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Data Dependences
• Essential constraints:

S1:   a = b + c
S2:   d = a * 2
S3:   a = c + 2
S4:   e = d + c + 2



2

Data Dependences
• Essential constraints:

• S2 must execute after S1

S1:   a = b + c
S2:   d = a * 2
S3:   a = c + 2
S4:   e = d + c + 2
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Data Dependences
• Essential constraints:

• S3 must execute after S2

S1:   a = b + c
S2:   d = a * 2
S3:   a = c + 2
S4:   e = d + c + 2
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Data Dependences
• Essential constraints:

• S3 must execute after S1

S1:   a = b + c
S2:   d = a * 2
S3:   a = c + 2
S4:   e = d + c + 2
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Data Dependences
• Essential constraints:

• But S3 and S4 can execute in either order, or concurrently

S1:   a = b + c
S2:   d = a * 2
S3:   a = c + 2
S4:   e = d + c + 2
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Data Dependences
• Essential constraints:

• S1 and S2 cannot execute concurrently
• S2 and S3 cannot execute concurrently
• S1 and S3 cannot execute concurrently
• But S3 and S4 can execute concurrently

• Execution conditions due to Bernstein (1966)

S1:   a = b + c
S2:   d = a * 2
S3:   a = c + 2
S4:   e = d + c + 2
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Types of Dependences

• Flow-dependence occurs when a variable which is 

assigned a value in one statement say S1 is read in 

another statement, say S2 later.

S1:   a = b + c
S2:   d = a * 3
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Types of Dependences

• Anti-dependence occurs when a variable which is read in 

one statement say S1 is assigned a value in another 

statement, say S2, later.

S1:   d = a * 3 
S2:   a = b + c
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Types of Dependences

• Output-dependence occurs when a variable which is 

assigned a value in one statement say S1 is later 

reassigned in another statement, say S2.

S1:   a = b + c
S2:   a = d * 3
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Types of Dependences

• Input-dependence occurs when a variable is read in two 

different statements say S1 and S2. Relative ordering of 

S1 and S2 is not important for input dependence.

S1:   a = b + c
S2:   d = b * 3
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Data Dependences in Loops

• Associate a dynamic instance to each statement. For 

example

• Statements S1 and S2 are executed 50 times. We say S2(10) 

to mean the execution of S2 when i = 10.
• Dependences are based on dynamic instances of 

statements. 

    For i = 1 to 50
S1:   A(i) = B(i-1) + C(i)
S2:   B(i) = A(i+2) + C(i)
    EndFor
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Data Dependences in Loops

• Unrolling loops can help one figure out dependences:

S1(1):     A(1) = B(0) + C(1)
S2(1):     B(1) = A(3) + C(1)
S1(2):     A(2) = B(1) + C(2)
S2(2):     B(2) = A(4) + C(2)
S1(3):     A(3) = B(2) + C(3)
S2(3):     B(3) = A(5) + C(3)
....................

S1(50):   A(50) = B(49) + C(50)
S2(50):   B(50) = A(52) + C(50)
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Iteration Spaces
• Nested loops define an iteration space:

• Sequential execution (traversal order):

• Dimensionality of iteration space = loop 

nest level; arbitrary convex shapes are 

allowed

• Change in order of execution is valid if no 

dependences are violated

For i = 1 to 4
   for j = 1 to 4
      A(i,j) = A(i,j) + C(j)
   Endfor
Endfor



Single Processor Performance Enhancement
• Two fundamental issues:

– Adequate fine-grained parallelism
• Exploit vector instructions sets (SSE, AVX, AVX-512, ...)
• Multiple pipelined functional units in each core

– Minimize memory-access costs (about an order of 

magnitude higher than clock cycle)
• Useful loop transformations:

– Loop Permutation

– Loop Unrolling

– Loop Blocking (tiling)

– Loop Fusion/Distribution
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Access Stride and Spatial Locality
• Access stride: Separation between successively accessed 

memory locations
• Unit access stride maximizes spatial locality (only one miss 

per cache line)
• 2-D arrays have different linearized representations in Fortran 

and C
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Matrix-Vector Multiplication: Dot-Product
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For I = 1, N
 For J = 1, N
  y(I)=y(I)+A(I,J)*x(J)
 EndFor
EndFor



Matrix-Vector Multiplication: SAXPY
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For J = 1, N
 For I = 1, N
  y(I)=y(I)+A(I,J)*x(J)
 EndFor
EndFor



Loop Permutation: Matrix Multiplication
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Loop Permutation: Matrix Multiplication
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Permutation: Non-Rectangular Loops
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For I = 1, N
 For J = 1, I
  y(I)= y(I)+A(I,J)*x(J)
 EndFor
EndFor



Permutation: Non-Rectangular Loops
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For I = 1, N
 For J = 1, I
  y(I)= y(I)+A(I,J)*x(J)
 EndFor
EndFor

For J = 1, N
 For I = J, N
  y(I)= y(I)+A(I,J)*x(J)
 EndFor
EndFor

I

J

J:1 to I

I

J

J
:
I
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o
 
N
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Transformations: Loop Fusion
• Fusion: Fuses two loops, also known as jamming (useful for 

locality enhancement). In example below, after fusion, you 

cannot have dependencies from S2 to S1

    For I = 1, N
S1:  A(I) = B(I)+C(I)
    EndFor
    For I = 1,N
S2:  E(I) = A(I)*D(I)
    EndFor

For I = 1, N
  A(I) = B(I)+C(I)
  E(I) = A(I)*D(I)
EndFor

For I = 1, N
  a = B(I)+C(I)
  E(I) = a*D(I)
EndFor
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Illegal Loop Fusion Example
    For I = 1, N
S1:  A(I) = B(I) + C(I)
    EndFor
    For I = 1,N
S2:  E(I) = A(I+1)* D(I)
    EndFor

We have flow
dependences
from S1 to S2
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Illegal Loop Fusion Example
    For I = 1, N
S1:  A(I) = B(I) + C(I)
    EndFor
    For I = 1,N
S2:  E(I) = A(I+1)* D(I)
    EndFor

    For I = 1, N
S1:  A(I) = B(I) + C(I)
S2:  E(I) = A(I+1)* D(I)
    EndFor

On fusion

Illegal fusion: On fusing the two loops, we have a violation of original data 
dependence 

We have flow
dependences
from S1 to S2
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Transformations: Loop Distribution
• Loop Distribution: Splits a single loop nest into many, also 

known as loop fission.

• Like loop fusion, distribution is not always legal – must 

ensure that no data dependences are violated.
• Needed for vectorization

For I = 1, N
  A(I) = B(I)+C(I)
EndFor
For I = 1,N

 E(I) = A(I)*D(I)
EndFor

    For I = 1, N
S1:  A(I) = B(I)+C(I)
S2:  E(I) = A(I)*D(I)
    EndFor



Loop Unrolling
• Reduce number of iterations of loop but add statement(s) to 

loop body to do work of missing iterations
• Increases amount of instruction-level parallelism in loop body
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Example: Inner Loop Unrolling
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Outer Loop Unrolling (Unroll/Jam)
• Reduce number of iterations of an outer loop
• Simply replicating inner-loop structures will not increase op-

level parallelism; need to fuse ("jam”) replicated inner-loops
• Changes memory access order

– Could reduce cache misses
– Hence must verify validity of transformation
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Example: Outer Loop Unrolling
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Improving Temporal Locality by 
Blocking

Example: Blocked matrix multiplication
n “block” (in this context) does not mean “cache block”.
n Instead, it means a sub-block within the matrix.
n Example: N = 8; sub-block size = 4

C11  =  A11B11 + A12B21           C12  =  A11B12 + A12B22

C21  =  A21B11 + A22B21           C22  =  A21B12 + A22B22

A11   A12

A21   A22

B11   B12

B21   B22
X = 

C11   C12

C21   C22

Key idea: Sub-blocks (i.e., Axy) can be treated just like 
scalars.
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Blocked Matrix Multiplication

/* ijk */
for (i=0; i<n; i++)
  for (j=0; j<n; j++)
    for (k=0; k<n; k++) 
     c[i][j]+= a[i][k]*b[k][j];

/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T) 
 for (jt=0; jt<n; jt+=T)
  for (kt=0; kt<n; kt+=T) 
   for (i=it; i<it+T; i++) 
    for (j=jt; j<jt+T; j++)
     for (k=kt; k<kt+T; k++)
      c[i][j]+= a[i][k]*b[k][j];

A B C

(it,*)

(*,jt)
(it,jt)

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed
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Cache Misses: Blocked Mat-Mult

• Each sub-mat-mult involves product of two TxT sub-matrices of A,B to 
contribute to a TxT sub-matrix of C

• Each sub-mat-mult has at most 3*(T2/B) cache misses (no evictions 
during computation; T2 elements for each array)

• Number of result blocks of C: (N/T)*(N/T) = N2/T2
• Each C-block requires (N/T) sub-mat-mults
• Total cache misses <= 3*(T2/B)*(N/T)*N2/T2 = 3N3/(B*T)
• T can be as large as sqrt(CacheSize/3)

/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T) 
 for (jt=0; jt<n; jt+=T)
  for (kt=0; kt<n; kt+=T) 
   for (i=it; i<it+T; i++) 
    for (j=jt; j<jt+T; j++)
     for (k=kt; k<kt+T; k++)
      c[i][j]+= a[i][k]*b[k][j];

Assume fully associative
Cache of size > 3*T*T

sub-mat-mult
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Tiling = Loop-Split+Permutation
/* ijk */
for (i=0; i<n; i++)
  for (j=0; j<n; j++)
    for (k=0; k<n; k++) 
     c[i][j]+= a[i][k]*b[k][j];

for (it=0; it<n; it+=T) 
 for (jt=0; jt<n; jt+=T)
  for (kt=0; kt<n; kt+=T) 
   for (i=it; i<it+T; i++) 
    for (j=jt; j<jt+T; j++)
     for (k=kt; k<kt+T; k++)
     c[i][j]+= a[i][k]*b[k][j];

for (it=0; it<n; it+=T) 
 for (i=it; i<it+T; i++) 
  for (jt=0; jt<n; jt+=T)
   for (j=jt; j<jt+T; j++)
    for (kt=0; kt<n; kt+=T) 
     for (k=kt; k<kt+T; k++)
     c[i][j]+= a[i][k]*b[k][j];

Strip-mine each loop into
a pair of equivalent loops

Loop Permutation
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let:    C < B*N
         fully associative cache

I
J
K

for ( i = 0;  j < N;  i++ )
    for ( j = 0;  j < N;  j++ )
        for ( k = 0;  k < N;  k++ )
            C[ i ][ j ]  +=  A[ i ][ k ]  x  B[ k ][ j ]

I

J

K

A B C

N
B

N 1

N N
B

1

NN N

N2
B

N3 N2
B

k loop:

Total Cache Miss Analysis: IJK
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NN NJ

K

I

A B C

1 N

J
K
I

for ( j = 0;  j < N;  j++ )

    for ( k = 0;  k < N;  k++ )

        for ( i = 0;  i < N;  i++ )

            C[ i ][ j ]  +=  A[ i ][ k ]  x  B[ k ][ j ]

N

i loop:

N N N

N3 N2 N3

let:    C < B*N
         fully associative cache

Total Cache Miss Analysis: JKI
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Blocked Matrix Multiply: Cache Misses
/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T) 
 for (jt=0; jt<n; jt+=T)
  for (kt=0; kt<n; kt+=T) 
   for (i=it; i<it+T; i++) 
    for (j=jt; j<jt+T; j++)
     for (k=kt; k<kt+T; kt++)
      c[i][j]+= a[i][k]*b[k][j];

A B C

(it,*)

(*,jt)
(it,jt)

Loo
p

A B C

it

jt

kt

i

j

k

Total

Assume fully associative
Cache: size > 3*T*T
But size < T*N
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Blocked Matrix Multiply: Cache Misses
/* Tiled; assume n multiple of T */
for (it=0; it<n; it+=T) 
 for (jt=0; jt<n; jt+=T)
  for (kt=0; kt<n; kt+=T) 
   for (i=it; i<it+T; i++) 
    for (j=jt; j<jt+T; j++)
     for (k=kt; k<kt+T; kt++)
      c[i][j]+= a[i][k]*b[k][j];

A B C

(it,*)

(*,jt)
(it,jt)

Loo
p

A B C

it N/T N/T N/T

jt N/T N/T N/T

kt N/T N/T 1

i T 1 T

j 1 T/B T/B
k T/B T 1

Total N3/(TB) N3/(TB) N2/(TB)

Assume fully associative
Cache: size > 3*T*T
But size < T*N
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Tiling: Arbitrary Bounds and Tilesize
/* ijk */
for (i=0; i<m; i++)
  for (j=0; j<n; j++)
    for (k=0; k<p; k++) 
     c[i][j]+= a[i][k]*b[k][j];

for (it=0; it<n; it+=Ti) 
 for (jt=0; jt<m; jt+=Tj)
  for (kt=0; kt<p; kt+=Tk) 
   for (i=it; i< min(it+Ti,n); i++) 
    for (j=jt; j< min(jt+Tj,m); j++)
     for (k=kt; k< min(kt+Tk,p); k++)
      c[i][j]+= a[i][k]*b[k][j];
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