CS6843: Program Analysis

Instructor: Rupesh Nasre (rupesh@cse)

TAs: Aman, Manas, Raghesh

Web: ~rupesh/teaching/pa/jan16/

Moodle: moodle/course/view.php?id=412

What is Program Analysis?

For an end-goal identify "interesting aspects" of a program's representation.

What is Program Analysis?

For an end-goal identify "interesting aspects" of a program's representation.

Checking security

Array index range

Source, AST, binary, executed instruction

Examples

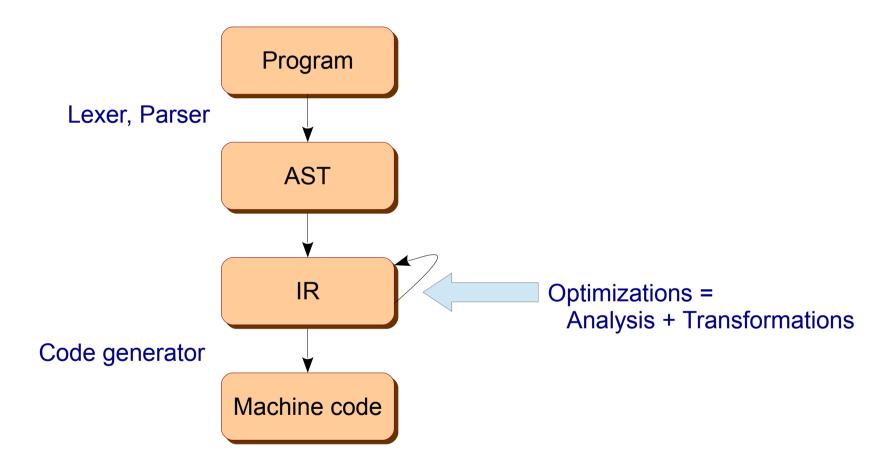
End goal	Interesting aspect	
Dead code elimination	Reachability	
Constant propagation	use-def	
Security	Array index range, dangling pointers	
Parallelization	Data dependence, SIMD opportunities	
Debugging	Slice	
Cache performance	Memory access pattern	
Memory reduction	Live ranges	

Program Analysis is often a pre-cursor to Optimization.

7

(1)

0


ш

Machine-Independent Code Optimizer Intermediate representation **Code Generator** Target machine code **Machine-Dependent Code Optimizer** Target machine code

But remember that Analysis can be done on source, AST or machine code also.

Symbol Table

Compiler Organization

Example Three

```
void main() {
  int a, b, c, d, *p;

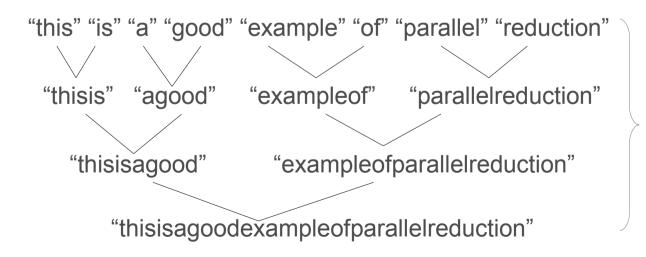
  p = &a;
  c = a + b;
  d = *p + b;
}
```

Can this computation be avoided? (common subexpression elimination)

```
void main() {
  int a, b, c, d, *p;

  p = &a;
  int t = a + b;
  c = t;
  d = t;
}
```

This requires a program analysis called *pointer analysis*.

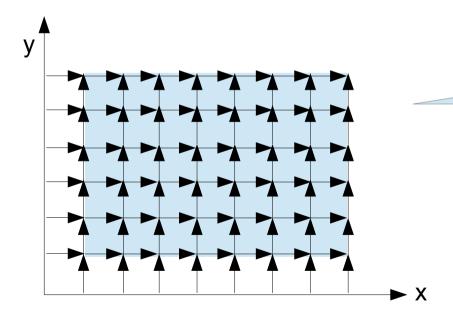

This requires another analysis called *type analysis*.

Example Two

```
*sresult = 0;

for (ii = 0; ii < nn; ++ii) {
    strcat(sresult, str[ii]);
}

Can you parallelize this code?
```



Requires semantic analysis to figure out that strcat performs an associative operation.

Example One

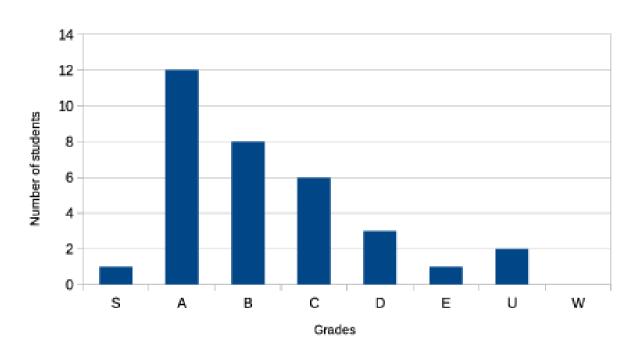
for (x = 1; x < M; ++x)for (y = 1; y < N; ++y)a[x, y] = a[x - 1, y] + a[x, y - 1];

Can you parallelize iterations?

Requires loop dependence analysis

In This Course

- 7. Dynamic Analysis (DYN)
- 6. Shape Analysis (SHA)
- 5. Program Slicing (SLI)
- 4. Parallelization (PAR)
- 3. Security Analysis (SEC)
- 2. Pointer Analysis (PTR)
- 1. Data Flow Analysis (DFA)


Logistics

- Moodle for submissions, announcements, discussions
 - Your responsibility to subscribe to it.
- Evaluation:
 - assignments (60%)
 - midsem (20%)
 - endsem (20%)
- C slot (Mon 10, Tue 9, Wed 8, Fri 12).
- Room CS 24.

Assignments

- Four programming assignments (60%).
 - -5+15+15+25
- Assignments would be in LLVM.
- You should work individually.
- You have this week to suggest me any date changes for A2, A3, A4.

Grading

2015 PA evaluation

I don't hesitate to give W grade too.

Course Schedule

Month	Lectures	Evaluations
JAN	DFA, PTA	A1
FEB	SEC	A2, MIDSEM
MAR	PAR, SLI	A3
APR	SHA, DYN	A4
MAY		ENDSEM

MidSem and EndSem will have mutually exclusive topics.

CS6843: Program Analysis

Instructor: Rupesh Nasre (rupesh@cse)

TAs: Aman, Manas, Raghesh

Web: ~rupesh/teaching/pa/jan16/

Moodle: moodle/course/view.php?id=412