Data Flow Analysis

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras
Jan 2015

Outline

- What is DFA?
 - Reaching definitions
 - Live variables
- DFA framework
 - Monotonicity
 - Confluence operator
 - MFP/MOP solution
- Analysis dimensions

Compiler Organization

Data Flow Analysis

- Flow-sensitive: Considers the control-flow in a function
- Operates on a flow-graph with nodes as basicblocks and edges as the control-flow
- Examples
 - Constant propagation
 - Common subexpression elimination
 - Dead code elimination

Reaching Definitions

Every assignment is a definition

 A definition d reaches a program point p if there exists a path from the point immediately following d to p such that d is not killed along

the path.

DFA Equations

- in(B) = set of data flow facts entering block B
- out(B) = ...
- gen(B) = set of data flow facts generated in B
- kill(B) = set of data flow facts from the other blocks killed in B

DFA for Reaching Definitions

- in(B) = U out(P) where P is a predecessor of B
- out(B) = gen(B) U (in(B) kill(B))

Initially, out(B) = { }

```
\begin{array}{ll} gen(B0) = \{D1,\,D2\} & kill(B0) = \{D3,\,D4,\,D6\} \\ gen(B1) = \{D3,\,D4\} & kill(B1) = \{D0,\,D1,\,D2,\,D6\} \\ gen(B2) = \{D5,\,D6\} & kill(B2) = \{D1,\,D3\} \\ gen(B3) = \{\,\} & kill(B3) = \{\,\} \end{array}
```


	in1	out1	in2	out2	in3	out3
B0	{}	{D1, D2}	{}	{D1, D2}	{}	{D1, D2}
B1	{}	{D3, D4}	{D1, D2}	{D3, D4}	{D1, D2}	{D3, D4}
B2	{}	$\{\mathrm{D5},\mathrm{D6}\}$	{D1, D2}	$\{D2, D5, D6\}$	{D1, D2}	{D2, D5, D6}
В3	{}	{}	{D3, D4, D5, D6}	{D3, D4, D5, D6}	{D2, D3, D4, D5, D6}	{D2, D3, D4, D5, D6}

Algorithm for Reaching Definitions

for each basic block B

```
compute gen(B) and kill(B)
out(B) = {}
```

Can you do better?
Hint: Worklist

do {

for each basic block B

```
in(B) = U out(P) where P in pred(B)

out(B) = gen(B) U (in(B) - kill(B))
```

} while in(B) changes for any basic block B₈

Classwork

- in(B) = U out(P) where P is a predecessor of B
- out(B) = gen(B) U (in(B) kill(B))

Initially, out(B) = { }

```
\begin{array}{ll} gen(B0) = \{D1,\,D2\} & kill(B0) = \{D3,\,D4,\,D6,\,D8\} \\ gen(B1) = \{D3,\,D4\} & kill(B1) = \{D1,\,D2,\,D6,\,D8\} \\ gen(B2) = \{D5,\,D6\} & kill(B2) = \{D2,\,D3,\,D7,\,D8\} \\ gen(B3) = \{D7,\,D8\} & kill(B3) = \{D2,\,D3,\,D5,\,D6\} \end{array}
```


	in1	out1	in2	out2	in3	out3	in4	out4
B0	{}	{D1, D2}	{D7, D8}	{D1, D2, D7}	{D4, D7, D8}	{D1, D2, D7}	{D1,4,7}	{D1,2,7}
B1	{}	{D3, D4}	{D1, D2}	{D3, D4}	{D1, D2, D7}	{D3, D4, D7}	{D1,2,7}	{D3,4,7}
B2	{}	{D5, D6}	{D1, D2}	$\{D1,D5,D6\}$	{D1, D2, D7}	{D1, D5, D6}	{D1,2,7}	{D1,5,6}
В3	{}	{D7, D8}	{D3, D4, D5, D6}	{D4, D7, D8}	{D1, D3, D4, D5,	{D1, D4, D7, D8}	{D1,3,4,5,6,7}	{D1,4,7,8}
					D6}			

DFA for Reaching Definitions

Domain	Sets of definitions
Transfer function	in(B) = U out(P) out(B) = gen(B) U (in(B) - kill(B))
Direction	Forward
Meet / confluence operator	U
Initialization	$out(B) = \{ \}$

DFA for Live Variables

Domain	Sets of variables		
Transfer function	in(B) = use(B) U (out(B) - def(B)) out(B) = U in(S) where S is a successor of B		
Direction	Backward		
Meet / confluence operator	U		
Initialization	$in(B) = \{ \}$		

A variable v is live at a program point p if v is used along some path in the flow graph starting at p.

Otherwise, the variable v is dead.

Classwork

Write an algorithm for Live Variable Analysis

Domain	Sets of variables		
Transfer function	in(B) = use(B) U (out(B) - def(B)) out(B) = U in(S) where S is a successor of B		
Direction	Backward	Parameters	
Meet / confluence operator	U	for live variable	
Initialization	$in(B) = \{ \}$	analysis	

Direction and Confluence

Forward	Backward
Reaching Definitions	Live Variables
Common Subexpressions	Very Busy Expressions

Data Flow Framework

- Point: start or end of a basic block
- Information flow direction: forward / backward
- Transfer functions
- Meet / confluence operator

- One can define a transfer function over a path in the CFG $f_k(f_{k-1}(...f_2(f_1(f_0(T))...))$
- $MOP(x) = \prod f_Q(T)$

Structure in Data Flow Framework

• A semilattice \mathcal{L} with a binary meet operator Π , such that a,

 $b, c \in \mathcal{L}$

- Idempotency: $a \Pi a = a$
- Commutativity: $a \Pi b = b \Pi a$
- Associativity: $a \Pi (b \Pi c) = (a \Pi b) \Pi c$
- Π imposes an order on \mathcal{L}
 - $-a >= b \Leftrightarrow a \Pi b = b$
- \mathcal{L} has a bottom element \perp , a $\Pi \perp = \perp$
- \mathcal{L} has a top element T, a Π T = a

Reaching Definitions Lattice

Monotone Framework

• A framework < \mathcal{L} , Π , \mathcal{F} > is monotone if \mathcal{F} is monotonic, i.e.,

$$(\forall f \in F)(\forall x, y \in L), x \ge y \Rightarrow f(x) \ge f(y)$$

 If a data-flow framework is monotonic, the convergence (termination) is guaranteed for finite height lattices.

Distributive Framework

• A framework $\langle \mathcal{L}, \Pi, \mathcal{F} \rangle$ is distributive if \mathcal{F} is distributive, i.e.,

$$(\forall f \in F)(\forall x, y \in \bot) f(x \sqcap y) \le f(x) \sqcap f(y)$$

- Maximal fixed point (MFP) solution is obtained with our iterative DFA.
- MFP is unique and order independent.
- The best we can do is MOP (most feasible, but undecidable).
- In general, MFP ≤ MOP ≤ Perfect solution.
- If distributive, MFP = MOP.
- Every distributive function is also monotonic.

Outline

- What is DFA?
 - Reaching definitions
 - Live variables
- DFA framework
 - Monotonicity
 - Confluence operator
 - MFP/MOP solution
- Analysis dimensions

Analysis Dimensions

An analysis's precision and efficiency is guided by various design decisions.

- Flow-sensitivity
- Context-sensitivity
- Path-sensitivity
- Field-sensitivity

How many hands are required to know the time precisely?

Flow-sensitivity

L0: a = 0; L1: a = 1; L2: ...

Flow-sensitive solution: at L1 a is 0, at L2 a is 1 Flow-insensitive solution: in the program a is in {0, 1}

Flow-insensitive analyses ignore the control-flow in the program.

Context-sensitivity

```
Context-sensitive solution: y is 0 along L0, y is 1 along L1
```

Context-insensitive solution: *y is in {0, 1} in the program*


```
Along main-f1-g1, ...
Along main-f1-g2, ...
Along main-f2-g1, ...
Along main-f2-g2, ...
```

Exponential time requirement

Exponential storage requirement

Context-sensitivity

```
main() { fun(int x) { 
 L0: fun(0); y = x; 
 L1: fun(1); }
```

Context-sensitive solution: *y is 0 along L0, y is 1 along L1*

```
Context-insensitive solution:

Inter-procedural \longrightarrow y is in \{0, 1\} in the program

intra-procedural \longrightarrow y is in \{-\infty, +\infty\} in the program
```

Path-sensitivity

```
if (a == 0)
b = 1;
else
b = 2;
```

```
Path-sensitive solution:
b is 1 when a is 0, b is 2 when a is not 0
```

Path-insensitive solution: b is in {1, 2} in the program

```
if (c1)
while (c2) {
    if (c3)
    ...
    else
    for (; c4; )
    ...
}
else
...
```

```
c1 and c2 and c3, ...
c1 and c2 and !c3 and c4, ...
c1 and c2 and !c3 and !c4, ...
c1 and !c2, ...
!c1 ...
```

Field-sensitivity

```
struct T s;
s.a = 0;
s.b = 1;
```

```
Field-sensitive solution: s.a is 0, s.b is 1
```

Field-insensitive solution: s is in {0, 1}

Aggregates are collapsed into a single variable. e.g., arrays, structures, unions.

This reduces the number of variables tracked during the analysis and reduces precision.

A Note on Abstraction

Maintain one bit for x == 0Initialized to F (false)

```
?
x = 0;
T
++x;
F
--x;
?
```

A Note on Choosing Abstraction

Maintain one bit for x == 0Initialized to F (false)

```
?
x = 0;
T
++x;
F
--x;
?
```

Maintain two bits for value of x Initialized to 00

```
??

x = 0;

00

++x;

01

--x;

00
```

Maintain one bit for x == 0Another bit for x < 2Initialized to 00

```
??

x = 0;

11

++x;

01

--x;

11
```

If type information available, then $\{01\}$ --x $\{11\}$ possible. Otherwise, $\{01\}$ --x $\{00\}$

Abstraction Storage

- Saturating counters
- Number of values stored faithfully with log(n) bits – (n-2)
- Additional information may help increase the range, e.g., type information as unsigned.

Conservative Analysis

- Being safe versus being precise
 - Relation with lattice
 - Initialiations and confluence
 - Constructive versus destructive operators
- Safety versus liveness property
 - Absence of bugs versus presence of a bug

Soundness and Precision

- Analyses enable optimizations.
- An optimization is sound if it maintains the functionality of the original code.
- A program may be optimized in certain scenarios.
- An analysis is sound if it leads to sound optimization.
 - The analysis does not enable optimization outside the above set of scenarios.
- An analysis is precise if it does not disable optimization for any possible scenario.

On Soundness

- Usually, multiple optimizations expect same information-theoretic behavior from analyses.
 - If more information means analysis A1 is less precise according to optimization O1, often optimization O2 also sees A1 that way.
 - This allows us to argue about analysis soundness without talking about optimizations.
- But this is not always true.
 - Soundness depends upon optimization enabling.
 - And two opposite optimizations may see the information from the same analysis in opposing ways.

Optimization-specific Soundness

- Consider O1 that changes *p to x if p points to only x.
- Consider O2 that makes p volatile if p points to multiple variables at different program points.
- Analysis A computes points-to information p → {x, y}
 - If A computes more information p → {x, y, z}, O1 is suppressed but O2 is enabled.
 - If A computes less information p → {x}, O1 is enabled and O2 is suppressed.
 - Thus, conservative for one is precise for another.
 - And sound for one is unsound for another.

Optimization-specific Soundness

- Consider O1 that converts multiplication by 2 to a leftbit-shift operation (x * 2 to x << 1).
- Consider O2 that has uses a special circuit (fast operation) when there is a sum of reciprocals of powers of 2 $(1 + \frac{1}{2} + \frac{1}{4} + ...)$
- Analysis A is used to compute values of arithmetic expressions.
 - Converting 1.98 to 2 enables O1, disables O2.
 - Converting 1.98 to 1.96875 enables O2, disables O1.
 - Precise for one is imprecise for another.
 - Sound for one is unsound for another.

Acknowledgements

Course notes from

- Katheryn McKinley
- Monica Lam
- Y. N. Srikant
- Uday Khedker