Data Flow Analysis

Rupesh Nasre.

CS6843 Program Analysis

IIT Madras
Jan 2015

Outline

 What is DFA?
- Reaching definitions
- Live variables
 DFA framework
- Monotonicity

- Confluence operator
- MFP/MOP solution

* Analysis dimensions

Compiler Organization

Program }

Lexer, Parser v

AST }

!
IR V Optimizations =
!

Analysis + Transformations

Code generator

Machine code}

Data Flow Analysis

 Flow-sensitive: Considers the control-flow In a
function

* Operates on a flow-graph with nodes as basic-
blocks and edges as the control-flow

 Examples

: =8
- Constant propagation -]

- Common subexpression elimination ‘3] ‘2]
a = a=

- Dead code elimination

AL

What is the _
value of b? | b=a]
4

Reaching Definitions

» Every assignment is a definition

* A definition d reaches a program point p if there
exists a path from the point immediately
following d to p such that d is not killed along
the path. [DO:y=3)

D1:x=10 BO
D2:y=11

ifC J

P A

B]_D3ZX=1] D5:z=X]BZ

D4:y =2 D6:x=4

Y S
B3] What definitions reach B3?

5

DFA Equations

IN(B) = set of data flow facts entering block B
out(B) = ...
gen(B) = set of data flow facts generated in B

kill(B) = set of data flow facts from the other
blocks killed in B

DFA for Reaching Definitions

* In(B) = U out(P) where P is a predecessor of B

. out(B) = gen(B) U (in(B) — kill(B))

e [nitially, out(B) = {}

gen(B0) = {D1, D2} kill(BO) = {D3, D4, D6}
gen(B1) = {D3, D4} kill(B1) = {DO, D1, D2, D6}
gen(B2) = {D5, D6} kill(B2) = {D1, D3}
gen(B3) = {} kill(B3) = { }

DO:y=3)
D1:x=10 |pgo
D2:y =11

if ¢)

A >y

B1
D4:y=2

D6:x=4

D3: x = 1} D5:z=x}|32

AL

B3]

{} {D1, D2} {} {D1, D2} {}
{} {D3, D4} {D1, D2} {D3, D4} {D1, D2}
{} {D5, D6} {D1, D2} {D2, D5, D6} {D1, D2}

{} {} {D3, D4, D5, D6} {D3, D4, D5, D6}

{D1, D2}

{D3, D4}

{D2, D5, D6}

{D2, D3, D4, D5, D6} {D2, D3, D4, D5, D6}

Algorithm for Reaching Definitions

for each basic block B

compute gen(B) and kill(B) ¢ -
out(B) = {J it ot
- >
do {

for each basic block B
iNn(B) = U out(P) where P \in pred(B)
out(B) = gen(B) U (in(B) - kill(B))
} while in(B) changes for any basic block B+

Classwork

* In(B) = U out(P) where P is a predecessor of B

_ . . O\
« out(B) = gen(B) U (in(B) — kill(B)) Di:y=3 |g,
D2:x=10
if c)
o _ . . B2
 [nitially, out(B) = {} 51 D3ix=1 e
. D4:y=2 D6:x=4
gen(BO) = {D1, D2} kill(BO) = {D3, D4, D6, DS}
gen(B1) = {D3, D4} kill(B1) = {D1, D2, D6, D8} AL
gen(B2) = {D5, D6} kill(B2) = {D2, D3, D7, D8} B3 D7z=y
gen(B3) = (D7, D8} kill(B3) = {D2, D3, D5, D6} D8:x =z

{ {D1, D2} {D7, D8} {D1, D2, D7} {D4, D7, D8} {D1, D2, D7} {D1,4,7} {D1,2,7}
{ {D3, D4} {D1, D2} {D3, D4} {D1, D2, D7} {D3, D4, D7} {D1,2,7} {D3,4,7}
{ {D5, D6} {D1, D2} {D1, D5, D6} {D1, D2, D7} {D1, D5, D6} {D1,2,7} {D1,5,6}

{} {D7,D8} {D3, D4, D5, D6}{D4, D7, D8} {D1, D3, D4, D5, (D1, D4, D7, D8}{D1,3,4,5,6,7} {D1,4,7,8}
D6}

DFA for Reaching Definitions

Domain Sets of definitions
Transfer function in(B) = U out(P)

out(B) = gen(B) U (in(B) - kill(B))
Direction Forward

Meet /| confluence U
operator

Initialization out(B) = {}

DFA for Live Variables

Domain Sets of variables
Transfer function in(B) = use(B) U (out(B) - def(B))
out(B) = U in(S) where S is a successor of B
Direction Backward
Meet | confluence U
operator
Initialization mB) ={}

A variable v is live at a program point p if v is used along some path
in the flow graph starting at p.
Otherwise, the variable v is dead.

11

Classwork

* Write an algorithm for Live Variable Analysis

for each basic block B
compute gen(B) and kill(B)
out(B) = {}

do {
for each basic block B
in(B) = U out(P) where P \in pred(B)
out(B) = gen(B) U (in(B) - kill(B))
} while in(B) changes for any basic block B

Algo for
reaching
definitions

Domain Sets of variables
Transfer function in(B) = use(B) U (out(B) - def(B))

out(B) = U in(S) where S is a successor of B
Direction Backward Parameters
Meet | confluence U for live
operator variable

Initialization in(B) = {} analysis

12

Direction and Confluence

Forward Backward

Reaching Live Variables
Definitions

Common Very Busy
Subexpressions EXxpressions

13

Data Flow Framework

* Point: start or end of a basic block

* Information flow direction: forward / backward
* Transfer functions

 Meet / confluence operator

* One can define a transfer function over a path
inthe CFG { (f _(...£(t (f (T))...))

° MOP(X) = I_I fQ(T) Meet over all paths

Path enumeration Is expensive
14

Structure in Data Flow Framework

« Asemilattice £ with a binary meet operator 1, such that a,

b,c € L

- Idempotency: alla=a
- Commutativity: allb=b [1a
- Associativity: all(bl1c)=(allb) ¢

e [1imposes an order on L
- a>=beallb=Db
 £has abottomelement L,all 1L =_1

e fhasatopelementT, allT=a

{}(M

A/i\A

{d1} {d2} {d3}

<<

{d1,d2} {d1,d3} {d2,d3}

AV
{d1,d2, d3} (L)

Reaching Definitions Lattice

15

Monotone Framework

e A framework <., I'l, 7> 1S monotone If Fis
monotonic, I.e.,

(Ve F)(Vx,y € 1), x 2y = 1{(x) = {(y)

 |f a data-flow framework is monotonic, the
convergence (termination) is guaranteed for
finite height lattices.

16

Distributive Framework

A framework <z, ', 7> Is distributive if Fis distributive, I.e.,

(Ve F)(Vx,y € 0) {xMNy) <{x)MN1iy)

Maximal fixed point (MFP) solution is obtained with our
iterative DFA.

MFP Is unique and order independent.
The best we can do is MOP (most feasible, but undecidable).
In general, MFP < MOP < Perfect solution.
If distributive, MFP = MOP.

Every distributive function is also monotonic. 17

Outline

« What is DFA?
- Reaching definitions
- Live variables
 DFA framework
- Monotonicity

— Confluence operator
- MFP/MOP solution

« Analysis dimensions

18

Analysis Dimensions

An analysis's precision and efficiency Is guided
by various design decisions.

Flow-sensitivity
Context-sensitivity
Path-sensitivity
Field-sensitivity

How many hands are required

to know the time precisely? -

Flow-sensitivity

LO: a=0; Flow-sensitive solution: at L1 ais 0, atL2 ais 1
L1 a=1; Flow-insensitive solution: in the program a is in {0, 1}
L2: ...

Flow-insensitive analyses ignore the control-flow in the program.

> Bl

[B2 -
| > I ﬁ> ‘\ P

o
w

:> ! B3 —
B2 >

20

main() { fun(int x) {
LO: fun(0); Yy =X;
L1: fun(l); }
}
! ! Exponential
Number of
contexts

Exponential time requirement

Context-sensitivity

Context-sensitive solution:
yis0Oalong LO, yis 1 along L1

Context-insensitive solution:
yisin {0, 1} in the program

Along main-f1-g1i, ...
Along main-fl1-g2, ...
Along main-f2-g1, ...
Along main-f2-g2, ...

Exponential storage requirement
21

Context-sensitivity

main() {
LO: fun(0);
L1: fun(l);
}

fun(int x) {
y=Xx
}

Context-sensitive solution:
yis0Oalong LO, yis 1along L1

Context-insensitive solution:

Inter-procedural — » yisin {0, 1} in the program
Intra-procedural ——» y is in {-~, +} in the program

22

Path-sensitivity

if (a == 0) Path-sensitive solution:

b=1: bis1whenaisO, bis2whenaisnotO
else . . :

b=2: Path-insensitive solution:

bisin {1, 2} in the program

if (c1
f/vhi)|e (c2) { cl and c2 and c3, ...
if (c3) cl and c2 and Ic3 and c4, ...
cl and c2 and !c3 and !c4, ...
else cl and!c2, ...
for (; c4;) Icl ...
}
else

struct T s;
s.a=0;
s.b=1;

Field-sensitivity

Field-sensitive solution:
s.ais0,s.bis 1

Field-insensitive solution:
sisin {0, 1}

Aggregates are collapsed into a single variable.
e.g., arrays, structures, unions.

This reduces the number of variables tracked during
the analysis and reduces precision.

24

A Note on Abstraction

Maintain one bit for x == 0
Initialized to F (false)

?

x = 0;
-~
++X;
F

X

?

25

A Note on Choosing Abstraction

Maintain one bit for x == Maintain two bits for value of x Maintain one bit for x ==
Initialized to F (false) Initialized to 00 Another bit for x < 2
Initialized to 00

? ?7? ?7?

x = 0; x =0; x = 0;

T 00 11

++X; ++X; T+X;

F 01 01

--X; --X; ==X,

? 00 11

If type information available, then {01} --x {11} possible.
Otherwise, {01} --x {00}

26

Abstraction Storage

e Saturating counters

 Number of values stored faithfully with log(n)
bits — (n-2)

» Additional information may help increase the
range, e.d., type information as unsigned.

27

Conservative Analysis

* Being safe versus being precise

- Relation with lattice
- Initialiations and confluence
— Constructive versus destructive operators

» Safety versus liveness property
- Absence of bugs versus presence of a bug

28

Soundness and Precision

Scenarios

Analyses enable optimizations.

An optimization is sound if it maintains the
functionality of the original code.

A program may be optimized in certain

scenarios. |
Precise

An analysis is sound if it leads to sound
optimization.

- The analysis does not enable optimization
outside the above set of scenarios.

An analysis is precise If it does not disable
optimization for any possible scenario.

29

On Soundness

« Usually, multiple optimizations expect same
iInformation-theoretic behavior from analyses.

- If more information means analysis Al is less precise
according to optimization O1, often optimization O2

also sees Al that way.

- This allows us to argue about analysis soundness
without talking about optimizations.

» But this is not always true.
- Soundness depends upon optimization enabling.

- And two opposite optimizations may see the
iInformation from the same analysis in opposing ways.

Optimization-specific Soundness

e Consider O1 that changes *p to x if p points to only x.

* Consider O2 that makes p volatile if p points to multiple
variables at different program points.

* Analysis A computes points-to information p - {X, y}

- If A computes more information p - {X, Yy, z}, Olis
suppressed but O2 is enabled.

- If Acomputes less information p — {x}, Ol is enabled
and O2 Is suppressed.

- Thus, conservative for one is precise for another.
- And sound for one is unsound for another.

31

Optimization-specific Soundness

» Consider O1 that converts multiplication by 2 to a left-
bit-shift operation (x * 2 to x << 1).

» Consider O2 that has uses a special circuit (fast
operation) when there is a sum of reciprocals of powers
of 2(1+Y2+%+ ...)

* Analysis A is used to compute values of arithmetic
expressions.

- Converting 1.98 to 2 enables O1, disables O2.
- Converting 1.98 to 1.96875 enables O2, disables O1.
- Precise for one is imprecise for another.

— Sound for one Is unsound for another. N

Acknowledgements

Course notes from
« Katheryn McKinley
 Monica Lam

* Y. N. Srikant

« Uday Khedker

33

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

