
1

Parallel Programming with OpenMP
• OpenMP (Open Multi-Processing) is a popular shared-memory programming model
• Supported by popular production C (also Fortran) compilers: Clang, GNU Gcc, IBM

xlc, Intel icc
• These slides borrow heavily from Tim Mattson’s excellent OpenMP tutorial available

at www.openmp.org, and from Jeffrey Jones (OSU CSE 5441)

Source: Tim Mattson

http://www.openmp.org/

What is OpenMP?

• A directive based parallel programming model
– OpenMP program is essentially a sequential program

augmented with compiler directives to specify parallelism
– Eases conversion of existing sequential programs

• Main concepts:
– Parallel regions: where parallel execution occurs via multiple

concurrently executing threads
– Each thread has its own program counter and executes one

instruction at a time, similar to sequential program execution

– Shared and private data: shared variables are the means of
communicating data between threads

– Synchronization: Fundamental means of coordinating execution
of concurrent threads

– Mechanism for automated work distribution across threads

2

3

https://computing.llnl.gov/tutorials/openMP/images/fork_join2.gif

barriers

forks

OpenMP Core Syntax

4

• Most of the constructs in OpenMP are compiler directives:
– #pragma omp construct [clause [clause]…]

• Example
– #pragma omp parallel num_threads(4)

• Function prototypes and types in the file: #include
<omp.h>

• Most OpenMP constructs apply to a “structured block”
• Structured block: a block of one or more statements

surrounded by “{ }”, with one point of entry at the top and
one point of exit at the bottom.

Hello World in OpenMP

• An OpenMP program starts with one “master” thread executing
“main” as a sequential program

• “#pragma omp parallel” indicates beginning of a parallel region
– Parallel threads are created and join the master thread
– All threads execute the code within the parallel region
– At the end of parallel region, only master thread executes
– Implicit “barrier” synchronization; all threads must arrive before master

proceeds onwards

5

void main()
{

 int ID = 0;
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);

}

#include <omp.h>

 #pragma omp parallel
 {

 }

Hello World in OpenMP

• Each thread has a unique integer “id”; master thread has “id” 0,
and other threads have “id” 1, 2, …

• OpenMP runtime function omp_get_thread_num() returns a
thread’s unique “id”.

• The function omp_get_num_threads() returns the total number of
executing threads

• The function omp_set_num_threads(x) asks for “x” threads to
execute in the next parallel region (must be set outside region)

6

#include <omp.h>
void main()
{
 #pragma omp parallel
 {
 int ID = omp_get_thread_num();
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);
 }
}

Work Distribution in Loops

• Basic mechanism: threads can perform disjoint work division
using their thread ids and knowledge of total # threads

7

 double A[1000];

 omp_set_num_threads(4);
 #pragma omp parallel
 {
 int t_id = omp_get_thread_num();
 for (int i = t_id; i < 1000; i += omp_get_num_threads())
 {
 A[i]= foo(i);
 }
 }

 double A[1000];

 omp_set_num_threads(4);
 #pragma omp parallel
 {
 int t_id = omp_get_thread_num();
 int b_size = 1000 / omp_get_num_threads();
 for (int i = t_id * b_size; i < (t_id+1) * b_size; i ++)
 {
 A[i]= foo(i);
 }
 }

Cyclic work distribution

Block distribution of work

Specifying Number of Threads

• Desired number of threads can be specified in many ways
– Setting environmental variable OMP_NUM_THREADS
– Runtime OpenMP function omp_set_num_threads(4)
– Clause in #pragma for parallel region

8

 double A[1000];

#pragma omp parallel num_threads(4)
 {
 int t_id = omp_get_thread_num();
 for (int i = t_id; i < 1000; i += omp_get_num_threads())
 {
 A[i] = foo(i);
 }
 }

implicit barrier

{
each thread will
execute the code
within the block
}

OpenMP Data Environment
• Global variables (declared outside the scope of a parallel

region) are shared among threads unless explicitly made
private

• Automatic variables declared within parallel region scope are
private

• Stack variables declared in functions called from within a
parallel region are private

9

#pragma omp parallel private(x)
• each thread receives its own uninitialized variable x
• the variable x falls out-of-scope after the parallel region
• a global variable with the same name is unaffected (3.0 and

later)

#pragma omp parallel firstprivate(x)
• x must be a global-scope variable
• each thread receives a by-value copy of x
• the local x’s fall out-of-scope after the parallel region
• the base global variable with the same name is

unaffected
(3.0 and later)

Example: Numerical Integration

10

∫ 4.0
(1+x2)

dx = π

0

1

Mathematically:

Which can be approximated by:

Σ F(xi) Δx ≈ π
i=0

n

where each rectangle has width
Δx and height F(xi) at the middle
of interval i.

https://software.intel.com/sites/default/files/m/d/4/1/d/8/1252a.gif

Sequential pi Program

11

int num_steps = 100000;
double step;

void main ()
{
int i;
double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
 for (i = 0; i < num_steps; i++)
 {
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

SPMD Programming

12

• Single Program Multiple Data
– Each thread runs same program

– Selection of data, or branching conditions, based on
thread id

• in OpenMP implementation:
• perform work division in parallel loops
• query thread_id and num_threads
• partition work among threads

Parallel Accumulation: Avoiding Race Conditions

13

sum = sum + 4.0/(1.0+x*x);

load_register1, @sum
set_register 2, 4.0
set_register 3, 1.0
load_register4, @x
multiply 5, 4, 4
add 4, 3, 5
divide 3, 2, 4
add 2, 1, 3
store 2, @sum

• High-level C statement translates into a sequence of low-
level instructions
– Accumulation into shared variable sum is not atomic:

contributions can be lost if multiple threads execute the
statements concurrently

– Must use suitable synchronization to avoid race conditions

Parallel pi Program

14

#include <omp.h>
int num_steps = 100000;
double step;
#define NUM_THREADS 2

void main ()
{
int i, nthreads;
double pi = 0.0, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel
 {
 int i, id,nt;
 double x;

 id = omp_get_thread_num();
 nt = omp_get_num_threads();
 if (id == 0) nthreads = nt;

 sum[id] = 0.0;
 for (i = id; i < num_steps; i += nt)
 {
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
 }
 for(i = 0; i < nthreads; i++)
 {
 pi += sum[i] * step;
 }
}

this loop is serial ->

^ partition method

<- implicit barrier

Avoiding False Sharing in Cache

15

 sum[id] += 4.0/(1.0+x*x);

 sum[id] = sum[id] + 4.0/(1.0+x*x);

• Array sum[] is a shared array, with each thread accessing exactly on
element

• Cache line holding multiple elements of sum will be locally cached by each
processor in its private L1 cache

• When a thread writes into into element in sum, the entire cache line
becomes “dirty” and causes invalidation of that line in all other processor’s
caches

• Cache thrashing due to this “false sharing” causes performance degradation

Block vs. Cyclic Work Distribution

• Block/cyclic work distribution will not impact performance here
• But if statement in loop were like: “A[i] += B[i]*C[i]”, block distribution would be

preferable

16

 double A[1000];

 omp_set_num_threads(4);
 #pragma omp parallel
 {
 int t_id = omp_get_thread_num();
 for (int i = t_id; i < 1000; i += omp_get_num_threads())
 {
 sum[id] += 4.0/(1.0+x*x);
 }
 }

 double A[1000];

 omp_set_num_threads(4);
 #pragma omp parallel
 {
 int t_id = omp_get_thread_num();
 int b_size = 1000 / omp_get_num_threads();
 for (int i = (t_id-1) * b_size; i < t_id * b_size; i ++)
 {
 sum[id] += 4.0/(1.0+x*x);
 }
 }

Synchronization: Critical Sections

• Only one thread can enter critical section at a time; others
are held at entry to critical section

• Prevents any race conditions in updating “res”

17

float res;
#pragma omp parallel
{
float B;
int i, id, nthrds;

 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 for(i = id; i < MAX; i += nthrds)
 {
 B = big_job(i);
 #pragma omp critical
 consume (B, res);
 }
}

Synchronization: Atomic

• Atomic: very efficient critical section for simple accumulation
operations (x binop= expr; or x++, x--, etc.)

• Used hardware atomic instructions for implementation; much
lower overhead than using critical section

18

float res;
#pragma omp parallel
{
float B;
int i, id, nthrds;

 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 for(i = id; i < MAX; i += nthrds)
 {
 B = big_job(i);
 #pragma omp atomic
 res += B;
 }
}

Parallel pi: No False Sharing

19

int num_steps = 100000;
double step;
#define NUM_THREADS 2

void main ()
{
int i, nthreads;
double pi = 0.0;

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel
 {
 int i, id,nthrds;
 double x, sum;

 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 sum = 0.0;
 for (i = id; i < num_steps; i += nthrds)
 {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 #pragma omp atomic
 {
 pi += sum * step;
 }
 }
}

no array, no false sharing ->

<- sum is now local

^ each thread adds its partial
 sum one thread at a time

OpenMP Loop Work-Sharing

• Loop structure in parallel region is same as sequential code
• No explicit thread-id based work division by user; instead

system automatically divides loop iterations among threads
• User can control work division: block, cyclic, block-cyclic,

etc., via “schedule” clause in pragma

20

float res;
#pragma omp parallel
{
 // id = omp_get_thread_num();
 // nthrds = omp_get_num_threads();
 // for(i = id; i < MAX; i + nthrds)
 #pragma omp for
 for(i = 0; i < MAX; i++)
 {
 B = big_job(i);
 #pragma omp critical
 consume (B, res);
 }
}

OpenMP Combined Work-Sharing Construct

• Often a parallel region has a single work-shared loop
• Combined construct for such cases: just add the work-

sharing “for” clause to the parallel region pragma

21

#pragma omp parallel
{
 #pragma omp for
 for(i = 0; i < MAX; i++)
 {
 B = big_job(i);
 #pragma omp critical
 consume (B, res);
 }
}

#pragma omp parallel for
for(i = 0; i < MAX; i++)
 {
 B = big_job(i);
 #pragma omp critical
 consume (B, res);
 }

OpenMP Reductions

• Reductions commonly occur in codes (as in pi example)
• OpenMP provides special support via “reduction” clause

– OpenMP compiler automatically creates local variables for each thread, and
divides work to form partial reductions, and code to combine the partial
reductions

– Predefined set of associative operators can be used with reduction clause,
e.g., +, *, -, min, max

22

 double avg = 0.0;
 double A[SIZE];
 #pragma omp parallel for
 for (int i = 0; i < SIZE; i++;)
 {
 avg += A[i];
 }
 avg = avg / SIZE;

OpenMP Reductions

• Reductions clause specifies an operator and a list of
reduction variables (must be shared variables)
– OpenMP compiler creates a local copy for each reduction

variable, initialized to operator’s identity (e.g., 0 for +; 1 for *)
– After work-shared loop completes, contents of local variables

are combined with the “entry” value of the shared variable
– Final result is placed in shared variable

23

 double avg = 0.0;
 double A[SIZE];
 #pragma omp parallel for reduction(+ : avg)

 for (int i = 0; i < SIZE; i++;)
 {
 avg += A[i];
 }
 avg = avg / SIZE;

Parallel pi: Using Reduction

24

int num_steps = 100000;
double step;

void main ()
{
int i;
double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i = 0; i < num_steps; i++)
 {
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

int num_steps = 100000;
double step;
#define NUM_THREADS 2

void main ()
{
int i;
double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel for private(x) reduction(+ :
sum)
 for (i = 0; i < num_steps; i++)
 {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 pi += sum * step;
}

parallelize, and reduce into sum 

manage number of threads 

manage number of threads 

Synchronization: Barrier

25

#pragma omp parallel private(id)
{
 id=omp_get_thread_num();
 A[id] = big_calc1(id);
 #pragma omp barrier

 #pragma omp for
 for(i=0;i<N;i++)
 {
 C[i]=big_calc3(i,A);
 }

 #pragma omp for nowait
 for(i=0;i<N;i++)
 {
 B[i]=big_calc2(C, i);
 }
 A[id] = big_calc4(id);
}

explicit barrier 

implicit barrier at end 
of parallel region

no barrier! 
nowait cancels barrier creation

Synchronization: Master and Single

26

#pragma omp parallel
{
 do_many_things();

 #pragma omp master
 {
 reset_boundaries();
 }

 do_many_other_things();
}

multiple threads of control 

only master thread 
executes this region

multiple threads of control 

#pragma omp parallel
{
 do_many_things();

 #pragma omp single
 {
 reset_boundaries();
 }

 do_many_other_things();
}

multiple threads of control 

a single thread is chosen 
to execute this region

multiple threads of control 

implicit barrier 

Synchronization: Locks

27

omp_lock_t lck;
omp_init_lock(&lck);

#pragma omp parallel
{
 do_many_things();
 omp_set_lock(&lck);
 {code requiring mutual exclusion}
 omp_unset_lock(&lck);
 do_many_other_things ();
}
omp_destroy_lock(&lck);

multiple threads of control 

wait here for your turn … 

multiple threads of control 

• Alternate way to critical sections of achieving mutual
exclusion

• More flexible than critical sections (can use multiple locks)
• More error-prone – for example, deadlock if a thread does

not unset a lock after acquiring it

OpenMP Sections

• Work-sharing for functional parallelism; complementary to
“omp for” for loops

28

#pragma omp parallel
{
 . . .

 #pragma omp sections
 {
 #pragma omp section
 X_calculation();
 #pragma omp section
 y_calculation();
 #pragma omp section
 z_calculation();
 }
 . . .

}

multiple threads of control 
each section assigned to a
different thread

by default:
extra threads are idled

Controlling Work Distribution: Schedule Clause
• The schedule clause determines how loop iterators are mapped onto threads

– #pragma omp parallel for schedule(static [, chunk])
– fixed-sized chucks assigned (alternating) to num_threads

– typical default is: chunk = iterations / num_threads

– set chunk = 1 for cyclic distribution
– #pragma omp parallel for schedule(dynamic [, chunk])
– run-time scheduling (with associated overhead)

– each thread grabs “chunk” iterations off queue until all iterations have been scheduled

– good load-balancing for uneven workloads
– #pragma omp parallel for schedule(guided[, chunk])
– threads dynamically grab blocks of iterations

– chunk size starts relatively large, to get all threads busy with good amortization of overhead

– subsequently, chunk size is reduced to produce good workload balance
– #pragma omp parallel for schedule(runtime)
– schedule and chunk size taken from environment variable or from runtime library routines

29

	Parallel Programming with OpenMP
	What is OpenMP?
	Slide 3
	OpenMP Core Syntax
	Hello World in OpenMP
	Hello World in OpenMP
	Work Distribution in Loops
	Specifying Number of Threads
	OpenMP Data Environment
	Example: Numerical Integration
	Sequential pi Program
	SPMD Programming
	Parallel Accumulation: Avoiding Race Conditions
	Parallel pi Program
	Avoiding False Sharing in Cache
	Block vs. Cyclic Work Distribution
	Synchronization: Critical Sections
	Synchronization: Atomic
	Parallel pi: No False Sharing
	OpenMP Loop Work-Sharing
	OpenMP Combined Work-Sharing Construct
	OpenMP Reductions
	OpenMP Reductions
	Parallel pi: Using Reduction
	Synchronization: Barrier
	Synchronization: Master and Single
	Synchronization: Locks
	OpenMP Sections
	Controlling Work Distribution: Schedule Clause

