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Languages

Wall of Love, Paris
Source: google images
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Languages
● Why do we need languages?

– Humans communicate
● sign language, body language, braille

– Birds communicate
● mark territories, attract for mating, warn danger

– Animals communicate
● mark territories, convey need, preparation for attack

– Aliens?
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Programming Languages

● Why do we need programming languages?
● And why so many?

– What is your first language?
– Marathi. Yours?
– C.

Source: google images
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Programming Languages
● There are some special purpose languages

– HTML for webpages
– LaTeX for document formatting
– ps for postscript files; sql, VHDL
– Shell scripts, awk, grep, sed
– Makefile has a language; smtp
– How about google search?

● filetype:pdf, link:www.cse.iitm.ac.in

– Gmail: in:unread, in:starred
– vi: :se ai, :wq, :se ft=c
– What about ls -l, ls -Ri, ls --color, ls -1 dir1 dir2 ?

http://www.cse.iitm.ac.in/
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Compiler

● When do we need a compiler?
–   நான் தமிழ் தெரியுமா தமிழ் தமிழ் தெரியுமா தெதரியுமா
– मुझे हिं�दी आता �ै
– Ich kenne Deutsch
– I know English

Source: google images
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Jobs of a Compiler

● Translate: input language, output language
● Maintain correctness 

– पि�ताजी अजमेर गए | 
– Father died today.

● Be efficient
– Why are you laughing?
– I understood yesterday's joke.

● Generate a good language
– I got books but more than that I got your letter.

– मैं पि�ताबें, लेपि�न मैं अ�ने �त्र पिमला � ैपि� अधि�� से अधि�� पिमला �।ै
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Compilers work with Strings

● Characters, words / tokens, sentences, programs
● Fun with strings

– quick brown fox jumps over the lazy dog
– stewardesses
– typewriter
– skepticisms
– quine

char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}

Programs as Data
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Why should we Design a language?

● Language matters!

– A: Would you accept a gamble that offers a 10% chance 
to win $95 and a 90% chance to lose $5? 

– B: Would you pay $5 to participate in a lottery that offers a 
10% chance to win $100 and a 90% chance to win 
nothing.

● Outcomes of a treatment for lung cancer. Two 
descriptions were: 

– C: The one-month survival rate is 90%. 
– D: There are 10% deaths in the first month.

● B fetched many more positives. 84% physicians chose 
option C.

Source: Thinking Fast and Slow, Daniel Kahneman
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CompilerCompiler

source program

target program input

output

source programinput

InterpreterInterpreter

output

● What does this mean?
– You may be able to do the following with interpreters.
$x = 0; $y = 0;
echo "Enter a variable name: ";
$line = fgets(STDIN);
$line = trim($line);
${$line} = 20;
echo "x=$x, y=$y\n";

$x = 0; $y = 0;
echo "Enter a variable name: ";
$line = fgets(STDIN);
$line = trim($line);
${$line} = 20;
echo "x=$x, y=$y\n";

How about C? void main() {
int x = 0, y = 0;

#include "/dev/stdin"
        = 10;
        printf("x = %d, y = %d\n", x, y);
}

void main() {
int x = 0, y = 0;

#include "/dev/stdin"
        = 10;
        printf("x = %d, y = %d\n", x, y);
}

Everything is fair in love, war and C.
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CompilerCompiler

source program

target program input

output

source programinput

InterpreterInterpreter

output

● What does this mean?
– You may be able to do the following with compilers.
x += 2;
x += 2;
--x;
x += 5;
++x;
x += 9

x += 2;
x += 2;
--x;
x += 5;
++x;
x += 9

x += 18;x += 18;is equivalent to
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CompilerCompiler

source program

target program input

output

source programinput

InterpreterInterpreter

output

TranslatorTranslator

source program

intermediate program

input

outputVirtual 
Machine

Virtual 
Machine
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Preprocessor (cpp)Preprocessor (cpp)

Compiler (gcc)Compiler (gcc)

Assembler (as)Assembler (as)

Linker / Loader (ld)Linker / Loader (ld)

source program (file.c)

Modified source program (file.i)

target assembly program (file.s)

relocatable machine code (file.o)

target machine code (a.out)

library files,
relocatable object files

● cpp file.c >file.i
● gcc -S file.i
● as file.s -o file.o
● ld -o a.out file.o ...libraries...

Try the following:
● gcc -v file.c
● gcc -save-temps file.c
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Language Translators

● Preprocessor: collects source programs, 
expands macros.

● Compiler: Translates source program into a low-
level assembly.

● Assembler: Produces (relocatable) machine 
code.

● Linker: Resolves external references statically, 
combines multiple machine codes.

● Loader: Loads executable codes into memory, 
resolves external references dynamically.
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Lexical AnalyzerLexical Analyzer

Syntax AnalyzerSyntax Analyzer

Semantic AnalyzerSemantic Analyzer

Intermediate 
Code Generator

Intermediate 
Code Generator

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Machine-Independent 
Code Optimizer

Machine-Independent 
Code Optimizer

Code GeneratorCode Generator

Target machine code

Intermediate representation

Machine-Dependent 
Code Optimizer

Machine-Dependent 
Code Optimizer

Target machine code

Symbol
Table
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Lexical AnalyzerLexical Analyzer

Syntax AnalyzerSyntax Analyzer

Semantic AnalyzerSemantic Analyzer

Code GeneratorCode Generator

z = x + y * 32

<id,1> <=> <id,2> <+> <id,3> <*> <32>

Intermediate 
Code Generator

Intermediate 
Code Generator

Machine-Independent 
Code Optimizer

Machine-Independent 
Code Optimizer

t1 = id3 * 32
t2 = inttofloat(t1)
t3 = id2 + t2
id1 = t3

Machine-Dependent 
Code Optimizer

Machine-Dependent 
Code Optimizer

<id,1>

<id,2>
<id,3> 32

*

+
=

<id,1>

<id,2>

<id,3>

*

inttofloat

+
=

32

t1 = id3 * 32
t2 = inttofloat(t1)
id1 = id2 + t2

LD R3, id3
MUL R3, R3, #32
ITOF R2, R3
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1 

LD R3, id3
SHL R3, #5
ITOF R2, R3
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1 

z ...

x ...

y ...

1

2

3

Symbol Table
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Outline

● Compilers

– Block Diagram
● Program Analysis

– Motivation
– Control Flow Graph
– Reaching Definitions Analysis
– Live Variables Analysis

– Analysis dimensions
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What is Program Analysis?

For an end-goal, identify “interesting aspects” of a 
program's representation.
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For an end-goal, 

identify “interesting aspects” 

of a program's representation.

Checking security

Array index range

Source, AST, binary, 
executed instruction 

What is Program Analysis?

Classwork: Write down two types of information 
you can extract from programs.

Classwork: Write down two types of information 
you can extract from programs.
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Examples

End goal Interesting aspect

Dead code elimination Reachability

Constant propagation use-def

Security Array index range, dangling pointers

Parallelization Data dependence, SIMD opportunities

Debugging Slice

Cache performance Memory access pattern

Memory reduction Live ranges

... ...

Program Analysis is often a pre-cursor to Optimization.
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Lexical AnalyzerLexical Analyzer

Syntax AnalyzerSyntax Analyzer

Semantic AnalyzerSemantic Analyzer

Intermediate 
Code Generator

Intermediate 
Code Generator

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Machine-Independent 
Code Optimizer

Machine-Independent 
Code Optimizer

Code GeneratorCode Generator

Target machine code

Intermediate representation

Machine-Dependent 
Code Optimizer

Machine-Dependent 
Code Optimizer

Target machine code

Symbol
Table

F
 r

 o
 n

 t
 e

 n
 d

B
 a
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 k

 e
 n

 d

Analysis

Transformation

But remember that Analysis 
can be done on source, AST 
or machine code also.



23

Example

void main() {
  int a, b, c, d, *p;

  p = &a;
  c = a + b;
  d = *p + b;
}

void main() {
  int a, b, c, d, *p;

  p = &a;
  c = a + b;
  d = *p + b;
}

Can this computation be avoided?
(common subexpression elimination)

void main() {
  int a, b, c, d, *p;

  p = &a;
  int t = a + b;
  c = t;
  d = t;
}

void main() {
  int a, b, c, d, *p;

  p = &a;
  int t = a + b;
  c = t;
  d = t;
}

This requires a program analysis
called pointer analysis.

This requires another analysis
called type analysis.
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Outline

● Compilers

– Block Diagram
● Program Analysis

– Motivation
– Control Flow Graph
– Reaching Definitions Analysis
– Live Variables Analysis

– Analysis dimensions
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Compiler Basics

● Program as Data
● Control-Flow Graph (CFG)
● Basic Blocks
● Optimizations

– gcc -O2 prog.c

int main() {
  int x = 1;
  if (x > 0)

++x;
  else

x = 100;
  printf(“%d\n”, x);
}

int main() {
  int x = 1;
  if (x > 0)

++x;
  else

x = 100;
  printf(“%d\n”, x);
}

int main() {
  int x = 1;
  if (1 > 0)

++x;
  else

x = 100;
  printf(“%d\n”, x);
}

int main() {
  int x = 1;
  if (1 > 0)

++x;
  else

x = 100;
  printf(“%d\n”, x);
}

int main() {
  int x = 1;
  ++x;
  printf(“%d\n”, x);
}

int main() {
  int x = 1;
  ++x;
  printf(“%d\n”, x);
}

int main() {
  printf(“%d\n”, 2);
}

int main() {
  printf(“%d\n”, 2);
}
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Data Flow Analysis

● Flow-sensitive: Considers the control-flow in a 
function

● Operates on a flow-graph with nodes as basic-
blocks and edges as the control-flow

● Examples
– Constant propagation
– Common subexpression elimination
– Dead code elimination

a = 8a = 8

a = 3a = 3 a = 2a = 2

b = ab = aWhat is the 
value of b?
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Classwork

● Draw the CFG for the following program.

int main() {
  int x = 0, n = 0;
  scanf(“%d”, &x);

  while (x != 1) {
    if (x % 2) {

x = 3 * x + 1;
++n;

    } else {
x /= 2;
n = n + 1;

    }
  }
  printf(“%d\n”, n);
}

int main() {
  int x = 0, n = 0;
  scanf(“%d”, &x);

  while (x != 1) {
    if (x % 2) {

x = 3 * x + 1;
++n;

    } else {
x /= 2;
n = n + 1;

    }
  }
  printf(“%d\n”, n);
}

x = 0
n = 0

scanf(...)

x = 0
n = 0

scanf(...)

printf(...)printf(...)ENDEND

STARTSTART

x % 2x % 2

x != 1x != 1

x = 3 * x + 1
++n

x = 3 * x + 1
++n

x /= 2
n = n + 1

x /= 2
n = n + 1
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Reaching Definitions

● Every assignment is a definition.

● A definition d reaches a program point p if there 
exists a path from the point immediately 
following d to p such that d is not killed along 
the path. D0: y = 3

D1: x = 10
D2: y = 11

if c

D0: y = 3
D1: x = 10
D2: y = 11

if c

D3: x = 1
D4: y = 2
D3: x = 1
D4: y = 2

D5: z = x
D6: x = 4
D5: z = x
D6: x = 4

B0

B1 B2

B3 What definitions reach B3?
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DFA Equations

● in(B) = set of data flow facts entering block B
● out(B) = …
● gen(B) = set of data flow facts generated in B
● kill(B) = set of data flow facts from the other 

blocks killed in B
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in1 out1 in2 out2 in3 out3

B0 {} {D1, D2} {} {D1, D2} {} {D1, D2}
B1 {} {D3, D4} {D1, D2} {D3, D4} {D1, D2} {D3, D4}
B2 {} {D5, D6} {D1, D2} {D2, D5, D6} {D1, D2} {D2, D5, D6}
B3 {} {} {D3, D4, D5, D6} {D3, D4, D5, D6} {D2, D3, D4, D5, D6} {D2, D3, D4, D5, D6}

DFA for Reaching Definitions

● in(B) = U out(P) where P is a predecessor of B

● out(B) = gen(B) U (in(B) – kill(B))

● Initially, out(B) = { }

D0: y = 3
D1: x = 10
D2: y = 11

if c

D0: y = 3
D1: x = 10
D2: y = 11

if c

D3: x = 1
D4: y = 2
D3: x = 1
D4: y = 2

D5: z = x
D6: x = 4
D5: z = x
D6: x = 4

B0

B1

B3

gen(B0) = {D1, D2} kill(B0) = {D3, D4, D6}
gen(B1) = {D3, D4} kill(B1) = {D0, D1, D2, D6}
gen(B2) = {D5, D6} kill(B2) = {D1, D3}
gen(B3) = { } kill(B3) = { }

B2
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Algorithm for Reaching Definitions

for each basic block B

  compute gen(B) and kill(B)

  out(B) = {}

do {

  for each basic block B

      in(B) = U out(P) where P \in pred(B)

      out(B) = gen(B) U (in(B) - kill(B))

} while in(B) changes for any basic block B
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Classwork

D1: y = 3
D2: x = 10

if c

D1: y = 3
D2: x = 10

if c

D3: x = 1
D4: y = 2
D3: x = 1
D4: y = 2

D5: z = x
D6: x = 4
D5: z = x
D6: x = 4

D7: z = y
D8: x = z
D7: z = y
D8: x = z

B0

B1

B3

● in(B) = U out(P) where P is a predecessor of B

● out(B) = gen(B) U (in(B) – kill(B))

● Initially, out(B) = { }

gen(B0) = {D1, D2} kill(B0) = {D3, D4, D6, D8}
gen(B1) = {D3, D4} kill(B1) = {D1, D2, D6, D8}
gen(B2) = {D5, D6} kill(B2) = {D2, D3, D7, D8}
gen(B3) = {D7, D8} kill(B3) = {D2, D3, D5, D6}

B2

in1 out1 in2 out2 in3 out3 in4 out4

B0 {} {D1, D2} {D7, D8} {D1, D2, D7} {D4, D7, D8} {D1, D2, D7} {D1,4,7, 8} {D1,2,7}

B1 {} {D3, D4} {D1, D2} {D3, D4} {D1, D2, D7} {D3, D4, D7} {D1,2,7} {D3,4,7}

B2 {} {D5, D6} {D1, D2} {D1, D5, D6} {D1, D2, D7} {D1, D5, D6} {D1,2,7} {D1,5,6}

B3 {} {D7, D8} {D3,4,5,6} {D4,7,8} {D1, D3, D4, D5, D6} {D1,4, 7, 8} {D1,3,4,5,6,7} {D1,4,7,8}
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DFA for Reaching Definitions

Domain Sets of definitions

Transfer function in(B) = U out(P)
out(B) = gen(B) U (in(B) - kill(B))

Direction Forward

Meet / confluence 
operator

U

Initialization out(B) = { }
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Memory Optimization

● Reuse memory / register wherever possible.
● y is dead at lines 2, 3, 4.
● It is also dead at else block.
● z and y can reuse memory /

register.

 0  int x = 2, y = 3, z = 1;
 1  if (x == 2) {
 2    y = z;
 3    x = 9;
 4   y = 7;
 5    x = x – y;
 6  } else {
 7     y = x + z;
 8   ++x;
 9  }
10 printf(“%d”, y);

 0  int x = 2, y = 3, z = 1;
 1  if (x == 2) {
 2    y = z;
 3    x = 9;
 4   y = 7;
 5    x = x – y;
 6  } else {
 7     y = x + z;
 8   ++x;
 9  }
10 printf(“%d”, y);

This optimization demands computation of live variables.This optimization demands computation of live variables.
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DFA for Live Variables

Domain Sets of variables

Transfer function in(B) = use(B) U (out(B) - def(B))
out(B) = U in(S) where S is a successor of B

Direction Backward

Meet / confluence 
operator

U

Initialization in(B) = { }

Definition: A variable v is live at a program point p if v 

is used along some path in the flow graph starting at p.

Otherwise, the variable v is dead.

How to compute live variables?How to compute live variables?
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Classwork
● Write an algorithm for Live Variable Analysis

Domain Sets of variables

Transfer function in(B) = use(B) U (out(B) - def(B))
out(B) = U in(S) where S is a successor of B

Direction Backward

Meet / confluence 
operator

U

Initialization in(B) = { }

for each basic block B
  compute gen(B) and kill(B)
  out(B) = {}

do {
  for each basic block B
      in(B) = U out(P) where P \in pred(B)
      out(B) = gen(B) U (in(B) - kill(B))
} while in(B) changes for any basic block B

Algo for 
reaching

definitions

Parameters
for live

variable 
analysis
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Direction and Confluence

Forward Backward

U Reaching 
Definitions

Live Variables

∩ Available 
Expressions

Very Busy 
Expressions

An expression is available at a program point P if the expression is 
computed along each path to P (from START) without getting invalidated.

An expression is very busy at a program point P if along each path from P 
(to END) the expression is computed without getting invalidated.
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Outline

● Compilers

– Block Diagram
● Program Analysis

– Motivation
– Control Flow Graph
– Reaching Definitions Analysis
– Live Variables Analysis

– Analysis dimensions
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Analysis Dimensions

An analysis's precision and efficiency is guided 
by various design decisions.

● Flow-sensitivity
● Context-sensitivity
● Path-sensitivity
● Field-sensitivity

How many hands are required 
to know the time precisely?
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Flow-sensitivity

L0:  a = 0;
L1:  a = 1;
L2:  ...

L0:  a = 0;
L1:  a = 1;
L2:  ...

Flow-sensitive solution: at L1 a is 0, at L2 a is 1
Flow-insensitive solution: in the program a is in {0, 1}

Flow-insensitive analyses ignore the control-flow in the program.

B1B1

B2B2 B3B3

B4B4

B1B1

B3B3

B2B2

B4B4

B1
B2
B3
B4

B1
B2
B3
B4

PP
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Context-sensitivity

main() {
L0:  fun(0);
L1:  fun(1);

}

main() {
L0:  fun(0);
L1:  fun(1);

}

fun(int x) {
y = x; 

}

fun(int x) {
y = x; 

}

Context-sensitive solution: 
    y is 0 along L0, y is 1 along L1

Context-insensitive solution:
    y is in {0, 1} in the program

main

f f

g g g g

...

Exponential
Number of 
contexts

Along main-f1-g1, …
Along main-f1-g2, …
Along main-f2-g1, …
Along main-f2-g2, ...

Exponential storage requirementExponential time requirement
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Context-sensitivity

main() {
L0:  fun(0);
L1:  fun(1);

}

main() {
L0:  fun(0);
L1:  fun(1);

}

fun(int x) {
y = x; 

}

fun(int x) {
y = x; 

}

Context-sensitive solution: 
    y is 0 along L0, y is 1 along L1

Context-insensitive solution:
    y is in {0, 1} in the program
    y is in {-∞, +∞} in the program

Inter-procedural
intra-procedural
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Path-sensitivity

if (a == 0)
b = 1;

else
b = 2;

if (a == 0)
b = 1;

else
b = 2;

Path-sensitive solution: 
   b is 1 when a is 0, b is 2 when a is not 0

Path-insensitive solution: 
   b is in {1, 2} in the program

if (c1)
   while (c2) {
      if (c3)
        …
      else
        for (; c4; )
           ...
    }
else
    ...

if (c1)
   while (c2) {
      if (c3)
        …
      else
        for (; c4; )
           ...
    }
else
    ...

c1 and c2 and c3, …
c1 and c2 and !c3 and c4, …
c1 and c2 and !c3 and !c4, …
c1 and !c2, …
!c1 ... 
...
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Field-sensitivity

struct T s;

s.a = 0;
s.b = 1;

struct T s;

s.a = 0;
s.b = 1;

Field-sensitive solution: 
   s.a is 0, s.b is 1

Field-insensitive solution: 
   s is in {0, 1}

Aggregates are collapsed into a single variable.
  e.g., arrays, structures, unions.

This reduces the number of variables tracked during 
the analysis and reduces precision.
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Homework

● Find the values of 
variables in
– context + flow-

sensitive analysis
– interprocedural 

context-insensitive 
but flow-sensitive 
analysis

– intraprocedural 
flow-insensitive 
analysis

int g = 0;
void fun(int n) {
    g = n;
}
void main() {
    int a = 1;
    a = 2;
    fun(a); // L1
    a = 3;
    fun(a); // L2
}
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