
Program Analysis

Rupesh Nasre.
IIT Madras

Raisoni
August 2020

2

Outline

● Compilers

– Block Diagram
● Program Analysis

– Motivation
– Control Flow Graph
– Reaching Definitions Analysis
– Live Variables Analysis

– Analysis dimensions

3

Languages

Wall of Love, Paris
Source: google images

4

Languages
● Why do we need languages?

– Humans communicate
● sign language, body language, braille

– Birds communicate
● mark territories, attract for mating, warn danger

– Animals communicate
● mark territories, convey need, preparation for attack

– Aliens?

5

Programming Languages

● Why do we need programming languages?
● And why so many?

– What is your first language?
– Marathi. Yours?
– C.

Source: google images

6

Programming Languages
● There are some special purpose languages

– HTML for webpages
– LaTeX for document formatting
– ps for postscript files; sql, VHDL
– Shell scripts, awk, grep, sed
– Makefile has a language; smtp
– How about google search?

● filetype:pdf, link:www.cse.iitm.ac.in

– Gmail: in:unread, in:starred
– vi: :se ai, :wq, :se ft=c
– What about ls -l, ls -Ri, ls --color, ls -1 dir1 dir2 ?

http://www.cse.iitm.ac.in/

7

Compiler

● When do we need a compiler?
– நான் தமிழ் தெரியுமா தமிழ் தமிழ் தெரியுமா தெதரியுமா
– मुझे हिं�दी आता �ै
– Ich kenne Deutsch
– I know English

Source: google images

8

Jobs of a Compiler

● Translate: input language, output language
● Maintain correctness

– पि�ताजी अजमेर गए |
– Father died today.

● Be efficient
– Why are you laughing?
– I understood yesterday's joke.

● Generate a good language
– I got books but more than that I got your letter.

– मैं पि�ताबें, लेपि�न मैं अ�ने �त्र पिमला � ैपि� अधि�� से अधि�� पिमला �।ै

9

Compilers work with Strings

● Characters, words / tokens, sentences, programs
● Fun with strings

– quick brown fox jumps over the lazy dog
– stewardesses
– typewriter
– skepticisms
– quine

char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}

Programs as Data

10

Why should we Design a language?

● Language matters!

– A: Would you accept a gamble that offers a 10% chance
to win $95 and a 90% chance to lose $5?

– B: Would you pay $5 to participate in a lottery that offers a
10% chance to win $100 and a 90% chance to win
nothing.

● Outcomes of a treatment for lung cancer. Two
descriptions were:

– C: The one-month survival rate is 90%.
– D: There are 10% deaths in the first month.

● B fetched many more positives. 84% physicians chose
option C.

Source: Thinking Fast and Slow, Daniel Kahneman

11

CompilerCompiler

source program

target program input

output

source programinput

InterpreterInterpreter

output

● What does this mean?
– You may be able to do the following with interpreters.
$x = 0; $y = 0;
echo "Enter a variable name: ";
$line = fgets(STDIN);
$line = trim($line);
${$line} = 20;
echo "x=$x, y=$y\n";

$x = 0; $y = 0;
echo "Enter a variable name: ";
$line = fgets(STDIN);
$line = trim($line);
${$line} = 20;
echo "x=$x, y=$y\n";

How about C? void main() {
int x = 0, y = 0;

#include "/dev/stdin"
 = 10;
 printf("x = %d, y = %d\n", x, y);
}

void main() {
int x = 0, y = 0;

#include "/dev/stdin"
 = 10;
 printf("x = %d, y = %d\n", x, y);
}

Everything is fair in love, war and C.

12

CompilerCompiler

source program

target program input

output

source programinput

InterpreterInterpreter

output

● What does this mean?
– You may be able to do the following with compilers.
x += 2;
x += 2;
--x;
x += 5;
++x;
x += 9

x += 2;
x += 2;
--x;
x += 5;
++x;
x += 9

x += 18;x += 18;is equivalent to

13

CompilerCompiler

source program

target program input

output

source programinput

InterpreterInterpreter

output

TranslatorTranslator

source program

intermediate program

input

outputVirtual
Machine

Virtual
Machine

14

Preprocessor (cpp)Preprocessor (cpp)

Compiler (gcc)Compiler (gcc)

Assembler (as)Assembler (as)

Linker / Loader (ld)Linker / Loader (ld)

source program (file.c)

Modified source program (file.i)

target assembly program (file.s)

relocatable machine code (file.o)

target machine code (a.out)

library files,
relocatable object files

● cpp file.c >file.i
● gcc -S file.i
● as file.s -o file.o
● ld -o a.out file.o ...libraries...

Try the following:
● gcc -v file.c
● gcc -save-temps file.c

15

Language Translators

● Preprocessor: collects source programs,
expands macros.

● Compiler: Translates source program into a low-
level assembly.

● Assembler: Produces (relocatable) machine
code.

● Linker: Resolves external references statically,
combines multiple machine codes.

● Loader: Loads executable codes into memory,
resolves external references dynamically.

16

Lexical AnalyzerLexical Analyzer

Syntax AnalyzerSyntax Analyzer

Semantic AnalyzerSemantic Analyzer

Intermediate
Code Generator

Intermediate
Code Generator

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Machine-Independent
Code Optimizer

Machine-Independent
Code Optimizer

Code GeneratorCode Generator

Target machine code

Intermediate representation

Machine-Dependent
Code Optimizer

Machine-Dependent
Code Optimizer

Target machine code

Symbol
Table

F
 r

 o
 n

 t
 e

 n
 d

B
 a

 c
 k

 e
 n

 d

17

Lexical AnalyzerLexical Analyzer

Syntax AnalyzerSyntax Analyzer

Semantic AnalyzerSemantic Analyzer

Code GeneratorCode Generator

z = x + y * 32

<id,1> <=> <id,2> <+> <id,3> <*> <32>

Intermediate
Code Generator

Intermediate
Code Generator

Machine-Independent
Code Optimizer

Machine-Independent
Code Optimizer

t1 = id3 * 32
t2 = inttofloat(t1)
t3 = id2 + t2
id1 = t3

Machine-Dependent
Code Optimizer

Machine-Dependent
Code Optimizer

<id,1>

<id,2>
<id,3> 32

*

+
=

<id,1>

<id,2>

<id,3>

*

inttofloat

+
=

32

t1 = id3 * 32
t2 = inttofloat(t1)
id1 = id2 + t2

LD R3, id3
MUL R3, R3, #32
ITOF R2, R3
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

LD R3, id3
SHL R3, #5
ITOF R2, R3
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

z ...

x ...

y ...

1

2

3

Symbol Table

18

Outline

● Compilers

– Block Diagram
● Program Analysis

– Motivation
– Control Flow Graph
– Reaching Definitions Analysis
– Live Variables Analysis

– Analysis dimensions

19

What is Program Analysis?

For an end-goal, identify “interesting aspects” of a
program's representation.

20

For an end-goal,

identify “interesting aspects”

of a program's representation.

Checking security

Array index range

Source, AST, binary,
executed instruction

What is Program Analysis?

Classwork: Write down two types of information
you can extract from programs.

Classwork: Write down two types of information
you can extract from programs.

21

Examples

End goal Interesting aspect

Dead code elimination Reachability

Constant propagation use-def

Security Array index range, dangling pointers

Parallelization Data dependence, SIMD opportunities

Debugging Slice

Cache performance Memory access pattern

Memory reduction Live ranges

... ...

Program Analysis is often a pre-cursor to Optimization.

22

Lexical AnalyzerLexical Analyzer

Syntax AnalyzerSyntax Analyzer

Semantic AnalyzerSemantic Analyzer

Intermediate
Code Generator

Intermediate
Code Generator

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Machine-Independent
Code Optimizer

Machine-Independent
Code Optimizer

Code GeneratorCode Generator

Target machine code

Intermediate representation

Machine-Dependent
Code Optimizer

Machine-Dependent
Code Optimizer

Target machine code

Symbol
Table

F
 r

 o
 n

 t
 e

 n
 d

B
 a

 c
 k

 e
 n

 d

Analysis

Transformation

But remember that Analysis
can be done on source, AST
or machine code also.

23

Example

void main() {
 int a, b, c, d, *p;

 p = &a;
 c = a + b;
 d = *p + b;
}

void main() {
 int a, b, c, d, *p;

 p = &a;
 c = a + b;
 d = *p + b;
}

Can this computation be avoided?
(common subexpression elimination)

void main() {
 int a, b, c, d, *p;

 p = &a;
 int t = a + b;
 c = t;
 d = t;
}

void main() {
 int a, b, c, d, *p;

 p = &a;
 int t = a + b;
 c = t;
 d = t;
}

This requires a program analysis
called pointer analysis.

This requires another analysis
called type analysis.

24

Outline

● Compilers

– Block Diagram
● Program Analysis

– Motivation
– Control Flow Graph
– Reaching Definitions Analysis
– Live Variables Analysis

– Analysis dimensions

25

Compiler Basics

● Program as Data
● Control-Flow Graph (CFG)
● Basic Blocks
● Optimizations

– gcc -O2 prog.c

int main() {
 int x = 1;
 if (x > 0)

++x;
 else

x = 100;
 printf(“%d\n”, x);
}

int main() {
 int x = 1;
 if (x > 0)

++x;
 else

x = 100;
 printf(“%d\n”, x);
}

int main() {
 int x = 1;
 if (1 > 0)

++x;
 else

x = 100;
 printf(“%d\n”, x);
}

int main() {
 int x = 1;
 if (1 > 0)

++x;
 else

x = 100;
 printf(“%d\n”, x);
}

int main() {
 int x = 1;
 ++x;
 printf(“%d\n”, x);
}

int main() {
 int x = 1;
 ++x;
 printf(“%d\n”, x);
}

int main() {
 printf(“%d\n”, 2);
}

int main() {
 printf(“%d\n”, 2);
}

26

Data Flow Analysis

● Flow-sensitive: Considers the control-flow in a
function

● Operates on a flow-graph with nodes as basic-
blocks and edges as the control-flow

● Examples
– Constant propagation
– Common subexpression elimination
– Dead code elimination

a = 8a = 8

a = 3a = 3 a = 2a = 2

b = ab = aWhat is the
value of b?

27

Classwork

● Draw the CFG for the following program.

int main() {
 int x = 0, n = 0;
 scanf(“%d”, &x);

 while (x != 1) {
 if (x % 2) {

x = 3 * x + 1;
++n;

 } else {
x /= 2;
n = n + 1;

 }
 }
 printf(“%d\n”, n);
}

int main() {
 int x = 0, n = 0;
 scanf(“%d”, &x);

 while (x != 1) {
 if (x % 2) {

x = 3 * x + 1;
++n;

 } else {
x /= 2;
n = n + 1;

 }
 }
 printf(“%d\n”, n);
}

x = 0
n = 0

scanf(...)

x = 0
n = 0

scanf(...)

printf(...)printf(...)ENDEND

STARTSTART

x % 2x % 2

x != 1x != 1

x = 3 * x + 1
++n

x = 3 * x + 1
++n

x /= 2
n = n + 1

x /= 2
n = n + 1

28

Reaching Definitions

● Every assignment is a definition.

● A definition d reaches a program point p if there
exists a path from the point immediately
following d to p such that d is not killed along
the path. D0: y = 3

D1: x = 10
D2: y = 11

if c

D0: y = 3
D1: x = 10
D2: y = 11

if c

D3: x = 1
D4: y = 2
D3: x = 1
D4: y = 2

D5: z = x
D6: x = 4
D5: z = x
D6: x = 4

B0

B1 B2

B3 What definitions reach B3?

29

DFA Equations

● in(B) = set of data flow facts entering block B
● out(B) = …
● gen(B) = set of data flow facts generated in B
● kill(B) = set of data flow facts from the other

blocks killed in B

30

in1 out1 in2 out2 in3 out3

B0 {} {D1, D2} {} {D1, D2} {} {D1, D2}
B1 {} {D3, D4} {D1, D2} {D3, D4} {D1, D2} {D3, D4}
B2 {} {D5, D6} {D1, D2} {D2, D5, D6} {D1, D2} {D2, D5, D6}
B3 {} {} {D3, D4, D5, D6} {D3, D4, D5, D6} {D2, D3, D4, D5, D6} {D2, D3, D4, D5, D6}

DFA for Reaching Definitions

● in(B) = U out(P) where P is a predecessor of B

● out(B) = gen(B) U (in(B) – kill(B))

● Initially, out(B) = { }

D0: y = 3
D1: x = 10
D2: y = 11

if c

D0: y = 3
D1: x = 10
D2: y = 11

if c

D3: x = 1
D4: y = 2
D3: x = 1
D4: y = 2

D5: z = x
D6: x = 4
D5: z = x
D6: x = 4

B0

B1

B3

gen(B0) = {D1, D2} kill(B0) = {D3, D4, D6}
gen(B1) = {D3, D4} kill(B1) = {D0, D1, D2, D6}
gen(B2) = {D5, D6} kill(B2) = {D1, D3}
gen(B3) = { } kill(B3) = { }

B2

31

Algorithm for Reaching Definitions

for each basic block B

 compute gen(B) and kill(B)

 out(B) = {}

do {

 for each basic block B

 in(B) = U out(P) where P \in pred(B)

 out(B) = gen(B) U (in(B) - kill(B))

} while in(B) changes for any basic block B

32

Classwork

D1: y = 3
D2: x = 10

if c

D1: y = 3
D2: x = 10

if c

D3: x = 1
D4: y = 2
D3: x = 1
D4: y = 2

D5: z = x
D6: x = 4
D5: z = x
D6: x = 4

D7: z = y
D8: x = z
D7: z = y
D8: x = z

B0

B1

B3

● in(B) = U out(P) where P is a predecessor of B

● out(B) = gen(B) U (in(B) – kill(B))

● Initially, out(B) = { }

gen(B0) = {D1, D2} kill(B0) = {D3, D4, D6, D8}
gen(B1) = {D3, D4} kill(B1) = {D1, D2, D6, D8}
gen(B2) = {D5, D6} kill(B2) = {D2, D3, D7, D8}
gen(B3) = {D7, D8} kill(B3) = {D2, D3, D5, D6}

B2

in1 out1 in2 out2 in3 out3 in4 out4

B0 {} {D1, D2} {D7, D8} {D1, D2, D7} {D4, D7, D8} {D1, D2, D7} {D1,4,7, 8} {D1,2,7}

B1 {} {D3, D4} {D1, D2} {D3, D4} {D1, D2, D7} {D3, D4, D7} {D1,2,7} {D3,4,7}

B2 {} {D5, D6} {D1, D2} {D1, D5, D6} {D1, D2, D7} {D1, D5, D6} {D1,2,7} {D1,5,6}

B3 {} {D7, D8} {D3,4,5,6} {D4,7,8} {D1, D3, D4, D5, D6} {D1,4, 7, 8} {D1,3,4,5,6,7} {D1,4,7,8}

33

DFA for Reaching Definitions

Domain Sets of definitions

Transfer function in(B) = U out(P)
out(B) = gen(B) U (in(B) - kill(B))

Direction Forward

Meet / confluence
operator

U

Initialization out(B) = { }

34

Memory Optimization

● Reuse memory / register wherever possible.
● y is dead at lines 2, 3, 4.
● It is also dead at else block.
● z and y can reuse memory /

register.

 0 int x = 2, y = 3, z = 1;
 1 if (x == 2) {
 2 y = z;
 3 x = 9;
 4 y = 7;
 5 x = x – y;
 6 } else {
 7 y = x + z;
 8 ++x;
 9 }
10 printf(“%d”, y);

 0 int x = 2, y = 3, z = 1;
 1 if (x == 2) {
 2 y = z;
 3 x = 9;
 4 y = 7;
 5 x = x – y;
 6 } else {
 7 y = x + z;
 8 ++x;
 9 }
10 printf(“%d”, y);

This optimization demands computation of live variables.This optimization demands computation of live variables.

35

DFA for Live Variables

Domain Sets of variables

Transfer function in(B) = use(B) U (out(B) - def(B))
out(B) = U in(S) where S is a successor of B

Direction Backward

Meet / confluence
operator

U

Initialization in(B) = { }

Definition: A variable v is live at a program point p if v

is used along some path in the flow graph starting at p.

Otherwise, the variable v is dead.

How to compute live variables?How to compute live variables?

36

Classwork
● Write an algorithm for Live Variable Analysis

Domain Sets of variables

Transfer function in(B) = use(B) U (out(B) - def(B))
out(B) = U in(S) where S is a successor of B

Direction Backward

Meet / confluence
operator

U

Initialization in(B) = { }

for each basic block B
 compute gen(B) and kill(B)
 out(B) = {}

do {
 for each basic block B
 in(B) = U out(P) where P \in pred(B)
 out(B) = gen(B) U (in(B) - kill(B))
} while in(B) changes for any basic block B

Algo for
reaching

definitions

Parameters
for live

variable
analysis

37

Direction and Confluence

Forward Backward

U Reaching
Definitions

Live Variables

∩ Available
Expressions

Very Busy
Expressions

An expression is available at a program point P if the expression is
computed along each path to P (from START) without getting invalidated.

An expression is very busy at a program point P if along each path from P
(to END) the expression is computed without getting invalidated.

38

Outline

● Compilers

– Block Diagram
● Program Analysis

– Motivation
– Control Flow Graph
– Reaching Definitions Analysis
– Live Variables Analysis

– Analysis dimensions

39

Analysis Dimensions

An analysis's precision and efficiency is guided
by various design decisions.

● Flow-sensitivity
● Context-sensitivity
● Path-sensitivity
● Field-sensitivity

How many hands are required
to know the time precisely?

40

Flow-sensitivity

L0: a = 0;
L1: a = 1;
L2: ...

L0: a = 0;
L1: a = 1;
L2: ...

Flow-sensitive solution: at L1 a is 0, at L2 a is 1
Flow-insensitive solution: in the program a is in {0, 1}

Flow-insensitive analyses ignore the control-flow in the program.

B1B1

B2B2 B3B3

B4B4

B1B1

B3B3

B2B2

B4B4

B1
B2
B3
B4

B1
B2
B3
B4

PP

41

Context-sensitivity

main() {
L0: fun(0);
L1: fun(1);

}

main() {
L0: fun(0);
L1: fun(1);

}

fun(int x) {
y = x;

}

fun(int x) {
y = x;

}

Context-sensitive solution:
 y is 0 along L0, y is 1 along L1

Context-insensitive solution:
 y is in {0, 1} in the program

main

f f

g g g g

...

Exponential
Number of
contexts

Along main-f1-g1, …
Along main-f1-g2, …
Along main-f2-g1, …
Along main-f2-g2, ...

Exponential storage requirementExponential time requirement

42

Context-sensitivity

main() {
L0: fun(0);
L1: fun(1);

}

main() {
L0: fun(0);
L1: fun(1);

}

fun(int x) {
y = x;

}

fun(int x) {
y = x;

}

Context-sensitive solution:
 y is 0 along L0, y is 1 along L1

Context-insensitive solution:
 y is in {0, 1} in the program
 y is in {-∞, +∞} in the program

Inter-procedural
intra-procedural

43

Path-sensitivity

if (a == 0)
b = 1;

else
b = 2;

if (a == 0)
b = 1;

else
b = 2;

Path-sensitive solution:
 b is 1 when a is 0, b is 2 when a is not 0

Path-insensitive solution:
 b is in {1, 2} in the program

if (c1)
 while (c2) {
 if (c3)
 …
 else
 for (; c4;)
 ...
 }
else
 ...

if (c1)
 while (c2) {
 if (c3)
 …
 else
 for (; c4;)
 ...
 }
else
 ...

c1 and c2 and c3, …
c1 and c2 and !c3 and c4, …
c1 and c2 and !c3 and !c4, …
c1 and !c2, …
!c1 ...
...

44

Field-sensitivity

struct T s;

s.a = 0;
s.b = 1;

struct T s;

s.a = 0;
s.b = 1;

Field-sensitive solution:
 s.a is 0, s.b is 1

Field-insensitive solution:
 s is in {0, 1}

Aggregates are collapsed into a single variable.
 e.g., arrays, structures, unions.

This reduces the number of variables tracked during
the analysis and reduces precision.

45

Homework

● Find the values of
variables in
– context + flow-

sensitive analysis
– interprocedural

context-insensitive
but flow-sensitive
analysis

– intraprocedural
flow-insensitive
analysis

int g = 0;
void fun(int n) {
 g = n;
}
void main() {
 int a = 1;
 a = 2;
 fun(a); // L1
 a = 3;
 fun(a); // L2
}

Program Analysis

Rupesh Nasre.
IIT Madras

Raisoni
August 2020

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

