
Introduction

Rupesh Nasre.

CS3300 Compiler Design
IIT Madras
Aug 2015

2

Languages

Wall of Love, Paris
Source: google images

3

Languages
● Why do we need languages?

– Humans communicate
● sign language, body language, braille

– Birds communicate
● mark territories, attract for mating, warn danger

– Animals communicate
● mark territories, convey need, preparation for attack

– Aliens?

4

Programming Languages

● Why do we need programming languages?
● And why so many?

– What is your first language?
– Tamil. Yours?
– C.

Source: google images

5

Programming Languages
● There are some special purpose languages

– HTML for webpages

– LaTeX for document formatting

– ps for postscript files; sql, VHDL

– Shell scripts, awk, grep, sed

– Makefile has a language; smtp

– How about google search?
● filetype:pdf, link:www.cse.iitm.ac.in

– Gmail: in:unread, in:starred

– vi: :se ai, :wq, :se ft=c

– What about ls -l, ls -Ri, ls --color, ls -1 dir1 dir2 ?

http://www.cse.iitm.ac.in/

6

Language is for Communication

● Using mobile buttons
● Using ipad touch
● Using a calculator
● Using a fan switch
● Using a remote for projector / laser

 ... some of these are not programmable today.

 They have a limited abstraction.

 We will work with programming languages.

7

Compiler

● When do we need a compiler?

– நான தமிழ ெதரியமா

– मुझे िहिदंी आता हिै

– నన తలగ తలస
– I know English

Source: google images

8

Jobs of a Compiler

● Translate: input language, output language
● Maintain correctness

– िपिताजी अजमेर गए |
– Father died today.

● Be efficient
– Why are you laughing?

– I understood yesterday's joke.

● Generate a good language
– I got books but more than that I got your letter.

– म ैिकिताबे, लेिकिन म ैअपिने पित्र िमला हि ैिकि अिधिकि से अिधिकि
िमला हि।ै

9

Good Language

I got books but more than that I got your letter.

म ैिकिताबे, लेिकिन म ैअपिने पित्र िमला हि ैिकि अिधिकि से अिधिकि िमला हि।ै
I have books, but I got your letter got more than that.

म ैिकिताबे हिै, लेिकिन म ैअपिने पित्र हि ैिकि अिधिकि से अिधिकि िमला।
I have books, but that's more than I got your letter.

म ैिकिताबे हिै, लेिकिन लगता हि ैिकि म ैअपिने पित्र िमला हि ैकिी तलुना मे
अिधिकि हि।ै
I have books, but I have received your letter is more than.

म ैिकिताबे हिै, लेिकिन म ैअपिने पित्र किी तुलना मे अिधिकि हि ैप्राप्त हुिआ हि।ै

10

Compilers work with Strings

● Characters, words / tokens, sentences,
programs

● Fun with strings
– quick brown fox jumps over the lazy dog

– stewardesses

– typewriter

– skepticisms

– quine

char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}

Programs as Data

11

Why should we Design a language?

● Language matters!

– A: Would you accept a gamble that offers a 10% chance
to win $95 and a 90% chance to lose $5?

– B: Would you pay $5 to participate in a lottery that offers a
10% chance to win $100 and a 90% chance to win
nothing.

● Outcomes of a treatment for lung cancer. Two
descriptions were:

– C: The one-month survival rate is 90%.

– D: There are 10% deaths in the first month.

● B fetched many more positives. 84% physicians chose
option C.

Source: Thinking Fast and Slow, Daniel Kahneman

12

Why should we Design a Language?
Asian disease problem.

An asian disease is expected to kill 600 people. Two alternative
programs are proposed.

● If program A is adopted, 200 people will be saved.
● If program B is adopted, there is a one-third probability that 600

people will be saved and a two-thirds probability that no people will
be saved.

A substantial majority of respondents choose program A, due to
preference to a sure option than gamble.
Now change the description.

● If program A' is adopted, 400 people will die.
● If program B' is adopted, there is a one-third probability that

nobody will die and a two-thirds probability that 600 people will die.

A large majority chose B'.
Source: Thinking Fast and Slow, Daniel Kahneman

13

Why should we Design a Language?

The KMPL Fallacy
Virat switches from a car of 12 km average (per liter) to a 14 km.

Dhoni switches from a car of 30 km average to a 40 km.

If both drivers travel the same distance over a year, who saves
more fuel by switching?

One may "feel" that Dhoni saves more, but calculations say the
opposite. Say they both travel 10K km in a year. Virat reduces his
consumption from 833 liters to 714 liters, saving 119 liters.
Dhoni's consmption reduces from 333 to 250 saving 83 liters.

Instead of the average in km/liter, the fuel efficiency should be in
liter/km or liter/100km.

Source: Thinking Fast and Slow, Daniel Kahneman

14

CompilerCompiler

source program

target program input

output

source programinput

InterpreterInterpreter

output

● What does this mean?
– You may be able to do the following with interpreters.
$x = 0; $y = 0;
echo "Enter a variable name: ";
$line = fgets(STDIN);
$line = trim($line);
${$line} = 20;
echo "x=$x, y=$y\n";

$x = 0; $y = 0;
echo "Enter a variable name: ";
$line = fgets(STDIN);
$line = trim($line);
${$line} = 20;
echo "x=$x, y=$y\n";

How about C? void main() {
int x = 0, y = 0;

#include "/dev/stdin"
 = 10;
 printf("x = %d, y = %d\n", x, y);
}

void main() {
int x = 0, y = 0;

#include "/dev/stdin"
 = 10;
 printf("x = %d, y = %d\n", x, y);
}

Everything is fair in love, war and C.

15

CompilerCompiler

source program

target program input

output

source programinput

InterpreterInterpreter

output

● What does this mean?
– You may be able to do the following with compilers.
x += 2;
x += 2;
--x;
x += 5;
++x;
x += 9

x += 2;
x += 2;
--x;
x += 5;
++x;
x += 9

x += 18;x += 18;is equivalent to

16

CompilerCompiler

source program

target program input

output

source programinput

InterpreterInterpreter

output

TranslatorTranslator

source program

intermediate program

input

outputVirtual
Machine

Virtual
Machine

17

Preprocessor (cpp)Preprocessor (cpp)

Compiler (gcc)Compiler (gcc)

Assembler (as)Assembler (as)

Linker / Loader (ld)Linker / Loader (ld)

source program (file.c)

Modified source program (file.i)

target assembly program (file.s)

relocatable machine code (file.o)

target machine code (a.out)

library files,
relocatable object files

● cpp file.c >file.i
● gcc -S file.i
● as file.s -o file.o
● ld -o a.out file.o ...libraries...

Try the following:
● gcc -v file.c
● gcc -save-temps file.c

18

Language Processors

● Preprocessor: collects source programs,
expands macros.

● Compiler: Translates source program into a low-
level assembly.

● Assembler: Produces (relocatable) machine
code.

● Linker: Resolves external references statically,
combines multiple machine codes.

● Loader: Loads executable codes into memory,
resolves external references dynamically.

19

Homework

● Exercises 1.1.1-5 from ALSU.

20

Lexical AnalyzerLexical Analyzer

Syntax AnalyzerSyntax Analyzer

Semantic AnalyzerSemantic Analyzer

Intermediate
Code Generator

Intermediate
Code Generator

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Machine-Independent
Code Optimizer

Machine-Independent
Code Optimizer

Code GeneratorCode Generator

Target machine code

Intermediate representation

Machine-Dependent
Code Optimizer

Machine-Dependent
Code Optimizer

Target machine code

Symbol
Table

F
 r

 o
 n

 t
 e

 n
 d

B
 a

 c
 k

 e
 n

 d

21

Lexical AnalyzerLexical Analyzer

Syntax AnalyzerSyntax Analyzer

Semantic AnalyzerSemantic Analyzer

Code GeneratorCode Generator

z = x + y * 32

<id,1> <=> <id,2> <+> <id,3> <*> <32>

Intermediate
Code Generator

Intermediate
Code Generator

Machine-Independent
Code Optimizer

Machine-Independent
Code Optimizer

t1 = id3 * 32
t2 = inttofloat(t1)
t3 = id2 + t2
id1 = t3

Machine-Dependent
Code Optimizer

Machine-Dependent
Code Optimizer

<id,1>

<id,2>
<id,3> 32

*

+
=

<id,1>

<id,2>

<id,3>

*

inttofloat

+
=

32

t1 = id3 * 32
t2 = inttofloat(t1)
id1 = id2 + t2

LD R3, id3
MUL R3, R3, #32
ITOF R2, R3
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

LD R3, id3
SHL R3, #5
ITOF R2, R3
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

z ...

x ...

y ...

1

2

3

Symbol Table

22

Symbol Table
● Record variable names

● Collect their attributes

– Type (int, char)

– Storage requirement ([30], 1)

– Type modifiers (const, static)

– Scope (global, static)

– Information about arguments (for functions)
● Efficient insertion, search (sometimes deletion)

– C: int x, y, z;

– Pascal: var x, y, z: integer;

– Javascript:

z ...

x ...

y ...

1

2

3

Symbol Table

23

gccgcc

One CompilerOne Compiler

Fortran

C

Java

Future Language

ARM

x86

PowerPC

Future Target

Ideal World

f90f90Fortran

C

Java

Future Language

ARM

x86

PowerPC

Future Target

Reality

javacjavac

futurecfuturec ?

24

Reality getting worse

● I don't have a compiler for this platform.
● My program compiles with an older version of

gcc.
● My program compiles with the new version, but

does not run on this new platform.
● My program compiles with an older gcc if you

disable optimizations.
● My program compiles if you have llvm 3.4, clang

3.5, gcc 4.7.1 on x86_64 with lonestar 1.2 or
above on Ubuntu 12 or below.

25

● First electronic computers in 1940s.
● Programmed in machine language (0 and 1).

– Move data from one location to another.

– Add the content of two registers.

– Compare two values

– ...

● S l o w, T
e
Dius, and ErorrP run.

Evolution of Programming Languages

26

Maggie and Buildings

Punched Tape Punched Card

Image source: wikipedia

27

Punched Tape

Punched Card
Courtesy: Deepak Khemani

28

Evolution of Programming Languages

● Assembly languages in early 1950s.
– Initially, only mnemonics for machine instructions

– Later, support for macros

● High-level languages in late 1950s.
– Fortran for scientific computing

– Cobol for data processing

– Lisp for symbolic computation

– These were so successful that they are still in use.

29

PL Classification

● Thousands of languages
– Need to be categorized

● Based on paradigm
– Imperative (c, c++, java), declarative (lisp, prolog)

● Based on generation (think of generation gap)

– First (machine), second (assembly), third (fortran,
cobol, lisp, c), fourth (sql, ps), fifth (prolog)

● Others

– OO (c++, c#, Ruby), scripting (awk, js, php,
python, ruby)

30

Compiler Writing

● is challenging.
● A compiler is a large program.
● A compiler must translate correctly potentially

infinite set of programs that could be written in
the source language.

● The problem of generating the optimal target
code from a source program is undecidable.
– Heuristics and Trade-offs.

● Compilers is an area where
Theory meets Practice.

31

Static versus Dynamic

● Time
● Compilation
● Optimization
● Analysis
● Type
● Linking
● Scoping

32

Static versus Dynamic
● Time: compilation versus execution,

preprocessor versus compilation
● Compilation: gcc versus jit
● Optimization: without and with input
● Analysis: without and with environment
● Type:

– strongly typed versus scripting languages

– inheritance

● Linking: .a versus .so
● Scoping

33

Static versus Dynamic

● Time
● Compilation
● Optimization
● Analysis
● Type
● Linking
● Scoping

int i = 1;
void f() {

printf(“%d”, i);
}
void main() {

int i = 2;
f();

}

int i = 1;
void f() {

printf(“%d”, i);
}
void main() {

int i = 2;
f();

}

Static Dynamic

1 2

Where do we use dynamic scoping?Where do we use dynamic scoping?

34

Classwork

● Find the output of the
program under static
and dynamic scoping.

int a = 1, b = 2, y = 3;
void gun(int x, int b) {
 printf("%d %d\n", x, b);
}
void fun(int x, int y) {
 printf("%d %d\n", x, y);
 gun(a, y);
}
void main() {
 int a = 3;
 {
 int b = 4;
 fun(a, b);
 }
 gun(a, b);
 fun(a, b);
}

int a = 1, b = 2, y = 3;
void gun(int x, int b) {
 printf("%d %d\n", x, b);
}
void fun(int x, int y) {
 printf("%d %d\n", x, y);
 gun(a, y);
}
void main() {
 int a = 3;
 {
 int b = 4;
 fun(a, b);
 }
 gun(a, b);
 fun(a, b);
}

35

Parameter Passing

● Call by value
– This happens in C

● Call by reference
– Supported in C++, aliasing

● Call by name
– Macros

● Call by value-result
– Supported in ADA

int i = 1;
int *ip = &i;
void f(int x) {

int y;
x = 3;
ip = &y;
x = i+x+2;

}
void main() {

f(*ip);
printf(“%d”, i);

}

int i = 1;
int *ip = &i;
void f(int x) {

int y;
x = 3;
ip = &y;
x = i+x+2;

}
void main() {

f(*ip);
printf(“%d”, i);

}

Call by value: 1
Call by reference: 8
Call by name: 3
Call by value-result: 6

36

Classwork

● Create an example that does not use pointers
which produces different output under the four
parameter passing schemes.

37

Reordering Transformation

● When can a compiler reorder instructions?

int f(int &a, int &b) {
a = 4;
c = b;

}

int f(int &a, int &b) {
a = 4;
c = b;

}

int f(int &a, int &b) {
c = b;
a = 4;

}

int f(int &a, int &b) {
c = b;
a = 4;

}

Such a transformation requires that
● a and b are not referring to the same memory location (RAW).
● a and c are not referring to the same memory location (WAW).

38

Aliasing

● In the example, a and b may be aliases, if the
function call is f(x, x);

int f(int &a, int &b) {
a = 4;
c = b;

}

int f(int &a, int &b) {
a = 4;
c = b;

}

● Can you have aliasing in C?
● If & operator is disallowed, can there be aliasing?

Homework:
● Find out what restrict keyword does in gcc.
● Exercises 1.6.1 – 1.6.4 from ALSU.

The student whose parents
stay at ...

The one whose roll
number is CS13B036

The one who
wears spects,
has cgpa
of ..., and ...

The one who
stays in hostel ...,
is healthy, and ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

