Data Dependences

Essential constraints:

```
S1: a = b + c
S2: d=a*2
S3: a = c + 2
S4: e = d + c + 2
```


Data Dependences

Essential constraints:

$$
\begin{aligned}
& \text { S1: } a=b+c \\
& \text { S2: } d=a=2 \\
& \text { S3: } a=c+2 \\
& \text { S4: } e=d+c+2
\end{aligned}
$$

- S2 must execute after S1

Data Dependences

Essential constraints:

```
S1: a = b + c
S2: d=a l2
S4: e=d c c + 2
```

- S3 must execute after S2

Data Dependences

Essential constraints:

$$
\begin{aligned}
& \text { S1: } a=b+c \\
& \text { S2: } d=a * 2 \\
& \text { S3: } \alpha_{a}=c+2 \\
& \text { s4: } e=d+c+2
\end{aligned}
$$

- S3 must execute after S1

Data Dependences

Essential constraints:

- But S3 and S4 can execute in either order, or concurrently

Data Dependences

Essential constraints:

```
S1: a = b + c
S2: d =a*2
S3: a = c + 2
S4: e = d + c + 2
```

S1 and S2 cannot execute concurrently
S2 and S3 cannot execute concurrently
S1 and S3 cannot execute concurrently
But S3 and S4 can execute concurrently

Execution conditions due to Bernstein (1966)

Types of Dependences

- Flow-dependence occurs when a variable which is assigned a value in one statement say S 1 is read in another statement, say S2 later.

S1:	$a=b+c$
S2:	$d=a * 3$

Types of Dependences

- Anti-dependence occurs when a variable which is read in one statement say S 1 is assigned a value in another statement, say S2, later.

$$
\begin{array}{ll}
\text { S1: } & d=a * 3 \\
\text { s2: } & a=b+c
\end{array}
$$

Types of Dependences

Output-dependence occurs when a variable which is assigned a value in one statement say S 1 is later reassigned in another statement, say S2.

S1:	$a=b+c$
S2:	$a=d * 3$

Types of Dependences

- Input-dependence occurs when a variable is read in two different statements say S1 and S2. Relative ordering of S 1 and S 2 is not important for input dependence.

S1:	$a=b+c$
S2:	$d=b * 3$

Data Dependences in Loops

- Associate a dynamic instance to each statement. For example

```
    For i = 1 to 50
S1: A(i) = B(i-1) + C(i)
S2: B(i) = A(i+2) + C(i)
    EndFor
```

- Statements S1 and S2 are executed 50 times. We say S2(10) to mean the execution of S 2 when $\mathrm{i}=10$.
- Dependences are based on dynamic instances of statements.

Data Dependences in Loops

Unrolling loops can help one figure out dependences:

```
S1(1): A(1) = B(0) + C(1)
S2(1): B(1) = A(3) + C(1)
S1(2): A(2) = B(1) + C(2)
S2(2): B(2) = A(4) + C(2)
S1(3): A(3) = B(2) + C(3)
S2(3): B(3) = A(5) + C(3)
S1(50): A(50) = B(49) + C(50)
S2(50): B(50) = A(52) + C(50)
```


Iteration Spaces

- Nested loops define an iteration space:

```
For i = 1 to 4
    for j = 1 to 4
        A(i,j) = A(i,j) + C(j)
```

 Endfor
 Endfor

- Sequential execution (traversal order):
- Dimensionality of iteration space = loop nest level; arbitrary convex shapes are allowed
- Change in order of execution is valid if no dependences are violated

Single Processor Performance Enhancement

- Two fundamental issues:
- Adequate fine-grained parallelism
- Exploit vector instructions sets (SSE, AVX, AVX-512, ...)
- Multiple pipelined functional units in each core
- Minimize memory-access costs (about an order of magnitude higher than clock cycle)
- Useful loop transformations:
- Loop Permutation
- Loop Unrolling
- Loop Blocking (tiling)
- Loop Fusion/Distribution

Access Stride and Spatial Locality

- Access stride: Separation between successively accessed memory locations
- Unit access stride maximizes spatial locality (only one miss per cache line)
- 2-D arrays have different linearized representations in Fortran and C

a	b	c	d
e	f	g	h
i	j	k	l
m	n	o	p

a	b	c	d	e	f		o	p
Row Major Order (C)								

a e i m b f
Column-major Order (Fortran)

Matrix-Vector Multiplication: Dot-Product

```
For I = 1, N
    For J = 1, N
        y(I) =y(I) +A(I,J)*x(J)
    EndFor
EndFor
```


Matrix-Vector Multiplication: SAXPY

```
For J = 1,N
    For I = 1,N
        Y(I) =y(I)+A(I,J)*x(J)
    EndFor
EndFor
```

	A	x	y
C	n	0	1
Fortran	1	0	1

Loop Permutation: Matrix Multiplication

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \text { for }(j=0 ; j<n ; j++) \\
& \quad \text { for }(k=0 ; k<n ; k++) \\
& \quad c[i][j]=c[i][j]+a[i][k] * b[k][j] ;
\end{aligned}
$$

Reference	ikj	kij	jik	ijk	jki	kji
$\mathrm{C}(\mathrm{i}, \mathrm{j})$	1	1	0	0	n	n
$\mathrm{A}(\mathrm{i}, \mathrm{k})$	0	0	1	1	n	n
$\mathrm{B}(\mathrm{k}, \mathrm{j})$	1	1	n	n	0	0
	Best	Best			Worst	Worst

Access Stride for Arrays (C: Row-Major)

Loop Permutation: Matrix Multiplication

Reference	ikj	kij	jik	ijk	jki	kji
$\mathrm{C}(\mathrm{i}, \mathrm{j})$	1	1	0	0	n	n
$\mathrm{A}(\mathrm{i}, \mathrm{k})$	0	0	1	1	n	n
$\mathrm{B}(\mathrm{k}, \mathrm{j})$	1	1	n	n	0	0
	Best	Best			Worst	Worst
Access Stride for Arrays (C: Row-Major)						

Compiler/Opt	ikj	kij	jik	ijk	jki	kji
icc-fast	17.0	17.0	17.0	17.0	17.0	17.0
icc-O3	5.0	5.0	5.0	5.0	5.0	5.0
icc-O2	7.8	7.8	7.8	7.8	7.8	7.8
icc-O1	2.0	2.0	.95	1.0	.29	.29
gcc-O3	6.1	7.6	.94	1.0	.29	.29
gcc-O2	2.0	2.0	.94	1.0	.29	.29
gcc-O1	1.9	1.9	.94	1.0	.29	.29

Performance on one core of Intel Xeon x5650 (GFLOPS)

Permutation: Non-Rectangular Loops

```
For I = 1, N
    For J = 1, I
    Y(I)= Y(I)+A(I,J)*x(J)
    EndFor
EndFor
```


Permutation: Non-Rectangular Loops

```
For I = 1, N
    For J = 1, I
        Y(I)= Y(I)+A(I,J)*x(J)
    EndFor
EndFor
```

```
For J = 1, N
    For I = J, N
        y(I)= y(I)+A(I,J)*x(J)
    EndFor
EndFor
```


Transformations: Loop Fusion

- Fusion: Fuses two loops, also known as jamming (useful for locality enhancement). In example below, after fusion, you cannot have dependencies from S2 to S1

```
    For I = 1, N
S1: A(I) = B(I)+C(I)
    EndFor
    For I = 1,N
S2: E(I) = A(I)*D(I)
    EndFor
```


Illegal Loop Fusion Example

```
    For I = 1, N
S1: A(I) = B(I) + C(I)
    EndFor
    For I = 1,N
S2: E(I) = A(I+1)* D(I)
    EndFor
```

We have flow dependences from S1 to S2

Illegal Loop Fusion Example

```
For I = 1, N
S1: A(I) = B(I) + C(I)
    EndFor
    For I = 1,N
S2: E(I) = A(I+1)* D(I)
    EndFor
```


Illegal fusion: On fusing the two loops, we have a violation of original data dependence

Transformations: Loop Distribution

- Loop Distribution: Splits a single loop nest into many, also known as loop fission.

For $I=1, N$
S1: $A(I)=B(I)+C(I)$
S2: $E(I)=A(I) * D(I)$
EndFor

```
For I = 1,N
    A(I) = B(I)+C(I)
EndFor
For I = 1,N
    E(I) = A(I)*D(I)
EndFor
```

- Like loop fusion, distribution is not always legal - must ensure that no data dependences are violated.
- Needed for vectorization

Loop Unrolling

- Reduce number of iterations of loop but add statement(s) to loop body to do work of missing iterations
- Increases amount of instruction-level parallelism in loop body

```
for(j=0; j< 2*m; j++)
{
    Loop-Body(j)
}
```

```
for(j=0; j< 2*m; j+=2)
{
    Loop-Body(j)
    Loop-Body(j+1)
}
```

```
for(i=0; i< n; i++)
    for(j=0; j< 2*m; j+=2)
    {
        Loop-Body(i,j)
        Loop-Body(i,j+1)
    }
```


Example: Inner Loop Unrolling

// Assumes n is a multiple of 4 for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
for $(j=0 ; j<n ; j+=4)$ \{ $y[i]=y[i]+a[i][j] * x[j] ;$ $y[i]=y[i]+a[i][j+1] * x[j+1]$; $y[i]=y[i]+a[i][j+2] * x[j+2]$; $y[i]=y[i]+a[i][j+3] * x[j+3] ;\}$

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \text { for }(j=0 ; j<n ; j++) \\
& \quad y[i]=y[i]+a[i][j] * x[j] ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \qquad \begin{aligned}
& \text { for }(j=0 ; j<n ; j+=4)\{ \\
& y[i]=y[i]+a[i][j] * x[j] ; \\
&+a[i][j+1] * x[j+1] ; \\
&+a[i][j+2] * x[j+2] ; \\
&+a[i][j+3] * x[j+3] ;\}
\end{aligned}
\end{aligned}
$$

Outer Loop Unrolling (Unroll/Jam)

- Reduce number of iterations of an outer loop
- Simply replicating inner-loop structures will not increase oplevel parallelism; need to fuse ("jam") replicated inner-loops
- Changes memory access order
- Could reduce cache misses
- Hence must verify validity of transformation

Example: Outer Loop Unrolling

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \quad \operatorname{for}(j=0 ; j<n ; j++) \\
& \quad y[i]=y[i]+a[i][j] * x[j] ;
\end{aligned}
$$

// Assumes n is a multiple of 4 for (i=0;i<n;i+=4) for (j=0;j<n;j++) \{ $y[i]=y[i]+a[i][j] * x[j]$; $y[i+1]=y[i+1]+a[i+1][j] * x[j] ;$ $y[i+2]=y[i+2]+a[i+2][j] * x[j] ;$ $y[i+3]=y[i+3]+a[i+3][j] * x[j] ;$ \}

Improving Temporal Locality by Blocking

Example: Blocked matrix multiplication

- "block" (in this context) does not mean "cache block".
- Instead, it means a sub-block within the matrix.
- Example: $\mathbf{N}=8$; sub-block size $=4$
$\left[\begin{array}{ll}\mathrm{A} 11 & \mathrm{~A} 12 \\ \mathrm{~A} 21 & \mathrm{~A} 22\end{array}\right] \times\left[\begin{array}{ll}\mathrm{B} 11 & \mathrm{~B} 12 \\ \mathrm{~B} 21 & \mathrm{~B} 22\end{array}\right]=\left[\begin{array}{ll}\mathrm{C} 11 & \mathrm{C} 12 \\ \mathrm{C} 21 & \mathrm{C} 22\end{array}\right]$

Key idea: Sub-blocks (i.e., Axy) can be treated just like scalars.

$$
\begin{array}{ll}
\mathrm{C} 11=\mathrm{A} 11 \mathrm{~B} 11+\mathrm{A} 12 \mathrm{~B} 21 & \mathrm{C} 12=\mathrm{A} 11 \mathrm{~B} 12+\mathrm{A} 12 \mathrm{~B} 22 \\
\mathrm{C} 21=\mathrm{A} 21 \mathrm{~B} 11+\mathrm{A} 22 \mathrm{~B} 21 & \mathrm{C} 22=\mathrm{A} 21 \mathrm{~B} 12+\mathrm{A} 22 \mathrm{~B} 22
\end{array}
$$

Blocked Matrix Multiplication

Inner loop:

$$
\begin{aligned}
& \text { /* ijk */ } \\
& \text { for }(i=0 ; i<n ; i++) \\
& \quad \text { for }(j=0 ; j<n ; j++) \\
& \quad \text { for }(k=0 ; k<n ; k++) \\
& \quad \text { c[i][j]+= a[i][k]*b[k][j]; }
\end{aligned}
$$

```
/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T)
    for (jt=0; jt<n; jt+=T)
    for (kt=0; kt<n; kt+=T)
        for (i=it; i<it+T; i++)
            for (j=jt; j<jt+T; j++)
            for (k=kt; k<kt+T; k++)
            c[i][j]+= a[i][k]*b[k][j];
```


Cache Misses: Blocked Mat-Mult

```
/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T)
    for (jt=0; jt<n; jt+=T)
    for (kt=0; kt<n; kt+=T)
    for (i=iL; i<il+I; i+Tj
        for (j=jt; j<jt+T; j++)
            for (k=kt; k<kt+T; k++)
                c[i][j]+= a[i][k]*b[k][j];
```

Assume fully associative Cache of size > 3*T*T

Each sub-mat-mult involves product of two TxT sub-matrices of A, B to contribute to a TxT sub-matrix of C
Each sub-mat-mult has at most $3^{*}(T 2 / B)$ cache misses (no evictions during computation; T2 elements for each array)
Number of result blocks of $\mathrm{C}:(\mathrm{N} / \mathrm{T})^{*}(\mathrm{~N} / \mathrm{T})=\mathrm{N} 2 / \mathrm{T} 2$

- Each C-block requires (N/T) sub-mat-mults
- Total cache misses <= 3*(T2/B)*(N/T)*N2/T2 = 3N3/(B*T)
- T can be as large as sqrt(CacheSize/3)

Tiling = Loop-Split+Permutation

```
/* ijk */
for (i=0; i<n; i++)
    for (j=0; j<n; j++)
    for (k=0; k<n; k++)
        c[i][j]+= a[i][k]*b[k][j];
```

Strip-mine each loop into a pair of equivalent loops

```
for (it=0; it<n; it+=T)
for (i=it; i<it+T; i++)
    for (jt=0; jt<n; jt+=T)
        for (j=jt; j<jt+T; j++)
        for (kt=0; kt<n; kt+=T)
            for (k=kt; k<kt+T; k++)
            c[i][j]+= a[i][k]*b[k][j];
```

 for (\(j t=0 ; j t<n ; j t+=T)\)
 for (\(k t=0 ; k t<n ; k t+=T)\)
 for (i=it; i<it+T; i++)
 for (j=jt; j<jt+T; j++)
 for (k=kt; k<kt+T; k++)
 c[i][j]+= a[i][k]*b[k][j];

Total Cache Miss Analysis: IJK

I for ($\mathrm{i}=0 ; \mathrm{j}<\mathrm{N} ; \mathrm{i++}$)	
J	for ($\mathrm{j}=\mathbf{0} \mathbf{~ j ~} \mathrm{<} \mathbf{N}$; j++)
K	for ($\mathrm{k}=0$; k < $\mathrm{N} ; \mathrm{k}++$)
	C[i][j] += A[i][k] x B[k][j]

let:	$C<B^{*} N$
	fully associative cache

k loop:

Total Cache Miss Analysis: JKI

for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N} ; \mathrm{j}^{\mathbf{+}+\text {) }}$	
K	for ($\mathbf{~ = ~} \mathbf{0} ; \mathbf{k}<\mathbf{N} ; \mathbf{k + +}$)
I	for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)
	C[i][j] += A [i] [k] x B[k][j]

let:	$C<B^{*} N$
	fully associative cache

i loop:

Blocked Matrix Multiply: Cache Misses

```
/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T)
    for (jt=0; jt<n; jt+=T)
        for (kt=0; kt<n; kt+=T)
        for (i=it; i<it+T; i++)
            for (j=jt; j<jt+T; j++)
            for (k=kt; k<kt+T; kt++)
            c[i][j]+= a[i][k]*b[k][j];
```


Assume fully associative Cache: size > 3*T*T But size $<T^{*} N$

Lo0 p	A	B	C
it			
jt			
kt			
\mathbf{i}			
$-36 \mathbf{I}$			
\mathbf{l}			

Blocked Matrix Multiply: Cache Misses

```
/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T)
for (jt=0; jt<n; jt+=T)
    for (kt=0; kt<n; kt+=T)
        for (i=it; i<it+T; i++)
            for (j=jt; j<jt+T; j++)
            for (k=kt; k<kt+T; kt++)
            c[i][j]+= a[i][k]*b[k][j];
```


Assume fully associative Cache: size > 3*T*T But size $<T^{*} N$

Loo p	A	B	C
it	N / T	N / T	N / T
jt	N / T	N / T	N / T
kt	N / T	N / T	$\mathbf{1}$
i	T	1	T
j	$\mathbf{1}$	T / B	T / B
$3-\mathrm{k}$	T / B	T	$\mathbf{1}$

Tiling: Arbitrary Bounds and Tilesize

```
/* ijk */
for (i=0; i<m; i++)
    for (j=0; j<n; j++)
    for (k=0; k<p; k++)
        c[i][j]+= a[i][k]*b[k][j];
```

```
for (it=0; it<n; it+=Ti)
    for (jt=0; jt<m; jt+=Tj)
    for (kt=0; kt<p; kt+=Tk)
        for (i=it; i< min(it+Ti,n); i++)
            for (j=jt; j< min(jt+Tj,m); j++)
            for (k=kt; k< min(kt+Tk,p); k++)
            c[i][j]+= a[i][k]*b[k][j];
```

