Inheritance and Virtual Functions

Rupesh Nasre.
IIT Madras

Raisoni
July 2020

Agenda

* |Inheritance Basics

* Class Hierarchy

e Access Qualifiers

* Virtual Functions

* Pure Virtual Functions
* Multiple Inheritance

Background

* Classes, Objects

- A class Is a type.
— An object Is Its instance.

e Constructors, Destructors

— Constructors are automatically called on object creation.
— Destructors are automatically called on object destruction.

e Access Qualifiers

— public: accessible to the world
- protected: accessible to children, grandchildren, ...
— private: accessible to self

Reuse

* |n large software systems, it Is not a good idea
to start from scratch every time.

- We should reuse the existing functionality and
build upon it.

* Reuse In procedural style is achieved using
function libraries.

* OOP provides us with another interesting way
to reuse the functionality of a class.

- An apple is a fruit, and so Is orange.

Inheritance - \

class Base {
blic:
» Base class: Parentclass ""\gamung(
with some functionality. } cout << *in base::fun.\n";
* Derived class: Child class = Proteeed

which inherits properties of = ¥

. | Derived:public B
the parent class and defines g oot Dase
Its own. void Sonigo{

n = 10;

cout << “in Deri::some\n”;

- It would also add other }
functionality. Eo

- Similar to how we inherit " mSéTi(\ze{d d:
styles / behavior of our d.fun();

parents.) ' ’
\\ Source: 2.cpp /

Derivation

[Employee} [Base } E Student]

NS] T

[CEO }E Engineer] [Derived } [Raisoni Student}

[Raisoni IT Student}

Find Derivation

Automobile Base Generalization
/\ T A

Car Scooter Derived

Bicycle Mercedes

*
White Mercedes

*

White Mercedes of Chetan Sir Specialization

7

What all i1s inherited?

* An object of a derived class has stored in it all
the fields of the base type.

* An object of the derived type can use the
methods of the base type.

e But

- Derived class needs its own constructor(s)

— Appropriate base constructor needs to be invoked
explicitly (otherwise, default is executed If exists)

- Need to respect the access permissions

Source: 3.cpp 8

Access Permissions

A derived class method can access

— All public member functions and fields of base
- All protected member functions and fields of base

- All methods and fields of itself
A derived class method cannot access

- Any private methods or fields of base
— Any protected or private members of any other class

public protected private
class v v v
children v v X
rest v X X

ecides default visiblli
CO n Stru CtO rS [c))f members fr;m Bastey

in Derived.

* A derived class constructor
needs to call a specific base| class Base {

class constructor explicitly. P inen. 3
}

* This cannot be done using class Derived: public Base {

- : : public:
an executable instruction In Derived(int x, int y)

the body of the constructor. : Base(x) {

* Base class object is J

constructed first. \} /

10

Destructors

* Destructors get called In / \
the reverse order than | g'ljf”sc?ase{
the constructors. ~Base() {cout << “~Base\n”; }
* First derived class, then i"ass Derived: public Base {
base class destructor A) e D el
* A special consideration Is i main0{
required when a Base pumo-
class pointer / reference ! /
points to a derived class
object, and is deleted. $ g fle.cop; a.out

~Base
11

Pointers and Inheritance

 C++ has quite strong rules
towards typeS. cass Base{ \
« Student * pointer cannot | };
point to Orange ClaSS class Derived:public Base {

object. ho
iInt main() {
e However, a base class g’ﬁste 'g = new Derived();
. : . elete b;
pointer can point to return 0;

derived class object. \} /

e Can access public
members of base.

12

Pointers and Inheritance

* Such a mechanism is
helpful in keeping track of

all objects derived from the -

same class together.

* This way, we can call
appropriate methods of
different derived classes
with the same pointer.

* Otherwise, we would be
forced to keep all objects

}
In multiple arrays (think C).

std::vector<Base *> allobj;

Base *a[100];

for (it = allDrinks.begin();
it I= allDrinks.end();
++it) {
it->createOneCup();

<
b

++it) {
it->draw();

for (it = allShapes.begin();
it I= allShapes.end();

Pointers and Inheritance

éss Base {

* Why do we need new?

- Unlike malloc, new calls
the constructor.

- Unlike free, delete calls the
destructor.

* Deleting a derived object
automatically calls derived
destructor and then the base
destructor.

 However, deleting a base
pointer pointing to derived
object calls only base
destructor.

-

class Derived:public Base {

-

iInt main() {

\

Base *b = new Derived
delete b;
return O;

N

0

4

Source: 4.cpp

14

Pointers and Inheritance

* Deleting a base pointer
pointing to derived object @SS Base { \

calls only base destructor. virtual ~Base();
¥
o |f you want to call the class Derived:public Base {

destructor of the derived =
class (and then base MEMEE) e

_ Base *b = new Derived();
class) in such a case, delete b;
then you need to mark the , "4™M®
base destructor virtual. \ /

Classwork: Source 5.cpp
15

Function Polymorphism: Pointers

A derived class can redefine a

method from the base class. @ss Base { \
If their signatures are the void fun():
same, derived class method iz;lass T —
hides the base class method. - fun()';p

A base class pointer calls the ?nt main() {

base method, while a derived Base *b = new Derived();
class pointer calls the derived S

method. & /

A base pointer pointing to
derived class calls the base
method. ”

Function Polymorphism: Iterators

/

* We expect the iterator to
Invoke methods of the

std::vector<Base *> allobj;
Base *a[100];

appropriate types, square- -

>draw() and circle->draw for (it = allDrinks.begin();
it 1= allDrinks.end();

and triangle->draw, etc. ++it) {

it->createOneCup();

* But iterator has a pointer

to the base type Shape *.

<
b

. . for (it = allShapes.begin();
How would it invoke the it 1= allShapes.end();

function of the derived -++Lt|){)
It->drawy();
class? |

Virtual Functions

» We expect the iteratorto N
invoke methods of the g'lj";?cs“am{

appropriate types, square- Y virtual void draw();
>draw() and circle->draw

C’Iass Circle: public Shape {

and triangle->draw, etc. alles |
void draw();
* But iterator has a pointer \} Y.
to the base type Shape *. p :
* How would it invoke the ~for(i= aithanes beo)
function of the derived ++it) {
class? , (e

Virtual Functions

* If a function is virtualin

the base class, it indicates gf‘gﬁjhape{
that a derived class may ' virtual void draw();
want to Overnde It. c’lass Circle: public Shape {
: : blic:
« When a virtual method is © veic draw();
invoked using a base \} .
class pointer, appropriate p <4
version of the method IS ' ¢ (it = alshapes.begin():
Invoked. it I= allShapes.end();
++it) {
it->draw();

}

Binding

* Consider the following code.

4 A

Base *D;
If (input < 10)

b = new Base();
else

b = new Derived();

b->fun();

A /

* How does the compiler know which fun method

to call — Base::fun or Derived::fun?

20

Binding

In general, the method invoked
cannot be known at compile N

time. Base *b;
_ _ If (input < 10)
Thus, a compiler cannot figure b = new Base();

' ' else
out the type base pointer is b = new Derived()
pointing to.
b->fun();
Therefore, we need to depend \ /
upon the run-time information.

. non-virtual functions - static binding
Compll_er gener_ates code to virtual functions - dynamic binding
maintain a runtime table of
pointer references, called
virtual function table (vtbl). n

Virtual Methods

A virtual method declared in the base class
makes the method virtual in base class, and In
all the classes transitively derived from it.

Constructors cannot be virtual.

Destructors should be virtual, unless a class Is
not going to be used as a base class.

Friends cannot be virtual functions.

22

Abstract Class

* A function can be pure virtual function.
— virtual void fun() = O;
 This makes the class abstract.

* Abstract class cannot be instantiated.
— But its pointer / reference can be created.

* Aderived class not implementing a pure virtual
function is also abstract.

* A pure virtual function may have its definition in
the abstract class.

Source: 6.cpp 2

Multiple Inheritance

C++ allows deriving from
multiple base classes.

- Java doesn't.

The derived class inherits
properties of both the base
classes.

If there Is ambiqguity (same
method in both bases),
compiler issues an error.

Multiple inheritance makes the
type hierarchy a DAG.

- |In Java, it IS a tree.

@« N

class Derived: public BaseOne,
public BaseTwo {

v

24

Exercises

Quiz:

https://www.geeksforgeeks.org/c-plus-plus-gqg/virtual-functions-gqg/

Create a hierarchy of Student, IT Student,
Second Year IT Student, MBA Student, First Year
Student. Identify one function and one field In

each class which cannot be
Create an abstract type Sha

oresent In ot

Ners.

ne. Create C

aSSEeS

Circle, Square, Rectangle, Triangle, Polygon.
Maintain proper hierarchy. Now, enable the
following functionality in main.

it->draw();

}
AN

for (it = allShapes.begin(); it != allShapes.end(); ++it) {

25

https://www.geeksforgeeks.org/c-plus-plus-gq/virtual-functions-gq/

Summary

v Inheritance Basics

v Class Hierarchy

» Access Qualifiers
«Virtual Functions

» Pure Virtual Functions
« Multiple Inheritance

26

Inheritance and Virtual Functions

Rupesh Nasre.
IIT Madras

Raisoni
July 2020

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

