
1

GPU Programming

Rupesh Nasre.

High-Performance Parallel Computing
June 2016

2

Outline
● Basics

● History and Motivation
● Simple Programs
● Thread Synchronization

● Optimizations

● GPU Memories
● Thread Divergence
● Memory Coalescing
● ...

● Case Studies

● Image Processing
● Graph Algorithms

Some images are taken from NVIDIA
CUDA Programming Guide.

3

4

GPU-CPU Performance Comparison

Source: Thorsten Thormählen

5
GPGPU: General Purpose Graphics Processing Unit

6

GPU Vendors
● NVIDIA
● AMD
● Intel
● QualComm
● ARM
● Broadcom
● Matrox Graphics
● Vivante
● Samsung
● ...

7

Earlier GPGPU Programming

● Applications: Protein Folding, Stock Options Pricing, SQL Queries, MRI Reconstruction.
● Required intimate knowledge of graphics API and GPU architecture.
● Program complexity: Problems expressed in terms of vertex coordinates, textures and

shaders programs.
● Random memory reads/writes not supported.
● Lack of double precision support.

GPUCPU

ApplicationApplication Transform
& Light

Transform
& Light RasterizeRasterize ShadeShade Video

Memory
(Textures)

Video
Memory

(Textures)

Xform
ed, Lit Vertices (2D

)

Graphics State

Render-to-texture

Assemble
Primitives
Assemble
Primitives

Vertices (3D
)

Screenspace triangles (2D
)

Fragm
ents (pre-pixels)

Final Pixels (C
olor, D

epth)

GPGPU = General Purpose Graphics Processing Units.

8

Feature K80 K40

of SMX Units 26 (13 per GPU) 15

of CUDA Cores 4992 (2496 per GPU) 2880

Memory Clock 2500 MHz 3004 MHz

GPU Base Clock 560 MHz 745 MHz

GPU Boost Support Yes – Dynamic Yes – Static

GPU Boost Clocks 23 levels between 562 MHz
and 875 MHz

810 MHz
875 MHz

Architecture features Dynamic Parallelism, Hyper-Q

Compute Capability 3.7 3.5

Wattage (TDP) 300W (plus Zero Power Idle) 235W

Onboard GDDR5 Memory 24 GB 12 GB

Kepler Configuration

rn-gpu machine:/usr/local/cuda/NVIDIA_CUDA-6.5_Samples/1_Utilities/deviceQuery/deviceQuery

Homework: Find out what is the GPU type on rn-gpu machine.

9

Configurations

In your login on rn-gpu, setup the environment:
$ export PATH=$PATH:/usr/local/cuda/bin:
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64:

You can also add the lines to .bashrc.

To create:
$ vi file.cu

To compile:
$ nvcc file.cu

This should create a.out in the current directory.

To execute:
$ a.out

10

GPU Configuration: Fermi
● Third Generation Streaming Multiprocessor (SM)

● 32 CUDA cores per SM, 4x over GT200

● 8x the peak double precision floating point
performance over GT200

● Dual Warp Scheduler simultaneously
schedules and dispatches instructions from
two independent warps

● 64 KB of RAM with a configurable partitioning
of shared memory and L1 cache

● Second Generation Parallel Thread Execution ISA

● Full C++ Support

● Optimized for OpenCL and DirectCompute

● Full IEEE 754-2008 32-bit and 64-bit
precision

● Full 32-bit integer path with 64-bit extensions

● Memory access instructions to support
transition to 64-bit addressing

● Improved Performance through Predication

● Improved Memory Subsystem

● NVIDIA Parallel DataCacheTM
hierarchy with Configurable L1 and
Unified L2 Caches

● First GPU with ECC memory support

● Greatly improved atomic memory
operation performance

● NVIDIA GigaThreadTM Engine

● 10x faster application context switching

● Concurrent kernel execution

● Out of Order thread block execution

● Dual overlapped memory transfer
engines

11

CUDA, in a nutshell
● Compute Unified Device Architecture. It is a hardware and software architecture.
● Enables NVIDIA GPUs to execute programs written with C, C++, Fortran, OpenCL,

and other languages.
● A CUDA program calls parallel kernels. A kernel executes in parallel across a set of

parallel threads.
● The programmer or compiler organizes these threads in thread blocks and grids of

thread blocks.
● The GPU instantiates a kernel program on a grid of parallel thread blocks.
● Each thread within a thread block executes an instance of the kernel, and has a

thread ID within its thread block, program counter, registers, per-thread private
memory, inputs, and output results.

● A thread block is a set of concurrently executing threads that can cooperate among
themselves through barrier synchronization and shared memory.

● A grid is an array of thread blocks that execute the same kernel, read inputs from
global memory, and write results to global memory.

● Each thread has a per-thread private memory space used for register spills,
function calls, and C automatic array variables.

● Each thread block has a per-block shared memory space used for inter-thread
communication, data sharing, and result sharing in parallel algorithms.

12

Hello World.

#include <stdio.h>

int main() {

 printf("Hello World.\n");

 return 0;

}

Compile: nvcc hello.cu
Run: a.out

13

GPU Hello World.

#include <stdio.h>

#include <cuda.h>

__global__ void dkernel() {

 printf(“Hello World.\n”);

}

int main() {

 dkernel<<<1, 1>>>();

 return 0;

}

Compile: nvcc hello.cu
Run: ./a.out
 – No output. --

Kernel

Kernel Launch

14

GPU Hello World.

#include <stdio.h>

#include <cuda.h>

__global__ void dkernel() {

 printf(“Hello World.\n”);

}

int main() {

 dkernel<<<1, 1>>>();

 cudaThreadSynchronize();

 return 0;

}

Compile: nvcc hello.cu
Run: ./a.out
Hello World.

CPU function
and GPU kernel
run asynchronously.

Takeaway

15

GPU Hello World in Parallel.

#include <stdio.h>

#include <cuda.h>

__global__ void dkernel() {

 printf(“Hello World.\n”);

}

int main() {

 dkernel<<<1, 32>>>();

 cudaThreadSynchronize();

 return 0;

}

Compile: nvcc hello.cu
Run: ./a.out
Hello World.
Hello World.
...

32 times

16

GPU Hello World with a Global.

#include <stdio.h>

#include <cuda.h>

const char *msg = "Hello World.\n";

__global__ void dkernel() {

 printf(msg);

}

int main() {

 dkernel<<<1, 32>>>();

 cudaThreadSynchronize();

 return 0;

}Compile: nvcc hello.cu
error: identifier "msg" is undefined in device code

CPU and GPU
memories are
separate
(for discrete GPUs).

Takeaway

17

Separate Memories

● CPU and its associated (discrete) GPUs have
separate physical memory (RAM).

● A variable in CPU memory cannot be accessed
directly in a GPU kernel.

● A programmer needs to maintain copies of variables.

● It is programmer's responsibility to keep them in sync.

D R A M D R A M

PCI Express
Bus

CPU GPU

18

Typical CUDA Program Flow

CPUCPU GPUGPU

File
System

Load data
into CPU
memory.

Copy data from CPU
to GPU memory.

Copy results from
GPU to CPU memory.

Execute
GPU
kernel.

Use
results on

CPU.

1

2

4

35

19

Typical CUDA Program Flow
 Load data into CPU memory.

 - fread / rand

 Copy data from CPU to GPU memory.

 - cudaMemcpy(..., cudaMemcpyHostToDevice)

 Call GPU kernel.

 - mykernel<<<x, y>>>(...)

 Copy results from GPU to CPU memory.

 - cudaMemcpy(..., cudaMemcpyDeviceToHost)

 Use results on CPU.

1

2

3

4

5

20

Typical CUDA Program Flow

 Copy data from CPU to GPU memory.

 - cudaMemcpy(..., cudaMemcpyHostToDevice)

This means we need two copies of the same
variable – one on CPU another on GPU.

e.g., int *cpuarr, *gpuarr;

 Matrix cpumat, gpumat;

 Graph cpug, gpug;

2

21

CPU-GPU Communication
#include <stdio.h>
#include <cuda.h>
__global__ void dkernel(char *arr, int arrlen) {
 unsigned id = threadIdx.x;
 if (id < arrlen) {
 ++arr[id];
 }
}

int main() {
 char cpuarr[] = "Gdkkn\x1fVnqkc-",
 *gpuarr;

 cudaMalloc(&gpuarr, sizeof(char) * (1 + strlen(cpuarr)));
 cudaMemcpy(gpuarr, cpuarr, sizeof(char) * (1 + strlen(cpuarr)), cudaMemcpyHostToDevice);
 dkernel<<<1, 32>>>(gpuarr, strlen(cpuarr));
 cudaThreadSynchronize(); // unnecessary.
 cudaMemcpy(cpuarr, gpuarr, sizeof(char) * (1 + strlen(cpuarr)), cudaMemcpyDeviceToHost);
 printf(cpuarr);

 return 0;
}

22

Classwork

1. Write a CUDA program to initialize an array of
size 32 to all zeros in parallel.

2. Change the array size to 1024.

3. Create another kernel that adds i to array[i].

4. Change the array size to 8000.

5. Check if answer to problem 3 still works.

23

Thread Organization

● A kernel is launched as a grid of threads.
● A grid is a 3D array of thread-blocks (gridDim.x,

gridDim.y and gridDim.z).
● Thus, each block has blockIdx.x, .y, .z.

● A thread-block is a 3D array of threads
(blockDim.x, .y, .z).
● Thus, each thread has threadIdx.x, .y, .z.

24

Grids, Blocks, Threads

Each thread uses IDs to decide what
data to work on
Block ID: 1D, 2D, or 3D
Thread ID: 1D, 2D, or 3D

Simplifies memory
addressing when processing
multidimensional data
Image processing
Solving PDEs on volumes
…

Typical configuration:
 1-5 blocks per SM
 128-1024 threads per block.
 Total 2K-100K threads.
 You can launch a kernel with

millions of threads.

CPU GPU

Grid with
2x2 blocks

A single
thread in

4x2x2
threads

25

Accessing Dimensions

#include <stdio.h>
#include <cuda.h>
__global__ void dkernel() {
 if (threadIdx.x == 0 && blockIdx.x == 0 &&
 threadIdx.y == 0 && blockIdx.y == 0 &&
 threadIdx.z == 0 && blockIdx.z == 0) {
 printf("%d %d %d %d %d %d.\n", gridDim.x, gridDim.y, gridDim.z,
 blockDim.x, blockDim.y, blockDim.z);
 }
}
int main() {
 dim3 grid(2, 3, 4);
 dim3 block(5, 6, 7);
 dkernel<<<grid, block>>>();
 cudaThreadSynchronize();
 return 0;
}

Number of threads launched = 2 * 3 * 4 * 5 * 6 * 7.
Number of threads in a thread-block = 5 * 6 * 7.
Number of thread-blocks in the grid = 2 * 3 * 4.

ThreadId in x dimension is in [0..5).
BlockId in y dimension is in [0..3).

Number of threads launched = 2 * 3 * 4 * 5 * 6 * 7.
Number of threads in a thread-block = 5 * 6 * 7.
Number of thread-blocks in the grid = 2 * 3 * 4.

ThreadId in x dimension is in [0..5).
BlockId in y dimension is in [0..3).

How many times the kernel printf
gets executed when the if
condition is changed to
if (threadIdx.x == 0) ?

How many times the kernel printf
gets executed when the if
condition is changed to
if (threadIdx.x == 0) ?

26

2D
#include <stdio.h>
#include <cuda.h>
__global__ void dkernel(unsigned *matrix) {
 unsigned id = threadIdx.x * blockDim.y + threadIdx.y;
 matrix[id] = id;
}
#define N 5
#define M 6
int main() {
 dim3 block(N, M, 1);
 unsigned *matrix, *hmatrix;

 cudaMalloc(&matrix, N * M * sizeof(unsigned));
 hmatrix = (unsigned *)malloc(N * M * sizeof(unsigned));

 dkernel<<<1, block>>>(matrix);
 cudaMemcpy(hmatrix, matrix, N * M * sizeof(unsigned), cudaMemcpyDeviceToHost);

 for (unsigned ii = 0; ii < N; ++ii) {
 for (unsigned jj = 0; jj < M; ++jj) {
 printf("%2d ", hmatrix[ii * M + jj]);
 }
 printf("\n");
 }
 return 0;
}

$ a.out
 0 1 2 3 4 5
 6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29

$ a.out
 0 1 2 3 4 5
 6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29

27

1D
#include <stdio.h>
#include <cuda.h>
__global__ void dkernel(unsigned *matrix) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 matrix[id] = id;
}
#define N 5
#define M 6
int main() {
 unsigned *matrix, *hmatrix;

 cudaMalloc(&matrix, N * M * sizeof(unsigned));
 hmatrix = (unsigned *)malloc(N * M * sizeof(unsigned));

 dkernel<<<N, M>>>(matrix);
 cudaMemcpy(hmatrix, matrix, N * M * sizeof(unsigned), cudaMemcpyDeviceToHost);

 for (unsigned ii = 0; ii < N; ++ii) {
 for (unsigned jj = 0; jj < M; ++jj) {
 printf("%2d ", hmatrix[ii * M + jj]);
 }
 printf("\n");
 }
 return 0;
}

One can perform
computation on a
multi-dimensional
data using a one-
dimensional block.

Takeaway

If I want the launch configuration to be
<<<2, X>>>, what is X?

The rest of the code should be intact.

28

Launch Configuration for Large Size
#include <stdio.h>
#include <cuda.h>
__global__ void dkernel(unsigned *vector) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 vector[id] = id;
}
#define BLOCKSIZE 1024
int main(int nn, char *str[]) {
 unsigned N = atoi(str[1]);
 unsigned *vector, *hvector;
 cudaMalloc(&vector, N * sizeof(unsigned));
 hvector = (unsigned *)malloc(N * sizeof(unsigned));

 unsigned nblocks = ceil(N / BLOCKSIZE);
 printf("nblocks = %d\n", nblocks);

 dkernel<<<nblocks, BLOCKSIZE>>>(vector);
 cudaMemcpy(hvector, vector, N * sizeof(unsigned), cudaMemcpyDeviceToHost);
 for (unsigned ii = 0; ii < N; ++ii) {
 printf("%4d ", hvector[ii]);
 }
 return 0;
}

Find two issues
with this code.

Find two issues
with this code.

Needs floating point division.

Access out-of-bounds.

29

Launch Configuration for Large Size
#include <stdio.h>
#include <cuda.h>
__global__ void dkernel(unsigned *vector, unsigned vectorsize) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 if (id < vectorsize) vector[id] = id;
}
#define BLOCKSIZE 1024
int main(int nn, char *str[]) {
 unsigned N = atoi(str[1]);
 unsigned *vector, *hvector;
 cudaMalloc(&vector, N * sizeof(unsigned));
 hvector = (unsigned *)malloc(N * sizeof(unsigned));

 unsigned nblocks = ceil((float)N / BLOCKSIZE);
 printf("nblocks = %d\n", nblocks);

 dkernel<<<nblocks, BLOCKSIZE>>>(vector, N);
 cudaMemcpy(hvector, vector, N * sizeof(unsigned), cudaMemcpyDeviceToHost);
 for (unsigned ii = 0; ii < N; ++ii) {
 printf("%4d ", hvector[ii]);
 }
 return 0;
}

30

Classwork

● Read a sequence of integers from a file.
● Square each number.
● Read another sequence of integers from

another file.
● Cube each number.
● Sum the two sequences element-wise, store in

the third sequence.
● Print the computed sequence.

3131

CUDA Memory Model Overview

• Global memory
– Main means of

communicating R/W Data
between host and device

– Contents visible to all GPU
threads

– Long latency access

• We will focus on global
memory for now
– There are also constant and

texture memory.

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

3232

CUDA Function Declarations

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

● __global__ defines a kernel. It must return void.
● A program may have several functions of each kind.
● The same function of any kind may be called multiple times.
● Host == CPU, Device == GPU.

33

#include <stdio.h>
#include <cuda.h>
__host__ __device__ void dhfun() {
 printf("I can run on both CPU and GPU.\n");
}
__device__ unsigned dfun(unsigned *vector, unsigned vectorsize, unsigned id) {
 if (id == 0) dhfun();
 if (id < vectorsize) {
 vector[id] = id;
 return 1;
 } else {
 return 0;
 }
}
__global__ void dkernel(unsigned *vector, unsigned vectorsize) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 dfun(vector, vectorsize, id);
}
__host__ void hostfun() {
 printf("I am simply like another function running on CPU. Calling dhfun\n");
 dhfun();
}

Function Types (1/2)

34

Function Types (2/2)
#define BLOCKSIZE 1024
int main(int nn, char *str[]) {
 unsigned N = atoi(str[1]);
 unsigned *vector, *hvector;
 cudaMalloc(&vector, N * sizeof(unsigned));
 hvector = (unsigned *)malloc(N * sizeof(unsigned));

 unsigned nblocks = ceil((float)N / BLOCKSIZE);
 printf("nblocks = %d\n", nblocks);

 dkernel<<<nblocks, BLOCKSIZE>>>(vector, N);
 cudaMemcpy(hvector, vector, N * sizeof(unsigned), cudaMemcpyDeviceToHost);
 for (unsigned ii = 0; ii < N; ++ii) {
 printf("%4d ", hvector[ii]);
 }
 printf("\n");
 hostfun();
 dhfun();
 return 0;
}

mainmain

dkerneldkernel

hostfunhostfun

dhfundhfun

C
P
U

G
P
U

dfundfun

What are the other arrows possible in this diagram?

35

GPU Computation Hierarchy

...

...

...

...

Thread

Warp

Block

Multi-processor

GPU

1

32

1024

Tens of
thousands

Hundreds of
thousands

36

What is a Warp?

Source: Wikipedia

37

Warp
● A set of consecutive threads (currently 32) that

execute in SIMD fashion.
● SIMD == Single Instruction Multiple Data
● Warp-threads are fully synchronized. There is

an implicit barrier after each step / instruction.
● Memory coalescing is closedly related to warps.

It is a misconception that all
threads in a GPU execute in
lock-step. Lock-step execution is
true for threads only within a warp.

Takeaway

38

Warp with Conditions
__global__ void dkernel(unsigned *vector, unsigned vectorsize) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 if (id % 2) vector[id] = id;
 else vector[id] = vectorsize * vectorsize;

 vector[id]++;
}

__global__ void dkernel(unsigned *vector, unsigned vectorsize) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 if (id % 2) vector[id] = id;
 else vector[id] = vectorsize * vectorsize;

 vector[id]++;
}

 0 1 2 3 4 5 6 7

S1

S2

S1 S1 S1

S1

NOP

S2

S2 S2 S2T
im

e

S0

S4

S0 S0 S0 S0 S0 S0 S0 S0

S4 S4 S4 S4 S4 S4 S4 S4

39

Warp with Conditions

 0 1 2 3 4 5 6 7

S1

S2

S1 S1 S1

S2 S2 S2T
im

e

S0 S0 S0 S0 S0 S0 S0 S0

S4 S4 S4 S4 S4 S4 S4 S4

● When different warp-threads execute different
instructions, threads are said to diverge.

● Hardware executes threads satisfying same condition
together, ensuring that other threads execute a no-op.

● This adds sequentiality to the execution.

● This problem is termed as thread-divergence.

40

Thread-Divergence

__global__ void dkernel(unsigned *vector, unsigned vectorsize) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 switch (id) {
 case 0: vector[id] = 0; break;
 case 1: vector[id] = vector[id]; break;
 case 2: vector[id] = vector[id - 2]; break;
 case 3: vector[id] = vector[id + 3]; break;
 case 4: vector[id] = 4 + 4 + vector[id]; break;
 case 5: vector[id] = 5 - vector[id]; break;
 case 6: vector[id] = vector[6]; break;
 case 7: vector[id] = 7 + 7; break;
 case 8: vector[id] = vector[id] + 8; break;
 case 9: vector[id] = vector[id] * 9; break;
} }

__global__ void dkernel(unsigned *vector, unsigned vectorsize) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 switch (id) {
 case 0: vector[id] = 0; break;
 case 1: vector[id] = vector[id]; break;
 case 2: vector[id] = vector[id - 2]; break;
 case 3: vector[id] = vector[id + 3]; break;
 case 4: vector[id] = 4 + 4 + vector[id]; break;
 case 5: vector[id] = 5 - vector[id]; break;
 case 6: vector[id] = vector[6]; break;
 case 7: vector[id] = 7 + 7; break;
 case 8: vector[id] = vector[id] + 8; break;
 case 9: vector[id] = vector[id] * 9; break;
} }

41

Thread-Divergence

Conditions are not bad;
they evaluating to different truth-values is also not bad;
they evaluating to different truth-values for warp-threads is bad.

Takeaway

● Since thread-divergence makes execution sequential,
conditions are evil in the kernel codes?

● Then, conditions evaluating to different truth-values
are evil?

if (vectorsize < N) S1; else S2;if (vectorsize < N) S1; else S2; Condition but no divergence

if (id / 32) S1; else S2;if (id / 32) S1; else S2; Different truth-values but no divergence

42

Classwork

● Rewrite the following program fragment to
remove thread-divergence.

// assert(x == y || x == z);
if (x == y) x = z;
else x = y;

// assert(x == y || x == z);
if (x == y) x = z;
else x = y;

43

Locality

● Locality is important for performance on GPUs
also.

● All threads in a thread-block access their L1
cache.
● This cache on Kepler is 64 KB.
● It can be configured as 48 KB L1 + 16 KB scratchpad

or 16 KB L1 + 48 KB scratchpad.

● To exploit spatial locality, consecutive threads
should access consecutive memory locations.

44

Matrix Squaring (version 1)

__global__ void square(unsigned *matrix,
 unsigned *result,
 unsigned matrixsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 for (unsigned jj = 0; jj < matrixsize; ++jj) {

 for (unsigned kk = 0; kk < matrixsize; ++kk) {

 result[id * matrixsize + jj] +=
 matrix[id * matrixsize + kk] *

 matrix[kk * matrixsize + jj];
} } }

__global__ void square(unsigned *matrix,
 unsigned *result,
 unsigned matrixsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 for (unsigned jj = 0; jj < matrixsize; ++jj) {

 for (unsigned kk = 0; kk < matrixsize; ++kk) {

 result[id * matrixsize + jj] +=
 matrix[id * matrixsize + kk] *

 matrix[kk * matrixsize + jj];
} } }

square<<<1, N>>>(matrix, result, N); // N = 64square<<<1, N>>>(matrix, result, N); // N = 64

CPU time = 1.527 ms, GPU v1 time = 6.391 ms

45

Matrix Squaring (version 2)

__global__ void square(unsigned *matrix,
 unsigned *result,
 unsigned matrixsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned ii = id / matrixsize;

 unsigned jj = id % matrixsize;

 for (unsigned kk = 0; kk < matrixsize; ++kk) {
 result[ii * matrixsize + jj] += matrix[ii * matrixsize + kk] *

 matrix[kk * matrixsize + jj];
} }

__global__ void square(unsigned *matrix,
 unsigned *result,
 unsigned matrixsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned ii = id / matrixsize;

 unsigned jj = id % matrixsize;

 for (unsigned kk = 0; kk < matrixsize; ++kk) {
 result[ii * matrixsize + jj] += matrix[ii * matrixsize + kk] *

 matrix[kk * matrixsize + jj];
} }

square<<<N, N>>>(matrix, result, N); // N = 64square<<<N, N>>>(matrix, result, N); // N = 64

CPU time = 1.527 ms, GPU v1 time = 6.391 ms,
GPU v2 time = 0.1 ms

Homework: What if you
interchange ii and jj?

46

Memory Coalescing

● If consecutive threads access words from the
same block of 32 words, their memory requests
are clubbed into one.
● That is, the memory requests are coalesced.

● This can be effectively achieved for regular
programs (such as dense matrix operations).

Coalesced Uncoalesced Coalesced

47

C
P
U

C
P
U

Memory Coalescing

Coalesced Strided Random

… a[id] ...

start = id * chunksize;
end = start + chunksize;
for (ii = start; ii < end; ++ii)
 … a[ii] ... … a[input[id]] ...

● Each thread should access
consecutive elements of a
chunk (strided).

● Array of Structures (AoS)
has a better locality.

● Each thread should access
consecutive elements of a
chunk (strided).

● Array of Structures (AoS)
has a better locality.

● A chunk should be
accessed by consecutive
threads (coalesced).

● Structures of Arrays (SoA)
has a better performance.

● A chunk should be
accessed by consecutive
threads (coalesced).

● Structures of Arrays (SoA)
has a better performance.

G
P
U

G
P
U

48

AoS versus SoA

struct node {
int a;
double b;
char c;

};
struct node allnodes[N];

struct node {
int a;
double b;
char c;

};
struct node allnodes[N];

struct node {
int alla[N];
double allb[N];
char allc[N];

};

struct node {
int alla[N];
double allb[N];
char allc[N];

};

Expectation: When a thread
accesses an attribute of a
node, it also accesses other
attributes of the same node.

Better locality (on CPU).

Expectation: When a thread
accesses an attribute of a
node, it also accesses other
attributes of the same node.

Better locality (on CPU).

Expectation: When a thread
accesses an attribute of a
node, its neighboring thread
accesses the same attribute
of the next node.

Better coalescing (on GPU).

Expectation: When a thread
accesses an attribute of a
node, its neighboring thread
accesses the same attribute
of the next node.

Better coalescing (on GPU).

49

AoS versus SoA
struct node {

int a;
double b;
char c;

};
struct node allnodes[N];

struct node {
int a;
double b;
char c;

};
struct node allnodes[N];

struct node {
int alla[N];
double allb[N];
char allc[N];

};

struct node {
int alla[N];
double allb[N];
char allc[N];

};

__global__ void
dkernelaos(struct nodeAOS
 *allnodesAOS) {
 unsigned id = blockIdx.x *
 blockDim.x + threadIdx.x;

 allnodesAOS[id].a = id;
 allnodesAOS[id].b = 0.0;
 allnodesAOS[id].c = 'c';
}

__global__ void
dkernelaos(struct nodeAOS
 *allnodesAOS) {
 unsigned id = blockIdx.x *
 blockDim.x + threadIdx.x;

 allnodesAOS[id].a = id;
 allnodesAOS[id].b = 0.0;
 allnodesAOS[id].c = 'c';
}

__global__ void
dkernelsoa(int *a, double *b,
 char *c) {
 unsigned id = blockIdx.x *
 blockDim.x + threadIdx.x;

 a[id] = id;
 b[id] = 0.0;
 c[id] = 'd';
}

__global__ void
dkernelsoa(int *a, double *b,
 char *c) {
 unsigned id = blockIdx.x *
 blockDim.x + threadIdx.x;

 a[id] = id;
 b[id] = 0.0;
 c[id] = 'd';
}

AoS time: 0.000058 seconds
SoA time: 0.000021 seconds

50

Let's Compute the Shortest Paths
● You are given an input graph of

India, and you want to compute
the shortest path from Nagpur to
every other city.

● Assume that you are given a
GPU graph library and the
associated routines.

● Each thread operates on a node
and settles distances of the
neighbors (Bellman-Ford style).

aa

cc

bb dd

7
3

4

gg

ff

ee

__global__ void dsssp(Graph g, unsigned *dist) {
unsigned id = …
for each n in g.allneighbors(id) { // pseudo-code.

unsigned altdist = dist[id] + weight(id, n);
if (altdist < dist[n]) {

dist[n] = altdist;
} } }

__global__ void dsssp(Graph g, unsigned *dist) {
unsigned id = …
for each n in g.allneighbors(id) { // pseudo-code.

unsigned altdist = dist[id] + weight(id, n);
if (altdist < dist[n]) {

dist[n] = altdist;
} } }

What is the error in this code?

51

Synchronization

● Atomics
● Barriers
● Control + data flow
● ...

52

atomics

● Atomics are primitive operations whose effects
are visible either none or fully (never partially).

● Need hardware support.
● Several variants: atomicCAS, atomicMin,

atomicAdd, ...
● Work with both global and shared memory.

53

atomics

__global__ void dkernel(int *x) {
++x[0];

}
…
dkernel<<<1, 2>>>(x);

__global__ void dkernel(int *x) {
++x[0];

}
…
dkernel<<<1, 2>>>(x);

After dkernel completes,
what is the value of x[0]?

++x[0] is equivalent to:

Load x[0], R1
Increment R1
Store R1, x[0]

++x[0] is equivalent to:

Load x[0], R1
Increment R1
Store R1, x[0]

Load x[0], R1 Load x[0], R2

Increment R1 Increment R2

Store R2, x[0]

Store R1, x[0]

Load x[0], R1 Load x[0], R2

Increment R1 Increment R2

Store R2, x[0]

Store R1, x[0]T
im

e

Final value stored in x[0] could be 1 (rather than 2).
What if x[0] is split into multiple instructions? What if there are more threads?

54

atomics

● Ensure all-or-none behavior.
● e.g., atomicInc(&x[0], ...);

● dkernel<<<K1, K2>>> would ensure x[0] to be
incremented by exactly K1*K2 – irrespective of the
thread execution order.

__global__ void dkernel(int *x) {
++x[0];

}
…
dkernel<<<1, 2>>>(x);

__global__ void dkernel(int *x) {
++x[0];

}
…
dkernel<<<1, 2>>>(x);

55

Let's Compute the Shortest Paths
● You are given an input graph of

India, and you want to compute
the shortest path from Nagpur to
every other city.

● Assume that you are given a
GPU graph library and the
associated routines.

● Each thread operates on a node
and settles distances of the
neighbors (Bellman-Ford style).

aa

cc

bb dd

7
3

4

gg

ff

ee

__global__ void dsssp(Graph g, unsigned *dist) {
unsigned id = …
for each n in g.allneighbors(id) { // pseudo-code.

unsigned altdist = dist[id] + weight(id, n);
if (altdist < dist[n]) {

dist[n] = altdist; atomicMin(&dist[n], altdist);
} } }

__global__ void dsssp(Graph g, unsigned *dist) {
unsigned id = …
for each n in g.allneighbors(id) { // pseudo-code.

unsigned altdist = dist[id] + weight(id, n);
if (altdist < dist[n]) {

dist[n] = altdist; atomicMin(&dist[n], altdist);
} } }

56

Classwork

1. Compute sum of all elements of an array.

2. Find the maximum element in an array.

3. Each thread adds elements to a worklist.
● e.g., next set of nodes to be processed in SSSP.

57

Barriers

● A barrier is a program point where all threads
need to reach before any thread can proceed.

● End of kernel is an implicit barrier for all GPU
threads (global barrier).

● There is no explicit global barrier supported in
CUDA.

● Threads in a thread-block can synchronize
using __syncthreads().

● How about barrier within warp-threads?

58

Barriers

__global__ void dkernel(unsigned *vector, unsigned vectorsize) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 vector[id] = id;
 __syncthreads();
 if (id < vectorsize - 1 && vector[id + 1] != id + 1)
 printf("syncthreads does not work.\n");
}

S1

S2

S1 S1 S1 S1

S2 S2 S2 S2 S1 S1 S1 S1

S2 S2 S2 S2

T
im

e

Thread block

Thread block

59

Barriers

● __syncthreads() is not only about control synchronization, it
also has data synchronization mechanism.

● It performs a memory fence operation.
● A memory fence ensures that the writes from a thread

are made visible to other threads.
● There is a separate __threadfence() instruction also.

● A fence does not ensure that other thread will read the
updated value.

● This can happen due to caching.
● The other thread needs to use volatile data.

60

Classwork

● Write a CUDA kernel to find maximum over a
set of elements, and then let thread 0 print the
value in the same kernel.

● Each thread is given work[id] amount of work.
Find average work per thread and if a thread's
work is above average + K, push extra work to
a worklist.
● This is useful for load-balancing.
● Also called work-donation.

61

Synchronization

● Atomics
● Barriers
● Control + data flow
● ...

while (!flag) ;
S1;

while (!flag) ;
S1;

S2;
flag = true;

S2;
flag = true;

Initially, flag == false.

62

Reductions

● What are reductions?
● Computation properties required.
● Complexity measures

Input: 4 3 9 3 5 7 3 2

 7 12 12 5

19 17

36

barrier
log(n) steps

n numbers

Output:

63

Reductions

Input: 4 3 9 3 5 7 3 2

 7 12 12 5

19 17

36

barrier
log(n) steps

n numbers

Output:

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

64

Prefix Sum

Input: 4 3 9 3 5 7 3 2
Output: 4 7 16 19 24 31 33 35
OR
Output: 0 4 7 16 19 24 31 33

● Imagine threads wanting to push work-items to
a central worklist.

● Each thread pushes different number of work-
items.

● This can be computed using atomics or prefix
sum (also called as scan).

65

Prefix Sum
 for (int off = 1; off < n; off *= 2) {
 if (threadIdx.x >= off) {
 a[threadIdx.x] += a[threadIdx.x - off];
 }
 __syncthreads();
 }

 for (int off = 1; off < n; off *= 2) {
 if (threadIdx.x >= off) {
 a[threadIdx.x] += a[threadIdx.x - off];
 }
 __syncthreads();
 }

66

Shared Memory

● What is shared memory?
● How to declare Shared Memory?
● Combine with reductions.

__shared__ float a[N];
a[id] = id;

__shared__ float a[N];
a[id] = id;

67

Barrier-based Synchronization

 Disjoint accesses

 Overlapping accesses

 Benign overlaps

O(e) atomics

O(t) atomics

O(log t) barriers

atomic per element

atomic per thread

prefix-sum

...

Consider threads pushing
elements into a worklist

68

Barrier-based Synchronization

 Disjoint accesses

 Overlapping accesses

 Benign overlaps

...

atomic per element

non-atomic mark

prioritized mark

check

Race
and
resolve

Race
and
resolve

AND

OR
non-atomic mark

check

e.g., for owning cavities in
Delaunay mesh refinement

e.g., for inserting unique
elements into a worklist

Consider threads trying to
own a set of elements

69

Barrier-based Synchronization

 Disjoint accesses

 Overlapping accesses

 Benign overlaps

...

with atomics

without atomics

e.g., level-by-level
breadth-first search

Consider threads updating shared
variables to the same value

70

Exploiting Algebraic Properties

 Monotonicity
 Idempotency
 Associativity

1010

33 44

2 3

tfive tseven

77

33 44

2 3

tfive tseven

55

33 44

2 3

tfive tseven

Atomic-free update Lost-update problem Correction by topology-driven
processing, exploiting monotonicity

Consider threads updating distances in
shortest paths computation

71

Exploiting Algebraic Properties

 Monotonicity
 Idempotency
 Associativity

zz

bb cc

t2 t3

aa dd

t1 t4 zz zz zz zz

worklist zz

pp

qq
rr

t5, t6, t7,t8

Consider threads updating distances in
shortest paths computation

Update by multiple threads Multiple instances of a node
in the worklist

Same node processed by
multiple threads

72

Exploiting Algebraic Properties

 Monotonicity
 Idempotency
 Associativity

zz

bb cc

t2 t3

aa dd

t1 t4
x

y z,v

m,n

x,y,z,v,m,n

Consider threads pushing
information to a node

Associativity helps push
information using prefix-sum

73

Scatter-Gather

O(e) atomics

O(t) atomics

O(log t) barriers

atomic per element

atomic per thread

prefix-sum

...

scatter

gather

Consider threads pushing
elements into a worklist

74

Other Memories

● Texture
● Const
● Global
● Shared
● Cache
● Registers

75

Thrust

● Thrust is a parallel algorithms library (similar in
spirit to STL on CPU).

● Supports vectors and associated transforms.
● Programmer is oblivious to where code executes

– on CPU or GPU.
● Makes use of C++ features such as functors.

76

Thrust
thrust::host_vector<int> hnums(1024);
thrust::device_vector<int> dnums;

dnums = hnums; // calls cudaMemcpy

// initialization.
thrust::device_vector<int> dnum2(hnums.begin(), hnums.end());
hnums = dnum2; // array resizing happens automatically.

std::cout << dnums[3] << std::endl;

thrust::transform(dsrc.begin(), dsrc.end(), dsrc2.begin(),
 ddst.begin(), addFunc);

thrust::host_vector<int> hnums(1024);
thrust::device_vector<int> dnums;

dnums = hnums; // calls cudaMemcpy

// initialization.
thrust::device_vector<int> dnum2(hnums.begin(), hnums.end());
hnums = dnum2; // array resizing happens automatically.

std::cout << dnums[3] << std::endl;

thrust::transform(dsrc.begin(), dsrc.end(), dsrc2.begin(),
 ddst.begin(), addFunc);

77

Thrust Functions

● find(begin, end, value);
● find_if(begin, end, predicate);
● copy, copy_if.
● count, count_if.
● equal.
● min_element, max_element.
● merge, sort, reduce.
● transform.
● ...

78

Thrust User-Defined Functors

1 // calculate result[] = (a * x[]) + y[]
 2 struct saxpy {
 3 const float _a;
 4 saxpy(int a) : _a(a) { }
 5
 6 __host__ __device__
 7 float operator()(const float &x, const float& y) const {
 8 return a * x + y;
 9 }
10 };
11
12 thrust::device_vector<float> x, y, result;
13 // ... fill up x & y vectors ...
14 thrust::transform(x.begin(), x.end(), y.begin(),
15 result.begin(), saxpy(a));

79

Thrust on host versus device

● Same algorithm can be used on CPU and GPU.

 int x, y;
thrust::host_vector<int> hvec;
thrust::device_vector<int> dvec;
// (thrust::reduce is a sum operation by default)
x = thrust::reduce(hvec.begin(), hvec.end()); // on CPU
y = thrust::reduce(dvec.begin(), dvec.end()); // on GPU

 int x, y;
thrust::host_vector<int> hvec;
thrust::device_vector<int> dvec;
// (thrust::reduce is a sum operation by default)
x = thrust::reduce(hvec.begin(), hvec.end()); // on CPU
y = thrust::reduce(dvec.begin(), dvec.end()); // on GPU

80

Challenges with GPU

● Warp-based execution
 Often requires sorting of

work or algorithm change
● Data structure layout

 Best layout for CPU differs
from the best layout for
GPU

● Separate memory space
 Slow transfers
 Pack/unpack data

● Incoherent L1 caches
 May need to explicitly push

data out
● Poor recursion support

 Need to make code
iterative and maintain
explicit iteration stacks

● Thread and block counts
 Hierarchy complicates

implementation
 Optimal counts have to be

(auto-)tuned

81

General Optimization Principles

● Finding and exposing enough parallelism to populate
all the multiprocessors.

● Finding and exposing enough additional parallelism to
allow multithreading to keep the cores busy.

● Optimizing device memory accesses for contiguous
data.

● Utilizing the software data cache to store intermediate
results or to reorganize data.

● Reducing synchronization.

82

Other Optimizations

● Async CPU-GPU execution
● Dynamic Parallelism
● Multi-GPU execution
● Unified Memory

83

Bank Conflicts

● Programming guide.

84

Dynamic Parallelism

● Usage for graph algo.

85

Async CPU-GPU execution

● Overlapping communication and computation
● streams

● Overlapping two computations

86

Multi-GPU execution

● Peer-to-peer copying
● CPU as the driver

87

Unified Memory

● CPU-GPU memory coherence
● Show the problem first

88

Other Useful Topics

● Voting functions
● Occupancy
● Compilation flow and .ptx assembly

89

Voting Functions

90

Occupancy

● Necessity
● Pitfall and discussion

91

Compilation Flow

● Use shailesh's flow diagram
● .ptx example

92

Common Pitfalls and
Misunderstandings

● GPUs are only for graphics applications.
● GPUs are only for regular applications.
● On GPUs, all the threads need to execute the

same instruction at the same time.
● A CPU program when ported to GPU runs

faster.

GPU Programming

Rupesh Nasre.

High-Performance Parallel Computing
June 2016

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	GPU Fundamentals: Graphics Pipeline
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Challenges with GPU
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

