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Abstract

We first explore methods for approximating the commute time and Katz score

between a pair of nodes. These methods are based on the approach of matrices, mo-

ments, and quadrature developed in the numerical linear algebra community. They

rely on the Lanczos process and provide upper and lower bounds on an estimate of

the pair-wise scores. We also explore methods to approximate the commute times

and Katz scores from a node to all other nodes in the graph. Here, our approach for

the commute times is based on a variation of the conjugate gradient algorithm, and

it provides an estimate of all the diagonals of the inverse of a matrix. Our technique

for the Katz scores is based on exploiting an empirical localization property of the

Katz matrix. We adopt algorithms used for personalized PageRank computing to

these Katz scores and theoretically show that this approach is convergent. We eval-

uate these methods on 17 real world graphs ranging in size from 1000 to 1,000,000

nodes. Our results show that our pair-wise commute time method and column-wise

Katz algorithm both have attractive theoretical properties and empirical perfor-

mance.

1 Introduction

Commute times [Göbel and Jagers, 1974] and Katz scores [Katz, 1953] are two topo-

logical measures defined between any pair of vertices in a graph that capture their re-

lationship due to the link structure. Both of these measures have become important

because of the their use in social network analysis as well as applications such as link

1

http://arxiv.org/abs/1104.3791v1


prediction [Liben-Nowell and Kleinberg, 2003], anomalous link detection [Rattigan and

Jensen, 2005], recommendation [Sarkar and Moore, 2007], and clustering [Saerens et al.,

2004].

For example, Liben-Nowell and Kleinberg [2003] identify a variety of topological

measures as features for link prediction: the problem of predicting the likelihood of

users/entities forming new connections in the future, given the current state of the net-

work. The measures they studied fall into two categories – neighborhood-based measures

and path-based measures. The former are cheaper to compute, yet the latter are more ef-

fective at link prediction. Katz scores were among the most effective path-based measures

studied by Liben-Nowell and Kleinberg [2003], and the commute time also performed well.

Standard algorithms to compute these measures between all pairs of nodes are often

based on direct solution methods and require cubic time and quadratic space in the

number of nodes of the graph. Such algorithms are impractical for modern networks

with millions of vertices and tens of millions of edges. We explore algorithms to compute

a targeted subset of scores that do scale to modern networks.

Katz scores measure the affinity between nodes via a weighted sum of the number of

paths between them. Formally, the Katz score between node i and j is

Ki,j =
∞∑

ℓ=1

αℓpathsℓ(x, y),

where pathsℓ(x, y) denotes the number of paths of length ℓ between i to j and α < 1 is an

attenuation parameter. Now, let A be the symmetric adjacency matrix, corresponding to

a undirected and connected graph, and recall that (Aℓ)i,j is the number of paths between

node i and j. Then computing the Katz scores for all pairs of nodes is equivalent to the

following computation:

K = αA+ α2A2 + · · · = (I − αA)−1 − I.

Herein, we refer to K as the Katz matrix. We shall only study this problem when I−αA
is positive definite, which occurs when α < 1/σmax(A) and also corresponds to the case

where the series expansion converges.

In order to define the commute time between nodes, we must first define the hitting

time between nodes. Formally, the commute time between nodes is defined as the sum

of hitting times from i to j and from j to i, and the hitting time from node i to j is

the expected number of steps for a random walk started at i to visit j for the first time.

The hitting time is computed via first-transition analysis on the random walk transition

matrix associated with a graph. To be precise, let A, again, be the symmetric adjacency

matrix. Let D be the diagonal matrix of degrees:

Di,j =







∑

v Ai,v i = j

0 otherwise.
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Table 1 – Notation

A the symmetric adjacency matrix for a connected, undirected graph

D the diagonal matrix of node degrees

n the number of vertices in A

e the vector of all ones

ei a vector of zeros with a 1 in the ith position

L the combinatorial Laplacian matrix of a graph, L = D −A

L̃ the adjusted combinatorial Laplacian, L̃ = L+ 1

n
ee

T

α the damping parameter in Katz

K the Katz matrix, K = (I − αA)−1

C the commute time matrix

Z a “general” matrix, usually I − αA or L̃

The random walk transition matrix is given by P = D−1A. Let Hi,j be the hitting time

from node i and j. Based on the Markovian nature of a random walk, Hi,j must satisfy:

Hi,j = 1 +
∑

v

Hi,vPv,j and Hi,i = 0.

That is, the hitting time between i and j is 1 more than the hitting time between i and

v, weighted by the probability of transitioning between v and j, for all v. The minimum

non-negative solution H that obeys this equation is thus the matrix of hitting times.

The commute time between node i and j is then:

Ci,j = Hi,j +Hj,i.

As a matrix C = H + HT , and we refer to C as the commute time matrix. An

equivalent expression follows from exploiting a few relationships with the combinato-

rial graph Laplacian matrix: L = D − A [Fouss et al., 2007]. Each element Ci,j =

Vol(G)(L†
i,i − 2L†

i,j + L†
j,j) where Vol(G) is the sum of elements in A and L† is the

pseudo-inverse of L. The null-space of the combinatorial graph Laplacian has a well

known expression in terms of the connected components of the graph G. This relation-

ship allows us to write

L† = (L+
1

n
eeT

︸ ︷︷ ︸

L̃

)−1 − 1

n
eeT

for connected graphs [Saerens et al., 2004], where e is the vector of all ones, and n

is the number of nodes in the graph. The commute time between nodes in different

connected components is infinite, and thus we only need to consider connected graphs.

We summarize the notation thus far, and a few subsequent definitions in Table 1.

Computing either Katz scores or commute times between all pairs of nodes involves

inverting a matrix:

(I − αA)−1 or (L+
1

n
eeT )−1.
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Standard algorithms for a matrix inverse require O(n3) time and O(n2) memory. Both

of these requirements are inappropriate for a large network (see Section 2 for a brief

survey of existing alternatives). Inspired by applications in anomalous link detection

and recommendation, we focus on computing only a single Katz score or commute time

and on approximating a column of these matrices. In the former case, our goal is to

find the score for a given pair of nodes and in the latter, it is to identify the most

related nodes for a given node. In our vision, the pair-wise algorithms should help

in cases where random pair-wise data is queried, for instance when checking random

network connections, or evaluating user similarity scores as a user explores a website.

For the column-wise algorithms, recommending the most similar nodes to a query node

or predicting the most likely links to a given query node are both obvious applications.

One way to compute a single score – what we term the pair-wise problem – is to find

the value of a bilinear form:

uTZ−1v,

where Z = (I − αA) or Z = L̃. An interesting approach to estimate these bilinear

forms, and to derive computable upper and lower bounds on the value, arises from the

relationship between the Lanczos/Stieltjes procedure and a quadrature rule [Golub and

Meurant, 1994]. This relationship and the resulting algorithm for a quadratic form

(uTZ−1u) is described in Section 4.1. Prior to that, and because it will form the basis of

a few algorithms that we use, Section 3 first reviews the properties of the Lanczos method.

We state the pairwise procedure for commute times and Katz scores in Section 4.2 and 4.3.

The column-wise problem is to compute, or approximate, a column of the matrix C

or K. A column of the commute time matrix is:

ci = Cei = vol(G)[(ei − ev)
T L̃

−1
(ei − ev) : 1 ≤ v ≤ n].

A difficulty with this computation is that it requires all of the diagonal elements of L̃
−1

,

as well as the solution of the linear system L̃
−1

ei. We can use a property of the Lanczos

procedure and its relationship with the conjugate gradient algorithm to solve L̃
−1

ei and

estimate all of the diagonals of the inverse simultaneously [Paige and Saunders, 1975,

Chantas et al., 2008].

A column of the Katz matrix is Kei, which corresponds to solving a single linear

system:

ki = Kei = (I − αA)−1ei − ei.

Empirically, we observe that the solutions of the Katz linear system are often localized.

That is, there are only a few large elements in the solution vector, and many negligible

elements. See Table 2 for an example of this localization over a few graphs. In order

to capitalize on this phenomenon, we use a generalization of “push”-style algorithms

for personalized PageRank computing [McSherry, 2005, Andersen et al., 2006, Berkhin,

2007]. These methods only access the adjacency information for a limited number of
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vertices in the graph. In Section 5.2, we explain the generalization of these methods,

the adaptation to Katz scores, and utilize the theory of coordinate descent optimization

algorithms to establish convergence. As we argue in that section, these techniques might

also be called “Gauss-Southwell” methods, based on historical precedents.

One of the advantages of Lanczos-based algorithms is that the convergence is of-

ten much faster than a worst-case analysis would suggest. This means studying their

convergence by empirical means and on real data sets is important. We do so for 17

real-world networks in Section 6, ranging in size from approximation 1,000 vertices to

1,000,000 vertices. These experiments highlight both the strengths and weaknesses of our

approaches, and should provide a balanced picture of our algorithms. In particular, our

algorithms run in seconds or milliseconds – significantly faster than many techniques that

use preprocessing to estimate all of the scores simultaneously, which can take minutes.

Straightforward approaches based on the conjugate gradient technique are often com-

petitive with our techniques. However, our algorithms have other desirable properties,

such as upper and lower bounds on the solution or exploiting sparsity in the solution

vector, which conjugate gradient does not. These experiments also shed light on a recent

result from von Luxburg et al. [2010] on the relationship between commute time and the

degree distribution.

Literature directly related to the problems we study and the techniques we propose

is discussed throughout the paper, in context. However, we have isolated a small set of

core related papers and discuss them in the next section.

In the spirit of reproducible research, we make our data, computational codes, and fig-

ure plotting codes available for others: http://cs.purdue.edu/homes/dgleich/publications/

2011/codes/fast-katz/.

2 Related work

This paper is about algorithms for computing commute times and Katz scores over

networks with hundreds of thousands to millions of nodes. Most existing techniques

determine the scores among all pairs of nodes simultaneously [Acar et al., 2009, Wang

et al., 2007, Sarkar and Moore, 2007] (discussed below). These methods tend to involve

some preprocessing of the graph using a one-time, rather expensive, computation. We

instead focus on quick estimates of these measures between a single pair of nodes and

between a single node and all other nodes in the graph. In this vein, a recent paper [Li

et al., 2010] studies efficient computation of SimRank [Jeh and Widom, 2002] for a given

pair of nodes.

A highly related paper is Benzi and Boito [2010], where they investigate entries

in functions of the adjacency matrix, such as the exponential, using quadrature-based

bounds. A priori upper and lower bounds are obtained by employing a few Lanczos steps

and the bounds are effectively used to observe the exponential decay behavior of the
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exponential of an adjacency matrix.

In Sarkar and Moore [2007], an interesting and efficient approach is proposed for

finding approximate nearest neighbors with respect to a truncated version of the commute

time measure. Spielman and Srivastava [2008] develop a technique for computing the

effective resistance of all edges (which is proportional to commute time) in O(m log n)

time. Both of these procedures involve some preprocessing.

Standard techniques to approximate Katz scores include truncating the series expan-

sion to paths of length less than ℓmax [Foster et al., 2001, Wang et al., 2007] and low-rank

approximation [Liben-Nowell and Kleinberg, 2003, Acar et al., 2009]. Only the former

technique, when specialized to compute only a pair or top-k set, has performance com-

parable to our algorithms. However, when we tested an adapted algorithm based on the

Neumann series expansion, it required much more work than the techniques we propose.

As mentioned in the introduction, both commute times and Katz scores were studied

by Liben-Nowell and Kleinberg [2003] for the task of link prediction, and were found

to be effective. Beyond link prediction, Yen et al. [2007] use a commute time kernel

based approach to detect clusters and show that this method outperforms other kernel

based clustering algorithms. The authors use commute time to define a distance mea-

sure between nodes, which in turn is used for defining a so-called intra-cluster inertia.

Intuitively, this inertia measures how close nodes within a cluster are to each other. The

algorithm we propose for computing the Katz and commute time score for a given pair of

nodes x, y extends to the case where one wants to find the aggregate score between a node

x and a set of nodes S. Consequently, this work has applications for finding the distance

between a point and a cluster as well as for finding intra-cluster inertia. For applica-

tions to recommender systems, Sarkar et al. [2008] used their truncated commute time

measure for link prediction over a collaboration graph and showed that it outperforms

personalized PageRank [Page et al., 1999].

3 The Lanczos Process

The Lanczos algorithm [Lanczos, 1950] is a procedure applied to a symmetric matrix,

which works particularly well when the given matrix is large and sparse. A sequence of

Lanczos iterations can be thought of as “truncated” orthogonal similarity transforma-

tions. Given an n × n matrix Z, we construct a matrix Q with orthonormal columns,

one at a time, and perform only a small number of steps, say k, where k ≪ n. The input

for the algorithm is the matrix Z, an initial vector q and a number of steps k. Upon

exit, we have an n× (k + 1) matrix Qk+1 with orthonormal columns and a (k + 1)× k

tridiagonal matrix T k+1,k, that satisfy the relationship

ZQk = Qk+1T k+1,k,
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Algorithm 1 Lanczos(Z,q, k).

1: q1 = q/‖q‖2, β0 = 0,q0 = 0

2: for j = 1 to k do

3: z = Zqj

4: αj = qT
j z

5: z = z− αjqj − βj−1qj−1

6: βj = ‖z‖2
7: if βj = 0,qj+1 = 0 and quit

8: else qj+1 = z/βj

Algorithm 2 LanczosStep(Z,q(−),q, β(−)).

1: z = Zq

2: α = qT z

3: z = z− αq− β(−)q(−)

4: β = ‖z‖2
5: if β = 0,q(+) = 0

6: else q(+) = z/β

7: return (q, α, β)

where Qk is the n× k matrix that contains the first k columns of Qk+1, and T k+1,k =

tri(βi, αi, βi) is tridiagonal.

What makes the Lanczos procedure attractive are the good approximation properties

that it has for k ≪ n. The matrix T k+1,k is small when k ≪ n, but the eigenvalues

of its k × k upper part – a matrix we will refer to as T k in the subsequent section –

approximate the extremal eigenvalues of the large n×n matrix Z. This can be exploited

not only for eigenvalue computations but also for solving a linear system [Lanczos, 1952,

Paige and Saunders, 1975]. Another attractive feature is that the matrix Z does not

necessarily have to be provided explicitly; the algorithm only uses Z via matrix-vector

products.

The Lanczos procedure is given in Algorithm 1. For expositional purposes we define

the core of the algorithm as Algorithm 2. We will later incorporate that part into other

algorithms – see Section 4.

4 Pairwise Algorithms

Consider the commute time and Katz score between a single pair of nodes:

Ci,j = Vol(G)(ei − ej)
TL†(ei − ej) and Ki,j = eTi (I − αA)−1ej − δi,j .

In these expressions, ei and ej are vectors of zeros with a 1 in the ith and jth posi-

tion, respectively; and δi,j is the Kronecker delta function. A straightforward means of

computing them is to solve the linear systems

L̃
−1

y = ei − ej and (I − αA)x = ej .

Then Ci,j = Vol(G)(ei−ej)
Ty and Ki,j = eTi x− δi,j . It is possible to compute the pair-

wise scores by solving these linear systems. In what follows, we show how a technique

combining the Lanczos iteration and a quadrature rule [Golub and Meurant, 1994, 1997]

produces the pair-wise commute time score or the pair-wise Katz score as well as upper

and lower bounds on the estimate.
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4.1 Matrices moments and quadrature

Both of the pairwise computations above are instances of the general problem of esti-

mating a bilinear form:

uT f(Z)v,

where Z is symmetric positive definite (for Katz, this occurs by restricting the value of α,

and for commute times, the adjusted Laplacian L̃ is always positive definite), and f(x)

is an analytic function on the region containing the eigenvalues of Z. The only function

f(x) we use in this paper is f(x) = 1
x , although we treat the problem more generally for

part of this section.

Golub and Meurant [1994, 1997] introduced elegant computational techniques for

evaluating such bilinear forms. They provided a solid mathematical framework and a

rich collection of possible applications. These techniques are well known in the numer-

ical linear algebra community, but they do not seem to have been used in data mining

problems. We adapt this methodology to the pairwise score problem, and explain how to

do so in an efficient manner in a large scale setting. The algorithm has two main compo-

nents, combined together: Gauss-type quadrature rules for evaluating definite integrals,

and the Lanczos algorithm for partial reduction to symmetric tridiagonal form. In the

following discussion, we treat the case of u = v. This form suffices thanks to the identity

uT f(Z)v =
1

4

[
(u+ v)T f(Z)(u + v)− (u− v)T f(Z)(u− v)

]
.

Because Z is symmetric positive definite, it has a unitary spectral decomposition,

Z = QΛQT , where Q is an orthogonal matrix whose columns are eigenvectors of Q with

unit 2-norms, and Λ is a diagonal matrix with the eigenvalues of Q along its diagonal.

We use this decomposition only for the derivation that follows, it is never computed in

our algorithm. Given this decomposition, for any analytic function f ,

uT f(Z)u = uTQf(Λ)QTu =

n∑

i=1

f(λi)ũ
2
i ,

where ũ = QTu. The last sum is equivalent to the Stieltjes integral

uT f(Z)u =

∫ λ

λ

f(λ) dω(λ). (1)

Here ω(λ) is a piecewise constant measure, which is monotonically increasing, and its

values depend directly on the eigenvalues of Z. Both λ and λ are values that are lower

and higher than the extremal eigenvalues of Z, respectively. Let

0 < λ1 ≤ λ2 ≤ . . . ≤ λn
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be the eigenvalues of Z. Note that λ < λ1 and λ > λn. Now, ω(λ) takes the following

form:

ω(λ) =







0 λ < λ1
∑i

j=1 ũ
2
j λi ≤ λ < λi+1

∑n
j=1 ũ

2
j λn ≤ λ.

The first of Golub and Meurant’s key insights is that we can compute an approxima-

tion for an integral of the form (1) using a quadrature rule, e.g.,

∫ λ

λ

f(λ) dω(λ) ≈
N∑

j=1

f(ηj)ωj

where ηj , ωj are the nodes and weights of a Gaussian quadrature rule. The second

insight is that the Lanczos procedure constructs the quadrature rule itself. Since we use

a quadrature rule, an estimate of the error is readily available, see for example Davis and

Rabinowitz [1984]. More importantly, we can use variants of the Gaussian quadrature to

obtain both lower and upper bounds and “trap” the value of the element of the inverse

that we seek between these bounds.

The ability to estimate bounds for the value is powerful and provides effective stop-

ping criteria for the algorithm – we shall see this in the experiments in Section 6.2. It

is important to note that such component-wise bounds cannot be easily obtained if we

were to extract the value of the element from a column of the inverse, by solving the

corresponding linear system, for example. Indeed, typically for the solution of a linear

system, norm-wise bounds are available, but obtaining bounds pertaining to the compo-

nents of the solution is significantly more challenging and results of this sort are harder

to establish. It should also be noted that bounds of the sort discussed here cannot be

obtained for general non-symmetric matrices.

Returning to the procedure, let f(λ) be a function where the (2k + 1)st derivative

has a negative sign for all λ < λ < λ. Note that f(λ) = 1/λ satisfies this condition

because all odd derivatives are negative when λ > 0. As a high level algorithm, the

Golub-Meurant procedure for estimating bounds

b ≤ uT f(Z)u ≤ b

is given by the following steps.

1. Let σ = ‖u‖.
2. Compute T k from k steps of the Lanczos procedure applied to Z and u/σ.

3. Compute T k, which the matrix T k extended with another row and column crafted

to add the eigenvalue λ to the eigenvalues of T k. This new matrix is still tridiagonal.

4. Set b = σ2eT1 f(T k)e1. This estimate corresponds to a (k + 1)-point Gauss-Radau

rule with a prescribed point of λ.
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5. Compute T k, which the matrix T k extended with another row and column crafted

to add the eigenvalue λ to the eigenvalues of T k. Again, this new matrix is still

tridiagonal.

6. Set b = σ2eT1 f(T k)e1. This estimate corresponds to a (k + 1)-point Gauss-Radau

rule with a prescribed point of λ.

Based on the theory of Gauss-Radau quadrature, the fact that these are lower and upper

bounds on the quadratic form uT f(Z)u follows because the sign of the error term changes

when prescribing a node in this fashion. See Golub and Meurant [2010, Theorem 6.4] for

more information. As k increases, the upper and lower bounds converge.

While this form of the algorithm is convenient for understanding the high level prop-

erties and structure of the procedure, it is not computationally efficient. If f(λ) = 1/λ

and if we want to compute a more accurate estimate by increasing k, then we need to

solve two inverse eigenvalue problems (steps 3 and 5), and solve two linear systems (steps

4 and 6). Each of these steps involves O(k) work because the matrices involved are tridi-

agonal. However, a constant-time update procedure is possible. The set of operations

to efficiently update b and b after a Lanczos step (Algorithm 2) is given by Algorithm 3.

Please see Golub and Meurant [1997] for an explanation of this procedure. Using Algo-

rithms 2 and 3 as sub-routines, it is now straightforward to state the pairwise commute

time and Katz procedures.

4.2 Pairwise commute scores

The bilinear form that we need to estimate a commute time is

b = (ei − ej)
T L̃

−1
(ei − ej).

For this problem, we apply Algorithm 2 to step through the Lanczos process and then

use Algorithm 3 to update the upper and lower bounds on the score. This combination

is explicitly described in Algorithm 4. Note that we do not need to apply the final

correction with 1
nee

T because eT (ei − ej) = 0.

4.3 Pairwise Katz scores

The bilinear form that we need to estimate for a Katz score is

b = eTi (I − αA)−1ej .

Recall that we use the identity:

b =
1

4

[
(ei + ej)

T (I − αA)−1(ei + ej)
︸ ︷︷ ︸

=g

− (ei − ej)
T (I − αA)−1(ei − ej)

︸ ︷︷ ︸

=h

]

In this case, we apply the combination of LanczosStep and MMQStep to estimate g ≤
g ≤ g and h ≤ h ≤ h. Then 1

4 (g − h) ≤ b ≤ 1
4 (g − h).

10



Algorithm 3 MMQStep [Golub and Meurant, 1997, Algorithm GQL]

Input: α, β−1, β, b−1, c−1, d−1, d−1, d−1

1: b = b−1 +
β2

−1
c2
−1

d−1(αd−1−β2

−1
)
; c = c−1

β−1

d−1

; d = α− β2

−1

d−1

2: d = α− λ− β2

−1

d−1

; d = α− λ− β2

−1

d
−1

3: ω = λ+ β2

d
; ω = λ+ β2

d

4: b = b+ β2c2

d(ωd−β2) ; b = b+ β2c2

d(ωd−β2)

Output: (b, b) and (b, c, d, d, d)

Algorithm 4 Pairwise Score Bounds for commute time

Input: L (Laplacian matrix); i, j (pairwise coordinate); λ, λ (bounds where λ < λ(L) <

λ); τ (stopping tolerance)

Output: κ, κ where κ < (ei − ej)
TL†(ei − ej) < κ

1: (Initialize Lanczos) σ =
√
2,q−1 = 0,q0 = (ei − ej)/σ, β0 = 0

2: (Initialize MMQStep) b0 = 0, c0 = 1, d0 = 1, d0 = 1, d0 = 1

3: for j = 1, ... do

4: Set (qj , αj , βj) from LanczosStep(L̃,qj−2,qj−1, βj−1)

5: Set (b, b) and (bj , cj , dj , dj , dj) from

MMQStep(αj , βj−1, βj , bj−1, cj−1, dj−1, dj−1, dj−1).

6: κ = σ2b; κ = σ2b

7: if κ− κ < τ , stop

Algorithm 5 Pairwise Score Bounds for Katz

Input: A (adjacency matrix); α (the Katz damping factor); i, j (pairwise coordinate);

λ, λ (bounds where λ < λ(I − αA) < λ); τ (stopping tolerance)

Output: ρ, ρ where ρ < (I − αA)−1
i,j < ρ

1: (Initialize Lanczos for g) σ =
√
2,q−1 = 0,q0 = (ei + ej)/σ, β

g
0 = 0

2: (Initialize Lanczos for h) u−1 = 0,u0 = (ei − ej)/σ, β
h
0 = 0

3: (Initialize MMQStep for g) bg0 = 0, cg0 = 1, dg0 = 1, d
g

0 = 1, dg0 = 1

4: (Initialize MMQStep for h) bh0 = 0, ch0 = 1, dh0 = 1, d
h

0 = 1, dh0 = 1

5: for j = 1, ... do

6: Set (qj , α
g
j , β

g
j ) from LanczosStep((I − αA),qj−2,qj−1, β

f
j−1)

7: Set (uj , α
h
j , β

h
j ) from LanczosStep((I − αA),uj−2,uj−1, β

h
j−1)

8: Set (g, g) and (bgj , c
g
j , d

g
j , d

g

j , d
g
j ) from

MMQStep(αg
j , β

g
j−1, β

g
j , b

g
j−1, c

g
j−1, d

g
j−1, d

g
j−1, d

g

j−1).

9: Set (h, h) and (bhj , c
h
j , d

h
j , d

h

j , d
h
j ) from

MMQStep(αh
j , β

h
j−1, β

h
j , b

h
j−1, c

h
j−1, d

h
j−1, d

h
j−1, d

h

j−1).

10: ρ = σ2/4(g − h); ρ = σ2/4(g − h)

11: if ρ− ρ < τ , stop
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5 Column-wise algorithms

Whereas the last section used a single procedure to derive two algorithms, in this section,

we investigate two different procedures: one for commute time and a different procedure

for Katz scores. The reason behind this difference is that, as mentioned in the introduc-

tion, computing a column of the commute time matrix cannot be stated as the solution

of a single linear system:

ci = Cei = vol(G)[(ei − ev)
T L̃

−1
(ei − ev) : 1 ≤ v ≤ n].

Computing this column requires all of the diagonal elements of the inverse. In contrast,

a column of the Katz matrix is just the solution of a linear system:

ki = Kei = (I − αA)−1ei − ei.

For this computation, we exploit an empirical localization property of these columns.

5.1 Column-wise commute times

A straightforward way to compute an entire column of the commute time matrix would

require solving n separate linear systems: one to get both L̃
−1

ei and L̃
−1

i,i , and the other

n−1 to get L̃−1

j,j for i 6= j. Neither solving each system independently, nor using a multiple

right hand side algorithm [O’Leary, 1980], will easily yield an efficient procedure. Both

of these approaches generate far too much extraneous information. In fact, we only need

one linear system solve, and the diagonal elements of the pseudo-inverse. Thus, any

procedure to compute or estimate diag(L†) provides a tractable algorithm.

One such procedure arises, again, from the Lanczos method. It was originally de-

scribed by Paige and Saunders [1975], and is explained in more detail in Chantas et al.

[2008]. Suppose we want to compute diag(L̃
−1

). If the Lanczos algorithm runs to com-

pletion in exact arithmetic, then we have:

L̃ = QTQT and L̃
−1

= QT−1QT .

Let T = RRT be a Cholesky factorization of T . If we substitute this factorization into

the expression for the inverse, then L̃
−1

= V R−TR−1V T . Now, let W = V R−T . Note

that L̃
−1

= WW T . As a notational convenience, let wk be the kth column of W .

Consequently,

diag(E−1) =
n∑

k=1

wk ◦wk

where wk ◦ wk is the Hadamard (element-wise) product: [wk ◦ wk]i = w2
k,i. If we

implement CG based on the Lanczos algorithm as explained in Paige and Saunders [1975],

then the vector wk is computed as part of the standard algorithm, and is available at

12



no additional cost. This idea is implemented in the cgLanczos.m code [Saunders, 2007],

which we use in our experiments. Please see Chantas et al. [2008] for a detailed account

of this derivation including the diagonal estimate.

Based on advice from the author of the cgLanczos code, we added local reorthogonal-

ization to the Lanczos procedure. This addition requires a few extra vectors of memory,

but ensures greater orthogonality in the computed Lanczos vectors qk. Also, based on

advice from the author, we use the following preconditioned linear system:

D−1/2L̃D−1/2y = D−1/2ei.

If f is the estimate of the diagonals of (D−1/2L̃D−1/2)−1, then D−1f is the estimate of

the diagonals of L̃
−1

. Using this preconditioned formulation, the algorithm converged

much more quickly than without preconditioning. In summary, this approach to estimate

the column-wise commute times ci is:

1. Solve D−1/2L̃D−1/2y = D−1/2ei using cgLanczos.m

to get both y and f ≈ diag
(

(D−1/2L̃D−1/2)−1
)

.

2. Set x = D−1/2y − 1
ne ≈ L†ei.

3. Set g = D−1f − 1
ne ≈ diag(L†).

4. Output ci ≈ g+ xie− 2x.

We refrain from stating this as a formal algorithm because the majority of the work is

in the cgLanczos.m routine.

5.2 Column-wise Katz scores

In this section, we show how to adapt techniques for rapid personalized PageRank com-

putation [McSherry, 2005, Andersen et al., 2006, Berkhin, 2007] to the problem of com-

puting a column of the Katz matrix. Recall that such a column is given by the solution

of a single linear system:

ki = Kei = (I − αA)−1ei − ei.

The algorithms for personalized PageRank exploit the graph structure by accessing the

edges of individual vertices, instead of accessing the graph via a matrix-vector product.

They are “local” because they only access the adjacency information of a small set of

vertices and need not explore the majority of the graph. Such a property is useful when

the solution of a linear system is localized on a small set of elements.

Localization is a term with a number of interpretations. Here, we use it to mean that

the vector becomes sparse after rounding small elements to 0. A nice way of measuring

this property is to look at the participation ratios [Farkas et al., 2001]. Let k be a column

of the Katz matrix, then the participation ratio of k is

p =
(
∑

j k
2
j )

2

∑

j k
4
j

.
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Table 2 – Participation ratios for Katz scores. These results demonstrate that the columns of

the Katz matrix are highly localized. In the worst case, there are only a few thousand large

elements in a vector, compared with the graph size of a few hundred thousand vertices.

Graph Vertices Avg. Deg. Participation Ratios

Min Mean Median Max

tapir 1024 5.6 4.2 12.0 11.8 35.8

stanford-cs-sym 2759 7.4 1.0 26.3 23.5 274.1

ca-GrQc 4158 6.5 1.0 27.4 34.0 84.2

wiki-Vote 7066 28.5 1.2 248.8 291.6 342.6

ca-HepTh 8638 5.7 1.0 23.5 29.8 82.1

ca-HepPh 11204 21.0 1.0 160.7 256.1 268.5

Stanford3 11586 98.1 1.1 1509.5 1657.8 1706.4

ca-AstroPh 17903 22.0 1.0 167.5 219.2 290.8

ca-CondMat 21363 8.5 1.0 71.0 85.6 204.6

email-Enron 33696 10.7 1.0 203.0 262.5 598.6

soc-Epinions1 75877 10.7 1.0 299.2 455.6 526.0

soc-Slashdot0811 77360 12.1 1.0 320.4 453.3 495.8

arxiv 86376 12.0 1.0 121.1 137.9 508.6

dblp 93156 3.8 1.0 50.0 25.2 258.9

email-EuAll 224832 3.0 1.0 237.7 276.7 7743.7

flickr2 513969 12.4 1.0 592.3 1104.9 1414.9

hollywood-2009 1069126 105.3 2.0 1696.0 2433.8 3796.0

This ratio measures the number of effective non-zeros of the vector. If k is a uniform

vector, then p = n, the size of the vector. If k has only a single element, then p = 1, the

number of states occupied. For a series of graphs we describe more formally in Section 6.1,

we show the statistics of some participation ratios in Table 2. We pick columns of the

matrix in two ways: (i) randomly and (ii) from the degree distribution to ensure we

choose both high, medium, and low degree vertices. See Section 6.7 for a more formal

description about how we pick columns; we use the “hard alpha” value of Katz described

in the experiments section. The results show that number of effective non-zeros is always

less than 10,000, even when the graph has 1,000,000 vertices. Usually, it is even smaller.

Our forthcoming algorithms exploit this property.

The basis of these personalized PageRank algorithms is a variant on the Richardson

stationary method for solving a linear system [Varga, 1962]. Given a linear system

Zx = b, the Richardson iteration is

x(k+1) = x(k) + r(k),

where r(k) = b − Zx(k) is the residual vector at the kth iteration. While updating

x(k+1) is a linear time operation, computing the next residual requires another matrix-

vector product. To take advantage of the graph structure, the personalized PageRank
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algorithms [McSherry, 2005, Andersen et al., 2006, Berkhin, 2007] propose the following

change: do not update x(k+1) with the entire residual, and instead change only a single

component of x. Formally, x(k+1) = x(k)+r
(k)
j ej , where ej is a vector of all zeros, except

for a single 1 in the jth position, and r
(k)
j is the jth component of the residual vector.

Now, computing the next residual involves accessing a single column of the matrix Z:

r(k+1) = b−Zx(k+1) = b−Z(x(k) + r
(k)
j ej) = r(k) + r

(k)
j Zej .

Suppose that r, x, and Zej are sparse, then this update introduces only a small number of

new nonzeros into both x and the new residual r. If Z = (I−αA), as in the case of Katz,

then each column is sparse, and thus keeping the solution and residual sparse is a natural

choice for graph algorithms where the solution x is localized (i.e., many components of

x can be rounded to 0 without dramatically changing the solution). By choosing the

element j based on the largest entry in the sparse residual vector (maintained in a heap),

this algorithm often finds a good approximation to the largest entries of the solution

vector x while exploring only a small subset of the graph. The resulting procedure is

presented in Algorithm 6. For reasons that will become clear below, we call this procedure

the Gauss-Southwell algorithm. When experimenting with this method, we found that

picking elements from the heap proportional to D−1r instead of r yielded convergence

with fewer total edges explored, mirroring the results in Andersen et al. [2006]. We use

this version in all of our experiments, although we state all the formal convergence results

for the simple choice of residual r.

Algorithm 6 Column-wise Katz scores (via the Gauss-Southwell algorithm)

Input: A (the adjacency matrix), α (the Katz damping factor), i (the desired column),

τ (a stopping tolerance).

Output: x (an approximate solution of (I − αA)−1ei)

1: Set x = 0, r = 0

2: Let H be a heap over the non-zero entries of r larger than τ .

3: Set ri = 1, update H
4: while H is not empty do

5: Set j as the index of the largest element in H
6: if rj < τ then quit.

7: η = rj

8: xj ← xj + η

9: rj ← 0, remove j from H
10: for u where Aj,u > 0 do

11: ru ← ru + αη

12: if ru > τ then insert j in H or update H.
13: xi ← xi − 1
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Let dmax be the maximum degree of a node in the graph, then each iteration takes

O(dmax logn) time. We analyze the convergence of this algorithm for Katz scores in

two stages. In the first case, when α < 1/dmax, then the convergence theory of this

method for personalized PageRank also shows that it converges for Katz scores. This

fortunate occurrence results from the equivalence of Katz scores and the general formu-

lation of PageRank adopted by McSherry [2005] in this setting. In the second case, when

α < 1/σmax(A), then (I − αA) is still symmetric positive definite, and the Richardson

algorithm converges. To show convergence in this case, we will utilize an equivalence

between this algorithm and a coordinate descent method.

For completeness, we show a precise convergence result when α < 1/dmax. The key

observation here is that the residual r is always non-negative and that the sum of the

residual (eT r) is monotonically decreasing. To show convergence, we need to bound this

sum by a function that converges to 0.

Consider the algorithm applied to (I − αA)x = ei. From step k to step k + 1, the

algorithm sets

x(k+1) = x(k) + ηej ; r(k+1) = r(k) + η(I − αA)ej .

First note that α < 1/dmax implies r
(k+1)
i ≥ 0 given r

(k)
i ≥ 0. This bound now implies

that x
(k+1)
i ≥ 0 when x

(k)
i ≥ 0. Since these conditions hold for the initial conditions,

x(0) = 0 and r(0) = eq, they remain true throughout the iteration. Consequently, we can

use the sum of r(k) as the 1-norm of this vector, that is, eT r(k+1) = ‖r(k+1)‖1. It is now
straightforward to analyze the convergence of this sum:

eT r(k+1) = eT r(k) − η + αηeTAei.

At this point, we need the bound that η = r
(k)
j ≥ (1/n)eT r(k), which follows immediately

from the fact that r
(k)
j is the largest element in r(k). Also, eTAei ≤ dmax. Thus, we

conclude:

REMARK 1 If α < 1/dmax, then the 1-norm of the residual in the Gauss-Southwell itera-

tion applied to the Katz linear system satisfies

‖r(k+1)‖1 ≤
(

1− 1− αdmax

n

)

‖r(k)‖1 ≤
(

1− 1− αdmax

n

)k

.

In the second case, when 1/dmax < α < 1/σmax(A), then the Gauss-Southwell itera-

tion in Algorithm 6 still converges, however, the result is more intricate than the previous

case because the sum of the residual does not converge monotonically. As we shall see,

treating this linear system as an optimization problem provides a way to handle this case.

Let Z be symmetric positive definite. We first show that the Gauss-Southwell algorithm

is a coordinate descent method for the convex problem

minimize 1
2x

TZx− xTb = f(x).
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The gradient of this problem is Zx − b, hence a stationary point is the solution of the

linear system, and the global minimizer. In this framework, the Richardson method is a

gradient descent method. Let g(k) be the gradient at step k, g(k) = Zx(k) − b then

x(k+1) = x(k) − g

is exactly the Richardson step.

Now consider a standard coordinate descent method. Such methods usually minimize

the function in the jth coordinate exactly. Formally, they find

x(k+1) = x(k) + γ(k)ej

where

γ(k) = argminγ f(x
(k) + γej).

Solving this system produces the choice

γ(k) =
bj − (Zej)

Tx(k)

Zj,j
.

Note that in terms of the optimization problem the Gauss-Southwell algorithm generates

γ
(k)
S = r

(k)
j = (bj − zTj x

(k)).

The two methods are equivalent if the diagonals of A are 1. Consequently, we have:

LEMMA 2 The Gauss-Southwell method for Zx = b with Zi,i = 1 is equivalent to a

coordinate gradient descent method for the function f(x) = (1/2)xTZx− xTb.

To produce a convergent algorithm, we must now specify how to choose the descent

direction j.

THEOREM 3 Let Z be symmetric positive definite with Zi,i = 1. Then the Gauss-

Southwell method for Zx = b and j(k) = argmaxi|r
(k)
i | or with j(k) chosen cyclically

(j(1) = 1, j(k+1) = j(k) + 1 mod n) is convergent.

Proof This result follows from the convergence of the coordinate descent method [Luo

and Tseng, 1992, Theorem 2.1] with these two update rules. The first is also known as

the Gauss-Southwell rule. �

This proof demonstrates that, as long as Ai,i = 0 for all the diagonal entries of the

adjacency matrix, then Algorithm 6 will converge when (I−αA) is positive definite, that

is, when α < 1/σmax(A). We term this algorithm a Gauss-Southwell procedure because

the choice of j in the algorithm is given by the Gauss-Southwell rule.
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6 Experimental Results

The previous sections showed three algorithms based on the Lanczos method, and showed

the theoretical convergence of the column-wise Katz algorithm. In this section, we inves-

tigate these algorithms numerically. Algorithms based on the Lanczos method, in general,

are arguably best studied empirically because their worst-case convergence properties are

often conservative. These experiments are designed to shed light on two key questions:

1. How do these iterative algorithms converge to the exact solution?

2. Are the techniques faster than a conjugate gradient based algorithm?

Note that column-wise commute time measure is a special case for reasons we discuss

below, and we only investigate the accuracy of our procedure for that problem.

Experimental settings We implemented our methods in Matlab and Matlab mex

codes. All computations and timings were done in Linux on a desktop with a Core i7-960

processor (4 core, 2.8GHz) with 24GB of memory. As mentioned in the introduction,

all of the experimental code is available from http://cs.purdue.edu/homes/dgleich/

publications/2011/codes/fast-katz/.

We first describe the data used in the experiments. These data were also used in the

experiment about localization in the Katz scores from the previous section.

6.1 Data

We use three publicly available sources and three graphs we collected ourselves. The

majority of the data comes from the SNAP collection [Leskovec, 2010] of which, we

use ca-GrQc, ca-HepTh, ca-CondMat, ca-AstroPh, email-Enron, email-EuAll [Leskovec

et al., 2007], wiki-Vote [Leskovec et al., 2010], soc-Epinions1 [Richardson et al., 2003], and

soc-Slashdot0811 [Leskovec et al., 2009]. Besides these, the graph tapir is from Gilbert

and Teng [2002], the graph Stanford3 is from [Traud et al., 2011], and both graphs

stanford-cs [Hirai et al., 2000] and hollywood-2009 [Boldi et al., 2011] are distributed via

the webgraph framework [Boldi and Vigna, 2004]. The graph stanford-cs is actually a

subset of the webbase-2001 graph [Hirai et al., 2000], restricted only to the pages in the

domain cs.stanford.edu. All graphs are symmetrized (if non-symmetric) and stripped of

any self-loops, edge weights, and extraneous connected components.

DBLP We extracted the DBLP coauthors graph from a recent snapshot (2005-2008)

of the DBLP database. We considered only nodes (authors) that have at least three

publications in the snapshot. There is an undirected edge between two authors if they

have coauthored a paper. From the resulting set of nodes, we randomly chose a sample

of 100,000 nodes, extracted the largest connected component, and discarded any weights

on the edges.
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arXiv This dataset contains another coauthorship graph extracted by a snapshot (1990-

2000) of arXiv, which is an e-print service owned, operated and funded by Cornell Uni-

versity, and which contains bibliographies in many fields including computer science and

physics. This graph is much denser than DBLP. Again, we extracted the largest con-

nected component of this graph and only work with that subset.

Flickr contacts Flickr is a popular online-community for sharing photos, with millions

of users. The node set represents users, and the directed edges are between contacts.

We start with a crawl extracted from Flickr in May 2006. This crawl began with a

single user and continued until the total personalized PageRank on the set of uncrawled

nodes was less than 0.0001. The result of the crawl was a graph with 820,878 nodes

and 9,837,214 edges. In order to create a sub- graph suitable for our experimentation

we performed the following steps. First, we created a graph from Flickr by taking all

the contact relationships that were reciprocal, and second, we again took the largest

connected component. (This network is now available from the University of Florida

sparse matrix collection [Davis and Hu, 2010]).

Table 3 presents some elementary statistics about these graphs. We also include the

time to compute the truncated singular value decomposition for the first 200 singular

values and vectors using the ARPACK library [Lehoucq et al., 1997] in Matlab’s svds

routine. This time reflects the work it would take to use the standard low-rank prepro-

cessing algorithm for Katz scores on the network [Liben-Nowell and Kleinberg, 2003].

6.2 Pairwise commute scores

From this data, we now study the performance of our algorithm for pairwise commute

scores, and compare it against solving the linear system L̃x = (ei−ej) using the conjugate
gradient method (CG). At each step of CG, we use the approximation (ei − ej)

Tx(k),

where x(k) is the kh iterate. The convergence check in CG was either the pairwise element

value changed by less than the tolerance, checked by taking a relative difference between

steps, or the 2-norm of the residual fell below the tolerance.

The first figure we present shows the result of running Algorithm 4 on a single pairwise

commute time problem for few graphs (Figure 1). The upper row of figures show the

actual bounds themselves. The bottom row of figures shows the relative error that would

result from using the bounds as an approximate solution. We show the same results for

CG. The exact solution was computed by using MINRES [Paige and Saunders, 1975] to

solve the same system as CG to a tolerance of 10−10. For all of the graphs, we used

λ = 10−4 and λ = ‖L̃‖1. Again using ARPACK, we verified that the smallest eigenvalue

of each of the Laplacian matrices was larger than λ. We chose the vertices for the pair

from among the high-degree vertices for no particular reason. Both Algorithm 4 and CG

used a tolerance of 10−4.
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Table 3 – The networks studied in the experiments. The first five columns are self explanatory.

The last two columns show the largest singular value of the network, which is also the matrix

2-norm, and the time taken to compute the largest 200 singular values and vectors.

Graph Nodes Edges Avg. Deg. Max Deg. ‖A‖2 SVD (sec.)

tapir 1024 2846 5.56 24 6.9078 2.2

stanford-cs 2759 10270 7.44 303 39.8213 8.9

ca-GrQc 4158 13422 6.46 81 45.6166 16.2

ca-HepTh 8638 24806 5.74 65 31.0348 31.5

ca-CondMat 21363 91286 8.55 279 37.8897 78.6

wiki-Vote 7066 100736 28.51 1065 138.1502 28.5

ca-HepPh 11204 117619 21.00 491 244.9349 49.5

dblp 93156 178145 3.82 260 33.6180 391.0

email-Enron 33696 180811 10.73 1383 118.4177 119.5

ca-AstroPh 17903 196972 22.00 504 94.4296 62.3

email-EuAll 224832 339925 3.02 7636 102.5365 935.3

soc-Epinions1 75877 405739 10.69 3044 184.1751 324.6

soc-Slashdot0811 77360 469180 12.13 2539 131.3418 359.1

arxiv 86376 517563 11.98 1253 99.3319 241.2

Stanford3 11586 568309 98.10 1172 212.4606 48.8

flickr2 513969 3190452 12.41 4369 663.3587 3418.7

hollywood-2009 1069126 56306653 105.33 11467 2246.5596 5998.9
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Figure 1 – Convergence results for pairwise commute times. (Top row) Each figure shows the

upper and lower bounds at each iteration of Algorithm 4 for the graphs dblp, arxiv, flickr2,

and hollywood-2009. (Bottom row) For the same graphs, each figure shows the relative size of

the error, (valg − vexact)/vexact in the upper and lower bounds at each iteration. In both cases,

we also show the same data from the conjugate gradient algorithm. See Section 6.2 for our

discussion.
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In the figure, the upper bounds and lower bounds “trap” the solution from above and

below. These bounds converge smoothly to the final solution. For these experiments, the

lower bound has smaller error, and also, this error tracks the performance of CG quite

closely. This behavior is expected in cases where the largest eigenvalue of the matrix is

well-separated from the remaining eigenvalues – a fact that holds for the Laplacians of our

graphs, see Mihail and Papadimitriou [2002] and Chung et al. [2003] for some theoretical

justification. When this happens, the Lanczos procedure underlying both our technique

and CG quickly produces an accurate estimate of the true largest eigenvalue, which in

turn eliminates any effect due to our initial overestimate of the largest eigenvalue. (Recall

from Algorithm 4 that the estimate of λ is present in the computation of the lower-bound

bj .)

Here, the conjugate gradient method suffers two problems. First, because it does

not provide bounds on the score, it is not possible to terminate it until the residual is

small. Thus, the conjugate gradient method requires more iterations than our pairwise

algorithm. Note, however, this result is simply a matter of detecting when to stop

– both conjugate gradient and our lower-bound produce similar relative errors for the

same work. Second, the relative error for conjugate gradient displays erratic behavior.

Such behavior is not unexpected because conjugate gradient optimizes the A-norm of the

solution error and it is not guaranteed to provide smooth convergence in true error norm.

These oscillations make early termination of the CG algorithm problematic, whereas no

such issues occur for the upper and lower bounds from our algorithm. We speculate that

the seemingly smooth convergence behavior that we observe for the upper and lower

bound estimates may be rooted in the convergence behavior of the largest Ritz value of

the tridiagonal matrix associated with Lanczos, but a better understanding of this issue

will require further exploration.

6.3 Pairwise Katz scores

We next show the same type of figure but for the pairwise Katz scores instead; see

Figure 2. We use a value of α that makes I − αA nearly indefinite. Such a value

produces the slowest convergence in our experience. The particular value we use is

α = 1/(‖A‖2 + 1), which we call “hard alpha” in some of the figure titles. For all of

the graphs, we again used λ = 10−4 and λ = ‖L̃‖1. This value of λ is smaller than the

smallest eigenvalue of I − αA for all the graphs. Also, the vertex pairs are the same as

those used for Figure 1. For pairwise Katz scores, the baseline approach involves solving

the linear system (I − αA)x = ej , again using the conjugate gradient method (CG). At

each step of CG, we use the approximation eTi x
(k), where x(k) is the kh iterate. We use

the same convergence check as in the CG baseline for commute time. For these problems,

we also evaluated techniques based on the Neumann series for I − αA, but those took

over 100 times as many iterations as CG or our pairwise approach. The Neumann series
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Figure 2 – Convergence results for pairwise Katz scores. (Top row.) Each figure shows the

upper and lower bounds at each iteration of Algorithm 5 for the graphs dblp, arxiv, flickr2, and

hollywood-2009. (Bottom row.) For the same graphs, each figure shows the relative size of the

error, (valg − vexact)/vexact in the upper and lower bounds at each iteration. In both cases, we

also show the same data from the conjugate gradient algorithm. See Section 6.3 for discussion.

is the same algorithm used in [Wang et al., 2007] but customized for the linear system,

not matrix inverse, which is a more appropriate comparison for the pairwise case. Finally,

the exact solution was again computed by using MINRES [Paige and Saunders, 1975] to

solve the same system as CG to a tolerance of 10−14.

A distinct difference from the commute-time results is that both the lower and upper

bounds converge similarly and have similar error. This occurs because of the symmetry

in the upper and lower bounds that results from using the MMQ algorithm twice on the

form: (1/4)[(ei+ej)
T (I−αA)−1(ei+ej)−(ei−ej)T (I−αA)−1(ei−ej)]. In comparison

with the conjugate gradient method, our pairwise algorithm is slower to converge. While

the conjugate gradient method appears to outperform our pairwise algorithms here, recall

that it does not provide any approximation guarantees. Also, the two matrix-vector

product in Algorithm 5 can easily be merged into a single “combined” matrix-vector

product algorithm. As we discuss further in the conclusion, such an implementation

would reduce the difference in runtime between the two methods.

6.4 Relative matrix-vector products in pairwise algorithms

Thus far, we have detailed a few experiments describing how the pairwise algorithms

converge. In these cases, we compared against the conjugate gradient algorithm for

a single pair of vertices on each graph. In this experiment, we examine the number of

matrix-vector products that each algorithm requires for a much larger set of vertex pairs.

Let us first describe how we picked the vertices for the pairwise comparison. There were
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Figure 3 – (Left) Relative performance between Algorithm 4 and conjugate gradient for pairwise

commute times. (Right) Relative performance between Algorithm 5 and conjugate gradient

for pairwise Katz scores. The relative performance measure is (kcg − kalg)/kcg, where k is the

number of matrix-vector products taken by each approach.

two types of vertex pairs chosen: purely random, and degree-correlated. The purely

random choices are simple: pick a random permutation of the vertex numbers, then use

pairs of vertices from this ordering. The degree correlated pairs were picked by first

sorting the vertices by degree in decreasing order, then picking the 1st, 2nd, 3rd, 4th,

5th, 10th, 20th, 30th, 40th, 50th, 100th,. . . vertices from this ordering, and finally, use

all vertex pairs in this subset. Note that for commute time, we only used the 1st, 5th,

10th, 50th, 100th,. . . . vertices to reduce the total computation time. For the pairwise

commute times, we used 20 random pairs. and used 100 random pairs for pairwise Katz

scores.

In Figure 3, we show the matrix-vector performance ratio between our pair-wise

algorithms and conjugate gradient. Let kcg be the number of matrix-vector products

until CG converges to a tolerance of 10−4 (as in previous experiments); and let kalg be

the number of matrix-vector products until our algorithm converges. The performance

ratio is
kcg − kalg

kcg
,

which has a value of 0 when the two algorithms take the same number of matrix-vector

products, the value 1 when our algorithm takes 0 matrix-vector products, and the value

-1 (or -2) when our algorithm takes twice (or thrice) as many matrix-vector products

as CG. We display the results as a box-plot of the results from all trials. There was no

systematic difference in the results between the two types of vertex pairs (random or

degree correlated).

These results show that the small sample in the previous section is fairly representative

of the overall performance difference. In general, our commute time algorithm uses fewer

matrix-vector products than conjugate gradient. We suspect this result is due to the
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ability to stop early as explained in Section 6.2. And, as also observed in Section 6.3,

our pairwise Katz algorithm tends to take 2-3 times as many matrix vector products as

conjugate gradient. These results again used the same “hard alpha” value.

6.5 Column-wise commute times

Our next set of results concerns the precision of our approximation to the column-wise

commute time scores. Because the output of our column-wise commute time algorithm is

based on a coarse approximation of the diagonal elements of the inverse, we do not expect

these scores to converge to their exact values as we increase the work in the algorithm.

Consequently, we study the results in terms of the precision at k measure. Recall that

the motivation for studying these column-wise measures is not to get the column scores

precisely correct, but rather to identify the closest nodes to a given query or target node.

That is, we are most interested in the smallest elements of a column of the commute

time matrix. Given a target node i, let Salg
k be the k closest nodes to i in terms of our

algorithm. Also, let S∗
k be the k closest nodes to i in terms of the exact commute time.

(See below for how we compute this set.) The precision at k measure is

|S∗
k ∩ Salg

k |/k.

In words, this formula computes the fraction of the true set of k nodes that our algorithm

identifies.

We ran the algorithm from Section 5.1 with a tolerance of 10−16 to evaluate the

maximum accuracy possible with this approach. We choose 50 target nodes randomly

and also based on the same degree sequence sampling mentioned in the last section. For

values of k between 5 and 100, we show a box-plot of the precision at k scores for four

networks in Figure 4. In the same figure, we also show the result of using the heuristic

Ci,j ≈ 1
Di,i

+ 1
Dj,j

suggested by von Luxburg et al. [2010]. This heuristic is called “inverse

degree” in the figure, because it shows that the set S∗
k should look like the set of k nodes

with highest degree or smallest inverse degree.

These results show that our approach for estimating a column of the commute time

matrix provides only partial information about the true set. However, these experiments

reinforce the theoretical discussion in von Luxburg et al. [2010] that commute time

provides little information beyond the degree distribution. Consequently, the results

from our algorithm may provide more useful information in practice. Although such a

conclusion would require us to formalize the nature of the approximation error in this

algorithm, and involve a rather different kind of study.

Exact commute times Computing commute times is challenging. As part of a sep-

arate project, the third author of this paper wrote a program to compute the exact

eigenvalue decomposition of a combinatorial graph Laplacian in a distributed computing
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Figure 4 – Precision at k for the column-wise commute time approximations (top) over a few

hundred trial columns. Precision at k for the inverse degree heuristic (bottom) over the same

columns. These figures show standard box-plots of the result for each column.

environment using the MPI and the ScaLAPACK library [Blackford et al., 1996]. This

program ignores the sparsity in the matrix and treats the problem as a dense matrix. We

adapted this software to compute the pseudo-inverse of the graph Laplacian as well as

the commute times. We were able to run this code on graphs up to 100,000 nodes using

approximately 10-20 nodes of a larger supercomputer. (The details varied by graph, and

are not relevant for this paper.) For graphs with less than 20,000 nodes, the same pro-

gram will compute all commute-times on the previously mentioned desktop computer.

Thus, we computed the exact commute times for all graphs except email-euAll, flickr2,

and hollywood-2009.

6.6 Column-wise Katz scores

We now come to evaluate the local algorithm for Katz scores. As with the pairwise

algorithms, we first study the empirical convergence of the algorithm. However, the

evaluation for the convergence here is rather different. Recall, again, that the point of

the column-wise algorithms is to find the most closely related nodes. For Katz scores,

these are the largest elements in a column (whereas for commute time, they were the

smallest elements in the column). Thus, we again evaluate each algorithm in terms of

the precision at k for the top-k set generated by our algorithms and the exact top-k set

produced by solving the linear system. Natural alternatives are other iterative methods

and specialized direct methods that exploit sparsity. The latter – including approaches

such as truncated commute time [Sarkar and Moore, 2007] – are beyond the scope of

this work, since they require a different computational treatment in terms of caching and

parallelization. Thus, we again use conjugate gradient (CG) as our point of comparison.
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The exact solution is computed by solving (I − αA)ki = ei, again using the MINRES

method, to a tolerance of 10−12.

We also look at the Kendall-τ correlation coefficient between our algorithm’s results

and the exact top-k set. This experiment will let us evaluate whether the algorithm is

ordering the true set of top-k results correctly. Let xalg
k∗ be the scores from our algorithm

on the exact top-k set, and let x∗
k∗ be the true top-k scores. The τ coefficients are

computed between xalg
k∗ and x∗

k∗ .

Both of the precision at k and the Kendall-τ measures should tend to 1 as we increase

the work in our algorithm. Indeed, this is what we observe in Figure 5. For these figures,

we pick a vertex with a fairly large degree and run Algorithm 6 with the “hard alpha”

value mentioned in previous sections. As the algorithm runs, we track work with respect

to the number of effective matrix vector products. An effective matrix-vector product

corresponds to our algorithm examining the same number of edges as a matrix-vector

product. For example, suppose the algorithm accesses a total of 80 neighbors in a graph

with 16 edges. Then this instance corresponds to 2.5 effective matrix vector products.

The idea is that the amount of work in one effective matrix vector product is about the

same as the amount of work in one iteration of CG. Hence, we can compare algorithms

on this ground. As evident from the legend in each figure, we look at precision at k for

four values of k, 10, 25, 100, 1000, and also the Kendall-τ for these same values. While

all of the measures should tend to 1 as we increase work, some of the exact top-k results

contain tied values. Our algorithm has trouble capturing precisely tied values and the

effect is that our Kendall-τ score does not always tend to 1 exactly.

For comparison, we show results from the conjugate gradient method for the top-25

set after 2, 5, 10, 15, 25, and 50 matrix-vector products. In these results, the top-25 set

is nearly converged after the equivalent of a single matrix-vector product – equivalent to

just one iteration of the CG algorithm. The CG algorithm does not provide any useful

information until it converges. Our top-k algorithm produces useful partial information

in much less work.

6.7 Runtime

Finally, we show the empirical runtime of our implementations in Tables 4 and 5. Table 4

describes the runtime of the two pairwise algorithms. We show the 25th, 50th, and 75th

percentiles of the time taken to compute the results from Figure 3. Our implementation

is not optimized, and so these results indicate the current real-world performance of the

algorithms.

Table 5 describes the runtime of the column-wise Katz algorithm. Here, we picked

columns of the matrix to approximate in two ways: (i) randomly, and (ii) to sample the

entire degree distribution. As in previous experiments, we took the 1st, 2nd, 3rd, 4th,

5th, 10th, 20th,. . . vertices from the set of vertices sorted in order of decreasing degree.

26



10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Equivalent matrix−vector products

P
re

ci
si

on
@

k 
fo

r 
ex

ac
t t

op
−

k 
se

ts
dblp, Katz, hard alpha

 

 

k=10
k=100
k=1000
cg k=25
k=25

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Equivalent matrix−vector products

P
re

ci
si

on
@

k 
fo

r 
ex

ac
t t

op
−

k 
se

ts
dblp, Katz, hard alpha

 

 

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

dblp, Katz, hard alpha

Equivalent matrix−vector products

K
en

dt
al

l−
τ 

or
de

rin
g 

vs
. e

xa
ct

 

 

k=10
k=100
k=1000
cg k=25
k=25

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

dblp, Katz, hard alpha

Equivalent matrix−vector products

K
en

dt
al

l−
τ 

or
de

rin
g 

vs
. e

xa
ct

 

 

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Equivalent matrix−vector products

P
re

ci
si

on
@

k 
fo

r 
ex

ac
t t

op
−

k 
se

ts

arxiv, Katz, hard alpha

 

 

k=10
k=100
k=1000
cg k=25
k=25

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Equivalent matrix−vector products

P
re

ci
si

on
@

k 
fo

r 
ex

ac
t t

op
−

k 
se

ts

arxiv, Katz, hard alpha

 

 

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

arxiv, Katz, hard alpha

Equivalent matrix−vector products

K
en

dt
al

l−
τ 

or
de

rin
g 

vs
. e

xa
ct

 

 

k=10
k=100
k=1000
cg k=25
k=25

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

arxiv, Katz, hard alpha

Equivalent matrix−vector products

K
en

dt
al

l−
τ 

or
de

rin
g 

vs
. e

xa
ct

 

 

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Equivalent matrix−vector products

P
re

ci
si

on
@

k 
fo

r 
ex

ac
t t

op
−

k 
se

ts

flickr2, Katz, hard alpha

 

 

k=10
k=100
k=1000
cg k=25
k=25

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Equivalent matrix−vector products

P
re

ci
si

on
@

k 
fo

r 
ex

ac
t t

op
−

k 
se

ts

flickr2, Katz, hard alpha

 

 

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

flickr2, Katz, hard alpha

Equivalent matrix−vector products

K
en

dt
al

l−
τ 

or
de

rin
g 

vs
. e

xa
ct

 

 

k=10
k=100
k=1000
cg k=25
k=25

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

flickr2, Katz, hard alpha

Equivalent matrix−vector products

K
en

dt
al

l−
τ 

or
de

rin
g 

vs
. e

xa
ct

 

 

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Equivalent matrix−vector products

P
re

ci
si

on
@

k 
fo

r 
ex

ac
t t

op
−

k 
se

ts

hollywood, Katz, hard alpha

 

 

k=10
k=100
k=1000
cg k=25
k=25

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Equivalent matrix−vector products

P
re

ci
si

on
@

k 
fo

r 
ex

ac
t t

op
−

k 
se

ts

hollywood, Katz, hard alpha

 

 

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

hollywood, Katz, hard alpha

Equivalent matrix−vector products

K
en

dt
al

l−
τ 

or
de

rin
g 

vs
. e

xa
ct

 

 

k=10
k=100
k=1000
cg k=25
k=25

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

hollywood, Katz, hard alpha

Equivalent matrix−vector products

K
en

dt
al

l−
τ 

or
de

rin
g 

vs
. e

xa
ct

 

 

Figure 5 – Convergence results for our column-wise Katz algorithm in terms of the precision

of the top-k set (left) and the ordering of the true top-k set (right). See Section 6.6 for the

discussion.
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For each column picked in this manner, we ran Algorithm 6 and recorded the wall clock

time. The 25th, 50th, and 75th percentiles of these times are shown in the table for each

of the two sets of vertices.

For this algorithm, the degree of the target node has a considerable impact on the

algorithm runtime. This effect is particularly evident in the flick2 data. The randomly

chosen columns are found almost instantly, whereas the degree sampled columns take

considerably longer. A potential explanation for this behavior is that starting at a vertex

with a large degree will dramatically increase the residual at the first step. If these new

vertices also have a large degree, then this effect will multiply and the residual will rise

for a long time before converging. Even in the cases where the algorithm took a long

time to converge, it only explored a small fraction of the graph (usually about 10% of the

vertices), and so it retained its locality property. This property suggests that optimizing

our implementation could reduce these runtimes.

7 Conclusion and Discussion

The goal of this manuscript is to estimate commute times and Katz scores in a rapid

fashion. Let us summarize our contributions and experimental findings.

• For the pair-wise commute time problem, we have implemented Algorithm 4, based

on the relationship between the Lanczos process and a quadrature rule (Section 4.1).

This algorithm uses a similar mechanism to that of conjugate gradient (CG). It

outperforms the latter in terms of total matrix-vector products, because it provides

upper and lower bounds that allow for early termination, whereas CG does not

provide an easy way of detecting convergence for a specific pairwise score.

• For the pair-wize Katz problem, we have proposed Algorithm 5, also based on the

same quadrature theory. This algorithm involves two simultaneous Lanczos iter-

ations. In practice, this means more work per iteration than a simple approach

based on CG. A careful implementation of Algorithm 5 would merge the two Lanc-

zos processes into a “joint process” and perform the matrix-vector products simul-

taneously. In our tests of this idea, we have found that the combined matrix-vector

product took only 1.5 times as long as a single matrix-vector product.

• For the column-wise commute time problem, we have investigated a variation of

the conjugate gradient method that also provides an estimate of the diagonals

of the matrix inverse. We have found that these estimates were fairly crude ap-

proximations of the commute time scores. We have also investigated whether the

degree-based heuristic from von Luxburg et al. [2010] provides better information.

It indeed seems to perform better, which suggests that the smallest elements of a

column of the commute-time matrix may not be a useful set of useful related nodes.

• For the column-wise Katz algorithm, we have proposed Algorithm 6 based on the

techniques used for personalized PageRank computing. The idea with these tech-

28



Table 4 – Runtime of the pair-wise algorithms. The “0.0” second entries are rounded down

for display. These are really just less than 0.1 seconds. The three columns for each type of

problem show the 25th, 50th, and 75th percentiles of the wall-clock time to compute the results

in Figure 3.

Graph Verts. Avg. Pair-wise Katz Pair-wise commute
Deg. runtime (sec.) runtime (sec.)

25% Median 75% 25% Median 75%

tapir 1024 5.6 0.0 0.0 0.0 0.0 0.0 0.1
stanford-cs 2759 7.4 0.0 0.0 0.0 0.1 0.2 0.2
ca-GrQc 4158 6.5 0.0 0.0 0.0 0.1 0.1 0.1
wiki-Vote 7066 28.5 0.0 0.0 0.0 0.2 0.2 0.2
ca-HepTh 8638 5.7 0.0 0.0 0.0 0.1 0.2 0.2
ca-HepPh 11204 21.0 0.0 0.0 0.0 0.4 0.4 0.4
Stanford3 11586 98.1 0.2 0.2 0.2 0.6 0.7 0.7
ca-AstroPh 17903 22.0 0.1 0.1 0.1 0.5 0.5 0.7
ca-CondMat 21363 8.5 0.0 0.0 0.1 0.4 0.5 0.5
email-Enron 33696 10.7 0.1 0.1 0.1 1.1 1.2 1.3
soc-Epinions1 75877 10.7 0.2 0.2 0.2 2.8 3.2 3.7
soc-Slashdot0811 77360 12.1 0.2 0.2 0.2 2.6 2.8 3.4
arxiv 86376 12.0 0.2 0.3 0.3 4.8 6.0 6.5
dblp 93156 3.8 0.1 0.1 0.2 3.0 3.2 3.4
email-EuAll 224832 3.0 0.3 0.4 0.4 11.2 14.2 17.2
flickr2 513969 12.4 1.3 1.7 1.8 54.8 60.0 69.8
hollywood-2009 1069126 105.3 16.5 17.0 17.4 199.2 246.0 272.5

Table 5 – Runtime of the column-wise Katz algorithm. The “0.0” second entries are rounded

down for display. These are really just less than 0.1 seconds. The three columns show the 25th,

50th, and 75th percentiles of the wall-clock time of the experiments described in Section 6.7.

Graph Verts. Avg. Random columns Degree columns
Deg. runtime (sec.) runtime (sec.)

25% Median 75% 25% Median 75%

tapir 1024 5.6 0.0 0.0 0.0 0.0 0.0 0.0
stanford-cs-sym 2759 7.4 0.0 0.0 0.0 0.0 0.0 0.0
ca-GrQc 4158 6.5 0.0 0.0 0.0 0.0 0.0 0.0
wiki-Vote 7066 28.5 0.0 0.0 0.4 0.4 0.4 0.4
ca-HepTh 8638 5.7 0.0 0.0 0.0 0.0 0.0 0.0
ca-HepPh 11204 21.0 0.0 0.0 0.0 1.1 1.1 1.1
Stanford3 11586 98.1 0.0 0.0 1.7 1.8 1.9 1.9
ca-AstroPh 17903 22.0 0.0 0.0 0.0 0.6 0.7 0.9
ca-CondMat 21363 8.5 0.0 0.0 0.0 0.1 0.1 0.1
email-Enron 33696 10.7 0.0 0.0 0.0 0.9 1.0 1.1
soc-Epinions1 75877 10.7 0.0 0.0 0.0 3.7 4.1 4.5
soc-Slashdot0811 77360 12.1 0.0 0.0 0.0 2.4 2.8 3.7
arxiv 86376 12.0 0.0 0.0 0.0 0.0 0.6 0.7
dblp 93156 3.8 0.0 0.0 0.0 0.0 0.0 0.0
email-EuAll 224832 3.0 0.0 0.0 0.0 1.1 1.7 2.5
flickr2 513969 12.4 0.0 0.0 0.0 11.5 52.6 55.5

hollywood-2009 1069126 105.3 0.0 0.0 0.0 0.3 0.4 0.4
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niques is to exploit sparsity in the solution vector itself to derive faster algorithms.

We have shown that this algorithm converged in two cases: Remark 1, where we

established a precise convergence result, and Theorem 3, where we only established

asymptotic convergence.

We believe that these results paint a useful picture of the strengths and limitations of

our algorithms. Here are a few possible directions for future work:

Alternatives for pair-wise Katz. First, there are alternatives to using the identity

uT f(Z)v = (1/4)(u + v)T f(Z)(u + v) − (1/4)(u − v)T f(Z)(u − v) in the u 6= v

case. The first alternative is based on the nonsymmetric Lanczos process [Golub and

Meurant, 2010]. This approach still requires two matrix-vector products per iteration,

but it directly estimates the bilinear form and also provides upper and lower bounds.

A concern with the nonsymmetric Lanczos process is that it is possible to encounter

degeneracies in the recurrence relationships that stop the process short of convergence.

Another alternative is based on the block Lanczos process [Golub and Meurant, 2010].

However, this process does not yet offer upper and lower bounds.

A theoretical basis for the localization of Katz scores. The inspiration for the

column-wise Katz algorithm were the highly successful personalized PageRank algo-

rithms. The localization of these personalized PageRank vectors was made precise in

a theorem from Andersen et al. [2006] that related the personalized PageRank vector to

cuts in the graph. In brief, if there is a good cut nearby a vertex, then the personalized

PageRank vector will be localized on a few vertices. An interesting question is whether

or not Katz matrices enjoy a similar property. We hope to investigate this question in

the future.
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