Parallel Graph Algorithms

Rupesh Nasre.

IIT Madras

Google May 2022

Graphs are Everywhere!

Graphs

- Where do we encounter graphs?
 - Social networks, road connections, molecular interactions, planetary forces, ...
 - snap, florida, dimacs, konect, ...
- Why treat them separately?
 - They provide structural information.
 - They can be processed more efficiently.
- What challenges do they pose?
 - Load imbalance, poor locality, ...
 - Irregularity

Scalability

Meta / Facebook

- 2.2 billion active users
- 1.3 billion is India's population
- e.g. top people in the world

Milky Way

- over 100 billion stars
- e.g. finding possibility of life

Human Brain

- 100 billion neurons
- Artificial intelligence

Finding betweenness centrality on a million node graph (in a sequential manner) takes several weeks!

Handling Large Graphs

Storage

- Distributed setup
 - Graph is partitioned across a cluster.
- External memory algorithms
 - Graph partitions are processed sequentially.
- Algorithms on compressed data
 - Compression needs to maintain retrieval ability.
- Maintaining graph core
 - Removal of unnecessary subgraphs.

Time

- Parallelism
 - Multi-core, distributed, GPUs
- Approximations
 - Approximate computing

Parallelism Approaches

- Manual
 - OpenMP, MPI, CUDA
- Libraries
 - Galois, Ligra, LonestarGPU, Gunrock, ...
- Domain-Specific Languages

- Green-Marl, Elixir, Falcon, ...

Specifying Parallelism

- Do not specify.
 - Sequential input, completely automated, currently very challenging in general
- Implicit parallelism
 - aggregates, aggregate functions, primitive-based processing, ...
- Explicit parallelism
 - pthreads, MPI, OpenCL, ...

Identifying Dependence

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[2 * ii + 1] ...
}</pre>

Is there a flow dependence between different iterations?

Flow dependence is

Dependence equations $0 \le ii_{w} \le ii_{r} \le 10$ $2 * ii_{w} = 2 * ii_{r} + 1$

uations

read-after-write (to the same memory location). w →→→→ r

which can be written as

Dependence exists if the system has a solution.

Parallel Architectures

Multicore CPUs

- Intel, ARM, ...
- pthreads, OpenMP, ...

Distributed systems

- CPUs with interconnects
- MPI

Manycore GPUs

- NVIDIA, AMD, ...
- CUDA, OpenCL, ...

CPU-GPU processing concepts have similarity with those in distributed systems.

What is a GPU?

- Graphics Processing Unit
- Separate piece of hardware connected using a bus
- Separate address space than that of the CPU
- Massive multithreading
- Warp-based execution

What is a Warp?

GPU Computation Hierarchy

Challenges with GPUs

- Warp-based execution
- Locking is expensive
- Dynamic memory allocation is costly
- Limited data-cache
- Programmability issues
 - separate address space
 - low recursion support
 - complex computation hierarchy
 - exposed memory hierarchy

Challenges in Graph Algorithms

Synchronization

- locks are prohibitively expensive on GPUs
- atomic instructions quickly become expensive

Memory latency

- locality is difficult to exploit
- low caching support
- Thread-divergence
 - work done per node varies with graph structure
- Uncoalesced memory accesses
 - warp-threads access arbitrary graph elements

Graph Representation

1. Adjacency matrix

- |V|x|V| matrix
- Each entry [i, j] denotes if edge (i,j) is present in G
- Useful for dense graph
- Finding neighbors is O(|V|)

2. Adjacency list

- |V| + |E| size
- Each vertex i has a list of its neighbors
- Useful for **sparse** graphs
- Finding neighbors is O(max. degree)

Graph Representation

3. Edge list / Coordinate list (COO)

- |E| pairs
- Useful for edge-based algorithms
- Typically sorted on vertex id

4. Compressed sparse row (CSR)

- Concatenated adjacency lists
- Useful for **sparse** graphs
- Useful for data transfer

TAO Classification

- **Operator formulation**: Computation as an iterated application of operator
- Topology-driven processing: operator is applied at all the nodes even if there is no work to do at some nodes (e.g., Bellman-Ford SSSP)
- **Data-driven processing**: operator is applied only at the nodes where there might be work to be done (e.g., SSSP with delta-stepping)

Data-driven vs. Topology-driven

- work-efficient
- centralized worklist
- fine-grained synchronization using atomics
- complicates implementation

topology-driven

- performs extra work
- no worklists
- coarse-grained synchronization using barriers
- easier to implement

Data-driven: Base Version

}

Data-driven: Hierarchical Worklist

- Worklist exploits memory hierarchy
- Makes judicious use of limited on-chip cache

Data-driven: Work Chunking

- Reserves space for multiple work-items in a single atomic
- May reduce overall synchronization

Data-driven: Atomic-free Worklist Update

Data-driven: Work Donation

donate_kernel {
 shared donationbox[...];
 // determine if I should donate
 --barrier--

// donate --*barrier--*

}

// operator execution

// empty donation box

• Work-donation improves load balance

Data-driven: Variable Kernel Configuration

- Varying configuration improves work-efficiency
- It also reduces conflicts and may improve performance

Topology-driven: Base Version

cpu gpu

main { read input transfer input initialize_kernel do { transfer false to changed operator(...) transfer changed } while changed transfer results

}

Topology-driven: Kernel Unrolling

- Improves amount of computation per thread invocation
- Need to ensure absence of races
- Propagates information faster

Topology-driven: Exploiting Memory Hierarchy

• Requires careful selection of unroll factor

Topology-driven: Improved Memory Layout

- Bring logically close graph nodes also physically close in memory
- Improves spatial locality

Improving Synchronization

Irregular Algorithms on GPUs

Breadth-first search

Barnes-Hut n-body simulation

Single-source shortest paths

- Better memory layout
- Kernel unrolling
- Local worklists
- Improved synchronization

Application	Speedup
BFS	48
BH	90
SSSP	45

Identify the Celebrity

What is a morph?

Examples of Morph Algorithms

Challenges in Morph Algorithms

• Synchronization

- locks are prohibitively expensive on GPUs
- atomic instructions quickly become expensive
- Memory allocation
 - changing graph structure requires new strategies
 - memory requirement cannot be predicted
- Load imbalance
 - different modifications to different parts of the graph
 - work done per node changes dynamically
 - leads to thread-divergence and uncoalesced memory accesses

GPU Optimization Principles

Algorithm selection Work sorting Work chunking Communication onto computation Following parallelism profile **Pipelined computation**

These optimization principles are critical for high-performing irregular GPU computations.

Kernel transformations Data grouping Exploiting memory hierarchy

Conducation Memory Principles

GPU

Synchronization

Avoiding synchronization **Coarsening synchronization** Race and resolve mechanism Combining synchronization

Approximations

- Reduced execution
 - reduce the number of iterations
- Partial graph processing
 - process fewer graph elements
- Graph compaction
 - reduce the graph size
- Approximate attribute values
 - reduce the number of distinct values

Approximation A(Domain D, Function F) Function F: entity → entity entity belongs to Domain D.

```
Iter. >K→K
Edge >K→K
Vertex u→v
```

```
Value v→v / K
```


- Invited paper at ACM Transactions on Parallel Computing
- Institute research awards at IIT Madras in 2021, 2020, 2019
- Winner of HiPC Parallel Programming Challenge: Intel track in 2017
- Distinguished Paper Award at PPoPP 2016
- Best Paper Award at HiPC Student Research Symposium 2015
- Best MTP Awards, Krishnamurthy Endowment Prize, Prakash Arora Prize

• ...

Graph DSL

- Generate code for different backends from the same algorithm specification.
- Currently works with static graphs (SSSP, BC, PR, TC).
- In progress: dynamic graphs, complex algorithms, analysis, multi-GPU processing, ...

Exercises

• Find if true dependence exists for the loop.

for (ii = 0; ii < 10; ++ii) {
 a[2 * ii] = ... a[ii + 1] ...
 a[3 + ii] = ... a[5 * ii] ...
}</pre>

- Represent a graph as adjacency list on GPU.
- Represent an input graph in CSR format, and then convert it into a COO format.
- Write a kernel to count degrees of various vertices. Check finally that the sum equals the number of edges.
- Implement shortest path algorithm. Check your implementation against that in CUDA SDK.

Parallel Graph Algorithms

Rupesh Nasre.

rupesh@cse.iitm.ac.in

Google May 2022

