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Parallel Programming with OpenMP
• OpenMP (Open Multi-Processing) is a popular shared-memory programming model
• Supported by popular production C (also Fortran) compilers: Clang, GNU Gcc, IBM 

xlc, Intel icc
• These slides borrow heavily from Tim Mattson’s excellent OpenMP tutorial available 

at www.openmp.org, and from Jeffrey Jones (OSU CSE 5441)

Source: Tim Mattson

http://www.openmp.org/


What is OpenMP?

• A directive based parallel programming model
– OpenMP program is essentially a sequential program 

augmented with compiler directives to specify parallelism
– Eases conversion of existing sequential programs

• Main concepts:
– Parallel regions: where parallel execution occurs via multiple 

concurrently executing threads
– Each thread has its own program counter and executes one 

instruction at a time, similar to sequential program execution

– Shared and private data: shared variables are the means of 
communicating data between threads

– Synchronization: Fundamental means of coordinating execution 
of concurrent threads

– Mechanism for automated work distribution across threads
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https://computing.llnl.gov/tutorials/openMP/images/fork_join2.gif
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OpenMP Core Syntax
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• Most of the constructs in OpenMP are compiler directives:
– #pragma   omp   construct   [clause [clause]…]

•   Example
– #pragma   omp   parallel   num_threads(4)

•   Function prototypes and types in the file:    #include 
<omp.h>

•   Most OpenMP constructs apply to a “structured block”
• Structured block: a block of one or more statements 

surrounded by “{ }”, with one point of entry at the top and 
one point of exit at the bottom.



Hello World in OpenMP

• An OpenMP program starts with one “master” thread executing 
“main” as a sequential program

• “#pragma omp parallel” indicates beginning of a parallel region
– Parallel threads are created and join the master thread
– All threads execute the code within the parallel region
– At the end of parallel region, only master thread executes
– Implicit “barrier” synchronization; all threads must arrive before master 

proceeds onwards
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void main()
{

        int ID = 0;
        printf(“ hello(%d) ”, ID);
        printf(“ world(%d) \n”, ID);

}

#include  <omp.h>

    #pragma omp parallel
    {

    }



Hello World in OpenMP

• Each thread has a unique integer “id”; master thread has “id” 0, 
and other threads have “id” 1, 2, …

• OpenMP runtime function omp_get_thread_num() returns a 
thread’s unique “id”.

• The function omp_get_num_threads() returns the total number of 
executing threads

• The function omp_set_num_threads(x) asks for “x” threads to 
execute in the next parallel region (must be set outside region)
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#include  <omp.h>
void main()
{
    #pragma  omp  parallel
    {
        int ID = omp_get_thread_num();
        printf(“ hello(%d) ”, ID);
        printf(“ world(%d) \n”, ID);
    }
}



Work Distribution in Loops

• Basic mechanism: threads can perform disjoint work division 
using their thread ids and knowledge of total # threads
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 double   A[1000];

 omp_set_num_threads(4);
 #pragma omp parallel
 {
    int t_id = omp_get_thread_num();
    for (int i = t_id; i < 1000; i += omp_get_num_threads())
    {
        A[i]= foo(i);
    }
 } 

 double   A[1000];

 omp_set_num_threads(4);
 #pragma omp parallel
 {
    int t_id     = omp_get_thread_num();
    int b_size = 1000 / omp_get_num_threads();
    for (int i = t_id * b_size; i < (t_id+1) * b_size; i ++)
    {
         A[i]= foo(i);
    }
 } 

Cyclic work distribution

Block distribution of work



Specifying Number of Threads

• Desired number of threads can be specified in many ways
– Setting environmental variable OMP_NUM_THREADS
– Runtime OpenMP function omp_set_num_threads(4)
– Clause in #pragma for parallel region
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 double A[1000];

#pragma  omp  parallel  num_threads(4)
 {
    int t_id = omp_get_thread_num();
    for (int i = t_id; i < 1000; i += omp_get_num_threads())
    {
        A[i] = foo(i);
    }
 } 

implicit barrier

{
each thread will
execute the code
within the block
}



OpenMP Data Environment
• Global variables (declared outside the scope of a parallel 

region) are shared among threads unless explicitly made 
private

• Automatic variables declared within parallel region scope are 
private

• Stack variables declared in functions called from within a 
parallel region are private
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#pragma  omp  parallel  private(x)
•  each thread receives its own uninitialized variable x
•  the variable x falls out-of-scope after the parallel region
•  a global variable with the same name is unaffected  (3.0 and 

later)

#pragma  omp  parallel  firstprivate(x)
•  x must be a global-scope variable
•  each thread receives a by-value copy of x
•  the local x’s fall out-of-scope after the parallel region
•  the base global variable with the same name is 

unaffected
(3.0 and later)



Example: Numerical Integration

10

∫   4.0   
(1+x2)

dx   =   π

0

1

Mathematically:

Which can be approximated by:

Σ F(xi)  Δx   ≈   π
i=0

n

where each rectangle has width
Δx and height F(xi) at the middle
of interval i.

https://software.intel.com/sites/default/files/m/d/4/1/d/8/1252a.gif



Sequential pi Program
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int num_steps = 100000;
double step;

void main ()
{ 
int i;
double x, pi, sum = 0.0;

    step = 1.0/(double) num_steps;
    for (i = 0;  i < num_steps;  i++)
    {
        x = (i+0.5)*step;
        sum = sum + 4.0/(1.0+x*x);
    }
    pi = step * sum;
}



SPMD Programming
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•  Single  Program  Multiple  Data
– Each thread runs same program

– Selection of data, or branching conditions, based on 
thread id

•  in OpenMP implementation:
•  perform work division in parallel loops
•  query thread_id and num_threads
•  partition work among threads



Parallel Accumulation: Avoiding Race Conditions
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sum = sum + 4.0/(1.0+x*x);

load_register1, @sum
set_register 2, 4.0
set_register 3, 1.0
load_register4, @x
multiply 5, 4, 4
add 4, 3, 5
divide 3, 2, 4
add 2, 1, 3
store 2, @sum

• High-level C statement translates into a sequence of low-
level instructions
– Accumulation into shared variable sum is not atomic: 

contributions can be lost if multiple threads execute the 
statements concurrently

– Must use suitable synchronization to avoid race conditions 



Parallel pi Program
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#include <omp.h>
int  num_steps = 100000; 
double step;
#define NUM_THREADS 2

void main ()
{ 
int i,  nthreads;
double pi = 0.0,  sum[NUM_THREADS];

    step = 1.0/(double) num_steps;
    omp_set_num_threads(NUM_THREADS);

    #pragma omp parallel
    {
    int i, id,nt;
    double x;

        id = omp_get_thread_num();
        nt = omp_get_num_threads();
        if (id == 0) nthreads = nt;
   
        sum[ id ] = 0.0;
        for ( i = id; i < num_steps;  i += nt) 
        {
            x = (i+0.5)*step;
            sum[id] += 4.0/(1.0+x*x);
        }
    }
    for( i = 0; i < nthreads; i++)
    {
        pi += sum[i] * step;
    }
}

this loop is serial  ->

^  partition method

<-  implicit barrier



Avoiding False Sharing in Cache
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 sum[id]  +=  4.0/(1.0+x*x);

 sum[id]   =   sum[id]  + 4.0/(1.0+x*x);

• Array sum[] is a shared array, with each thread accessing exactly on 
element

• Cache line holding multiple elements of sum will be locally cached by each 
processor in its private L1 cache

• When a thread writes into into element in sum, the entire cache line 
becomes “dirty” and causes invalidation of that line in all other processor’s 
caches

• Cache thrashing due to this “false sharing” causes performance degradation



Block vs. Cyclic Work Distribution

• Block/cyclic work distribution will not impact performance here
• But if statement in loop were like: “A[i] += B[i]*C[i]”, block distribution would be 

preferable
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 double A[1000];

 omp_set_num_threads(4);
 #pragma omp parallel
 {
    int t_id = omp_get_thread_num();
    for (int i = t_id; i < 1000; i += omp_get_num_threads())
    {
         sum[id]  +=  4.0/(1.0+x*x);
    }
 } 

 double A[1000];

 omp_set_num_threads(4);
 #pragma omp parallel
 {
    int t_id     = omp_get_thread_num();
    int b_size = 1000 / omp_get_num_threads();
    for (int i = (t_id-1) * b_size; i < t_id * b_size; i ++)
    {
        sum[id]  +=  4.0/(1.0+x*x);
    }
 } 



Synchronization: Critical Sections

• Only one thread can enter critical section at a time; others 
are held at entry to critical section

• Prevents any race conditions in updating “res”
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float res;
#pragma omp parallel
{
float B;
int i, id, nthrds;

    id         = omp_get_thread_num();
    nthrds = omp_get_num_threads();
    for( i = id;  i < MAX;  i += nthrds)
    {
         B = big_job(i);
         #pragma omp critical
         consume (B, res);
     }
}   



Synchronization: Atomic

• Atomic: very efficient critical section for simple accumulation 
operations (x binop= expr; or x++, x--, etc.)

• Used hardware atomic instructions for implementation; much 
lower overhead than using critical section
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float res;
#pragma omp parallel
{
float B;
int i, id, nthrds;

    id         = omp_get_thread_num();
    nthrds = omp_get_num_threads();
    for( i = id;  i < MAX;  i += nthrds)
    {
         B = big_job(i);
         #pragma omp atomic
         res += B;
     }
}   



Parallel pi: No False Sharing
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int  num_steps = 100000; 
double step;
#define NUM_THREADS 2

void main ()
{ 
int i,  nthreads;
double pi = 0.0;

    step = 1.0/(double) num_steps;
    omp_set_num_threads(NUM_THREADS);

    #pragma omp parallel
    {
    int i, id,nthrds;
    double x, sum;

        id        = omp_get_thread_num();
        nthrds = omp_get_num_threads();
        if (id == 0) nthreads = nthrds;
   
        sum  = 0.0;
        for ( i = id; i < num_steps;  i += nthrds) 
        {
            x = (i+0.5)*step;
            sum += 4.0/(1.0+x*x);
        }
        #pragma  omp  atomic
        {
            pi  +=  sum * step;
        }
    }
}

no array, no false sharing  ->

<-  sum  is  now  local

^  each  thread  adds  its  partial
    sum one thread at a time



OpenMP Loop Work-Sharing

• Loop structure in parallel region is same as sequential code
• No explicit thread-id based work division by user; instead 

system automatically divides loop iterations among threads
• User can control work division: block, cyclic, block-cyclic, 

etc., via “schedule” clause in pragma
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float res;
#pragma  omp parallel
{
    // id         = omp_get_thread_num();
    // nthrds = omp_get_num_threads();
    // for( i = id;  i < MAX;  i + nthrds)
    #pragma  omp  for
    for( i = 0;  i < MAX;  i++)
    {
         B = big_job(i);
         #pragma omp critical
         consume (B, res);
    }
}   



OpenMP Combined Work-Sharing Construct

• Often a parallel region has a single work-shared loop
• Combined construct for such cases: just add the work-

sharing “for” clause to the parallel region pragma 
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#pragma omp parallel
{
    #pragma  omp  for
    for( i = 0;  i < MAX;  i++)
    {
         B = big_job(i);
         #pragma omp critical
         consume (B, res);
    }
}   

#pragma omp parallel for
for( i = 0;  i < MAX;  i++)
    {
         B = big_job(i);
         #pragma omp critical
         consume (B, res);
    }
  



OpenMP Reductions

• Reductions commonly occur in codes (as in pi example)
• OpenMP provides special support via “reduction” clause

– OpenMP compiler automatically creates local variables for each thread, and 
divides work to form partial reductions, and code to combine the partial 
reductions

– Predefined set of associative operators can be used with reduction clause, 
e.g., +, *, -, min, max
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 double avg = 0.0;
 double A[SIZE];
 #pragma  omp  parallel  for
 for (int i = 0; i < SIZE; i++;)
 {
   avg += A[i];
  }
 avg = avg / SIZE;



OpenMP Reductions

• Reductions clause specifies an operator and a list of 
reduction variables (must be shared variables)
– OpenMP compiler creates a local copy for each reduction 

variable, initialized to operator’s identity (e.g., 0 for +; 1 for *)
– After work-shared loop completes, contents of local variables 

are combined with the “entry” value of the shared variable
– Final result is placed in shared variable
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 double avg = 0.0;
 double A[SIZE];
 #pragma  omp  parallel  for reduction(+ : avg)

 for (int i = 0; i < SIZE; i++;)
 {
   avg += A[i];
  }
 avg = avg / SIZE;



Parallel pi: Using Reduction
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int num_steps = 100000;
double step;

void main ()
{ 
int i;
double x, pi, sum = 0.0;

    step = 1.0/(double) num_steps;

    for (i = 0;  i < num_steps;  i++)
    {
        x = (i+0.5)*step;
        sum = sum + 4.0/(1.0+x*x);
    }
    pi = step * sum;
}

int  num_steps = 100000; 
double step;
#define NUM_THREADS 2

void main ()
{ 
int i;
double x, pi, sum = 0.0;

    step = 1.0/(double) num_steps;
    omp_set_num_threads(NUM_THREADS);

    #pragma  omp  parallel  for  private(x)  reduction( + : 
sum)
    for ( i = 0; i < num_steps;  i++) 
    {
        x = (i+0.5)*step;
        sum += 4.0/(1.0+x*x);
    }
    pi  +=  sum * step;
}

parallelize, and reduce into sum  

manage number of threads  

manage number of threads  



Synchronization: Barrier
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#pragma omp parallel private(id)
{
    id=omp_get_thread_num();
    A[id] = big_calc1(id);
    #pragma omp barrier

    #pragma omp for
    for(i=0;i<N;i++)
    {
        C[i]=big_calc3(i,A);
    }

    #pragma omp for nowait
    for(i=0;i<N;i++)
    { 
        B[i]=big_calc2(C, i); 
    }
    A[id] = big_calc4(id);
}

explicit  barrier   

implicit  barrier  at  end    
of  parallel  region

no  barrier!                                      
nowait  cancels  barrier  creation



Synchronization: Master and Single
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#pragma omp parallel
{
    do_many_things();

    #pragma omp master
    { 
        reset_boundaries();
    }

    do_many_other_things();
}

multiple  threads  of  control    

only  master  thread    
executes this region

multiple  threads  of  control    

#pragma omp parallel
{
    do_many_things();

    #pragma omp single
    { 
        reset_boundaries();
    }

    do_many_other_things();
}

multiple  threads  of  control    

a single thread is chosen   
to execute this region

multiple  threads  of  control    

implicit  barrier     



Synchronization: Locks
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omp_lock_t   lck;
omp_init_lock(&lck);

#pragma omp parallel
{
    do_many_things();
    omp_set_lock(&lck);
        {code requiring mutual exclusion}
    omp_unset_lock(&lck);
    do_many_other_things ();
}
omp_destroy_lock(&lck);

multiple  threads  of  control    

wait  here for your turn …  

multiple  threads  of  control    

• Alternate way to critical sections of achieving mutual 
exclusion

• More flexible than critical sections (can use multiple locks)
• More error-prone – for example, deadlock if a thread does 

not unset a lock after acquiring it 



OpenMP Sections

• Work-sharing for functional parallelism; complementary to 
“omp for” for loops
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#pragma omp parallel
{
    . . .

    #pragma omp sections
    {
    #pragma omp section
        X_calculation();
    #pragma omp section
        y_calculation();
    #pragma omp section
        z_calculation();
    }
    . . .

}

multiple  threads  of  control    
each section assigned  to  a
different  thread

by default:
extra  threads  are  idled



Controlling Work Distribution: Schedule Clause
• The schedule clause determines how loop iterators are mapped onto threads

–  #pragma  omp  parallel  for  schedule( static [, chunk] )
– fixed-sized chucks assigned (alternating) to num_threads

– typical default is:  chunk  =  iterations / num_threads

– set  chunk = 1  for cyclic distribution
– #pragma  omp  parallel  for  schedule( dynamic [, chunk] )
– run-time scheduling (with associated overhead)

– each thread grabs “chunk” iterations off queue until all iterations have been scheduled

– good load-balancing for uneven workloads
– #pragma  omp  parallel  for  schedule( guided[, chunk] )
– threads dynamically grab blocks of iterations

– chunk size starts relatively large, to get all threads busy with good amortization of overhead

– subsequently, chunk size is reduced to produce good workload balance
– #pragma  omp  parallel  for  schedule( runtime )
– schedule and chunk size taken from environment variable or from runtime library routines
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