score is

b=-e! (I -aA) te;.

Recall that we use the identity:

b= i[(ei +e;) (I —aA) ' (e;+e;)—(ei—e;)" (I —aA) '(e; —ej)]

=g =h

In this case, we apply the combination of LanczosStep and MMQStep to estimate g <
g<gand h<h<h. Then (g—h) <b< 3(7—h).

10

Algorithm 3 MMQStep [Golub and Meurant, 1997, Algorithm GQL]

IHPUt: Q, ﬂflvﬂv b*lv C_1, d*lad—lvafl

- Bty e Bl g
1:b_b_1+d—1(04d+1:[52,1)7 C—C_lﬁ, d—a—d—

— 2 _ 2
s d=a—-A-22 d—a-X-=2
1 a_4
3w=3+%2; w=Ar+2
— 2.2 2 2
4: b=b+ L b c

Output: (b,b) and (b, c,d,d,d)

Algorithm 4 Pairwise Score Bounds for commute time

Input: L (Laplacian matrix); i, j (pairwise coordinate); A, X (bounds where A < A\(L) <
A); 7 (stopping tolerance)
Output: g, where k < (e; — ;)T Li(e; —e;) <&
1: (Initialize Lanczos) o = v/2,q_; = 0,q = (e; — €;)/7, o = 0
2: (Initialize MMQStep) by = 0,co = 1,dp = 1,dp = 1,dy = 1
3: for j=1,...do
4 Set (q;,a;,3;) from LanczosStep(I},qj72,qj71,5j_1)
5. Set (b,b) and (b;,¢;, d;, dj,dj) from
MMQStep(a, 81, 55, 371,6371,djfl,dj_l,ajq)-
6: k=o02bF=02%b

if R—k < T, stop

Algorithm 5 Pairwise Score Bounds for Katz

Input: A (adjacency matrix); a (the Katz damping factor); 4,j (pairwise coordinate);
A, A (bounds where A < (I — aA) < \); 7 (stopping tolerance)
Output: p,p where p < (I — aA) <p
1: (Initialize Lanczos for g) o = \/5 q_,=0,99=(e;+€;)/0,6] =0
2: (Initialize Lanczos for h) u_; = 0,up = (e; —e;)/0, B8 =0
3: (Initialize MMQStep for g) b = 0,¢d = 1,dS = 1,dg = 1,d) = 1
4 (Initialize MMQStep for h) bt = 0,ch = 1, dl = 1,dy = 1,d" = 1
5. for j=1,... do
6: Set (q;,a],) from LanczosStep((I — ozA),qj72,qj71,ﬁf_l)
7. Set (uj, ?,Bh) from LanczosStep((I — aA),uj,Q,uj,l,ﬂ;-Ll)
8 Set (g,9) and (b7, ;’,d;’,dj,gl;]) from
MMQStep(af, 8], 7, b5 16 d) oy)y d]).
9: Set (B, h) and (b, c*, d", d",d") from

2 Cio G50 Gy J
—h
MMQStep(jaﬁjh 1» jha Jj— 1, € j— 1ad;L 1a(_lj 1ad_] 1)
10 p=0°/4(g—h);p=0"/4G—h)
11: 1fp p <, stop

11

5 Column-wise algorithms

Whereas the last section used a single procedure to derive two algorithms, in this section,
we investigate two different procedures: one for commute time and a different procedure
for Katz scores. The reason behind this difference is that, as mentioned in the introduc-
tion, computing a column of the commute time matrix cannot be stated as the solution
of a single linear system:

~—1
c; = Ce; = vol(G)[(e; —e,)TL (e;—e,):1<v<n).
Computing this column requires all of the diagonal elements of the inverse. In contrast,
a column of the Katz matrix is just the solution of a linear system:

ki = Kei = (I — OéA)ilei — €;.

For this computation, we exploit an empirical localization property of these columns.

5.1 Column-wise commute times

A straightforward way to compute an entire column of the commute time matrix would
-1
.., and the other

require solving n separate linear systems: one to get both fl_lei and i’z,i ,
n—1to get E;j for i # j. Neither solving each system independently, nor using a multiple
right hand side algorithm [O’Leary, 1980], will easily yield an efficient procedure. Both
of these approaches generate far too much extraneous information. In fact, we only need
one linear system solve, and the diagonal elements of the pseudo-inverse. Thus, any
procedure to compute or estimate diag(LT) provides a tractable algorithm.

One such procedure arises, again, from the Lanczos method. It was originally de-
scribed by Paige and Saunders [1975], and is explained in more detail in Chantas et al.

[2008]. Suppose we want to compute diag(L 1). If the Lanczos algorithm runs to com-

pletion in exact arithmetic, then we have:
L=QrQT and I '=QT'QT.

Let T = RR” be a Cholesky factorization of T'. If we substitute this factorization into
the expression for the inverse, then Eil VR TR 'VT. Now, let W = VR~ T. Note
that fﬁl = WWT7. As a notational convenience, let wj be the kth column of W.
Consequently,

diag(E™1) = Zwk oWy
k=1

where wy o wy, is the Hadamard (element-wise) product: [wy o wg]; = w%l If we
implement CG based on the Lanczos algorithm as explained in Paige and Saunders [1975],

then the vector wy is computed as part of the standard algorithm, and is available at

12

no additional cost. This idea is implemented in the cglanczos.m code [Saunders, 2007],
which we use in our experiments. Please see Chantas et al. [2008] for a detailed account
of this derivation including the diagonal estimate.

Based on advice from the author of the cglanczos code, we added local reorthogonal-
ization to the Lanczos procedure. This addition requires a few extra vectors of memory,
but ensures greater orthogonality in the computed Lanczos vectors q;,. Also, based on
advice from the author, we use the following preconditioned linear system:

D Y2LD Y2y — D~V/2%,.

If f is the estimate of the diagonals of (D™2LD~'/2)~1 then D7'f is the estimate of
the diagonals of i_l. Using this preconditioned formulation, the algorithm converged
much more quickly than without preconditioning. In summary, this approach to estimate
the column-wise commute times c; is:

1. Solve D71/2I}D71/2y = Dil/zei using cglanczos.m

to get both y and f = diag ((D_l/QI}D_l/2)_1).

2. Set x = D™ Y?y — le~ L'e;.

3. Set g = D 'f — le ~ diag(L").

4. Output c; = g + z;e — 2x.
We refrain from stating this as a formal algorithm because the majority of the work is

in the cglanczos.m routine.

5.2 Column-wise Katz scores

In this section, we show how to adapt techniques for rapid personalized PageRank com-
putation [McSherry, 2005, Andersen et al., 2006, Berkhin, 2007] to the problem of com-
puting a column of the Katz matrix. Recall that such a column is given by the solution
of a single linear system:

ki = Kei = (I — OAA)_lei — €;.

The algorithms for personalized PageRank exploit the graph structure by accessing the
edges of individual vertices, instead of accessing the graph via a matrix-vector product.
They are “local” because they only access the adjacency information of a small set of
vertices and need not explore the majority of the graph. Such a property is useful when
the solution of a linear system is localized on a small set of elements.

Localization is a term with a number of interpretations. Here, we use it to mean that
the vector becomes sparse after rounding small elements to 0. A nice way of measuring
this property is to look at the participation ratios [Farkas et al., 2001]. Let k be a column
of the Katz matrix, then the participation ratio of k is

(%,)2
VT

13

Table 2 — Participation ratios for Katz scores. These results demonstrate that the columns of
the Katz matrix are highly localized. In the worst case, there are only a few thousand large
elements in a vector, compared with the graph size of a few hundred thousand vertices.

Graph Vertices Avg. Deg. Participation Ratios

Min Mean Median Max
tapir 1024 5.6 4.2 12.0 11.8 35.8
stanford-cs-sym 2759 7.4 1.0 26.3 23.5 274.1
ca-GrQc 4158 6.5 1.0 27.4 34.0 84.2
wiki-Vote 7066 28.5 1.2 248.8 291.6 342.6
ca-HepTh 8638 5.7 1.0 23.5 29.8 82.1
ca-HepPh 11204 21.0 1.0 160.7 256.1 268.5
Stanford3 11586 98.1 1.1 1509.5 1657.8 1706.4
ca-AstroPh 17903 22.0 1.0 167.5 219.2 290.8
ca-CondMat 21363 8.5 1.0 71.0 85.6 204.6
email-Enron 33696 10.7 1.0 203.0 262.5 598.6
soc-Epinionsl 75877 10.7 1.0 299.2 455.6 526.0
soc-Slashdot0811 77360 12.1 1.0 320.4 453.3 495.8
arxiv 86376 12.0 1.0 121.1 137.9 508.6
dblp 93156 3.8 1.0 50.0 25.2 258.9
email-EuAll 224832 3.0 1.0 237.7 276.7 7743.7
flickr2 513969 124 1.0 592.3 1104.9 1414.9
hollywood-2009 1069126 105.3 2.0 1696.0 2433.8 3796.0

This ratio measures the number of effective non-zeros of the vector. If k is a uniform
vector, then p = n, the size of the vector. If k has only a single element, then p = 1, the
number of states occupied. For a series of graphs we describe more formally in Section 6.1,
we show the statistics of some participation ratios in Table 2. We pick columns of the
matrix in two ways: (i) randomly and (ii) from the degree distribution to ensure we
choose both high, medium, and low degree vertices. See Section 6.7 for a more formal
description about how we pick columns; we use the “hard alpha” value of Katz described
in the experiments section. The results show that number of effective non-zeros is always
less than 10,000, even when the graph has 1,000,000 vertices. Usually, it is even smaller.
Our forthcoming algorithms exploit this property.

The basis of these personalized PageRank algorithms is a variant on the Richardson
stationary method for solving a linear system [Varga, 1962]. Given a linear system
Zx = b, the Richardson iteration is

x(E+D) — (k) | p (k)

where r®) = b — Zx(® is the residual vector at the kth iteration. While updating

x(+1) s a linear time operation, computing the next residual requires another matrix-

vector product. To take advantage of the graph structure, the personalized PageRank

14

algorithms [McSherry, 2005, Andersen et al., 2006, Berkhin, 2007] propose the following
change: do not update x(+1) with the entire residual, and instead change only a single
component of x. Formally, x(*t1) = x(%) —i—r(k)

J
for a single 1 in the jth position, and r§-k) is the jth component of the residual vector.

e;, where e; is a vector of all zeros, except

Now, computing the next residual involves accessing a single column of the matrix Z:
r D) = p - Zx) = p - Z(x® 4 rPe;) = r® 11V Ze;.

Suppose that r, x, and Ze; are sparse, then this update introduces only a small number of
new nonzeros into both x and the new residual r. If Z = (I —aA), as in the case of Katz,
then each column is sparse, and thus keeping the solution and residual sparse is a natural
choice for graph algorithms where the solution x is localized (i.e., many components of
x can be rounded to 0 without dramatically changing the solution). By choosing the
element j based on the largest entry in the sparse residual vector (maintained in a heap),
this algorithm often finds a good approximation to the largest entries of the solution
vector x while exploring only a small subset of the graph. The resulting procedure is
presented in Algorithm 6. For reasons that will become clear below, we call this procedure
the Gauss-Southwell algorithm. When experimenting with this method, we found that
picking elements from the heap proportional to D 'r instead of r yielded convergence
with fewer total edges explored, mirroring the results in Andersen et al. [2006]. We use
this version in all of our experiments, although we state all the formal convergence results
for the simple choice of residual r.

Algorithm 6 Column-wise Katz scores (via the Gauss-Southwell algorithm)

Input: A (the adjacency matrix), o (the Katz damping factor), ¢ (the desired column),
7 (a stopping tolerance).
Output: x (an approximate solution of (I —aA)™'e;)
1: Set x=0,r=0
2: Let H be a heap over the non-zero entries of r larger than 7.
3: Set r; = 1, update H
4: while H is not empty do
5: Set j as the index of the largest element in H
6: if r; <7 then quit.
7 n=r;
8 xjé—x;+M
9: 7j < 0, remove j from H
10: for u where A4;, > 0 do
11: Ty & Ty +Qn
12: if r, > 7 then insert j in H or update H.
13: x; +—x; — 1

15

Let dpax be the maximum degree of a node in the graph, then each iteration takes
O(dmax logn) time. We analyze the convergence of this algorithm for Katz scores in
two stages. In the first case, when o < 1/dpax, then the convergence theory of this
method for personalized PageRank also shows that it converges for Katz scores. This
fortunate occurrence results from the equivalence of Katz scores and the general formu-
lation of PageRank adopted by McSherry [2005] in this setting. In the second case, when
a < 1/omax(A), then (I — @A) is still symmetric positive definite, and the Richardson
algorithm converges. To show convergence in this case, we will utilize an equivalence
between this algorithm and a coordinate descent method.

For completeness, we show a precise convergence result when o < 1/dax. The key
observation here is that the residual r is always non-negative and that the sum of the
residual (e’r) is monotonically decreasing. To show convergence, we need to bound this
sum by a function that converges to 0.

Consider the algorithm applied to (I — aA)x = e;. From step k to step k + 1, the
algorithm sets

xF D = x(0) 4 e r#) = B (I — aA)e;.

First note that o < 1/dpax implies r§k+l) > 0 given rgk) > 0. This bound now implies
that xz(-k+1) > 0 when xgk)
x(© =0 and r(¥) = e,, they remain true throughout the iteration. Consequently, we can

> 0. Since these conditions hold for the initial conditions,

use the sum of r(®) as the 1-norm of this vector, that is, e’ r*+1) = ||[p(*+1|| . Tt is now
straightforward to analyze the convergence of this sum:

elrtl) — oTp(k) _ n+ ane’ Ae;.

At this point, we need the bound that n = r§-k) > (1/n)e’r® | which follows immediately
from the fact that r;k) is the largest element in r®) . Also, e Ae; < dmax. Thus, we
conclude:

REMARK 1 If a < 1/dsaz, then the 1-norm of the residual in the Gauss-Southwell itera-
tion applied to the Katz linear system satisfies

k
e+, < (1 - 1 - adnae [e®, <(1- 1 - admas .
1= n 1= n

In the second case, when 1/dmax < & < 1/0max(A), then the Gauss-Southwell itera-
tion in Algorithm 6 still converges, however, the result is more intricate than the previous
case because the sum of the residual does not converge monotonically. As we shall see,
treating this linear system as an optimization problem provides a way to handle this case.
Let Z be symmetric positive definite. We first show that the Gauss-Southwell algorithm
is a coordinate descent method for the convex problem

s 1T T} —
minimize 5x'Zx —x'b = f(x).

16

The gradient of this problem is Zx — b, hence a stationary point is the solution of the
linear system, and the global minimizer. In this framework, the Richardson method is a
gradient descent method. Let g(*) be the gradient at step k, g*) = Zx(*¥) — b then

XD — x(®) _ g

is exactly the Richardson step.
Now consider a standard coordinate descent method. Such methods usually minimize
the function in the jth coordinate exactly. Formally, they find

x(F+HD) — (k) | v(k)ej
where
AR = argmin,, F(x® 4 vej).
Solving this system produces the choice

(k) _ b — (Zej)TX(k)'

-
Zj,;

Note that in terms of the optimization problem the Gauss-Southwell algorithm generates
k k
The two methods are equivalent if the diagonals of A are 1. Consequently, we have:

LEMMA 2 The Gauss-Southwell method for Zx = b with Z;; = 1 is equivalent to a
coordinate gradient descent method for the function f(x) = (1/2)x’ Zx —xTb.

To produce a convergent algorithm, we must now specify how to choose the descent
direction j.

THEOREM 3 Let Z be symmetric positive definite with Z;; = 1. Then the Gauss-
Southwell method for Zx = b and j*) = argmaxi|r§k)| or with §%) chosen cyclically
(j(l) =1,;* D = 5*) 41 mod n) is convergent.

Proof This result follows from the convergence of the coordinate descent method [Luo
and Tseng, 1992, Theorem 2.1] with these two update rules. The first is also known as
the Gauss-Southwell rule. =

This proof demonstrates that, as long as A; ; = 0 for all the diagonal entries of the
adjacency matrix, then Algorithm 6 will converge when (I —«.A) is positive definite, that
is, when a < 1/0max(A). We term this algorithm a Gauss-Southwell procedure because
the choice of j in the algorithm is given by the Gauss-Southwell rule.

17

6 Experimental Results

The previous sections showed three algorithms based on the Lanczos method, and showed
the theoretical convergence of the column-wise Katz algorithm. In this section, we inves-
tigate these algorithms numerically. Algorithms based on the Lanczos method, in general,
are arguably best studied empirically because their worst-case convergence properties are
often conservative. These experiments are designed to shed light on two key questions:
1. How do these iterative algorithms converge to the exact solution?
2. Are the techniques faster than a conjugate gradient based algorithm?
Note that column-wise commute time measure is a special case for reasons we discuss
below, and we only investigate the accuracy of our procedure for that problem.

Experimental settings We implemented our methods in MATLAB and MATLAB mex
codes. All computations and timings were done in Linux on a desktop with a Core i7-960
processor (4 core, 2.8GHz) with 24GB of memory. As mentioned in the introduction,
all of the experimental code is available from http://cs.purdue.edu/homes/dgleich/
publications/2011/codes/fast-katz/.

We first describe the data used in the experiments. These data were also used in the
experiment about localization in the Katz scores from the previous section.

6.1 Data

We use three publicly available sources and three graphs we collected ourselves. The
majority of the data comes from the SNAP collection [Leskovec, 2010] of which, we
use ca-GrQc, ca-HepTh, ca-CondMat, ca-AstroPh, email-Enron, email-EuAll [Leskovec
et al., 2007], wiki-Vote [Leskovec et al., 2010], soc-Epinions] [Richardson et al., 2003], and
soc-Slashdot0811 [Leskovec et al., 2009]. Besides these, the graph tapir is from Gilbert
and Teng [2002], the graph Stanford3 is from [Traud et al., 2011], and both graphs
stanford-cs [Hirai et al., 2000] and hollywood-2009 [Boldi et al., 2011] are distributed via
the webgraph framework [Boldi and Vigna, 2004]. The graph stanford-cs is actually a
subset of the webbase-2001 graph [Hirai et al., 2000], restricted only to the pages in the
domain cs.stanford.edu. All graphs are symmetrized (if non-symmetric) and stripped of
any self-loops, edge weights, and extraneous connected components.

DBLP We extracted the DBLP coauthors graph from a recent snapshot (2005-2008)
of the DBLP database. We considered only nodes (authors) that have at least three
publications in the snapshot. There is an undirected edge between two authors if they
have coauthored a paper. From the resulting set of nodes, we randomly chose a sample
of 100,000 nodes, extracted the largest connected component, and discarded any weights
on the edges.

18

arXiv This dataset contains another coauthorship graph extracted by a snapshot (1990-
2000) of arXiv, which is an e-print service owned, operated and funded by Cornell Uni-
versity, and which contains bibliographies in many fields including computer science and
physics. This graph is much denser than DBLP. Again, we extracted the largest con-
nected component of this graph and only work with that subset.

Flickr contacts Flickr is a popular online-community for sharing photos, with millions
of users. The node set represents users, and the directed edges are between contacts.
We start with a crawl extracted from Flickr in May 2006. This crawl began with a
single user and continued until the total personalized PageRank on the set of uncrawled
nodes was less than 0.0001. The result of the crawl was a graph with 820,878 nodes
and 9,837,214 edges. In order to create a sub- graph suitable for our experimentation
we performed the following steps. First, we created a graph from Flickr by taking all
the contact relationships that were reciprocal, and second, we again took the largest
connected component. (This network is now available from the University of Florida
sparse matrix collection [Davis and Hu, 2010]).

Table 3 presents some elementary statistics about these graphs. We also include the
time to compute the truncated singular value decomposition for the first 200 singular
values and vectors using the ARPACK library [Lehoucq et al., 1997] in Matlab’s svds
routine. This time reflects the work it would take to use the standard low-rank prepro-
cessing algorithm for Katz scores on the network [Liben-Nowell and Kleinberg, 2003].

6.2 Pairwise commute scores

From this data, we now study the performance of our algorithm for pairwise commute
scores, and compare it against solving the linear system Lx = (e;—e;) using the conjugate
gradient method (CG). At each step of CG, we use the approximation (e; — ej)Tx(k),
where x(*) is the kh iterate. The convergence check in CG was either the pairwise element
value changed by less than the tolerance, checked by taking a relative difference between
steps, or the 2-norm of the residual fell below the tolerance.

The first figure we present shows the result of running Algorithm 4 on a single pairwise
commute time problem for few graphs (Figure 1). The upper row of figures show the
actual bounds themselves. The bottom row of figures shows the relative error that would
result from using the bounds as an approximate solution. We show the same results for
CG. The exact solution was computed by using MINRES [Paige and Saunders, 1975] to
solve the same system as CG to a tolerance of 107'°. For all of the graphs, we used
A=10"%and \ = ||f/||1 Again using ARPACK, we verified that the smallest eigenvalue
of each of the Laplacian matrices was larger than A\. We chose the vertices for the pair
from among the high-degree vertices for no particular reason. Both Algorithm 4 and CG
used a tolerance of 1074,

19

Table 3 — The networks studied in the experiments. The first five columns are self explanatory.

The last two columns show the largest singular value of the network, which is also the matrix

2-norm, and the time taken to compute the largest 200 singular values and vectors.

Graph Nodes Edges Avg.Deg. Max Deg. | All2 SVD (sec.)
tapir 1024 2846 5.56 24 6.9078 2.2
stanford-cs 2759 10270 7.44 303 39.8213 8.9
ca-GrQc 4158 13422 6.46 81 45.6166 16.2
ca-HepTh 8638 24806 5.74 65 31.0348 31.5
ca-CondMat 21363 91286 8.55 279 37.8897 78.6
wiki-Vote 7066 100736 28.51 1065 138.1502 28.5
ca-HepPh 11204 117619 21.00 491 244.9349 49.5
dblp 93156 178145 3.82 260 33.6180 391.0
email-Enron 33696 180811 10.73 1383 118.4177 119.5
ca-AstroPh 17903 196972 22.00 504 94.4296 62.3
email-EuAll 224832 339925 3.02 7636 102.5365 935.3
soc-Epinions1 75877 405739 10.69 3044 184.1751 324.6
soc-Slashdot0811 77360 469180 12.13 2539 131.3418 359.1
arxiv 86376 517563 11.98 1253 99.3319 241.2
Stanford3 11586 568309 98.10 1172 212.4606 48.8
flickr2 513969 3190452 12.41 4369 663.3587 3418.7
hollywood-2009 1069126 56306653 105.33 11467 2246.5596 5998.9
§ b, Commute 0 arxiv, Commute » fickr2, Commute hollywood, Commute
! — Icogwer bound ! | [
g “\ -~ ~upperbound | 102 ‘I\ " '.I ol
10° \ N 10°F N R 10 e AN -
0 100 200 300 0 100 200 300 0 200 400 600 0 100 200 300

matrix-vector products

dblp, Commute

matrix-vector products

arxiv, Commute

matrix-vector products

flickr2, Commute

v \

N - —cg N \

\ lower bound 10° N o |
s 10° N - — - upper bound AN R 0 |
% 5 10° — 5
@10 6o i l'*'M",an 10
LN it “Pebis
[| V F*-‘L.‘.H‘»‘
10" 10™° 10%° i
0 100 200 300 0 100 200 300 o] 200 400

matrix-vector products

matrix-vector products

matrix-vector products

600

matrix-vector products
hollywood, Commute

10

0

100 200 300
matrix-vector products

Figure 1 — Convergence results for pairwise commute times. (Top row) Each figure shows the

upper and lower bounds at each iteration of Algorithm 4 for the graphs dblp, arxiv, flickr2,

and hollywood-2009. (Bottom row) For the same graphs, each figure shows the relative size of

the error, (valg — Vexact)/Vexact i the upper and lower bounds at each iteration. In both cases,

we also show the same data from the conjugate gradient algorithm. See Section 6.2 for our

discussion.

20

In the figure, the upper bounds and lower bounds “trap” the solution from above and
below. These bounds converge smoothly to the final solution. For these experiments, the
lower bound has smaller error, and also, this error tracks the performance of CG quite
closely. This behavior is expected in cases where the largest eigenvalue of the matrix is
well-separated from the remaining eigenvalues — a fact that holds for the Laplacians of our
graphs, see Mihail and Papadimitriou [2002] and Chung et al. [2003] for some theoretical
justification. When this happens, the Lanczos procedure underlying both our technique
and CG quickly produces an accurate estimate of the true largest eigenvalue, which in
turn eliminates any effect due to our initial overestimate of the largest eigenvalue. (Recall
from Algorithm 4 that the estimate of X is present in the computation of the lower-bound
by)

Here, the conjugate gradient method suffers two problems. First, because it does
not, provide bounds on the score, it is not possible to terminate it until the residual is
small. Thus, the conjugate gradient method requires more iterations than our pairwise
algorithm. Note, however, this result is simply a matter of detecting when to stop
— both conjugate gradient and our lower-bound produce similar relative errors for the
same work. Second, the relative error for conjugate gradient displays erratic behavior.
Such behavior is not unexpected because conjugate gradient optimizes the A-norm of the
solution error and it is not guaranteed to provide smooth convergence in true error norm.
These oscillations make early termination of the CG algorithm problematic, whereas no
such issues occur for the upper and lower bounds from our algorithm. We speculate that
the seemingly smooth convergence behavior that we observe for the upper and lower
bound estimates may be rooted in the convergence behavior of the largest Ritz value of
the tridiagonal matrix associated with Lanczos, but a better understanding of this issue

will require further exploration.

6.3 Pairwise Katz scores

We next show the same type of figure but for the pairwise Katz scores instead; see
Figure 2. We use a value of o that makes I — aA nearly indefinite. Such a value
produces the slowest convergence in our experience. The particular value we use is
a = 1/(||Alj2 + 1), which we call “hard alpha” in some of the figure titles. For all of
the graphs, we again used A = 10™% and \ = ||I~/||1 This value of A is smaller than the
smallest eigenvalue of I — «A for all the graphs. Also, the vertex pairs are the same as
those used for Figure 1. For pairwise Katz scores, the baseline approach involves solving
the linear system (I — aA)x = e;, again using the conjugate gradient method (CG). At
each step of CG, we use the approximation eiTx(k), where x(®) is the kh iterate. We use
the same convergence check as in the CG baseline for commute time. For these problems,
we also evaluated techniques based on the Neumann series for I — oA, but those took
over 100 times as many iterations as CG or our pairwise approach. The Neumann series

21

dblp, Katz, hard alpha . arxiv, Katz, hard alpha 10 flickr2, Katz, hard alpha hollywood, Katz, hard alpha

60 0.4 .
\ - -cg
401 v lower bound 0.2 !
\ : \
o 20 . — — - upper bound \
\
g 0 3 0 of ===
<]
a
-20
-0.2
-40
-60 -50 - -0.4
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
matrix-vector products matrix-vector products matrix-vector products matrix-vector products
dblp, Katz, hard arxiv, Katz, hard flickr2, Katz, hard o hollywood, Katz, hard
! ! 10
-'-cg 0
10° lower bound 10
s — — - upper bound
@
e | o
s A 5
CR- \ 10
10 v
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
matrix-vector products matrix-vector products matrix-vector products matrix-vector products

Figure 2 — Convergence results for pairwise Katz scores. (Top row.) Each figure shows the
upper and lower bounds at each iteration of Algorithm 5 for the graphs dblp, arxiv, flickr2, and
hollywood-2009. (Bottom row.) For the same graphs, each figure shows the relative size of the
error, (valg — Vexact) /Vexact In the upper and lower bounds at each iteration. In both cases, we
also show the same data from the conjugate gradient algorithm. See Section 6.3 for discussion.

is the same algorithm used in [Wang et al., 2007] but customized for the linear system,
not matrix inverse, which is a more appropriate comparison for the pairwise case. Finally,
the exact solution was again computed by using MINRES [Paige and Saunders, 1975] to
solve the same system as CG to a tolerance of 107,

A distinct difference from the commute-time results is that both the lower and upper
bounds converge similarly and have similar error. This occurs because of the symmetry
in the upper and lower bounds that results from using the MMQ algorithm twice on the
form: (1/4)[(e;+e;)T(I—aA) (e;+e;)—(e;—e;)T (I—aA)"!(e;—e;)]. In comparison
with the conjugate gradient method, our pairwise algorithm is slower to converge. While
the conjugate gradient method appears to outperform our pairwise algorithms here, recall
that it does not provide any approximation guarantees. Also, the two matrix-vector
product in Algorithm 5 can easily be merged into a single “combined” matrix-vector
product algorithm. As we discuss further in the conclusion, such an implementation
would reduce the difference in runtime between the two methods.

6.4 Relative matrix-vector products in pairwise algorithms

Thus far, we have detailed a few experiments describing how the pairwise algorithms
converge. In these cases, we compared against the conjugate gradient algorithm for
a single pair of vertices on each graph. In this experiment, we examine the number of
matrix-vector products that each algorithm requires for a much larger set of vertex pairs.
Let us first describe how we picked the vertices for the pairwise comparison. There were

22

hollywood-2009 ——— ——— hollywood-2009 D R O
Stanford3 —————— ¢ Stanford3 v . L BOy e
wiki-Vote —— —)— wiki-Vote B S os 2
ca-AstroPh ¢ - ca-AstroPh P B BRI T on
ca-HepPh N -=Om— ca-HepPh AN P38 o
flickr2 . —————C—— flickr2 T et e
soc-Slashdot0811 - soc-Slashdot0811 + B IR AEEPRRRIR *20% 2
arxiv ——— —— arxiv et Pali—e0—
email-Enron . e—om— email-Enron LI Y RS- 30} X 8
soc-Epinions1 et —om— soc-Epinions1 . tr, v g
ca-CondMat ————Cn- ca-CondMat P LEREETE N 3 L 2og |
stanford-cs-sym ——)— stanford-cs-sym —— -
ca-GrQc - ca-GrQc ot 0§
ca-HepTh —— ca-HepTh ¢ —0—
tapir -, tapir M. <c]
dblp —— dblp 4 ——om
email-EuAll R o email-EuAll MRS £ mom |
-1 05 0 0.5 1 -15 -10 5 0
Relative performance of MMQ vs. CG (negative is slower) Relative performance of MMQ vs. CG (negative is slower)

Figure 3 — (Left) Relative performance between Algorithm 4 and conjugate gradient for pairwise
commute times. (Right) Relative performance between Algorithm 5 and conjugate gradient
for pairwise Katz scores. The relative performance measure is (kcg — Kalg)/kcg, where k is the
number of matrix-vector products taken by each approach.

two types of vertex pairs chosen: purely random, and degree-correlated. The purely
random choices are simple: pick a random permutation of the vertex numbers, then use
pairs of vertices from this ordering. The degree correlated pairs were picked by first
sorting the vertices by degree in decreasing order, then picking the 1st, 2nd, 3rd, 4th,
5th, 10th, 20th, 30th, 40th, 50th, 100th,...vertices from this ordering, and finally, use
all vertex pairs in this subset. Note that for commute time, we only used the 1st, 5th,
10th, 50th, 100th,.... vertices to reduce the total computation time. For the pairwise
commute times, we used 20 random pairs. and used 100 random pairs for pairwise Katz
scores.

In Figure 3, we show the matrix-vector performance ratio between our pair-wise
algorithms and conjugate gradient. Let k. be the number of matrix-vector products
until CG converges to a tolerance of 10~% (as in previous experiments); and let kalg be
the number of matrix-vector products until our algorithm converges. The performance

ratio is
kcg - kalg

keg

which has a value of 0 when the two algorithms take the same number of matrix-vector
products, the value 1 when our algorithm takes 0 matrix-vector products, and the value
-1 (or -2) when our algorithm takes twice (or thrice) as many matrix-vector products
as CG. We display the results as a box-plot of the results from all trials. There was no
systematic difference in the results between the two types of vertex pairs (random or
degree correlated).

These results show that the small sample in the previous section is fairly representative
of the overall performance difference. In general, our commute time algorithm uses fewer
matrix-vector products than conjugate gradient. We suspect this result is due to the

23

ability to stop early as explained in Section 6.2. And, as also observed in Section 6.3,
our pairwise Katz algorithm tends to take 2-3 times as many matrix vector products as
conjugate gradient. These results again used the same “hard alpha” value.

6.5 Column-wise commute times

Our next set of results concerns the precision of our approximation to the column-wise
commute time scores. Because the output of our column-wise commute time algorithm is
based on a coarse approximation of the diagonal elements of the inverse, we do not expect
these scores to converge to their exact values as we increase the work in the algorithm.
Consequently, we study the results in terms of the precision at k measure. Recall that
the motivation for studying these column-wise measures is not to get the column scores
precisely correct, but rather to identify the closest nodes to a given query or target node.
That is, we are most interested in the smallest elements of a column of the commute
time matrix. Given a target node 17, let Szlg be the k closest nodes to 7 in terms of our
algorithm. Also, let S} be the k closest nodes to 4 in terms of the exact commute time.
(See below for how we compute this set.) The precision at k measure is

S50 S| /.

In words, this formula computes the fraction of the true set of k nodes that our algorithm
identifies.

We ran the algorithm from Section 5.1 with a tolerance of 10716 to evaluate the
maximum accuracy possible with this approach. We choose 50 target nodes randomly
and also based on the same degree sequence sampling mentioned in the last section. For
values of k& between 5 and 100, we show a box-plot of the precision at k scores for four
networks in Figure 4. In the same figure, we also show the result of using the heuristic

Cij = Dlm + ﬁ suggested by von Luxburg et al. [2010]. This heuristic is called “inverse
degree” in the figure, because it shows that the set S} should look like the set of k nodes
with highest degree or smallest inverse degree.

These results show that our approach for estimating a column of the commute time
matrix provides only partial information about the true set. However, these experiments
reinforce the theoretical discussion in von Luxburg et al. [2010] that commute time
provides little information beyond the degree distribution. Consequently, the results
from our algorithm may provide more useful information in practice. Although such a
conclusion would require us to formalize the nature of the approximation error in this

algorithm, and involve a rather different kind of study.
Exact commute times Computing commute times is challenging. As part of a sep-

arate project, the third author of this paper wrote a program to compute the exact
eigenvalue decomposition of a combinatorial graph Laplacian in a distributed computing

24

dblp, approximate commute arxiv, approximate commute

ca-HepPh, approximate commute Stanford3, approximate commute
1 1 1
. [‘ g
205} . 205 QOS5 1 tee, B
5} IR s “7,.3‘!:‘! o . = leg evty =
x [DRSEEES ESA R A o | = H tiiitipg, L ee.e O
i startgyg Tilk ﬂ
Dltdobosbecsbotbtddl [iissseassescentbtd o [llabbeddabeodidbbin
(=
wQIRIRRIBLRIBERIRBSIeS 1wOERISIRLRIR3ERI0R82108 wEIRABBLLIBBBERLBBIES
k k k
ca-HepPh, inverse degree Stanford3, inverse degree dblp, inverse degree
1 HH%HQ??????????frT 1*-775%349;»-;-;*@‘-1,——, 1
i o Cntaad i7e
c Lt c = H:ﬁ‘}‘???f???!l‘rtt c
s s | 5§ |baritigat s
3 0.5[! 5 05 5 05 Lirsle 3
< !)< <} DR <}
a | a o a
| .
of! 0 of++
1HONOIOOOONOOOWLS 1HONOIOLOOOOWOOWLS HOLOINOLNOOONOIOLOWS HOOINOLOOONOOLOWS
ORGSR LRIBBEREEE88S SERESHRILRIBBEREEE88S R RBH I T BIBOON BRSO SR RB0 I T BHOONBRGHS
k k k k

Figure 4 — Precision at k for the column-wise commute time approximations (top) over a few
hundred trial columns. Precision at k for the inverse degree heuristic (bottom) over the same
columns. These figures show standard box-plots of the result for each column.

environment using the MPI and the ScaLAPACK library [Blackford et al., 1996]. This
program ignores the sparsity in the matrix and treats the problem as a dense matrix. We
adapted this software to compute the pseudo-inverse of the graph Laplacian as well as
the commute times. We were able to run this code on graphs up to 100,000 nodes using
approximately 10-20 nodes of a larger supercomputer. (The details varied by graph, and
are not relevant for this paper.) For graphs with less than 20,000 nodes, the same pro-
gram will compute all commute-times on the previously mentioned desktop computer.
Thus, we computed the exact commute times for all graphs except email-euAll, flickr2,
and hollywood-2009.

6.6 Column-wise Katz scores

We now come to evaluate the local algorithm for Katz scores. As with the pairwise
algorithms, we first study the empirical convergence of the algorithm. However, the
evaluation for the convergence here is rather different. Recall, again, that the point of
the column-wise algorithms is to find the most closely related nodes. For Katz scores,
these are the largest elements in a column (whereas for commute time, they were the
smallest elements in the column). Thus, we again evaluate each algorithm in terms of
the precision at k for the top-k set generated by our algorithms and the exact top-k set
produced by solving the linear system. Natural alternatives are other iterative methods
and specialized direct methods that exploit sparsity. The latter — including approaches
such as truncated commute time [Sarkar and Moore, 2007] — are beyond the scope of
this work, since they require a different computational treatment in terms of caching and
parallelization. Thus, we again use conjugate gradient (CG) as our point of comparison.

25

The exact solution is computed by solving (I — aA)k; = e;, again using the MINRES
method, to a tolerance of 10712,

We also look at the Kendall-7 correlation coefficient between our algorithm’s results
and the exact top-k set. This experiment will let us evaluate whether the algorithm is
ordering the true set of top-k results correctly. Let le*g be the scores from our algorithm
on the exact top-k set, and let x}. be the true top-k scores. The 7 coefficients are
computed between le*g and z}..

Both of the precision at k£ and the Kendall-7 measures should tend to 1 as we increase
the work in our algorithm. Indeed, this is what we observe in Figure 5. For these figures,
we pick a vertex with a fairly large degree and run Algorithm 6 with the “hard alpha”
value mentioned in previous sections. As the algorithm runs, we track work with respect
to the number of effective matrix vector products. An effective matrix-vector product
corresponds to our algorithm examining the same number of edges as a matrix-vector
product. For example, suppose the algorithm accesses a total of 80 neighbors in a graph
with 16 edges. Then this instance corresponds to 2.5 effective matrix vector products.
The idea is that the amount of work in one effective matrix vector product is about the
same as the amount of work in one iteration of CG. Hence, we can compare algorithms
on this ground. As evident from the legend in each figure, we look at precision at k for
four values of k, 10,25,100, 1000, and also the Kendall-7 for these same values. While
all of the measures should tend to 1 as we increase work, some of the exact top-k results
contain tied values. Our algorithm has trouble capturing precisely tied values and the
effect is that our Kendall-7 score does not always tend to 1 exactly.

For comparison, we show results from the conjugate gradient method for the top-25
set after 2,5,10, 15,25, and 50 matrix-vector products. In these results, the top-25 set
is nearly converged after the equivalent of a single matrix-vector product — equivalent to
just one iteration of the CG algorithm. The CG algorithm does not provide any useful
information until it converges. Our top-k algorithm produces useful partial information
in much less work.

6.7 Runtime

Finally, we show the empirical runtime of our implementations in Tables 4 and 5. Table 4
describes the runtime of the two pairwise algorithms. We show the 25th, 50th, and 75th
percentiles of the time taken to compute the results from Figure 3. Our implementation
is not optimized, and so these results indicate the current real-world performance of the
algorithms.

Table 5 describes the runtime of the column-wise Katz algorithm. Here, we picked
columns of the matrix to approximate in two ways: (i) randomly, and (ii) to sample the
entire degree distribution. As in previous experiments, we took the 1st, 2nd, 3rd, 4th,
5th, 10th, 20th,. .. vertices from the set of vertices sorted in order of decreasing degree.

26

Figure 5 — Convergence results for our column-wise Katz algorithm in terms of the precision
of the top-k set (left) and the ordering of the true top-k set (right). See Section 6.6 for the

discussion.

Precision@k for exact top—k sets

Precision@k for exact top—k sets

Precision@k for exact top—k sets

Precision@k for exact top—k sets

dblp, Katz, hard alpha

dblp, Katz, hard alpha

Kendtall-t ordering vs. exact

PN ! -~ — k=100
ozp N4 @ k=1000
N —O—cg k=25

0 - — & k=25

107 100 10° 10° 10
Equivalent matrix-vector products

arxiv, Katz, hard alpha

107 100 10° 100 10

Equivalent matrix-vector products

arxiv, Katz, hard alpha

. —6— cg k=25
0 — & -k=25

Kendetall-t ordering vs. exact

107 100 10° 10t 10°
Equivalent matrix-vector products

flickr2, Katz, hard alpha

107 100 10° 100 10’

Equivalent matrix-vector products

flickr2, Katz, hard alpha

1
038
06
04

o — k=100
02 e k=1000

cg k=25
— & -k=25

of & -8"-87

Kendtall-t ordering vs. exact

107 100 10° 10' 10
Equivalent matrix-vector products

hollywood, Katz, hard alpha

107 100 10" 100 107
Equivalent matrix-vector products

hollywood, Katz, hard alpha

—e— k=10
- —e — k=100
0.2 @ k=1000
—6— cg k=25
0 — o -k=25

Kendetall-t ordering vs. exact

0.6
0.4
—e— k=10
. — — k=100
0.2 @ k=1000
—O— cg k=25
0 — o -k=25

107 100 100 100 10

Equivalent matrix-vector products

27

107 100 10° 100 10’

Equivalent matrix-vector products

For each column picked in this manner, we ran Algorithm 6 and recorded the wall clock
time. The 25th, 50th, and 75th percentiles of these times are shown in the table for each
of the two sets of vertices.

For this algorithm, the degree of the target node has a considerable impact on the
algorithm runtime. This effect is particularly evident in the flick2 data. The randomly
chosen columns are found almost instantly, whereas the degree sampled columns take
considerably longer. A potential explanation for this behavior is that starting at a vertex
with a large degree will dramatically increase the residual at the first step. If these new
vertices also have a large degree, then this effect will multiply and the residual will rise
for a long time before converging. Even in the cases where the algorithm took a long
time to converge, it only explored a small fraction of the graph (usually about 10% of the
vertices), and so it retained its locality property. This property suggests that optimizing
our implementation could reduce these runtimes.

7 Conclusion and Discussion

The goal of this manuscript is to estimate commute times and Katz scores in a rapid
fashion. Let us summarize our contributions and experimental findings.

e For the pair-wise commute time problem, we have implemented Algorithm 4, based
on the relationship between the Lanczos process and a quadrature rule (Section 4.1).
This algorithm uses a similar mechanism to that of conjugate gradient (CG). It
outperforms the latter in terms of total matrix-vector products, because it provides
upper and lower bounds that allow for early termination, whereas CG does not
provide an easy way of detecting convergence for a specific pairwise score.

e For the pair-wize Katz problem, we have proposed Algorithm 5, also based on the
same quadrature theory. This algorithm involves two simultaneous Lanczos iter-
ations. In practice, this means more work per iteration than a simple approach
based on CG. A careful implementation of Algorithm 5 would merge the two Lanc-
70s processes into a “joint process” and perform the matrix-vector products simul-
taneously. In our tests of this idea, we have found that the combined matrix-vector
product took only 1.5 times as long as a single matrix-vector product.

e For the column-wise commute time problem, we have investigated a variation of
the conjugate gradient method that also provides an estimate of the diagonals
of the matrix inverse. We have found that these estimates were fairly crude ap-
proximations of the commute time scores. We have also investigated whether the
degree-based heuristic from von Luxburg et al. [2010] provides better information.
It indeed seems to perform better, which suggests that the smallest elements of a
column of the commute-time matrix may not be a useful set of useful related nodes.

e For the column-wise Katz algorithm, we have proposed Algorithm 6 based on the
techniques used for personalized PageRank computing. The idea with these tech-

28

Table 4 — Runtime of the pair-wise algorithms. The “0.0” second entries are rounded down
for display. These are really just less than 0.1 seconds. The three columns for each type of
problem show the 25th, 50th, and 75th percentiles of the wall-clock time to compute the results

in Figure 3.
Graph Verts. Avg. Pair-wise Katz Pair-wise commute
Deg. runtime (sec.) runtime (sec.)
25% Median 75% 25% Median 75%
tapir 1024 5.6 0.0 0.0 0.0 0.0 0.0 0.1
stanford-cs 2759 7.4 0.0 0.0 0.0 0.1 0.2 0.2
ca-GrQc 4158 6.5 0.0 0.0 0.0 0.1 0.1 0.1
wiki-Vote 7066 28.5 0.0 0.0 0.0 0.2 0.2 0.2
ca-HepTh 8638 5.7 0.0 0.0 0.0 0.1 0.2 0.2
ca-HepPh 11204 21.0 0.0 0.0 0.0 0.4 0.4 0.4
Stanford3 11586 98.1 0.2 0.2 0.2 0.6 0.7 0.7
ca-AstroPh 17903 22.0 0.1 0.1 0.1 0.5 0.5 0.7
ca-CondMat 21363 8.5 0.0 0.0 0.1 0.4 0.5 0.5
email-Enron 33696 10.7 0.1 0.1 0.1 1.1 1.2 1.3
soc-Epinionsl 75877 10.7 0.2 0.2 0.2 2.8 3.2 3.7
soc-Slashdot0811 77360 12.1 0.2 0.2 0.2 2.6 2.8 3.4
arxiv 86376 12.0 0.2 0.3 0.3 4.8 6.0 6.5
dblp 93156 3.8 0.1 0.1 0.2 3.0 3.2 3.4
email-EuAll 224832 3.0 0.3 0.4 0.4 11.2 14.2 17.2
flickr2 513969 12.4 1.3 1.7 1.8 54.8 60.0 69.8
hollywood-2009 1069126 105.3 16.5 17.0 17.4 199.2 246.0 272.5

Table 5 — Runtime of the column-wise Katz algorithm. The “0.0” second entries are rounded
down for display. These are really just less than 0.1 seconds. The three columns show the 25th,
50th, and 75th percentiles of the wall-clock time of the experiments described in Section 6.7.

Graph Verts. Avg. Random columns Degree columns
Deg. runtime (sec.) runtime (sec.)
25% Median 75% 25% Median 75%

tapir 1024 5.6 0.0 0.0 0.0 0.0 0.0 0.0

stanford-cs-sym 2759 7.4 0.0 0.0 0.0 0.0 0.0 0.0

ca-GrQc 4158 6.5 0.0 0.0 0.0 0.0 0.0 0.0

wiki-Vote 7066 28.5 0.0 0.0 0.4 0.4 0.4 0.4

ca-HepTh 8638 5.7 0.0 0.0 0.0 0.0 0.0 0.0

ca-HepPh 11204 21.0 0.0 0.0 0.0 1.1 1.1 1.1

Stanford3 11586 98.1 0.0 0.0 1.7 1.8 1.9 1.9

ca-AstroPh 17903 22.0 0.0 0.0 0.0 0.6 0.7 0.9

ca-CondMat 21363 8.5 0.0 0.0 0.0 0.1 0.1 0.1

email-Enron 33696 10.7 0.0 0.0 0.0 0.9 1.0 1.1

soc-Epinionsl 75877 10.7 0.0 0.0 0.0 3.7 4.1 4.5

soc-Slashdot0811 77360 12.1 0.0 0.0 0.0 2.4 2.8 3.7

arxiv 86376 12.0 0.0 0.0 0.0 0.0 0.6 0.7

dblp 93156 3.8 0.0 0.0 0.0 0.0 0.0 0.0

email-EuAll 224832 3.0 0.0 0.0 0.0 1.1 1.7 2.5

flickr2 513969 12.4 0.0 0.0 0.0 11.5 52.6 55.5
hollywood-2009 1069126 105.3 0.0 0.0 0.0 0.3 0.4 0.4

29

niques is to exploit sparsity in the solution vector itself to derive faster algorithms.
We have shown that this algorithm converged in two cases: Remark 1, where we
established a precise convergence result, and Theorem 3, where we only established
asymptotic convergence.
We believe that these results paint a useful picture of the strengths and limitations of
our algorithms. Here are a few possible directions for future work:

Alternatives for pair-wise Katz. First, there are alternatives to using the identity
ul'f(Z)yv = 1/ (u+vTf(Z)u+v)— (1/4)(u - v)Tf(Z)(u - v) in the u # v
case. The first alternative is based on the nonsymmetric Lanczos process [Golub and
Meurant, 2010]. This approach still requires two matrix-vector products per iteration,
but it directly estimates the bilinear form and also provides upper and lower bounds.
A concern with the nonsymmetric Lanczos process is that it is possible to encounter
degeneracies in the recurrence relationships that stop the process short of convergence.
Another alternative is based on the block Lanczos process [Golub and Meurant, 2010].
However, this process does not yet offer upper and lower bounds.

A theoretical basis for the localization of Katz scores. The inspiration for the
column-wise Katz algorithm were the highly successful personalized PageRank algo-
rithms. The localization of these personalized PageRank vectors was made precise in
a theorem from Andersen et al. [2006] that related the personalized PageRank vector to
cuts in the graph. In brief, if there is a good cut nearby a vertex, then the personalized
PageRank vector will be localized on a few vertices. An interesting question is whether
or not Katz matrices enjoy a similar property. We hope to investigate this question in
the future.

References

Evrim Acar, Daniel M. Dunlavy, and Tamara G. Kolda. Link prediction on evolving
data using matrix and tensor factorizations. In ICDMW ’09: Proceedings of the 2009
IEEE International Conference on Data Mining Workshops, pages 262-269. IEEE
Computer Society, 2009. ISBN 978-0-7695-3902-7. doi: 10.1109/ICDMW.2009.54.
Cited on pages 5 and 6.

Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using PageRank
vectors. In Proc. of the 47th Annual IEEE Sym. on Found. of Comp. Sci., 2006.
URL http://www.math.ucsd.edu/~fan/wp/localpartition.pdf. Cited on pages
4,13, 15, and 30.

Michele Benzi and Paola Boito. Quadrature rule-based bounds for functions of adja-

30

cency matrices. Linear Algebra and its Applications, 433(3):637-652, 2010. Cited on
page 5.

Pavel Berkhin. Bookmark-coloring algorithm for personalized PageRank computing.
Internet Math., 3(1):41-62, 2007. URL http://www.internetmathematics.org/
volumes/3/1/Berkhin.pdf. Cited on pages 4, 13, and 15.

Laura Susan Blackford, J. Choi, A. Cleary, A. Petitet, R. C. Whaley, J. Demmel,
I. Dhillon, K. Stanley, J. Dongarra, S. Hammarling, G. Henry, and D. Walker. Scala-
pack: a portable linear algebra library for distributed memory computers - design
issues and performance. In Proceedings of the 1996 ACM/IEEE conference on Su-
percomputing (CDROM), Supercomputing ’96, Washington, DC, USA, 1996. IEEE
Computer Society. ISBN 0-89791-854-1. doi: 10.1145/369028.369038. Cited on page
25.

Paolo Boldi and Sebastiano Vigna. The Webgraph Framework I: Compression tech-
niques. In Proceedings of the 13th international conference on the World Wide Web,
pages 595-602, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-844-X. doi:
10.1145/988672.988752. Cited on page 18.

Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label prop-
agation: A multiresolution coordinate-free ordering for compressing social networks.
In Proceedings of the 20th WWW2011, pages 587-596, March 2011. Cited on page
18.

G. Chantas, N. Galatsanos, A. Likas, and M. Saunders. Variational bayesian image
restoration based on a product of -distributions image prior. Image Processing,
IEEE Transactions on, 17(10):1795-1805, October 2008. ISSN 1057-7149. doi:
10.1109/TTP.2008.2002828. Cited on pages 4, 12, and 13.

Fan Chung, Linyuan Lu, and Van Vu. Eigenvalues of random power law graphs. An-
nals of Combinatorics, 7(1):21-33, 2003. URL http://www.springerlink.com/
content/Owjwr2jdObg91lmqy/. Cited on page 21.

P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press,
New York, 2nd edition, 1984. Cited on page 9.

Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software, 2010. URL http://www.cise.ufl.
edu/research/sparse/matrices/. To appear. Cited on page 19.

Tllés J. Farkas, Imre Derényi, Albert-Lészlé Barabasi, and Taméas Vicsek. Spectra of
“real-world” graphs: Beyond the semicircle law. Phys. Rev. E, 64(2):026704, July
2001. doi: 10.1103/PhysRevE.64.026704. Cited on page 13.

31

Kurt C. Foster, Stephen Q. Muth, John J. Potterat, and Richard B. Rothenberg. A
faster Katz status score algorithm. Comput. & Math. Organ. Theo., 7(4):275-285,
2001. Cited on page 6.

Frangois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. Random-walk
computation of similarities between nodes of a graph with application to collabora-
tive recommendation. IEEE Trans. Knowl. Data Fng., 19(3):355-369, 2007. Cited
on page 3.

John R. Gilbert and Shang-Hua Teng. MESHPART: Matlab mesh partitioning and
graph separator toolbox. http://www.cerfacs.fr/algor/Softs/MESHPART/, Febru-
ary 2002. URL http://www.cerfacs.fr/algor/Softs/MESHPART/. Cited on page
18.

F. Gobel and A. A. Jagers. Random walks on graphs. Stochastic Processes
and their Applications, 2(4):311-336, 1974. ISSN 0304-4149. doi: 10.1016/
0304-4149(74)90001-5. URL http://www.sciencedirect.com/science/article/
B6V1B-45FCH5T-Y/2/62a06d2db0d543df84aced9e88a125176. Cited on page 1.

G. H. Golub and Gérard Meurant. Matrices, moments and quadrature. In Numerical
analysis 1993 (Dundee, 1993), volume 303 of Pitman Res. Notes Math. Ser., pages
105-156. Longman Sci. Tech., Harlow, 1994. Cited on pages 4, 7, and 8.

Gene H. Golub and Gérard Meurant. Matrices, moments and quadrature ii; how to
compute the norm of the error in iterative methods. BIT Num. Math., 37(3):687—
705, 1997. Cited on pages 7, 8, 10, and 11.

Gene H. Golub and Gérard Meurant. Matrices, Moments, and Quadrature with Appli-
cations. Princeton Series in Applied Mathematics. Princeton University Press, 2010.
Cited on pages 10 and 30.

Jun Hirai, Sriram Raghavan, Hector Garcia-Molina, and Andreas Paepcke. Webbase:
a repository of web pages. Computer Networks, 33(1-6):277-293, June 2000. doi:
10.1016,/S1389-1286(00)00063-3. Cited on page 18.

Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context similarity.
In Proc. of the 8th ACM Intl. Conf. on Know. Discov. and Data Mining (KDD’02),
2002. Cited on page 5.

Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18:
39-43, 1953. Cited on page 1.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. Journal of Research of the National Bu-
reau of Standards, 45(4):255-282, October 1950. URL http://nvl.nist.gov/pub/
nistpubs/jres/045/4/V45.N04.A01.pdf. Cited on page 6.

32

Cornelius Lanczos. Solution of systems of linear equations by minimized iterations.
Journal of Research of the National Bureau of Standards, 49(1):33-53, July 1952.
URL http://nvl.nist.gov/pub/nistpubs/jres/049/1/V49.N01.A06.pdf. Re-
search paper 2341. Cited on page 7.

R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK User’s Guide: Solution of
Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, October
1997. URL http://www.caam.rice.edu/software/ARPACK/SRC/ug.ps.gz. Cited
on page 19.

Jure Leskovec. The stanford large network dataset collection. http://snap.stanford.
edu/data/index.html, 2010. Cited on page 18.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification
and shrinking diameters. ACM Trans. Knowl. Discov. Data, 1:1-41, March 2007.
ISSN 1556-4681. doi: 10.1145/1217299.1217301. Cited on page 18.

Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Com-
munity structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics, 6(1):29-123, September 2009. doi:
10.1080/15427951.2009.10129177. Cited on page 18.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social me-
dia. In Proceedings of the 28th international conference on Human factors in com-
puting systems, CHI "10, pages 1361-1370, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-929-9. doi: 10.1145/1753326.1753532. Cited on page 18.

Pei Li, Hongyan Liu, Jeffrey Xu Yu, Jun He, and Xiaoyong Du. Fast single-pair sim-
rank computation. In Proc. of the SIAM Intl. Conf. on Data Mining (SDM2010),
Columbus, OH, 2010. Cited on page 5.

David Liben-Nowell and Jon M. Kleinberg. The link prediction problem for so-
cial networks. In Proc. of the ACM Intl. Conf. on Inform. and Knowlg. Manage.
(CIKM’03), 2003. Cited on pages 2, 6, and 19.

Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method for con-
vex differentiable minimization. Journal of Optimization Theory and Applications,
72(1):7-35, 1992. ISSN 0022-3239. doi: 10.1007/BF00939948. 10.1007/BF00939948.
Cited on page 17.

Frank McSherry. A uniform approach to accelerated PageRank computation. In Proc.
of the 14th Intl. Conf. on the WWW, pages 575-582, New York, NY, USA, 2005.
ACM Press. ISBN 1-59593-046-9. doi: 10.1145/1060745.1060829. Cited on pages 4,
13, 15, and 16.

33

Milena Mihail and Christos H. Papadimitriou. On the eigenvalue power law. In RAN-
DOM ’02: Proceedings of the 6th International Workshop on Randomization and Ap-
prozimation Techniques, pages 254—262, London, UK, 2002. Springer-Verlag. ISBN
3-540-44147-6. doi: 10.1007/3-540-45726-720. Cited on page 21.

Dianne P. O’Leary. The block conjugate gradient algorithm and related methods.
Linear Algebra and its Applications, 29:293 — 322, 1980. ISSN 0024-3795. doi:
10.1016,/0024-3795(80)90247-5. URL http://www.sciencedirect.com/science/
article/B6VOR-45GWM37-T/2/61817cad5178e6911a3d537c05b4b1fb. Cited on page
12.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank ci-
tation ranking: Bringing order to the web. Technical Report 1999-66, Stanford Uni-
versity, November 1999. URL http://dbpubs.stanford.edu:8090/pub/1999-66.
Cited on page 6.

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM Journal on Numerical Analysis, 12(4):617-629, 1975. doi:
10.1137/0712047. URL http://link.aip.org/link/?SNA/12/617/1. Cited on
pages 4, 7, 12, 19, and 22.

Matthew J. Rattigan and David Jensen. The case for anomalous link discovery.
SIGKDD Explor. Newsl., 7(2):41-47, 2005. Cited on page 2.

Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. Trust management for
the semantic web. In The SemanticWeb - ISWC 2003, volume 2870 of Lecture Notes
in Computer Science, pages 351-368. Springer Berlin / Heidelberg, 2003. doi: 10.
1007/978-3-540-39718-223. Cited on page 18.

Marco Saerens, Francois Fouss, Luh Yen, and Pierre Dupont. The principal compo-
nents analysis of a graph, and its relationships to spectral clustering. In Proc. of the
15th Euro. Conf. on Mach. Learn., 2004. Cited on pages 2 and 3.

Purnamrita Sarkar and Andrew W. Moore. A tractable approach to finding closest
truncated-commute-time neighbors in large graphs. In Proc. of the 23rd Conf. on
Uncert. in Art. Intell. (UAI’07), 2007. Cited on pages 2, 5, 6, and 25.

Purnamrita Sarkar, Andrew W. Moore, and Amit Prakash. Fast incremental proximity
search in large graphs. In Proc. of the 25th Intl. Conf. on Mach. Learn. (ICML’08),
2008. Cited on page 6.

Michael Saunders. cglanczos: CG method for positive definite ax=b. http://www.
stanford.edu/group/SOL/software/cglanczos.html, accessed on 2011-03-25,
2007. Cited on page 13.

34

Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
In Proc. of the 40th Ann. ACM Symp. on Theo. of Comput. (STOC’08), pages 563—
568, 2008. Cited on page 6.

Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of facebook
networks. arXiv, cs.51:1102.2166, February 2011. URL http://arxiv.org/abs/
1102.2166. Cited on page 18.

R.S. Varga. Matrix Iterative Analysis. Prentice-Hall, 1962. Cited on page 14.

Ulrike von Luxburg, Agnes Radl, and Matthias Hein. Getting lost in space: Large sam-
ple analysis of the commute distance. In Advances in Neural Information Process-
ing Systems 24 (NIPS2010), 2010. URL http://books.nips.cc/papers/files/
nips23/NIPS2010_0929.pdf. Cited on pages 5, 24, and 28.

Chao Wang, Venu Satuluri, and Srinivasan Parthasarathy. Local probabilistic models
for link prediction. In ICDM ’07: Proceedings of the 2007 Seventh IEEFE Interna-
tional Conference on Data Mining, pages 322—-331, Washington, DC, USA, December
2007. IEEE Computer Society. ISBN 0-7695-3018-4. doi: 10.1109/ICDM.2007.108.
Cited on pages 5, 6, and 22.

L. Yen, F. Fouss, C. Decaestecker, P. Francq, and M. Saerens. Graph nodes cluster-
ing based on the commute-time kernel. In Proc. of the 11th Pacific-Asia Conf. on
Knowled. Disc. and Data Mining (PAKDD 2007). Lecture Notes in Computer Sci-
ence (LNCS), 2007. Cited on page 6.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corpo-
ration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

35

