
OOAIA

Rupesh Nasre.
rupesh@iitm.ac.in

January 2018

mailto:rupesh@iitm.ac.in

2

In these lectures
● Introduction to OOP
● Classes and Objects
● Operator Overloading
● Inheritance
● Templates

Prerequisite:

● Programming experience

References:
● The C++ Programming Language, Bjarne Stroustrup, 4e, Pearson

● C++ Primer Plus, Stephen Prata, 6e, Pearson

Concepts are applicable
in general.

We will use C++ and Linux
as the environments.

Concepts are applicable
in general.

We will use C++ and Linux
as the environments.

3

Hello World!
#include <iostream>
int main() {

std::cout << “Hello World!\n”;
return 0;

}

#include <stdio.h>
int main() {

printf(“Hello World!\n”);
return 0;

}

$ gcc hello.c
$ a.out
Hello World!
$ cp hello.c hello.cpp
$ g++ hello.cpp
$ a.out
Hello World!

$ g++ hello2.cpp
$ a.out
Hello World!

Homework: Check what happens with gcc and g++ when main is declared as void main().

hello.c hello2.cpp

class Message {
public static void main(String[] x) {

System.out.print(“Hello World!\n”);
} }

$ javac hello.java
$ java Message
Hello World!

hello.java

4

OO Hello World!

● In procedural style, such as usual C programs,
we solve problems using algorithmic steps.

● In OO style, such as good C++ programs, we
solve problems by casting them into objects
and interactions among them.

#include <iostream>
int main() {

std::cout << “Hello World!\n”;
return 0;

}

#include <iostream>
...
int main() {

Message msg(“Hello World!”);
msg.print();
return 0;

}

Procedural Object-oriented

5

Procedural vs. OO
● One can write procedural programs in C++;

one can write object-oriented programs in C.
● OO allows us to build a program in application's

vocabulary.
– e.g., student, teacher, lecture, exam, question, …

– e.g., car, brake, accelerator, wheel, seat, key, …

● Procedural is often top-down (from programs to
functions); OO resembles bottom-up design (from
classes to programs). But both are iterative.

● Instead of concentrating on tasks, OOP allows
us to concentrate on concepts.

6

Role of C++

● Helps in enforcing data hiding.
– public, private, protected

● Allows reuse of functionality.
– inheritance

● Enables change of behavior under different
contexts.
– polymorphism

● Allows creation of generic functionality
– templates

7

Let's make tea.
...
int main() {

Pot pot;
addWater(pot, 1);
addTealeaves(pot, 1);
startBurner();
boil(pot, 2, false);
addSugar(pot, 1);
addMilk(pot, 0.5);
boil(pot, 2, true);
stopBurner();
std::cout << “Tea is ready.\n”;
return 0;

}

...
int main() {

Pot pot;
Burner burner;
Water water(1);
Tealeaves tealeaves(1)
Sugar sugar(1);
Milk milk(0.5);

burner.start(pot);
pot.add(water);
pot.add(tealeaves);
burner.boil(2, false);
pot.add(sugar);
pot.add(milk);
burner.boil(2, true);
burner.stop();
std::cout << “Tea is ready.\n”;
return 0;

}

Procedural C++ Object-oriented C++

8

Now let's make coffee.

...
int main() {

Pot pot;
addMilk(pot, 1);
addCoffeepowder(pot, 0.5);
addSugar(pot, 1);
addMilk(pot, 0.5);
startBurner();
boil(pot, 2, true);
stopBurner();
std::cout << “Coffee is ready.\n”;
return 0;

}

...
int main() {

Pot pot;
Burner burner;
Water water(1);
Coffeepowder cpowder(0.5)
Sugar sugar(1);
Milk milk(0.5);

burner.start(pot);
pot.add(water);
pot.add(cpowder);
pot.add(sugar);
pot.add(milk);
burner.boil(2, true);
burner.stop();
std::cout << “Coffee is ready.\n”;
return 0;

}

Procedural C++ Object-oriented C++

Pot interface may not change in OO C++.

9

Interface

● Behavior visible to the
outside world.

● What clients need to know.
● Hides implementation details.
● Allows changing

implementation without
changing the behavior.

● e.g., an electric switch, strlen
function in C, etc.

Interface Drinks:
add(drink)
remove(drink)
heatAll()
freezeAll()

● We need not know how drinks
are stored internally (array,
vector, heap, …).

● A client can continue to call
heatAll even if the internal
representation changes.

● Interfaces help in data hiding.

10

Why C++? Why not C?
● If one can write object-oriented programs in C,

why design a new language?
● In C, a client may change server interface and

inner details; but it need not change.
● In C++, a client cannot change server interface

and inner details, unless server allows.
● C++ also supports other useful mechanisms.

– code reuse with inheritance

– operator overloading with polymorphism

– generic programming with templates

– support for exceptions

11

Abstraction

● Abstraction simplifies complexity.
– As a user, we need to know of only switch-on and -off;

and not about ground, live and neutral wires.

– When we drive a two-wheeler, we need not know how
the engine operates and about cylinders, valve control
and turbo.

– We know to click gmail send button; we need not know
how UDP packets are transmitted.

● Interface defines an abstraction.
● A type is an abstraction for a service.

– Number of bits, interpretation of bits, operations on bits

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

