Inheritance

Rupesh Nasre.
rupesh@iitm.ac.in

OOAIA
January 2018

mailto:rupesh@iitm.ac.in

Reuse

* |n large software systems, it is not a good idea
to start from scratch every time.

- We should reuse existing functionality and build
upon it.

* Reuse in procedural style is achieved using
function libraries.

 OOP provides us with another interesting way
to reuse the functionality of a class.

- Abanana is a fruit, and so does apple.

Inheritance
\

class Base {
public:
* Base class: Parent class void fun() {
with some functionality. : cout <<in base::fun.in”
. . tected:
» Derived class: Child class "“in:

which inherits properties of *

class Derived:public Base {

the parent class and defines public:

void some() {

Its own. n= 10,

cout << “in Deri::some\n”;

- |t also would add other }
functionality. b
S
- Similar to how we inherit : m[?el?ige{d d;
styles / behavior of our d.fun();

d.some();

parents. K /

Derivation

[/m“\} | T)| Tj
[CEO }[Engineer} [Derived } @ITM SFudent}

RN T
[IITM CS Student}

What all is inherited?

* An object of a derived class has stored in it all
the fields of the base type.

* An object of the derived type can use the
methods of the base type.

 But

- Derived class needs its own constructor(s)

- Appropriate base constructor needs to be invoked
explicitly (otherwise, default is executed if exists)

- Need to respect the access permissions

Access Permissions

A derived class method can access

- All public member functions and fields of base
- All protected member functions and fields of base

- All methods and fields of itself
A derived class method cannot access

- Any private methods or fields of base

- Any protected or private members of any other class
public protected private
class v v v

children v v X
rest v X X

Constructors

* A derived class constructor | \
needs to call a specific base class Base {
class constructor explicitly. = " giseintn ¢ ...1

: : X
 This cannot be done using class Derived:public Base {

: - : public:
an executable instruction In Derived(int x, int y)

the body of the constructor. : Base(x)

* Base class object is }

constructed first. \} /

Destructors

e Destructors get called in
the reverse order than class Base {

public:
the constructors. ~Base() {cout << “~Base\n’; }
I
* First derived class, then class Derived:public Base {
public:
base CIaSS deStFUCtOr ~Derived() {cout<< “~Derived\n”;}
: : : .| b
* A special consideration is int manO{
required when aBase | cumo:
class pointer / reference /
points to a derived class |
object, and is deleted. ® g+ file.cpp; a.out

~Base

Pointers and Inheritance

« C++ has quite strong rules
towards types.

e Student * pointer cannot
point to Banana class
object.

« However, a base class
pointer can point to
derived class object.

e Can access public
members of base.

_—

/class Base {

3
class Derived:public Base {
I
int main() {
Base *b = new Derived();

o

delete b;
return O;

4

Pointers and Inheritance

P
std::vector<Base *> allobj;
Base *a[100];

 Such a mechanism is
helpful in keeping track of

all objects derived from
for (it = allDrinks.begin();
the same class together. it 1= allDrinks.end()
++it) {
it->createOneCup();

* This way, we can cal
appropriate methods of }

different derived classes p

with the same pointer. for (it = allShapes.begin();
. it I= allShapes.end();
 Otherwise, we would be ++it) {

it->Draw();

forced to keep all drinks in
multiple arrays (think C).

Pointers and Inheritance

Unlike malloc, new calls the
constructor. /
class Base {

Unlike free, delete calls the "
destructor. class Derived:public Base {
Deleting a derived object 1
automatically calls derived int mBain() jb - ow Derived()
destructor and then the base e b o Denvedy)
destructor. return O;

)
However, deleting a base /

pointer pointing to derived
object calls only base
destructor.

Pointers and Inheritance

* Deleting a base pointer
pointing to derived object A'ass Base {

calls only base destructor. virtual ~Base()
X
o |f you want to call the class Derived:public Base {

destructor of the derived
class (and then base intmain(){ N

_ Base *b = new Derived();
class) in such a case, delete b;
then you need to mark the , "m®
base destructor virtual. /

Function Polymorphism

A derived class can redefinea
method from the base class. class Base {

If their signatures are the void fun();
same, derived class method }C;Iass e e e B
hides the base class method. void fun();'p

A base class pointer calls the fnt main() {

base method, while a derived Base *b = new Derived();

class pointer calls the derived S

method. vy /

A base pointer pointing to
derived class calls the base
method.

Function Polymorphism

iInvoke methods of Base *a[100];
appropriate types, square- - ~

S : -S> for (it = allDrinks.begin();
draw() and circle->draw it 1= allDrinks.end();

and triangle->draw, etc. Fit) {

it->createOneCup();

: p |
« We eXpeCt the iterator to std::vector<Base *> allobj; W

« But iterator has a pointer
to the base type Shape *

» How would it invoke the ~ for it = aliShapes begin)

J y
. ,%

. . it I= allShapes.end();
function of the derived) {)
it->draw();
class? \

Virtual Functions

* We expect the iterator to
invoke methods of Eeiald
appropriate types, square- _ virtual void draw()
>draw() and circle->draw }

c,lass Circle:public Shape {

and triangle->draw, etc. public:

void draw();

« But iterator has a pointer ' *
to the base type Shape *. > 4

» How would it invoke the oS 8 aames oo
function of the derived i) ,
it->draw();
class? \

Virtual Functions

o

e |f a function is virtual in

the base class, it indicates i o ¢

that a derived class may Y virtual void draw();
want to override it. class Circle:public Shape {
.] public:
* \When a virtual method is void draw();
invoked using a base G .

class pointer, appropriate

. . A
version of the method is for (it = allShapes.begin();
. it I= allShapes.end();
invoked. ++it) {
it->draw();

}

Binding

* Consider the following code.

Base *b;:
if (input < 10)

b = new Base();
else

b = new Derived();

b->fun();

Q /

 How does the compiler know which fun method
to call?

Binding

In general, the method invoked
cannot be known at compile Base *b:

time. if (input < 10)
_ _ b = new Base();
Thus, a compiler cannot figure = else

out the type base pointer is b = new Derived();
pointing to. b->fun();
Therefore, we need to depend \ /

upon the run-time information.

- non-virtual functions — static binding
Compll_er generates code to virtual functions — dynamic binding
maintain a runtime table of
pointer references, called
virtual function table (vibl).

Virtual Methods

e A virtual method declared in the base class
makes the method virtual in base class, all the
classes transitively derived from it.

e Constructors cannot be virtual.

e Destructors should be virtual, unless a class is
not going to be used as a base class.

 Friends cannot be virtual functions.

19

Multiple Inheritance

C++ allows deriving from A N

multiple base classes. class Derived: public BaseOne,
public BaseTwo {

- Java doesn't.

The derived class inherits \} Yy

properties of both the base

classes.

If there is ambiguity (same
method in both bases),
compiler issues an error.

Multiple inheritance makes the
type hierarchy a DAG.

ey w 20
- |In Java, it is a tree.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

