
Parallel Graph Algorithms

Rupesh Nasre.
IIT Madras

Google
May 2022

2

Graphs are Everywhere!

Source: Google images

3

Graphs
● Where do we encounter graphs?

― Social networks, road connections, molecular
interactions, planetary forces, …

― snap, florida, dimacs, konect, ...
● Why treat them separately?

― They provide structural information.
― They can be processed more efficiently.

● What challenges do they pose?
― Load imbalance, poor locality, …
― Irregularity

4

Scalability

● Meta / Facebook

― 2.2 billion active users
― 1.3 billion is India's population
― e.g. top people in the world

● Milky Way

― over 100 billion stars
― e.g. finding possibility of life

● Human Brain

― 100 billion neurons
― Artificial intelligence

Finding betweenness centrality on a million node graph (in a
sequential manner) takes several weeks!

S
ou

rc
e:

 g
oo

gl
e

im
ag

es

5

Handling Large Graphs

● Distributed setup
― Graph is partitioned across a cluster.

● External memory algorithms
― Graph partitions are processed

sequentially.

● Algorithms on compressed data
― Compression needs to maintain

retrieval ability.

● Maintaining graph core
― Removal of unnecessary subgraphs.

Storage Time
● Parallelism

― Multi-core, distributed,
GPUs

● Approximations
― Approximate

computing

6

● Manual
― OpenMP, MPI, CUDA

● Libraries
― Galois, Ligra, LonestarGPU, Gunrock, ...

● Domain-Specific Languages
― Green-Marl, Elixir, Falcon, ...

Parallelism Approaches

P
ro

d
u

ct
iv

it
y P

erfo
rm

an
ce

7

Specifying Parallelism

● Do not specify.
― Sequential input, completely automated, currently

very challenging in general
● Implicit parallelism

― aggregates, aggregate functions, primitive-based
processing, ...

● Explicit parallelism
― pthreads, MPI, OpenCL, ...

8

Identifying Dependence

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[2 * ii + 1] ...
}

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[2 * ii + 1] ...
}

Is there a flow dependence
between different iterations?

Dependence equations
0 <= ii

w
 < ii

r
 < 10

2 * ii
w
 = 2 * ii

r
 + 1

which can be written as

0 <= ii
w

ii
w
 <= ii

r
 - 1

ii
r
 <= 9

2 * ii
w
 <= 2 * ii

r
 + 1

2 * ii
r
 + 1 <= 2 * ii

w

-1 0

1 -1

0 1

2 -2

-2 2

ii
w

ii
r

-1 0

1 -1

0 1

2 -2

-2 2

0

-1

9

1

-1

<=

Dependence exists if the system has a solution.Dependence exists if the system has a solution.

Flow dependence is
read-after-write (to the
same memory location).

w r→→→→

9

Parallel Architectures

● Multicore CPUs
― Intel, ARM, …
― pthreads, OpenMP, ...

● Distributed systems
― CPUs with interconnects
― MPI

● Manycore GPUs
― NVIDIA, AMD, …
― CUDA, OpenCL, ...

CPU-GPU processing concepts
have similarity with those in

distributed systems.

10

What is a GPU?

● Graphics Processing Unit
● Separate piece of hardware

connected using a bus
● Separate address space

than that of the CPU
● Massive multithreading
● Warp-based execution

11

What is a Warp?

Source: Wikipedia

12

GPU Computation Hierarchy

...

...

...

...

Thread

Warp

Block

Multi-processor

GPU

1

32

1024

Tens of
thousands

Hundreds of
thousands

13

Challenges with GPUs

● Warp-based execution
● Locking is expensive
● Dynamic memory allocation is costly
● Limited data-cache
● Programmability issues

― separate address space

― low recursion support

― complex computation hierarchy

― exposed memory hierarchy

― ...

14

Challenges in Graph Algorithms

● Synchronization
― locks are prohibitively expensive on GPUs
― atomic instructions quickly become expensive

● Memory latency
― locality is difficult to exploit
― low caching support

● Thread-divergence
― work done per node varies with graph structure

● Uncoalesced memory accesses
― warp-threads access arbitrary graph elements

15

 Graph Representation

1. Adjacency matrix
― |V|x|V| matrix
― Each entry [i, j] denotes if edge (i,j)

is present in G
― Useful for dense graph
― Finding neighbors is O(|V|)

2. Adjacency list
― |V| + |E| size
― Each vertex i has a list of its

neighbors
― Useful for sparse graphs
― Finding neighbors is O(max.

degree)

1 1

1 1

1

1 1

1 1

1 1

00 11 22

33 44 55

33 44

44
33 55

00 11

00 22

11 44

16

 Graph Representation

3. Edge list / Coordinate list (COO)
― |E| pairs
― Useful for edge-based algorithms
― Typically sorted on vertex id

4. Compressed sparse row (CSR)
― Concatenated adjacency lists
― Useful for sparse graphs
― Useful for data transfer

00 11 22

33 44 55

3

4

3

5

4

0

1

0

2

1

4

0

2

4

5

7

9

0 3

0 4

1 3

1 5

2 4

3 0

3 1

4 2

5 1

5 4

17

● Operator formulation: Computation as an iterated application of operator

● Topology-driven processing: operator is applied at all the nodes even if
there is no work to do at some nodes (e.g., Bellman-Ford SSSP)

● Data-driven processing: operator is applied only at the nodes where
there might be work to be done (e.g., SSSP with delta-stepping)

TAO Classification

ee

aa

cc

bb dd

gg

ff hh ii

jj active node

neighborhood

kk ll

The TAO of Parallelism in Algorithms, Pingali et al, PLDI 2011

18

Data-driven vs. Topology-driven

● work-efficient

● centralized worklist

● fine-grained synchronization
using atomics

● complicates implementation

data-driven topology-driven

● performs extra work

● no worklists

● coarse-grained synchronization
using barriers

● easier to implement

19

Data-driven: Base Version

main {
read input
transfer input
initialize_kernel
initialize_worklist(wlin)
clear wlout

while wlin not empty {
operator(wlin, wlout, ...)
transfer wlout size
clear wlin
swap(wlin, wlout)

}
transfer results

}

cpu gpu

...

wlin

wlout

sssp_operator(wlin, wlout, ...) {
src = wlin[...]
dsrc = distance[src]
forall edges (src, dst, wt) {

ddst = distance[dst]
altdist = dsrc + wt
if altdist < ddst {
 distance[dst] = altdist
 wlout.push(dst)

} } }

sssp_operator(wlin, wlout, ...) {
src = wlin[...]
dsrc = distance[src]
forall edges (src, dst, wt) {

ddst = distance[dst]
altdist = dsrc + wt
if altdist < ddst {
 distance[dst] = altdist
 wlout.push(dst)

} } }

20

Data-driven: Hierarchical Worklist

...

wlin

wlout

... wllocal

Threadblocks

global memory

global memory

on-chip cache

● Worklist exploits memory hierarchy

● Makes judicious use of limited on-chip cache

21

Data-driven: Work Chunking

O(e) atomics

O(t) atomics

atomic per element

atomic per thread

...

● Reserves space for multiple work-items in a single atomic

● May reduce overall synchronization

22

Data-driven: Atomic-free Worklist Update

O(e) atomics

O(t) atomics

O(log t) barriers

atomic per element

atomic per thread

prefix-sum

...

23

Data-driven: Work Donation
donate_kernel {

shared donationbox[...];
// determine if I should donate
--barrier--

// donate
--barrier--

// operator execution

// empty donation box
}

...

● Work-donation improves load balance

24

Data-driven: Variable Kernel Configuration

Available parallelism varies
throughout execution

DMR's parallelism profile (input: mesh with 50K triangles)

● Varying configuration improves work-efficiency

● It also reduces conflicts and may improve performance

25

Topology-driven: Base Version

main {
read input
transfer input
initialize_kernel
do {
 transfer false to changed
 operator(...)
 transfer changed
} while changed
transfer results

}

cpu gpu

26

Topology-driven: Kernel Unrolling

sssp_operator(src) {
dsrc = distance[src]
forall edges (src, dst, wt) {

ddst = distance[dst]
altdist = dsrc + wt

if altdist < ddst
 distance[dst] = altdist

}
}

sssp_operator(src) {
dsrc = distance[src]
forall edges (src, dst, wt) {

ddst = distance[dst]
altdist = dsrc + wt

if altdist < ddst
 distance[dst] = altdist

}
}

M
em

ory-bound kernel

● Improves amount of computation per thread invocation

● Need to ensure absence of races

● Propagates information faster

27

Topology-driven: Exploiting Memory Hierarchy

un
ro

ll
fa

ct
or

queue

stack

df
s

bfs

unroll factor

● Reduces memory latency

● Requires careful selection of unroll factor

on-chip
cache

28

Topology-driven: Improved Memory Layout

99

00

77

4545 6262

431 20 ...

96245 70 ...

● Bring logically close graph nodes also physically close in memory

● Improves spatial locality

29

Improving Synchronization

aa

push-based

aa

pull-based

1010

33 44

2 3

tfive tseven

77

33 44

2 3

tfive tseven

55

33 44

2 3

tfive tseven

Atomic-free update Lost-update problem Correction by topology-driven
processing, exploiting monotonicity

30

Irregular Algorithms on GPUs

aa

cc

bb dd
1

3
4

gg
ff

ee

Barnes-Hut n-body simulationBreadth-first search Single-source shortest paths

5 2 7

7

● Better memory layout

● Kernel unrolling

● Local worklists

● Improved synchronization

Application Speedup

BFS 48

BH 90

SSSP 45

31

Identify the Celebrity

Source: wikipedia

32

What is a morph?

Source: wikipedia

33

Examples of Morph Algorithms

C1C1 C2C2 C3C3 C4C4 C5C5

X1X1 X2X2 X5X5X4X4X3X3

a = &x
b = &y
p = &a
*p = b
c = a

aa

cc

pp bb

x

ya

5

3

8

5

6 6

4

7

Delaunay Mesh Refinement Points-to Analysis

Minimum Spanning
Tree Computation

Survey Propagation

34

Challenges in Morph Algorithms
● Synchronization

― locks are prohibitively expensive on GPUs
― atomic instructions quickly become expensive

● Memory allocation
― changing graph structure requires new strategies
― memory requirement cannot be predicted

● Load imbalance
― different modifications to different parts of the graph
― work done per node changes dynamically
― leads to thread-divergence and uncoalesced

memory accesses

36

GPU Optimization Principles

GPU
Principles

Synchronization

C
om

pu
ta

tio
n M
em

ory

Kernel transformations
Data grouping
Exploiting memory hierarchy

Algorithm selection
Work sorting

Work chunking
Communication onto computation

Following parallelism profile
Pipelined computation

Avoiding synchronization
Coarsening synchronization
Race and resolve mechanism
Combining synchronization

These optimization principles
are critical for high-performing
irregular GPU computations.

37

Approximations
● Reduced execution

● reduce the number of iterations
● Partial graph processing

― process fewer graph elements
● Graph compaction

― reduce the graph size
● Approximate attribute values

― reduce the number of distinct values
● ...

Approximation A(Domain D, Function F)
Function F: entity → entity
entity belongs to Domain D.

Approximation A(Domain D, Function F)
Function F: entity → entity
entity belongs to Domain D.

Iter. >K→K

Edge >K→K

Vertex u→v

Value v→v / K

38

Gajendra

Synchronization
Saurabh, Ganesh

Synchronization
Saurabh, Ganesh

Energy
Jyothi Krishna, Nikitha

Energy
Jyothi Krishna, Nikitha

Graph DSL
Ebenezer, Ashwina,

Nibedita

Graph DSL
Ebenezer, Ashwina,

Nibedita

Clustering
Anju

Clustering
Anju

Approximations
Somesh, Jash

Approximations
Somesh, Jash

Testing and Android
Shouvick, Aman

Testing and Android
Shouvick, Aman

Autoparallelizers
Prema

Autoparallelizers
Prema

Community Detection
Akash, Srivatsan

Community Detection
Akash, Srivatsan

Graph AlgorithmsGraph Algorithms

● Invited paper at ACM Transactions on Parallel Computing
● Institute research awards at IIT Madras in 2021, 2020, 2019
● Winner of HiPC Parallel Programming Challenge: Intel track in 2017
● Distinguished Paper Award at PPoPP 2016
● Best Paper Award at HiPC Student Research Symposium 2015
● Best MTP Awards, Krishnamurthy Endowment Prize, Prakash Arora Prize
● ...

39

Graph DSL

CompilerCompilerGraph
Algorithm

in DSL

Graph
Algorithm

in DSL

OpenMPOpenMP

MPIMPI

CUDACUDA

● Generate code for different backends from the same
algorithm specification.

● Currently works with static graphs (SSSP, BC, PR, TC).
● In progress: dynamic graphs, complex algorithms,

analysis, multi-GPU processing, ...

40

Exercises
● Find if true dependence exists for the loop.

● Represent a graph as adjacency list on GPU.
● Represent an input graph in CSR format, and

then convert it into a COO format.
● Write a kernel to count degrees of various

vertices. Check finally that the sum equals the
number of edges.

● Implement shortest path algorithm. Check your
implementation against that in CUDA SDK.

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[ii + 1] ...
 a[3 + ii] = ... a[5 * ii] ...
}

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[ii + 1] ...
 a[3 + ii] = ... a[5 * ii] ...
}

41

Parallel Graph Algorithms

Rupesh Nasre.
rupesh@cse.iitm.ac.in

Google
May 2022

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

