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Graphs are Everywhere!

Source: Google images
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Graphs
● Where do we encounter graphs?

― Social networks, road connections, molecular 
interactions, planetary forces, …

― snap, florida, dimacs, konect, ...
● Why treat them separately?

― They provide structural information.
― They can be processed more efficiently.

● What challenges do they pose?
― Load imbalance, poor locality, …
― Irregularity
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Scalability

● Meta / Facebook

― 2.2 billion active users
― 1.3 billion is India's population
― e.g. top people in the world

● Milky Way

― over 100 billion stars
― e.g. finding possibility of life

● Human Brain

― 100 billion neurons
― Artificial intelligence

Finding betweenness centrality on a million node graph (in a 
sequential manner) takes several weeks!
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Handling Large Graphs

● Distributed setup
― Graph is partitioned across a cluster.

● External memory algorithms
― Graph partitions are processed 

sequentially.

● Algorithms on compressed data
― Compression needs to maintain 

retrieval ability.

● Maintaining graph core
― Removal of unnecessary subgraphs.

Storage Time
● Parallelism

― Multi-core, distributed, 
GPUs

● Approximations
― Approximate 

computing
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● Manual
― OpenMP, MPI, CUDA

● Libraries
― Galois, Ligra, LonestarGPU, Gunrock, ...

● Domain-Specific Languages
― Green-Marl, Elixir, Falcon, ...

Parallelism Approaches
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Specifying Parallelism

● Do not specify.
― Sequential input, completely automated, currently 

very challenging in general
● Implicit parallelism

― aggregates, aggregate functions, primitive-based 
processing, ...

● Explicit parallelism
― pthreads, MPI, OpenCL, ...
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Identifying Dependence

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[2 * ii + 1] ...
}

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[2 * ii + 1] ...
}

Is there a flow dependence
between different iterations?

Dependence equations
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Dependence exists if the system has a solution.Dependence exists if the system has a solution.

Flow dependence is 
read-after-write (to the 
same memory location).
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Parallel Architectures

● Multicore CPUs
― Intel, ARM, …
― pthreads, OpenMP, ...

● Distributed systems
― CPUs with interconnects
― MPI

● Manycore GPUs
― NVIDIA, AMD, …
― CUDA, OpenCL, ...

CPU-GPU processing concepts 
have similarity with those in  

distributed systems.
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What is a GPU?

● Graphics Processing Unit
● Separate piece of hardware 

connected using a bus
● Separate address space 

than that of the CPU
● Massive multithreading
● Warp-based execution
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What is a Warp?

Source: Wikipedia
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GPU Computation Hierarchy

...
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... ... ......

... ... ......

Thread

Warp
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GPU

1

32

1024

Tens of
thousands

Hundreds of
thousands



13

Challenges with GPUs

● Warp-based execution
● Locking is expensive
● Dynamic memory allocation is costly
● Limited data-cache
● Programmability issues

― separate address space

― low recursion support

― complex computation hierarchy

― exposed memory hierarchy

― ...
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Challenges in Graph Algorithms

● Synchronization
― locks are prohibitively expensive on GPUs
― atomic instructions quickly become expensive

● Memory latency
― locality is difficult to exploit
― low caching support

● Thread-divergence
― work done per node varies with graph structure

● Uncoalesced memory accesses
― warp-threads access arbitrary graph elements
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     Graph Representation

1. Adjacency matrix
― |V|x|V| matrix
― Each entry [i, j] denotes if edge (i,j) 

is present in G
― Useful for dense graph
― Finding neighbors is O(|V|)

2. Adjacency list
― |V| + |E| size
― Each vertex i has a list of its 

neighbors
― Useful for sparse graphs
― Finding neighbors is O(max. 

degree)
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     Graph Representation

3. Edge list / Coordinate list (COO)
― |E| pairs
― Useful for edge-based algorithms
― Typically sorted on vertex id

4. Compressed sparse row (CSR)
― Concatenated adjacency lists
― Useful for sparse graphs
― Useful for data transfer
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● Operator formulation: Computation as an iterated application of operator

● Topology-driven processing: operator is applied at all the nodes even if 
there is no work to do at some nodes (e.g., Bellman-Ford SSSP)

● Data-driven processing: operator is applied only at the nodes where 
there might be work to be done (e.g., SSSP with delta-stepping)

TAO Classification
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neighborhood
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The TAO of Parallelism in Algorithms, Pingali et al, PLDI 2011
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Data-driven vs. Topology-driven

● work-efficient

● centralized worklist

● fine-grained synchronization 
using atomics

● complicates implementation

data-driven topology-driven

● performs extra work

● no worklists

● coarse-grained synchronization 
using barriers

● easier to implement
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Data-driven: Base Version

main {
read input
transfer input
initialize_kernel
initialize_worklist(wlin)
clear wlout

while wlin not empty {
operator(wlin, wlout, ...)
transfer wlout size
clear wlin
swap(wlin, wlout)

}
transfer results

}

cpu gpu

...

wlin

wlout

sssp_operator(wlin, wlout, ...) {
src = wlin[...]
dsrc = distance[src]
forall edges (src, dst, wt) {

ddst = distance[dst]
altdist = dsrc + wt
if altdist < ddst {
    distance[dst] = altdist
     wlout.push(dst)

} } }

sssp_operator(wlin, wlout, ...) {
src = wlin[...]
dsrc = distance[src]
forall edges (src, dst, wt) {

ddst = distance[dst]
altdist = dsrc + wt
if altdist < ddst {
    distance[dst] = altdist
     wlout.push(dst)

} } }
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Data-driven: Hierarchical Worklist

...

wlin

wlout

... wllocal

Threadblocks

global memory

global memory

on-chip cache

● Worklist exploits memory hierarchy

● Makes judicious use of limited on-chip cache
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Data-driven: Work Chunking

O(e) atomics

O(t) atomics 

atomic per element

atomic per thread

...

● Reserves space for multiple work-items in a single atomic

● May reduce overall synchronization
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Data-driven: Atomic-free Worklist Update

O(e) atomics

O(t) atomics 

O(log t) barriers

atomic per element

atomic per thread

prefix-sum

...
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Data-driven: Work Donation
donate_kernel {

shared donationbox[...];
// determine if I should donate
--barrier--

// donate
--barrier--

// operator execution

// empty donation box
}

...

● Work-donation improves load balance
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Data-driven: Variable Kernel Configuration

Available parallelism varies 
throughout execution

DMR's parallelism profile (input: mesh with 50K triangles)

● Varying configuration improves work-efficiency

● It also reduces conflicts and may improve performance
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Topology-driven: Base Version

main {
read input
transfer input
initialize_kernel
do {
 transfer false to changed
 operator(...)
 transfer changed
} while changed
transfer results

}

cpu gpu
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Topology-driven: Kernel Unrolling

sssp_operator(src) {
dsrc = distance[src]
forall edges (src, dst, wt) {

ddst = distance[dst]
altdist = dsrc + wt

if altdist < ddst
   distance[dst] = altdist

}
}

sssp_operator(src) {
dsrc = distance[src]
forall edges (src, dst, wt) {

ddst = distance[dst]
altdist = dsrc + wt

if altdist < ddst
   distance[dst] = altdist

}
}

M
em

ory-bound kernel

● Improves amount of computation per thread invocation

● Need to ensure absence of races

● Propagates information faster
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Topology-driven: Exploiting Memory Hierarchy
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● Reduces memory latency

● Requires careful selection of unroll factor

on-chip
cache
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Topology-driven: Improved Memory Layout
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● Bring logically close graph nodes also physically close in memory

● Improves spatial locality
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Improving Synchronization
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Atomic-free update Lost-update problem Correction by topology-driven 
processing, exploiting monotonicity
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Irregular Algorithms on GPUs
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Barnes-Hut n-body simulationBreadth-first search Single-source shortest paths
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● Better memory layout

● Kernel unrolling

● Local worklists

● Improved synchronization

Application Speedup 

BFS 48

BH 90

SSSP 45
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Identify the Celebrity

Source: wikipedia
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What is a morph?

Source: wikipedia
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Examples of Morph Algorithms

C1C1 C2C2 C3C3 C4C4 C5C5

X1X1 X2X2 X5X5X4X4X3X3

a = &x
b = &y
p = &a
*p = b
c = a

aa

cc

pp bb

x

ya

5

3

8

5

6 6

4

7

Delaunay Mesh Refinement Points-to Analysis

Minimum Spanning 
Tree Computation

Survey Propagation
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Challenges in Morph Algorithms
● Synchronization

― locks are prohibitively expensive on GPUs
― atomic instructions quickly become expensive

● Memory allocation
― changing graph structure requires new strategies
― memory requirement cannot be predicted

● Load imbalance
― different modifications to different parts of the graph
― work done per node changes dynamically
― leads to thread-divergence and uncoalesced 

memory accesses
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GPU Optimization Principles

GPU
Principles

Synchronization

C
om

pu
ta

tio
n M
em

ory

Kernel transformations
Data grouping
Exploiting memory hierarchy

Algorithm selection
Work sorting

Work chunking
Communication onto computation

Following parallelism profile
Pipelined computation

Avoiding synchronization
Coarsening synchronization
Race and resolve mechanism
Combining synchronization

These optimization principles
are critical for high-performing
irregular GPU computations.
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Approximations
● Reduced execution

● reduce the number of iterations
● Partial graph processing

― process fewer graph elements
● Graph compaction

― reduce the graph size
● Approximate attribute values

― reduce the number of distinct values
● ...

Approximation A(Domain D, Function F)
Function F: entity → entity
entity belongs to Domain D.

Approximation A(Domain D, Function F)
Function F: entity → entity
entity belongs to Domain D.

Iter.  >K→K

Edge  >K→K

Vertex u→v

Value v→v / K
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Gajendra

Synchronization
Saurabh, Ganesh

Synchronization
Saurabh, Ganesh

Energy
Jyothi Krishna, Nikitha

Energy
Jyothi Krishna, Nikitha

Graph DSL
Ebenezer, Ashwina,

Nibedita

Graph DSL
Ebenezer, Ashwina,

Nibedita

Clustering
Anju

Clustering
Anju

Approximations
Somesh, Jash

Approximations
Somesh, Jash

Testing and Android
Shouvick, Aman

Testing and Android
Shouvick, Aman

Autoparallelizers
Prema

Autoparallelizers
Prema

Community Detection
Akash, Srivatsan

Community Detection
Akash, Srivatsan

Graph AlgorithmsGraph Algorithms

●  Invited paper at ACM Transactions on Parallel Computing
●  Institute research awards at IIT Madras in 2021, 2020, 2019
●  Winner of HiPC Parallel Programming Challenge: Intel track in 2017
●  Distinguished Paper Award at PPoPP 2016
●  Best Paper Award at HiPC Student Research Symposium 2015
●  Best MTP Awards, Krishnamurthy Endowment Prize, Prakash Arora Prize
●  ...
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Graph DSL

CompilerCompilerGraph 
Algorithm 

in DSL

Graph 
Algorithm 

in DSL

OpenMPOpenMP

MPIMPI

CUDACUDA

● Generate code for different backends from the same 
algorithm specification.

● Currently works with static graphs (SSSP, BC, PR, TC).
● In progress: dynamic graphs, complex algorithms, 

analysis, multi-GPU processing, ...
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Exercises
● Find if true dependence exists for the loop.

● Represent a graph as adjacency list on GPU.
● Represent an input graph in CSR format, and 

then convert it into a COO format.
● Write a kernel to count degrees of various 

vertices. Check finally that the sum equals the 
number of edges.

● Implement shortest path algorithm. Check your 
implementation against that in CUDA SDK.

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[ii + 1] ...
    a[3 + ii] = ... a[5 * ii] ...
}

for (ii = 0; ii < 10; ++ii) {
    a[2 * ii] = ... a[ii + 1] ...
    a[3 + ii] = ... a[5 * ii] ...
}
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