
Inheritance

Rupesh Nasre.
rupesh@iitm.ac.in

OOAIA
January 2018

mailto:rupesh@iitm.ac.in

Reuse

● In large software systems, it is not a good idea
to start from scratch every time.
– We should reuse existing functionality and build

upon it.

● Reuse in procedural style is achieved using
function libraries.

● OOP provides us with another interesting way
to reuse the functionality of a class.
– A banana is a fruit, and so does apple.

Inheritance

● Base class: Parent class
with some functionality.

● Derived class: Child class
which inherits properties of
the parent class and defines
its own.
– It also would add other

functionality.

– Similar to how we inherit
styles / behavior of our
parents.

class Base {
public:

void fun() {
cout << “in base::fun.\n”;

}
protected:

int n;
};
class Derived:public Base {
public:

void some() {
n = 10;
cout << “in Deri::some\n”;

}
};
int main() {

Derived d;
d.fun();
d.some();

}

class Base {
public:

void fun() {
cout << “in base::fun.\n”;

}
protected:

int n;
};
class Derived:public Base {
public:

void some() {
n = 10;
cout << “in Deri::some\n”;

}
};
int main() {

Derived d;
d.fun();
d.some();

}

Derivation

BaseBase

DerivedDerived

StudentStudent

IITM StudentIITM Student

EmployeeEmployee

CEOCEO EngineerEngineer

IITM CS StudentIITM CS Student

IITM CS Student EntrepreneurIITM CS Student Entrepreneur

What all is inherited?

● An object of a derived class has stored in it all
the fields of the base type.

● An object of the derived type can use the
methods of the base type.

● But
– Derived class needs its own constructor(s)

– Appropriate base constructor needs to be invoked
explicitly (otherwise, default is executed if exists)

– Need to respect the access permissions

Access Permissions
● A derived class method can access

– All public member functions and fields of base

– All protected member functions and fields of base

– All methods and fields of itself

● A derived class method cannot access
– Any private methods or fields of base

– Any protected or private members of any other class
public protected private

class ✓ ✓ ✓

children ✓ ✓ ✕

rest ✓ ✕ ✕

class Base {
public:

Base(int r) { … }
};
class Derived:public Base {
public:

Derived(int x, int y)
: Base(x) {

...
}

};

class Base {
public:

Base(int r) { … }
};
class Derived:public Base {
public:

Derived(int x, int y)
: Base(x) {

...
}

};

Constructors

● A derived class constructor
needs to call a specific base
class constructor explicitly.

● This cannot be done using
an executable instruction in
the body of the constructor.

● Base class object is
constructed first.

Destructors

● Destructors get called in
the reverse order than
the constructors.

● First derived class, then
base class destructor

● A special consideration is
required when a Base
class pointer / reference
points to a derived class
object, and is deleted.

class Base {
public:

~Base() {cout << “~Base\n”; }
};
class Derived:public Base {
public:

~Derived() {cout<< “~Derived\n”;}
};
int main() {

Derived d;
return 0;

}

class Base {
public:

~Base() {cout << “~Base\n”; }
};
class Derived:public Base {
public:

~Derived() {cout<< “~Derived\n”;}
};
int main() {

Derived d;
return 0;

}

$ g++ file.cpp; a.out
~Derived
~Base

Pointers and Inheritance

● C++ has quite strong rules
towards types.

● Student * pointer cannot
point to Banana class
object.

● However, a base class
pointer can point to
derived class object.

● Can access public
members of base.

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

Pointers and Inheritance

● Such a mechanism is
helpful in keeping track of
all objects derived from
the same class together.

● This way, we can call
appropriate methods of
different derived classes
with the same pointer.

● Otherwise, we would be
forced to keep all drinks in
multiple arrays (think C).

std::vector<Base *> allobj;
Base *a[100];

std::vector<Base *> allobj;
Base *a[100];

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->Draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->Draw();

}

Pointers and Inheritance

● Unlike malloc, new calls the
constructor.

● Unlike free, delete calls the
destructor.

● Deleting a derived object
automatically calls derived
destructor and then the base
destructor.

● However, deleting a base
pointer pointing to derived
object calls only base
destructor.

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

Pointers and Inheritance

● Deleting a base pointer
pointing to derived object
calls only base destructor.

● If you want to call the
destructor of the derived
class (and then base
class) in such a case,
then you need to mark the
base destructor virtual.

class Base {
…
virtual ~Base();
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

class Base {
…
virtual ~Base();
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

Function Polymorphism

● A derived class can redefine a
method from the base class.

● If their signatures are the
same, derived class method
hides the base class method.

● A base class pointer calls the
base method, while a derived
class pointer calls the derived
method.

● A base pointer pointing to
derived class calls the base
method.

class Base {
…
void fun();

};
class Derived:public Base {

void fun();
};
int main() {

Base *b = new Derived();
b->fun();
...

}

class Base {
…
void fun();

};
class Derived:public Base {

void fun();
};
int main() {

Base *b = new Derived();
b->fun();
...

}

Function Polymorphism

● We expect the iterator to
invoke methods of
appropriate types, square-
>draw() and circle->draw
and triangle->draw, etc.

● But iterator has a pointer
to the base type Shape *.

● How would it invoke the
function of the derived
class?

std::vector<Base *> allobj;
Base *a[100];

std::vector<Base *> allobj;
Base *a[100];

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

Virtual Functions

● We expect the iterator to
invoke methods of
appropriate types, square-
>draw() and circle->draw
and triangle->draw, etc.

● But iterator has a pointer
to the base type Shape *.

● How would it invoke the
function of the derived
class?

class Shape {
public:

virtual void draw();
};
class Circle:public Shape {
public:

void draw();
};

class Shape {
public:

virtual void draw();
};
class Circle:public Shape {
public:

void draw();
};

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

Virtual Functions

● If a function is virtual in
the base class, it indicates
that a derived class may
want to override it.

● When a virtual method is
invoked using a base
class pointer, appropriate
version of the method is
invoked.

class Shape {
public:

virtual void draw();
};
class Circle:public Shape {
public:

void draw();
};

class Shape {
public:

virtual void draw();
};
class Circle:public Shape {
public:

void draw();
};

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

Binding

● Consider the following code.

● How does the compiler know which fun method
to call?

Base *b;
if (input < 10)
 b = new Base();
else
 b = new Derived();

b->fun();

Base *b;
if (input < 10)
 b = new Base();
else
 b = new Derived();

b->fun();

Binding

● In general, the method invoked
cannot be known at compile
time.

● Thus, a compiler cannot figure
out the type base pointer is
pointing to.

● Therefore, we need to depend
upon the run-time information.

● Compiler generates code to
maintain a runtime table of
pointer references, called
virtual function table (vtbl).

Base *b;
if (input < 10)
 b = new Base();
else
 b = new Derived();

b->fun();

Base *b;
if (input < 10)
 b = new Base();
else
 b = new Derived();

b->fun();

non-virtual functions → static binding
virtual functions → dynamic binding

19

Virtual Methods

● A virtual method declared in the base class
makes the method virtual in base class, all the
classes transitively derived from it.

● Constructors cannot be virtual.
● Destructors should be virtual, unless a class is

not going to be used as a base class.
● Friends cannot be virtual functions.

20

Multiple Inheritance

● C++ allows deriving from
multiple base classes.

– Java doesn't.

● The derived class inherits
properties of both the base
classes.

● If there is ambiguity (same
method in both bases),
compiler issues an error.

● Multiple inheritance makes the
type hierarchy a DAG.

– In Java, it is a tree.

class Derived: public BaseOne,
 public BaseTwo {

};

class Derived: public BaseOne,
 public BaseTwo {

};

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

