
1

Data Dependences
• Essential constraints:

S1: a = b + c
S2: d = a * 2
S3: a = c + 2
S4: e = d + c + 2

2

Data Dependences
• Essential constraints:

• S2 must execute after S1

S1: a = b + c
S2: d = a * 2
S3: a = c + 2
S4: e = d + c + 2

3

Data Dependences
• Essential constraints:

• S3 must execute after S2

S1: a = b + c
S2: d = a * 2
S3: a = c + 2
S4: e = d + c + 2

4

Data Dependences
• Essential constraints:

• S3 must execute after S1

S1: a = b + c
S2: d = a * 2
S3: a = c + 2
S4: e = d + c + 2

5

Data Dependences
• Essential constraints:

• But S3 and S4 can execute in either order, or concurrently

S1: a = b + c
S2: d = a * 2
S3: a = c + 2
S4: e = d + c + 2

6

Data Dependences
• Essential constraints:

• S1 and S2 cannot execute concurrently
• S2 and S3 cannot execute concurrently
• S1 and S3 cannot execute concurrently
• But S3 and S4 can execute concurrently

• Execution conditions due to Bernstein (1966)

S1: a = b + c
S2: d = a * 2
S3: a = c + 2
S4: e = d + c + 2

7

Types of Dependences

• Flow-dependence occurs when a variable which is

assigned a value in one statement say S1 is read in

another statement, say S2 later.

S1: a = b + c
S2: d = a * 3

8

Types of Dependences

• Anti-dependence occurs when a variable which is read in

one statement say S1 is assigned a value in another

statement, say S2, later.

S1: d = a * 3
S2: a = b + c

9

Types of Dependences

• Output-dependence occurs when a variable which is

assigned a value in one statement say S1 is later

reassigned in another statement, say S2.

S1: a = b + c
S2: a = d * 3

10

Types of Dependences

• Input-dependence occurs when a variable is read in two

different statements say S1 and S2. Relative ordering of

S1 and S2 is not important for input dependence.

S1: a = b + c
S2: d = b * 3

11

Data Dependences in Loops

• Associate a dynamic instance to each statement. For

example

• Statements S1 and S2 are executed 50 times. We say S2(10)

to mean the execution of S2 when i = 10.
• Dependences are based on dynamic instances of

statements.

 For i = 1 to 50
S1: A(i) = B(i-1) + C(i)
S2: B(i) = A(i+2) + C(i)
 EndFor

12

Data Dependences in Loops

• Unrolling loops can help one figure out dependences:

S1(1): A(1) = B(0) + C(1)
S2(1): B(1) = A(3) + C(1)
S1(2): A(2) = B(1) + C(2)
S2(2): B(2) = A(4) + C(2)
S1(3): A(3) = B(2) + C(3)
S2(3): B(3) = A(5) + C(3)
....................

S1(50): A(50) = B(49) + C(50)
S2(50): B(50) = A(52) + C(50)

13

Iteration Spaces
• Nested loops define an iteration space:

• Sequential execution (traversal order):

• Dimensionality of iteration space = loop

nest level; arbitrary convex shapes are

allowed

• Change in order of execution is valid if no

dependences are violated

For i = 1 to 4
 for j = 1 to 4
 A(i,j) = A(i,j) + C(j)
 Endfor
Endfor

Single Processor Performance Enhancement
• Two fundamental issues:

– Adequate fine-grained parallelism
• Exploit vector instructions sets (SSE, AVX, AVX-512, ...)
• Multiple pipelined functional units in each core

– Minimize memory-access costs (about an order of

magnitude higher than clock cycle)
• Useful loop transformations:

– Loop Permutation

– Loop Unrolling

– Loop Blocking (tiling)

– Loop Fusion/Distribution

14

Access Stride and Spatial Locality
• Access stride: Separation between successively accessed

memory locations
• Unit access stride maximizes spatial locality (only one miss

per cache line)
• 2-D arrays have different linearized representations in Fortran

and C

15

Matrix-Vector Multiplication: Dot-Product

16

For I = 1, N
 For J = 1, N
 y(I)=y(I)+A(I,J)*x(J)
 EndFor
EndFor

Matrix-Vector Multiplication: SAXPY

17

For J = 1, N
 For I = 1, N
 y(I)=y(I)+A(I,J)*x(J)
 EndFor
EndFor

Loop Permutation: Matrix Multiplication

18

Loop Permutation: Matrix Multiplication

19

Permutation: Non-Rectangular Loops

20

For I = 1, N
 For J = 1, I
 y(I)= y(I)+A(I,J)*x(J)
 EndFor
EndFor

Permutation: Non-Rectangular Loops

21

For I = 1, N
 For J = 1, I
 y(I)= y(I)+A(I,J)*x(J)
 EndFor
EndFor

For J = 1, N
 For I = J, N
 y(I)= y(I)+A(I,J)*x(J)
 EndFor
EndFor

I

J

J:1 to I

I

J

J
:
I

t
o

N

22

Transformations: Loop Fusion
• Fusion: Fuses two loops, also known as jamming (useful for

locality enhancement). In example below, after fusion, you

cannot have dependencies from S2 to S1

 For I = 1, N
S1: A(I) = B(I)+C(I)
 EndFor
 For I = 1,N
S2: E(I) = A(I)*D(I)
 EndFor

For I = 1, N
 A(I) = B(I)+C(I)
 E(I) = A(I)*D(I)
EndFor

For I = 1, N
 a = B(I)+C(I)
 E(I) = a*D(I)
EndFor

23

Illegal Loop Fusion Example
 For I = 1, N
S1: A(I) = B(I) + C(I)
 EndFor
 For I = 1,N
S2: E(I) = A(I+1)* D(I)
 EndFor

We have flow
dependences
from S1 to S2

24

Illegal Loop Fusion Example
 For I = 1, N
S1: A(I) = B(I) + C(I)
 EndFor
 For I = 1,N
S2: E(I) = A(I+1)* D(I)
 EndFor

 For I = 1, N
S1: A(I) = B(I) + C(I)
S2: E(I) = A(I+1)* D(I)
 EndFor

On fusion

Illegal fusion: On fusing the two loops, we have a violation of original data
dependence

We have flow
dependences
from S1 to S2

25

Transformations: Loop Distribution
• Loop Distribution: Splits a single loop nest into many, also

known as loop fission.

• Like loop fusion, distribution is not always legal – must

ensure that no data dependences are violated.
• Needed for vectorization

For I = 1, N
 A(I) = B(I)+C(I)
EndFor
For I = 1,N

 E(I) = A(I)*D(I)
EndFor

 For I = 1, N
S1: A(I) = B(I)+C(I)
S2: E(I) = A(I)*D(I)
 EndFor

Loop Unrolling
• Reduce number of iterations of loop but add statement(s) to

loop body to do work of missing iterations
• Increases amount of instruction-level parallelism in loop body

26

Example: Inner Loop Unrolling

27

Outer Loop Unrolling (Unroll/Jam)
• Reduce number of iterations of an outer loop
• Simply replicating inner-loop structures will not increase op-

level parallelism; need to fuse ("jam”) replicated inner-loops
• Changes memory access order

– Could reduce cache misses
– Hence must verify validity of transformation

28

Example: Outer Loop Unrolling

29

– 30 –

Improving Temporal Locality by
Blocking

Example: Blocked matrix multiplication
n “block” (in this context) does not mean “cache block”.
n Instead, it means a sub-block within the matrix.
n Example: N = 8; sub-block size = 4

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

A11 A12

A21 A22

B11 B12

B21 B22
X =

C11 C12

C21 C22

Key idea: Sub-blocks (i.e., Axy) can be treated just like
scalars.

– 31 –

Blocked Matrix Multiplication

/* ijk */
for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 for (k=0; k<n; k++)
 c[i][j]+= a[i][k]*b[k][j];

/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T)
 for (jt=0; jt<n; jt+=T)
 for (kt=0; kt<n; kt+=T)
 for (i=it; i<it+T; i++)
 for (j=jt; j<jt+T; j++)
 for (k=kt; k<kt+T; k++)
 c[i][j]+= a[i][k]*b[k][j];

A B C

(it,*)

(*,jt)
(it,jt)

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

– 32 –

Cache Misses: Blocked Mat-Mult

• Each sub-mat-mult involves product of two TxT sub-matrices of A,B to
contribute to a TxT sub-matrix of C

• Each sub-mat-mult has at most 3*(T2/B) cache misses (no evictions
during computation; T2 elements for each array)

• Number of result blocks of C: (N/T)*(N/T) = N2/T2
• Each C-block requires (N/T) sub-mat-mults
• Total cache misses <= 3*(T2/B)*(N/T)*N2/T2 = 3N3/(B*T)
• T can be as large as sqrt(CacheSize/3)

/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T)
 for (jt=0; jt<n; jt+=T)
 for (kt=0; kt<n; kt+=T)
 for (i=it; i<it+T; i++)
 for (j=jt; j<jt+T; j++)
 for (k=kt; k<kt+T; k++)
 c[i][j]+= a[i][k]*b[k][j];

Assume fully associative
Cache of size > 3*T*T

sub-mat-mult

– 33 –

Tiling = Loop-Split+Permutation
/* ijk */
for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 for (k=0; k<n; k++)
 c[i][j]+= a[i][k]*b[k][j];

for (it=0; it<n; it+=T)
 for (jt=0; jt<n; jt+=T)
 for (kt=0; kt<n; kt+=T)
 for (i=it; i<it+T; i++)
 for (j=jt; j<jt+T; j++)
 for (k=kt; k<kt+T; k++)
 c[i][j]+= a[i][k]*b[k][j];

for (it=0; it<n; it+=T)
 for (i=it; i<it+T; i++)
 for (jt=0; jt<n; jt+=T)
 for (j=jt; j<jt+T; j++)
 for (kt=0; kt<n; kt+=T)
 for (k=kt; k<kt+T; k++)
 c[i][j]+= a[i][k]*b[k][j];

Strip-mine each loop into
a pair of equivalent loops

Loop Permutation

– 34 –

let: C < B*N
 fully associative cache

I
J
K

for (i = 0; j < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
 C[i][j] += A[i][k] x B[k][j]

I

J

K

A B C

N
B

N 1

N N
B

1

NN N

N2
B

N3 N2
B

k loop:

Total Cache Miss Analysis: IJK

– 35 –

NN NJ

K

I

A B C

1 N

J
K
I

for (j = 0; j < N; j++)

 for (k = 0; k < N; k++)

 for (i = 0; i < N; i++)

 C[i][j] += A[i][k] x B[k][j]

N

i loop:

N N N

N3 N2 N3

let: C < B*N
 fully associative cache

Total Cache Miss Analysis: JKI

– 36 –

Blocked Matrix Multiply: Cache Misses
/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T)
 for (jt=0; jt<n; jt+=T)
 for (kt=0; kt<n; kt+=T)
 for (i=it; i<it+T; i++)
 for (j=jt; j<jt+T; j++)
 for (k=kt; k<kt+T; kt++)
 c[i][j]+= a[i][k]*b[k][j];

A B C

(it,*)

(*,jt)
(it,jt)

Loo
p

A B C

it

jt

kt

i

j

k

Total

Assume fully associative
Cache: size > 3*T*T
But size < T*N

– 37 –

Blocked Matrix Multiply: Cache Misses
/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T)
 for (jt=0; jt<n; jt+=T)
 for (kt=0; kt<n; kt+=T)
 for (i=it; i<it+T; i++)
 for (j=jt; j<jt+T; j++)
 for (k=kt; k<kt+T; kt++)
 c[i][j]+= a[i][k]*b[k][j];

A B C

(it,*)

(*,jt)
(it,jt)

Loo
p

A B C

it N/T N/T N/T

jt N/T N/T N/T

kt N/T N/T 1

i T 1 T

j 1 T/B T/B
k T/B T 1

Total N3/(TB) N3/(TB) N2/(TB)

Assume fully associative
Cache: size > 3*T*T
But size < T*N

– 38 –

Tiling: Arbitrary Bounds and Tilesize
/* ijk */
for (i=0; i<m; i++)
 for (j=0; j<n; j++)
 for (k=0; k<p; k++)
 c[i][j]+= a[i][k]*b[k][j];

for (it=0; it<n; it+=Ti)
 for (jt=0; jt<m; jt+=Tj)
 for (kt=0; kt<p; kt+=Tk)
 for (i=it; i< min(it+Ti,n); i++)
 for (j=jt; j< min(jt+Tj,m); j++)
 for (k=kt; k< min(kt+Tk,p); k++)
 c[i][j]+= a[i][k]*b[k][j];

	Data Dependences
	Data Dependences
	Data Dependences
	Data Dependences
	Data Dependences
	Data Dependences
	Types of Dependences
	Types of Dependences
	Types of Dependences
	Types of Dependences
	Data Dependences in Loops
	Data Dependences in Loops
	Iteration Spaces
	Single Processor Performance Enhancement
	Access Stride and Spatial Locality
	Matrix-Vector Multiplication: Dot-Product
	Matrix-Vector Multiplication: SAXPY
	Loop Permutation: Matrix Multiplication
	Loop Permutation: Matrix Multiplication
	Permutation: Non-Rectangular Loops
	Permutation: Non-Rectangular Loops
	Transformations: Loop Fusion
	Illegal Loop Fusion Example
	Illegal Loop Fusion Example
	Transformations: Loop Distribution
	Loop Unrolling
	Example: Inner Loop Unrolling
	Outer Loop Unrolling (Unroll/Jam)
	Example: Outer Loop Unrolling
	Improving Temporal Locality by Blocking
	Blocked Matrix Multiplication
	Cache Misses: Blocked Mat-Mult
	Tiling = Loop-Split+Permutation
	Total Cache Miss Analysis: IJK
	Total Cache Miss Analysis: JKI
	Blocked Matrix Multiply: Cache Misses
	Blocked Matrix Multiply: Cache Misses
	Tiling: Arbitrary Bounds and Tilesize

