
Inheritance and Virtual Functions

Rupesh Nasre.
IIT Madras

Raisoni
July 2020

2

Agenda

● Inheritance Basics
● Class Hierarchy
● Access Qualifiers
● Virtual Functions
● Pure Virtual Functions
● Multiple Inheritance

Background
● Classes, Objects

– A class is a type.
– An object is its instance.

● Constructors, Destructors
– Constructors are automatically called on object creation.
– Destructors are automatically called on object destruction.

● Access Qualifiers
– public: accessible to the world
– protected: accessible to children, grandchildren, …
– private: accessible to self

4

Reuse

● In large software systems, it is not a good idea
to start from scratch every time.
– We should reuse the existing functionality and

build upon it.
● Reuse in procedural style is achieved using

function libraries.
● OOP provides us with another interesting way

to reuse the functionality of a class.
– An apple is a fruit, and so is orange.

5

Inheritance

● Base class: Parent class
with some functionality.

● Derived class: Child class
which inherits properties of
the parent class and defines
its own.
– It would also add other

functionality.
– Similar to how we inherit

styles / behavior of our
parents.

class Base {
public:

void fun() {
cout << “in base::fun.\n”;

}
protected:

int n;
};
class Derived:public Base {
public:

void some() {
n = 10;
cout << “in Deri::some\n”;

}
};
int main() {

Derived d;
d.fun();
d.some();

}

class Base {
public:

void fun() {
cout << “in base::fun.\n”;

}
protected:

int n;
};
class Derived:public Base {
public:

void some() {
n = 10;
cout << “in Deri::some\n”;

}
};
int main() {

Derived d;
d.fun();
d.some();

}
Source: 2.cpp

6

Derivation

BaseBase

DerivedDerived

StudentStudent

Raisoni StudentRaisoni Student

EmployeeEmployee

CEOCEO EngineerEngineer

Raisoni IT StudentRaisoni IT Student

Raisoni IT Student EntrepreneurRaisoni IT Student Entrepreneur

7

Find Derivation

BaseBase

DerivedDerived

AutomobileAutomobile

CarCar ScooterScooter

BicycleBicycle MercedesMercedes

Generalization

Specialization

White MercedesWhite Mercedes

White Mercedes of Chetan SirWhite Mercedes of Chetan Sir

8

What all is inherited?

● An object of a derived class has stored in it all
the fields of the base type.

● An object of the derived type can use the
methods of the base type.

● But
– Derived class needs its own constructor(s)
– Appropriate base constructor needs to be invoked

explicitly (otherwise, default is executed if exists)
– Need to respect the access permissions

Source: 3.cpp

9

Access Permissions
● A derived class method can access

– All public member functions and fields of base
– All protected member functions and fields of base
– All methods and fields of itself

● A derived class method cannot access
– Any private methods or fields of base
– Any protected or private members of any other class

public protected private

class ✓ ✓ ✓

children ✓ ✓ ✕

rest ✓ ✕ ✕

10

class Base {
public:

Base(int r) { … }
};
class Derived: public Base {
public:

Derived(int x, int y)
: Base(x) {

...
}

};

class Base {
public:

Base(int r) { … }
};
class Derived: public Base {
public:

Derived(int x, int y)
: Base(x) {

...
}

};

Constructors

● A derived class constructor
needs to call a specific base
class constructor explicitly.

● This cannot be done using
an executable instruction in
the body of the constructor.

● Base class object is
constructed first.

Decides default visibility
of members from Base

in Derived.

11

Destructors

● Destructors get called in
the reverse order than
the constructors.

● First derived class, then
base class destructor

● A special consideration is
required when a Base
class pointer / reference
points to a derived class
object, and is deleted.

class Base {
public:

~Base() {cout << “~Base\n”; }
};
class Derived: public Base {
public:

~Derived() {cout<< “~Derived\n”;}
};
int main() {

Derived d;
return 0;

}

class Base {
public:

~Base() {cout << “~Base\n”; }
};
class Derived: public Base {
public:

~Derived() {cout<< “~Derived\n”;}
};
int main() {

Derived d;
return 0;

}

$ g++ file.cpp; a.out
~Derived
~Base

12

Pointers and Inheritance

● C++ has quite strong rules
towards types.

● Student * pointer cannot
point to Orange class
object.

● However, a base class
pointer can point to
derived class object.

● Can access public
members of base.

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

13

Pointers and Inheritance

● Such a mechanism is
helpful in keeping track of
all objects derived from the
same class together.

● This way, we can call
appropriate methods of
different derived classes
with the same pointer.

● Otherwise, we would be
forced to keep all objects
in multiple arrays (think C).

std::vector<Base *> allobj;
Base *a[100];

std::vector<Base *> allobj;
Base *a[100];

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

14

Pointers and Inheritance

● Why do we need new?

– Unlike malloc, new calls
the constructor.

– Unlike free, delete calls the
destructor.

● Deleting a derived object
automatically calls derived
destructor and then the base
destructor.

● However, deleting a base
pointer pointing to derived
object calls only base
destructor.

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

Source: 4.cpp

15

Pointers and Inheritance

● Deleting a base pointer
pointing to derived object
calls only base destructor.

● If you want to call the
destructor of the derived
class (and then base
class) in such a case,
then you need to mark the
base destructor virtual.

class Base {
…
virtual ~Base();
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

class Base {
…
virtual ~Base();
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

Classwork: Source 5.cpp

16

Function Polymorphism: Pointers

● A derived class can redefine a
method from the base class.

● If their signatures are the
same, derived class method
hides the base class method.

● A base class pointer calls the
base method, while a derived
class pointer calls the derived
method.

● A base pointer pointing to
derived class calls the base
method.

class Base {
…
void fun();

};
class Derived: public Base {

void fun();
};
int main() {

Base *b = new Derived();
b->fun();
...

}

class Base {
…
void fun();

};
class Derived: public Base {

void fun();
};
int main() {

Base *b = new Derived();
b->fun();
...

}

17

Function Polymorphism: Iterators

● We expect the iterator to
invoke methods of the
appropriate types, square-
>draw() and circle->draw
and triangle->draw, etc.

● But iterator has a pointer
to the base type Shape *.

● How would it invoke the
function of the derived
class?

std::vector<Base *> allobj;
Base *a[100];

std::vector<Base *> allobj;
Base *a[100];

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

18

Virtual Functions

● We expect the iterator to
invoke methods of the
appropriate types, square-
>draw() and circle->draw
and triangle->draw, etc.

● But iterator has a pointer
to the base type Shape *.

● How would it invoke the
function of the derived
class?

class Shape {
public:

virtual void draw();
};
class Circle: public Shape {
public:

void draw();
};

class Shape {
public:

virtual void draw();
};
class Circle: public Shape {
public:

void draw();
};

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

19

Virtual Functions

● If a function is virtual in
the base class, it indicates
that a derived class may
want to override it.

● When a virtual method is
invoked using a base
class pointer, appropriate
version of the method is
invoked.

class Shape {
public:

virtual void draw();
};
class Circle: public Shape {
public:

void draw();
};

class Shape {
public:

virtual void draw();
};
class Circle: public Shape {
public:

void draw();
};

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

20

Binding

● Consider the following code.

● How does the compiler know which fun method
to call – Base::fun or Derived::fun?

Base *b;
if (input < 10)
 b = new Base();
else
 b = new Derived();

b->fun();

Base *b;
if (input < 10)
 b = new Base();
else
 b = new Derived();

b->fun();

21

Binding

● In general, the method invoked
cannot be known at compile
time.

● Thus, a compiler cannot figure
out the type base pointer is
pointing to.

● Therefore, we need to depend
upon the run-time information.

● Compiler generates code to
maintain a runtime table of
pointer references, called
virtual function table (vtbl).

non-virtual functions → static binding
virtual functions → dynamic binding

Base *b;
if (input < 10)
 b = new Base();
else
 b = new Derived();

b->fun();

Base *b;
if (input < 10)
 b = new Base();
else
 b = new Derived();

b->fun();

22

Virtual Methods

● A virtual method declared in the base class
makes the method virtual in base class, and in
all the classes transitively derived from it.

● Constructors cannot be virtual.
● Destructors should be virtual, unless a class is

not going to be used as a base class.
● Friends cannot be virtual functions.

23

Abstract Class

● A function can be pure virtual function.
– virtual void fun() = 0;

● This makes the class abstract.
● Abstract class cannot be instantiated.

– But its pointer / reference can be created.
● A derived class not implementing a pure virtual

function is also abstract.
● A pure virtual function may have its definition in

the abstract class.
Source: 6.cpp

24

Multiple Inheritance

● C++ allows deriving from
multiple base classes.

– Java doesn't.
● The derived class inherits

properties of both the base
classes.

● If there is ambiguity (same
method in both bases),
compiler issues an error.

● Multiple inheritance makes the
type hierarchy a DAG.

– In Java, it is a tree.

class Derived: public BaseOne,
 public BaseTwo {

};

class Derived: public BaseOne,
 public BaseTwo {

};

25

Exercises
● Quiz:

https://www.geeksforgeeks.org/c-plus-plus-gq/virtual-functions-gq/

● Create a hierarchy of Student, IT Student,
Second Year IT Student, MBA Student, First Year
Student. Identify one function and one field in
each class which cannot be present in others.

● Create an abstract type Shape. Create classes
Circle, Square, Rectangle, Triangle, Polygon.
Maintain proper hierarchy. Now, enable the
following functionality in main.

for (it = allShapes.begin(); it != allShapes.end(); ++it) {
it->draw();

}

for (it = allShapes.begin(); it != allShapes.end(); ++it) {
it->draw();

}

https://www.geeksforgeeks.org/c-plus-plus-gq/virtual-functions-gq/

26

Summary

✔ Inheritance Basics
✔ Class Hierarchy
✔ Access Qualifiers
✔ Virtual Functions
✔ Pure Virtual Functions
✔ Multiple Inheritance

Inheritance and Virtual Functions

Rupesh Nasre.
IIT Madras

Raisoni
July 2020

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

