Data Flow Analysis Data Flow Analysis

» Flow-sensitive: Considers the control-flow in a
function
» Operates on a flow-graph with nodes as basic-
blocks and edges as the control-flow
Rupesh Nasre.
« Examples
- Constant propagation

- Common subexpression elimination
CS6843 Program Analysis

IIT Madras - Dead code elimination
Jan 2015 Whatisthe .
value of b?
Outline Reaching Definitions

* What is DFA?

- Reaching definitions

* Every assignment is a definition

» A definition d reaches a program point p if there
exists a path from the point immediately
following d to p such that d is not killed along

- Monotonicity the path.
- Confluence operator

- MFP/MOP solution
* Analysis dimensions

- Live variables
* DFA framework

Compiler Organization DFA Equations
« in(B) = set of data flow facts entering block B
Lexer, Parser . OUt(B) =
e * gen(B) = set of data flow facts generated in B
o * kill(B) = set of data flow facts from the other
' OpAtllrQII;Sa,i:CT?rrzansformations bIOCkS kl”ed in B

Code generator

Machine code

|-

DFA for Reaching Definitions

* in(B) = U out(P) where P is a predecessor of B

» out(B) = gen(B) U (in(B) — kill(B))

DFA for Reaching Definitions

Domain
Transfer function

Sets of definitions

in(B) = U out(P)
out(B) = gen(B) U (in(B) - kill(B))

« Initially, out(B) = { }

gen(B0) = {D1, D2} Kill(BO) = {D3, D4, D6}
gen(B1) = {D3, D4} kill(B1) = {DO, D1, D2, D6}
gen(B2) = {D5, D6} kill(B2) = {D1, D3}
gen(B3) = {} kill(B3) = {}
0 (D1,D2} © (D1, D2} [} {D1, D2}
0 (D3,D4) (D1,D2} (D3, D4} {D1, D2} {D3, D4}
0 (D5, D6} (D1, D2} {D2, D5, D6} (D1, D2} {D2, D5, D6}

{ i {D3, D4, D5, D6} {D3, D4, D5,D6} {D2, D3, D4, D5, D6} {D2, D3, D4, D5, D6}

Algorithm for Reaching Definitions

for each basic block B
compute gen(B) and kill(B)
out(B) = {}

Can you do better?

Hint: Worklist

do {
for each basic block B
in(B) = U out(P) where P \in pred(B)
out(B) = gen(B) U (in(B) - kill(B))
} while in(B) changes for any basic block B.

Classwork

* in(B) = U out(P) where P is a predecessor of B
out(B) = gen(B) U (in(B) — kill(B))

Initially, out(B) = {}

Direction Forward
Meet / confluence U
operator

Initialization out(B) = {}

DFA for Live Variables

Domain Sets of variables
Transfer function in(B) = use(B) U (out(B) - def(B))

Direction Backward
Meet / confluence U
operator

Initialization in(B)={}

out(B) = U in(S) where S is a successor of B

Avariable v is live at a program point p if v is used along some path
in the flow graph starting at p.
Otherwise, the variable v is dead.

Classwork

» Write an algorithm for Live Variable Analysis

out(B) = {}
Algo for
do { . reaching
for each basic block B definitions

for each basic block B

compute gen(B) and kill(B)

in(B) = U out(P) where P \in pred(B)
out(B) = gen(B) U (in(B) - kill(B))

} while in(B) changes for any basic block B

Domain Sets of variables

gen(B0) = {D1, D2} kill(BO) = {D3, D4, D6, D8}

gen(B1) = {D3, D4} kill(B1) = {D1, D2, D6, D8}

gen(B2) = {D5, D6} kill(B2) = {D2, D3, D7, D8}

gen(B3) = {D7, D8} kill(B3) = {D2, D3, D5, D6}
inl outl in2 out2 in3 out3 in4 out4
{} {D1, D2} {D7, D8} {D1, D2, D7} {D4, D7, D8} {D1, D2, D7} {D1,4,7} {D1,2,7}
{} {D3,D4} {D1, D2} {D3, D4} {D1,D2,D7} {D3, D4, D7} {D1,2,7} {D3,4,7}
0 {D5, D6} (D1, D2} {D1, D5, D6} {D1, D2, D7} (D1, D5, D6} {D12,7} {D1,5,6}

{

{D7, D8} {D3, D4, D5, D6}{D4, D7, D8} {D1, D3, D4, D5,
D6}

{D1, D4, D7, D8} {D1,3,4,5,6,7} {D1,4,7,8}

Transfer function

Direction

Meet / confluence
operator

Initialization

in(B) = use(B) U (out(B) - def(B))
out(B) = U in(S) where S is a successor of B

Backward Parameters

U for live

variable
analysis

in(B) = {}

Direction and Confluence Monotone Framework

* A framework <z, I, 7 is monotone if Fis
_—ac monotonic, i.e.,
Live Variables

Definitions (Vf eFWVx,yE i, x2y= f(x) = f(y)

ICommon Very Busy
ISubexpressions Expressions

Backward

« |f a data-flow framework is monotonic, the
convergence (termination) is guaranteed for
finite height lattices.

Data Flow Framework Distributive Framework
* Point; start or end of a basic block « Aframework <z, N, 7> is distributive if Fis distributive, i.e.,
* Information flow direction: forward / backward (Ve F)(Vx,y € o) fix Ny) < f(x) N f{y)
» Transfer functions
* Meet / confluence operator » Maximal fixed point (MFP) solution is obtained with our

iterative DFA.
* MFP is unique and order independent.
. _one can define a transfer function over a path « The best we can do is MOP (most feasible, but undecidable).
in the CFG fk(fk-1('"fz(fl(fo(T))'”)) // small k (block)

* In general, MFP < MOP < Perfect solution.

« MOP(x) =M f(T) KEPaths(x) / capital K * Ifdistributive, MFP = MOP.

(path) Meet over all paths o ¢ Every distributive function is also monotonic. 17
Path enumeration is expensive

Structure in Data Flow Framework Outline
» Asemilattice £ with a binary meet operator I, such that a, * What is DFA?
b,c€ L e - Reaching definitions
- Idempotency: alla=a) - Live variables
- Commutativity: alMb=b Ma {d1} {d2} {d3} « DEA framework
- Associativity:alM(bMec)=(alb)Mec n
v - Monotonicity
 Mimposes an order on £ {d1,d2} {d1.d3} {d2,d3}
- Confluence operator
-a>>beafllb=b {6 2 6 (L) - MFP/MOP solution
e rhas a bottom element L,all L =1 Reaching Definitions Lattice

* Analysis dimensions

5 How many ancestor names do you need to almost uniquely identify a student in campus?

e rhasatopelementT,allT=a

Analysis Dimensions

An analysis's precision and efficiency is guided
by various design decisions.

» Flow-sensitivity
* Context-sensitivity
» Path-sensitivity

LO: a=0;
L1: a=1;
L2: ..

Field-sensitivity

How many hands are required

to know the time precisely? 19

Flow-sensitivity

Flow-sensitive solution: at L1 ais 0, atL2 ais 1
Flow-insensitive solution: in the program a is in {0, 1}

Flow-insensitive analyses ignore the control-flow in the program.

e

20

Context-sensitivity

main() {
LO: fun(0);
L1: fun(1);

fun(int x) { Context-sensitive solution:
y=X; yisOalong LO, yis 1 along L1
}

o

Context-insensitive solution:
yisin {0, 1} in the program

Exponential Along main-f1-g1, ...
Number of Along main-f1-g2, ...
contexts Along main-f2-g1, ...
f t : : Along main-f2-g2, ...
Exponential time requirement Exponential storage requirement
21

Context-sensitivity

main() { fun(int x) { Context-sensitive solution:
LO: fun(0); y=X; yis0along LO, y is 1 along L1
L1: fun(l); }
}
Context-insensitive solution:
Inter-procedural ——» y isin {0, 1} in the program
intra-procedural ——- y s in {-e, +<} in the program
22
if (a == 0) Path-sensitive solution:
b=1; bis1whenais0, bis2whenais not0
else . - .
= Path-insensitive solution:
bisin {1, 2} in the program
if (c1)

while (c2) { clandc2andc3, ...

if (c3) clandc2 and!c3and c4, ...

cland c2 and Ic3 and !c4, ...
else cland!c2, ...
for (; c4;) lel ...
else
23
struct T s Field-sensitive solution:
' sais0,sbis1
s.a=0 - - .
sb=1 Field-insensitive solution:
! sisin {0, 1}

Aggregates are collapsed into a single variable.
e.g., arrays, structures, unions.

This reduces the number of variables tracked during
the analysis and reduces precision.

A Note on Abstraction

Maintain one bit for x == 0
Initialized to F (false)

25

A Note on Choosing Abstraction

Maintain one bit for x == 0 Maintain two bits for value of x Maintain one bit for x == 0
Initialized to F (false) Initialized to 00 Another bit for x < 2
Initialized to 00
F 00
x=0; x =0;
T 00
++X; ++X;
F 01
-X; -X;
? 00

If type information available, then {01} --x {11} possible.
Otherwise, {01} --x {00}

26

Abstraction Storage

« Saturating counters

* Number of values stored faithfully with log(n)
bits — (n-2)

* Additional information may help increase the
range, e.g., type information as unsigned.

27

» Analyses enable optimizations.

* An optimization is sound if it maintains the

» An analysis is sound if it leads to sound

Conservative Analysis

* Being safe versus being precise

- Relation with lattice

- Initializations and confluence

- Constructive versus destructive operators
 Safety versus liveness property

- Absence of bugs versus presence of a bug

Soundness and Precision

functionality of the original code.

» A program may be optimized in certain Scenarios

scenarios.

Complete

optimization.

- The analysis does not enable optimization
outside the above set of scenarios.

* An analysis is complete if it does not disable

optimization for any possible scenario.

On Soundness

 Usually, multiple optimizations expect same

information-theoretic behavior from analyses.

- If more information means analysis Al is less precise
according to optimization O1, often optimization O2
also sees Al that way.

- This allows us to argue about analysis soundness
without talking about optimizations.

* But this is not always true.

- Soundness depends upon optimization enabling.

- And two opposite optimizations may see the
information from the same analysis in opposing ways.

Optimization-specific Soundness

» Consider O1 that changes *p to x if p points to only x.

« Consider O2 that makes p volatile if p points to multiple
variables at different program points.

* Analysis A computes points-to information p - {X, y}

- If A computes more information p - {Xx,y, z}, Ol is
suppressed but O2 is enabled.

- If A computes less information p — {x}, O1 is enabled
and O2 is suppressed.

- Thus, conservative for one is precise for another.
- And sound for one is unsound for another.

31

Optimization-specific Soundness

« Consider O1 that converts multiplication by 2 to a left-
bit-shift operation (x * 2 to x << 1).

» Consider O2 that uses a special circuit (fast operation)
when there is a sum of reciprocals of powers of 2 (1 + ¥
+Ya+)

 Analysis Ais used to compute values of arithmetic
expressions.
- Converting 1.98 to 2 enables O1, disables O2.
Converting 1.98 to 1.96875 enables O2, disables O1.
- Precise for one is imprecise for another.

Sound for one is unsound for another. 32

Acknowledgements

Course notes from
» Katheryn McKinley
* Monica Lam

* Y. N. Srikant

» Uday Khedker

33

