Data Flow Analysis

Rupesh Nasre.

CS6843 Program Analysis IIT Madras Jan 2015

Data Flow Analysis

- Flow-sensitive: Considers the control-flow in a function
- Operates on a flow-graph with nodes as basicblocks and edges as the control-flow
- Examples
 - Constant propagation
 - Common subexpression elimination
 - Dead code elimination

Outline

- · What is DFA?
 - Reaching definitions
 - Live variables
- DFA framework
 - Monotonicity
 - Confluence operator
 - MFP/MOP solution
- · Analysis dimensions

Reaching Definitions

- · Every assignment is a definition
- A definition d reaches a program point p if there exists a path from the point immediately following d to p such that d is not killed along the path.

B1 D3: x = 1D5: y = 3D1: x = 10D2: y = 11if c

D5: z = xD6: z = xD6: z = 4B2
B3

What definitions reach B3?

2

Compiler Organization

3

DFA Equations

- in(B) = set of data flow facts entering block B
- out(B) = ...
- gen(B) = set of data flow facts generated in B
- kill(B) = set of data flow facts from the other blocks killed in B

6

DFA for Reaching Definitions

Domain	Sets of definitions			
Transfer function	$\begin{split} ∈(B) = U \ out(P) \\ &out(B) = gen(B) \ U \ (in(B) - kill(B)) \end{split}$			
Direction	Forward			
Meet / confluence operator	U			
Initialization	out(B) = { }			

10

Algorithm for Reaching Definitions

for each basic block B

compute gen(B) and kill(B)
out(B) = {}

Can you do better? Hint: Worklist

do {

for each basic block B

in(B) = U out(P) where P in pred(B)out(B) = gen(B) U (in(B) - kill(B))

} while in(B) changes for any basic block B₈

Classwork

DFA for Live Variables

Domain	Sets of variables				
Transfer function	$\begin{split} ∈(B) = use(B) \ U \ (out(B) - def(B)) \\ &out(B) = U \ in(S) \ where \ S \ is \ a \ successor \ of \ B \end{split}$				
Direction	Backward				
Meet / confluence operator	U				
Initialization	in(B) = { }				

A variable v is live at a program point p if v is used along some path in the flow graph starting at p. Otherwise, the variable v is dead.

11

in(B) = U out(P) where P is a predecessor of B out(B) = gen(B) U (in(B) - kill(B)) D1: y = D2: x =

Initially, out(B) = { }

 $\begin{array}{lll} gen(B0) = \{D1,\,D2\} & & kill(B0) = \{D3,\,D4,\,D6,\,D8\} \\ gen(B1) = \{D3,\,D4\} & & kill(B1) = \{D1,\,D2,\,D6,\,D8\} \\ gen(B2) = \{D5,\,D6\} & & kill(B2) = \{D2,\,D3,\,D7,\,D8\} \\ gen(B3) = \{D7,\,D8\} & & kill(B3) = \{D2,\,D3,\,D5,\,D6\} \end{array}$

3301 01 0	
D1: y = 3 D2: x = 10 if c B1 D3: x = 1 D5: z = x	
B1 $D3: x = 1$ D4: y = 2 $D5: z = xD6: x = 4$	
B3 D7: z = y D8: x = z	

	in1	out1	in2	out2	in3	out3	in4	out4
B0	{}	{D1, D2}	{D7, D8}	{D1, D2, D7}	{D4, D7, D8}	{D1, D2, D7}	{D1,4,7}	{D1,2,7}
B1	{}	$\{\mathrm{D3},\mathrm{D4}\}$	{D1, D2}	{D3, D4}	{D1, D2, D7}	{D3, D4, D7}	{D1,2,7}	{D3,4,7}
B2	{}	$\{\mathrm{D5},\mathrm{D6}\}$	{D1, D2}	{D1, D5, D6}	{D1, D2, D7}	{D1, D5, D6}	{D1,2,7}	{D1,5,6}
В3	{}	{D7, D8}	(D3, D4, D5, D6)	{D4, D7, D8}	{D1, D3, D4, D5,	{D1, D4, D7, D8}	{D1,3,4,5,6,7}	{D1,4,7,8}
					D6}			

Classwork

· Write an algorithm for Live Variable Analysis

Direction and Confluence

13

Monotone Framework

• A framework < \mathcal{L} , Π , \mathcal{F} > is monotone if \mathcal{F} is monotonic, i.e.,

 $(\forall f \in F)(\forall x, y \in L), x \ge y \Rightarrow f(x) \ge f(y)$

• If a data-flow framework is monotonic, the convergence (termination) is guaranteed for finite height lattices.

Data Flow Framework

- · Point: start or end of a basic block
- · Information flow direction: forward / backward
- · Transfer functions
- Meet / confluence operator
- One can define a transfer function over a path in the CFG $f_k(f_{k,1}(...f_0(f_1(f_0(T))...))$ // small k (block)
- $MOP(x) = \prod f_v(T)$ $K \in Paths(x)$ // capital K Meet over all paths Path enumeration is expensive

Distributive Framework

- A framework < L, Π , $\mathcal{F}>$ is distributive if \mathcal{F} is distributive, i.e., $(\forall f \in F)(\forall x, y \in L) f(x \sqcap y) \le f(x) \sqcap f(y)$
- · Maximal fixed point (MFP) solution is obtained with our iterative DFA.
- · MFP is unique and order independent.
- The best we can do is MOP (most feasible, but undecidable).
- In general, MFP \leq MOP \leq Perfect solution.
- If distributive, MFP = MOP.
- Every distributive function is also monotonic.

17

Structure in Data Flow Framework

- A semilattice \mathcal{L} with a binary meet operator Π , such that a, b, $c \in \mathcal{L}$
 - Idempotency: $a \Pi a = a$
 - Commutativity: $a \Pi b = b \Pi a$
 - Associativity: $a \Pi (b \Pi c) = (a \Pi b) \Pi c$
- Π imposes an order on \mathcal{L}
 - a >= b ⇔ a П b = b
- \mathcal{L} has a bottom element \perp , a $\Pi \perp = \perp$
- \mathcal{L} has a top element T, a Π T = a

Reaching Definitions Lattice

Outline

- · What is DFA?
 - Reaching definitions
 - Live variables
- · DFA framework
 - Monotonicity
 - Confluence operator
 - MFP/MOP solution
- · Analysis dimensions

How many ancestor names do you need to almost uniquely identify a student in campus?

Analysis Dimensions

An analysis's precision and efficiency is guided by various design decisions.

- · Flow-sensitivity
- · Context-sensitivity
- · Path-sensitivity
- · Field-sensitivity

How many hands are required to know the time precisely?

19

Context-sensitivity

main() {
 L0: fun(0);
 L1: fun(1);
}
fun(int x) {
 y = x;
}

Context-sensitive solution: y is 0 along L0, y is 1 along L1

22

A Note on Abstraction

Maintain one bit for x == 0Initialized to F (false)

> F x = 0; T ++x; F --x;

> > 25

Conservative Analysis

- · Being safe versus being precise
 - Relation with lattice
 - Initializations and confluence
 - Constructive versus destructive operators
- · Safety versus liveness property
 - Absence of bugs versus presence of a bug

28

A Note on Choosing Abstraction

Maintain one bit for x == 0Initialized to F (false)

F x = 0; T ++x; F --x; $\begin{array}{c} \text{Maintain two bits for value of x} \\ \text{Initialized to } \begin{array}{c} \text{OO} \end{array}$

00 x = 0; 00 ++x; 01 --x; 00 Maintain one bit for x == 0
Another bit for x < 2
Initialized to 00

00 x = 0; 11 ++x; 01 --x; 11

If type information available, then {01} --x {11} possible. Otherwise, {01} --x {00}

26

Soundness and Precision

- · Analyses enable optimizations.
- An optimization is sound if it maintains the functionality of the original code.
- A program may be optimized in certain scenarios.
- An analysis is sound if it leads to sound optimization.
 - The analysis does not enable optimization outside the above set of scenarios.
- An analysis is complete if it does not disable optimization for any possible scenario.

29

Sound)

Scenarios

Complete

Abstraction Storage

- · Saturating counters
- Number of values stored faithfully with log(n) bits – (n-2)
- Additional information may help increase the range, e.g., type information as unsigned.

On Soundness

- Usually, multiple optimizations expect same information-theoretic behavior from analyses.
 - If more information means analysis A1 is less precise according to optimization O1, often optimization O2 also sees A1 that way.
 - This allows us to argue about analysis soundness without talking about optimizations.
- But this is not always true.
 - Soundness depends upon optimization enabling.
 - And two opposite optimizations may see the information from the same analysis in opposing ways.

27

Optimization-specific Soundness

- Consider O1 that changes *p to x if p points to only x.
- Consider O2 that makes p volatile if p points to multiple variables at different program points.
- Analysis A computes points-to information $p \rightarrow \{x, y\}$
 - If A computes more information $p \rightarrow \{x, y, z\}$, O1 is suppressed but O2 is enabled.
 - If A computes less information p → {x}, O1 is enabled and O2 is suppressed.
 - Thus, conservative for one is precise for another.
 - And sound for one is unsound for another.

31

Optimization-specific Soundness

- Consider O1 that converts multiplication by 2 to a leftbit-shift operation (x * 2 to x << 1).
- Consider O2 that uses a special circuit (fast operation) when there is a sum of reciprocals of powers of 2 (1 + ½ + ¼ + ...)
- Analysis A is used to compute values of arithmetic expressions.
 - Converting 1.98 to 2 enables O1, disables O2.
 - Converting 1.98 to 1.96875 enables O2, disables O1.
 - Precise for one is imprecise for another.
 - Sound for one is unsound for another.

32

Acknowledgements

Course notes from

- · Katheryn McKinley
- Monica Lam
- · Y. N. Srikant
- · Uday Khedker