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Agenda

● Inheritance Basics
● Class Hierarchy
● Access Qualifiers
● Virtual Functions
● Pure Virtual Functions
● Multiple Inheritance



Background
● Classes, Objects

– A class is a type. 
– An object is its instance.

● Constructors, Destructors
– Constructors are automatically called on object creation.
– Destructors are automatically called on object destruction.

● Access Qualifiers
– public: accessible to the world
– protected: accessible to children, grandchildren, …
– private: accessible to self
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Reuse

● In large software systems, it is not a good idea 
to start from scratch every time.
– We should reuse the existing functionality and   

build upon it.
● Reuse in procedural style is achieved using 

function libraries.
● OOP provides us with another interesting way 

to reuse the functionality of a class.
– An apple is a fruit, and so is orange.
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Inheritance

● Base class: Parent class 
with some functionality.

● Derived class: Child class 
which inherits properties of 
the parent class and defines 
its own.
– It would also add other 

functionality.
– Similar to how we inherit 

styles / behavior of our 
parents.

class Base {
public:

void fun() { 
cout << “in base::fun.\n”;

}
protected:

int n;
};
class Derived:public Base {
public: 

void some() {
n = 10;
cout << “in Deri::some\n”;

}
};
int main() {

Derived d;
d.fun();
d.some();

}

class Base {
public:

void fun() { 
cout << “in base::fun.\n”;

}
protected:

int n;
};
class Derived:public Base {
public: 

void some() {
n = 10;
cout << “in Deri::some\n”;

}
};
int main() {

Derived d;
d.fun();
d.some();

}
Source: 2.cpp
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Derivation

BaseBase

DerivedDerived

StudentStudent

Raisoni StudentRaisoni Student

EmployeeEmployee

CEOCEO EngineerEngineer

Raisoni IT StudentRaisoni IT Student

Raisoni IT Student EntrepreneurRaisoni IT Student Entrepreneur
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Find Derivation

BaseBase

DerivedDerived

AutomobileAutomobile

CarCar ScooterScooter

BicycleBicycle MercedesMercedes

Generalization

Specialization

White MercedesWhite Mercedes

White Mercedes of Chetan SirWhite Mercedes of Chetan Sir
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What all is inherited?

● An object of a derived class has stored in it all 
the fields of the base type.

● An object of the derived type can use the 
methods of the base type.

● But
– Derived class needs its own constructor(s)
– Appropriate base constructor needs to be invoked 

explicitly (otherwise, default is executed if exists)
– Need to respect the access permissions

Source: 3.cpp



9

Access Permissions
● A derived class method can access

– All public member functions and fields of base
– All protected member functions and fields of base
– All methods and fields of itself

● A derived class method cannot access
– Any private methods or fields of base
– Any protected or private members of any other class

public protected private

class ✓ ✓ ✓

children ✓ ✓ ✕

rest ✓ ✕ ✕



10

class Base {
public:

Base(int r) { … }
};
class Derived: public Base {
public: 

Derived(int x, int y)
: Base(x) {

...
}

};

class Base {
public:

Base(int r) { … }
};
class Derived: public Base {
public: 

Derived(int x, int y)
: Base(x) {

...
}

};

Constructors

● A derived class constructor 
needs to call a specific base 
class constructor explicitly.

● This cannot be done using 
an executable instruction in 
the body of the constructor.

● Base class object is 
constructed first.

Decides default visibility
of members from Base

in Derived.
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Destructors

● Destructors get called in 
the reverse order than 
the constructors.

● First derived class, then 
base class destructor

● A special consideration is 
required when a Base 
class pointer / reference 
points to a derived class 
object, and is deleted.

class Base {
public:

~Base() {cout << “~Base\n”; }
};
class Derived: public Base {
public: 

~Derived() {cout<< “~Derived\n”;}
};
int main() {

Derived d;
return 0;

}

class Base {
public:

~Base() {cout << “~Base\n”; }
};
class Derived: public Base {
public: 

~Derived() {cout<< “~Derived\n”;}
};
int main() {

Derived d;
return 0;

}

$ g++ file.cpp; a.out
~Derived
~Base
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Pointers and Inheritance

● C++ has quite strong rules 
towards types.

● Student * pointer cannot 
point to Orange class 
object.

● However, a base class 
pointer can point to 
derived class object.

● Can access public 
members of base.

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}
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Pointers and Inheritance

● Such a mechanism is 
helpful in keeping track of 
all objects derived from the 
same class together.

● This way, we can call 
appropriate methods of 
different derived classes 
with the same pointer.

● Otherwise, we would be 
forced to keep all objects 
in multiple arrays (think C).

std::vector<Base *> allobj;
Base *a[100];

std::vector<Base *> allobj;
Base *a[100];

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}
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Pointers and Inheritance

● Why do we need new?

– Unlike malloc, new calls 
the constructor.

– Unlike free, delete calls the 
destructor.

● Deleting a derived object 
automatically calls derived 
destructor and then the base 
destructor.

● However, deleting a base 
pointer pointing to derived 
object calls only base 
destructor.

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

class Base {
...
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

Source: 4.cpp
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Pointers and Inheritance

● Deleting a base pointer 
pointing to derived object 
calls only base destructor.

● If you want to call the 
destructor of the derived 
class (and then base 
class) in such a case, 
then you need to mark the 
base destructor virtual.

class Base {
…
virtual ~Base();
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

class Base {
…
virtual ~Base();
};
class Derived:public Base {
...
};
int main() {

Base *b = new Derived();
delete b;
return 0;

}

Classwork: Source 5.cpp
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Function Polymorphism: Pointers

● A derived class can redefine a 
method from the base class.

● If their signatures are the 
same, derived class method 
hides the base class method.

● A base class pointer calls the 
base method, while a derived 
class pointer calls the derived 
method.

● A base pointer pointing to 
derived class calls the base 
method.

class Base {
…
void fun();

};
class Derived: public Base {

void fun();
};
int main() {

Base *b = new Derived();
b->fun();
...

}

class Base {
…
void fun();

};
class Derived: public Base {

void fun();
};
int main() {

Base *b = new Derived();
b->fun();
...

}
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Function Polymorphism: Iterators

● We expect the iterator to 
invoke methods of the 
appropriate types, square-
>draw() and circle->draw 
and triangle->draw, etc.

● But iterator has a pointer 
to the base type Shape *.

● How would it invoke the 
function of the derived 
class? 

std::vector<Base *> allobj;
Base *a[100];

std::vector<Base *> allobj;
Base *a[100];

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allDrinks.begin();
 it != allDrinks.end();
 ++it) {
it->createOneCup();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}
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Virtual Functions

● We expect the iterator to 
invoke methods of the 
appropriate types, square-
>draw() and circle->draw 
and triangle->draw, etc.

● But iterator has a pointer 
to the base type Shape *.

● How would it invoke the 
function of the derived 
class? 

class Shape {
public:

virtual void draw();
};
class Circle: public Shape {
public:

void draw();
};

class Shape {
public:

virtual void draw();
};
class Circle: public Shape {
public:

void draw();
};

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}
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Virtual Functions

● If a function is virtual in 
the base class, it indicates 
that a derived class may 
want to override it.

● When a virtual method is 
invoked using a base 
class pointer, appropriate 
version of the method is 
invoked.

class Shape {
public:

virtual void draw();
};
class Circle: public Shape {
public:

void draw();
};

class Shape {
public:

virtual void draw();
};
class Circle: public Shape {
public:

void draw();
};

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}

for (it = allShapes.begin();
 it != allShapes.end();
 ++it) {
it->draw();

}
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Binding

● Consider the following code.

● How does the compiler know which fun method 
to call – Base::fun or Derived::fun?

Base *b;
if (input < 10)
  b = new Base();
else
  b = new Derived();

b->fun();

Base *b;
if (input < 10)
  b = new Base();
else
  b = new Derived();

b->fun();
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Binding

● In general, the method invoked 
cannot be known at compile 
time.

● Thus, a compiler cannot figure 
out the type base pointer is 
pointing to.

● Therefore, we need to depend 
upon the run-time information.

● Compiler generates code to 
maintain a runtime table of 
pointer references, called 
virtual function table (vtbl).

non-virtual functions → static binding
virtual functions → dynamic binding

Base *b;
if (input < 10)
  b = new Base();
else
  b = new Derived();

b->fun();

Base *b;
if (input < 10)
  b = new Base();
else
  b = new Derived();

b->fun();
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Virtual Methods

● A virtual method declared in the base class 
makes the method virtual in base class, and in 
all the classes transitively derived from it.

● Constructors cannot be virtual.
● Destructors should be virtual, unless a class is 

not going to be used as a base class.
● Friends cannot be virtual functions.
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Abstract Class

● A function can be pure virtual function.
– virtual void fun() = 0;

● This makes the class abstract.
● Abstract class cannot be instantiated.

– But its pointer / reference can be created.
● A derived class not implementing a pure virtual 

function is also abstract.
● A pure virtual function may have its definition in 

the abstract class.
Source: 6.cpp
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Multiple Inheritance

● C++ allows deriving from 
multiple base classes.

– Java doesn't.
● The derived class inherits 

properties of both the base 
classes.

● If there is ambiguity (same 
method in both bases), 
compiler issues an error.

● Multiple inheritance makes the 
type hierarchy a DAG.

– In Java, it is a tree.

class Derived: public BaseOne, 
     public BaseTwo {

};

class Derived: public BaseOne, 
     public BaseTwo {

};
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Exercises
● Quiz: 

https://www.geeksforgeeks.org/c-plus-plus-gq/virtual-functions-gq/

● Create a hierarchy of Student, IT Student, 
Second Year IT Student, MBA Student, First Year 
Student. Identify one function and one field in 
each class which cannot be present in others.

● Create an abstract type Shape. Create classes 
Circle, Square, Rectangle, Triangle, Polygon. 
Maintain proper hierarchy. Now, enable the 
following functionality in main.

for (it = allShapes.begin(); it != allShapes.end(); ++it) {
it->draw();

}

for (it = allShapes.begin(); it != allShapes.end(); ++it) {
it->draw();

}

https://www.geeksforgeeks.org/c-plus-plus-gq/virtual-functions-gq/
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Summary

✔ Inheritance Basics
✔ Class Hierarchy
✔ Access Qualifiers
✔ Virtual Functions
✔ Pure Virtual Functions
✔ Multiple Inheritance
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