
Pointer Analysis

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras
Jan 2015

2

Outline

● Introduction

● Pointer analysis as a DFA problem

● Design decisions

● Andersen's analysis, Steensgaard's analysis

● Pointer analysis as a graph problem

– Optimizations
● Pointer analysis as graph rewrite rules

● Applications

● Parallelization

– Constraint based

– Replication based

3

What is Pointer Analysis?

a = &x;

b = a;

if (b == *p) {

 …

} else {

 …

}

4

What is Points-to Analysis?

a = &x;

b = a;

if (b == *p) {

 …

} else {

 …

}

a points to xa points to x

5

What is Points-to Analysis?

a = &x;

b = a;

if (b == *p) {

 …

} else {

 …

}

a and b are aliasesa and b are aliases

a points to xa points to x

6

What is Points-to Analysis?

a = &x;

b = a;

if (b == *p) {

 …

} else {

 …

}

Is this condition always satisfied?Is this condition always satisfied?

a and b are aliasesa and b are aliases

a points to xa points to x

7

What is Points-to Analysis?

a = &x;

b = a;

if (b == *p) {

 …

} else {

 …

}

Is this condition always satisfied?Is this condition always satisfied?

Pointer Analysis is a mechanism to statically
find out run-time values of a pointer.

Pointer Analysis is a mechanism to statically
find out run-time values of a pointer.

a and b are aliasesa and b are aliases

a points to xa points to x

8

Why Points-to Analysis?

● for Parallelization
 fun(p) || fun(q)

● for Optimization
 a = p + 2;
 b = q + 2;

● for Bug-Finding
● for Program Understanding
● ...

Clients of
Points-to Analysis

9

Placement of Points-to Analysis

Points-to AnalysisPoints-to Analysis

Parallelizing compiler

String vulnerability finder

Program slicer

Data flow analyzer

Lock synchronizer

Affine expression analyzer

Memory leak detector

Type analyzer

10

Placement of Points-to Analysis

Points-to AnalysisPoints-to Analysis

Parallelizing compiler

String vulnerability finder

Program slicer

Data flow analyzer

Lock synchronizer

Affine expression analyzer

Memory leak detector

Type analyzer

Better compile timeBetter compile time

11

Placement of Points-to Analysis

Points-to AnalysisPoints-to Analysis

Parallelizing compiler

String vulnerability finder

Program slicer

Data flow analyzer

Lock synchronizer

Affine expression analyzer

Memory leak detector

Type analyzer

Improved runtimeImproved runtime

Better compile timeBetter compile time

12

Placement of Points-to Analysis

Points-to AnalysisPoints-to Analysis

Parallelizing compiler

String vulnerability finder

Program slicer

Data flow analyzer

Lock synchronizer

Affine expression analyzer

Memory leak detector

Type analyzer

Improved runtimeImproved runtime

Secure codeSecure code

Better compile timeBetter compile time

13

Placement of Points-to Analysis

Points-to AnalysisPoints-to Analysis

Parallelizing compiler

String vulnerability finder

Program slicer

Data flow analyzer

Lock synchronizer

Affine expression analyzer

Memory leak detector

Type analyzer

Improved runtimeImproved runtime

Secure codeSecure code

Better debuggingBetter debugging

Better compile timeBetter compile time

14

Points-to Analysis

p = &q address-of
p = q copy
p = *q load
*p = q store

Points-to constraints

A C program can be normalized to contain only four types of
pointer-manipulating statements or constraints.

15

Points-to Analysis

p = &q address-of
p = q copy
p = *q load
*p = q store

Points-to constraints

p q p q

A C program can be normalized to contain only four types of
pointer-manipulating statements or constraints.

16

Points-to Analysis

p = &q address-of
p = q copy
p = *q load
*p = q store

Points-to constraints

p q p
q

A C program can be normalized to contain only four types of
pointer-manipulating statements or constraints.

17

Points-to Analysis

p = &q address-of
p = q copy
p = *q load
*p = q store

Points-to constraints

qp qp

A C program can be normalized to contain only four types of
pointer-manipulating statements or constraints.

18

Points-to Analysis

A C program can be normalized to contain only four types of
pointer-manipulating statements or constraints.

p = &q address-of
p = q copy
p = *q load
*p = q store

Points-to constraints

qpqp

19

Definitions

● Points-to analysis computes points-to
information for each pointer.

● Alias analysis computes aliasing
information for all pointers.

● Aliasing information can be computed
using points-to information, but not
vice versa.

● Clients often query for aliasing
information, but storing it is expensive
O(n2), hence frameworks store points-
to information.

● If a→x, x is often called a pointee of a.

a → {x, y}
b → {y, z}
c → {z}

a → {x, y}
b → {y, z}
c → {z}

a b c

a -- Yes No

b -- -- Yes

c -- -- --

Points-to information

Aliasing information

20

Nomenclarure

● Pointer analysis: Ambiguous usage in literature.
We will use it to refer to both points-to analysis
and alias analysis.

● In the context of Java-like languages, it is called
reference analysis.

● Also called as heap analysis.

21

Algebraic Properties

● Aliasing relation is reflexive, symmetric, but not
transitive.

● Points-to relation is neither reflexive, nor
symmetric, not even transitive.

● The points-to relation induces a restricted DAG
for strictly typed languages.

22

Cyclic Dependence

● Call graph ↔ function pointers
● Optimization ↔ points-to information

23

As a DFA
a = &x: gen{a → x}
a = b: gen{a → x} if {b → x}
a = *p: gen{a → x} if {p → b → x}
*p = a: gen{b → x} if {p → b and a → x}

kill{b → x} if {p → b and b → x}

In(B) = U Out(P) where P ∈ Pred(B)
Out(B) = Gen(B) U (In(B) – Kill(B))

a = &x: gen{a → x}
a = b: gen{a → x} if {b → x}
a = *p: gen{a → x} if {p → b → x}
*p = a: gen{b → x} if {p → b and a → x}

kill{b → x} if {p → b and b → x}

In(B) = U Out(P) where P ∈ Pred(B)
Out(B) = Gen(B) U (In(B) – Kill(B))

b = &y
p = &a
b = a
if c

b = &y
p = &a
b = a
if c

a = b
b = &z
a = b

b = &z
*p = b
a = &x
*p = b
a = &x

B0

B1 B2

B3gen(B0) = {p→a, b→x if a→x} kill(B0) = {ptsto(p), ptsto(b)}
gen(B1) = {a→x if b→x, b→z} kill(B1) = {ptsto(a), ptsto(b)}
gen(B2) = {a→x,m→n if p→m and kill(B2) = {ptsto(ptsto(p)), ptsto(a)}

 b→n and m ≠ a}
gen(B3) = { } kill(B3) = { }

in1 out1 in2 out2 in3 out3

B0 {} {p→a} {} {p→a,b→{x,z}} {} {p→a,b→{x,z}}

B1 {} {b→z} out1(B0) {p→a,a→{x,z},b→{z}} out2(B0) {p→a,a→{x,z},b→{z}}

B2 {} {a→x} out1(B0) {p→a,a→{x},b→{x,z}} out2(B0) {p→a,a→{x},b→{x,z}}

B3 {} {} out1(B1) U out1(B2) {p→a,a→{x,z},b→{x,z}} out2(B1) U out2(B2) {p→a,a→{x,z},b→{x,z}}

24

As a DFA: Notes

● Gen and Kill are dynamic (not fixed before
analysis).

● Gen/Kill and Points-to Information are cyclically
dependent.

● Single copy of a variable leads to imprecision.
– e.g., a's points-to set doesn't reach B0 in any

execution, but the analysis treats it otherwise.

25

Design Decisions

● Analysis dimensions
● Heap modeling
● Set implementation
● Call graph, function pointers
● Array indices

Time

Memory Precision loss

Holy grail

26

Analysis Dimensions

An analysis's precision and efficiency is guided
by various design decisions.

● Flow-sensitivity
● Context-sensitivity
● Path-sensitivity
● Field-sensitivity

27

Flow-sensitivity

L0: a = &x;
L1: a = &y;
L2: ...

L0: a = &x;
L1: a = &y;
L2: ...

Flow-sensitive solution: at L1 a points to x, at L2 a points to y
Flow-insensitive solution: in the program a's points-to set is {x, y}

Flow-insensitive analyses ignore the control-flow in the program.

B1B1

B2B2 B3B3

B4B4

B1B1

B3B3

B2B2

B4B4

B1
B2
B3
B4

B1
B2
B3
B4

PP

28

Context-sensitivity

main() {
L0: fun(&x);
L1: fun(&y);

}

main() {
L0: fun(&x);
L1: fun(&y);

}

fun(int *a) {
b = a;

}

fun(int *a) {
b = a;

}

Context-sensitive solution:
 b points to x along L0, b points to y along L1

Context-insensitive solution:
 b's points-to set is {x, y} in the program

main

f f

g g g g

...

Exponential
Number of
contexts

Along main-f1-g1, …
Along main-f1-g2, …
Along main-f2-g1, …
Along main-f2-g2, ...

Exponential storage requirementExponential time requirement

29

Context-sensitivity

Inter-procedural
intra-procedural

main() {
L0: fun(&x);
L1: fun(&y);

}

main() {
L0: fun(&x);
L1: fun(&y);

}

fun(int *a) {
b = a;

}

fun(int *a) {
b = a;

}

Context-sensitive solution:
 b points to x along L0, b points to y along L1

Context-insensitive solution:
 b's points-to set is {x, y} in the program
 b's points-to set is {all address-taken variables}

30

Path-sensitivity

if (a == 0)
b = &x;

else
b = &y;

if (a == 0)
b = &x;

else
b = &y;

Path-sensitive solution:
 b points-to x when a is 0, b points-to y when a is not 0

Path-insensitive solution:
 b's points-to set is {x, y} in the program

if (c1)
 while (c2) {
 if (c3)
 …
 else
 for (; c4;)
 ...
 }
else
 ...

if (c1)
 while (c2) {
 if (c3)
 …
 else
 for (; c4;)
 ...
 }
else
 ...

c1 and c2 and c3, …
c1 and c2 and !c3 and c4, …
c1 and c2 and !c3 and !c4, …
c1 and !c2, …
!c1 ...
...

31

Field-sensitivity

struct T s;

s.a = &x;
s.b = &y;

struct T s;

s.a = &x;
s.b = &y;

Field-sensitive solution:
 s.a points-to x, s.b points-to y

Field-insensitive solution:
 s's points-to set is {x, y}

Aggregates are collapsed into a single variable.
 e.g., arrays, structures, unions.

This reduces the number of variables tracked during
the analysis and reduces precision.

32

Andersen's Analysis

● Inclusion-based / subset-based / constraint-based analysis

● Flow-insensitive analysis

For a statement p = q,
 create a constraint ptsto(p) ⊇ ptsto(q)

 where p is of the form *a, a, and q is of the form *a, a, &a.

Solving these inclusion constraints results into the points-to
solution.

33

Andersen's Analysis: Example

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

ptsto(a) ⊇ {x}
ptsto(b) ⊇ {y}
ptsto(p) ⊇ {a}
ptsto(c) ⊇ ptsto(b)
ptsto(*p) ⊇ ptsto(c)

Program Constraints

Pointers Iteration 0 Iteration 1 Iteration 2

a { } {x, y}

b { } {y}

c { } {y}

p { } {a}

x { }

y { }

fixed-point

ImprecisionImprecision

34

Andersen's Analysis: Modified Example

a = &x;
b = &y;
p = &a;
*p = c;
c = b;

a = &x;
b = &y;
p = &a;
*p = c;
c = b;

ptsto(a) ⊇ {x}
ptsto(b) ⊇ {y}
ptsto(p) ⊇ {a}
ptsto(*p) ⊇ ptsto(c)
ptsto(c) ⊇ ptsto(b)

ptsto(a) ⊇ {x}
ptsto(b) ⊇ {y}
ptsto(p) ⊇ {a}
ptsto(*p) ⊇ ptsto(c)
ptsto(c) ⊇ ptsto(b)

Program Constraints

Pointers Iteration 0 Iteration 1 Iteration 2 Iteration 3

a { } {x} {x, y}

b { } {y}

c { } {y}

p { } {a}

x { }

y { }

fixed-point

Order does not matter
for correctness,

but it does matter
for efficiency.

Order does not matter
for correctness,

but it does matter
for efficiency.

35

Andersen's Analysis: Classwork

*p = c;
b = &y;
b = *p;
p = &a;
a = &x;
*p = c;
c = p;
c = &z;

*p = c;
b = &y;
b = *p;
p = &a;
a = &x;
*p = c;
c = p;
c = &z;

ptsto(*p) ⊇ ptsto(c)
ptsto(b) ⊇ {y}
ptsto(b) ⊇ ptsto(*p)
ptsto(p) ⊇ {a}
ptsto(a) ⊇ {x}
ptsto(*p) ptsto(c)⊇
ptsto(c) ⊇ ptsto(p)
ptsto(c) {z}⊇

ptsto(*p) ⊇ ptsto(c)
ptsto(b) ⊇ {y}
ptsto(b) ⊇ ptsto(*p)
ptsto(p) ⊇ {a}
ptsto(a) ⊇ {x}
ptsto(*p) ptsto(c)⊇
ptsto(c) ⊇ ptsto(p)
ptsto(c) {z}⊇

Program Constraints

Pointers Iteration 0 Iteration 1 Iteration 2 Iteration 3

a { } {x} {a, x, z}

b { } {y} {a, x, y, z}

c { } {a, z} {a, z}

p { } {a} {a}

x { }

y { }

z

fixed-point

36

Andersen's Analysis: Optimizations

● Avoid duplicates
● Reorder constraints
● Process address-of constraints once
● Difference propagation

37

Andersen's Analysis: Complexity

● Total information computed (storage) = O(n2)
● From each pointer

To each other pointer
Propagate O(n) information

O(n) times

● From each pointer

To each other pointer
Propagate O(n) information

O(n⁴)

O(n³)

Open: Can you reduce the gap between storage and time complexities?Open: Can you reduce the gap between storage and time complexities?

Difference
Propagation

Naive

38

Steensgaard's Analysis

● Unification-based
● Almost linear time O(nα(n))
● More imprecise

For a statement p = q, merge the points-to sets of
p and q.

In subset terms, ptsto(p) ⊇ ptsto(q) and ptsto(q) ⊇
ptsto(p) with a single representative element.

39

Steensgaard's Analysis: Example

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

Program Andersen's

a → {x, y}
b → {y}
c → {y}
p → {a}

Pointers Iteration 0 Iteration 1

a {*a} {*a, *b, *c, x, y}

b {*b} {*a, *b, *c, x, y}

c {*c} {*a, *b, *c, x, y}

p {*p} {*p, a}

x {*x}

y {*y}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

Only one iterationOnly one iteration

40

Steensgaard's Hierarchy

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

Program Andersen's

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

aa

*a*a

aa

*a, x*a, x

*x*x

aa

*a, x*a, x

*a, x*a, x

pp

bb

*b, y*b, y

*y*y

bb

*b, y*b, y

*x*x

*x*x

a, *pa, *p

*y*y

*a, x*a, x

pp

*x*x

a, *pa, *p

bb

*b, *c, y*b, *c, y

*y*y

cc

*a, *b, *c, x, y*a, *b, *c, x, y

pp

*x, *y*x, *y

a, *pa, *p bb cc

a=&x b=&y p=&a c=b *p=c

41

Classwork

*p = c;
b = &y;
b = *p;
p = &a;
a = &x;
*p = c;
c = p;
c = &z;

*p = c;
b = &y;
b = *p;
p = &a;
a = &x;
*p = c;
c = p;
c = &z;

a → {a, x, z}
b → {a, x, y, z}
c → {a, z}
p → {a}

a → {a, x, z}
b → {a, x, y, z}
c → {a, z}
p → {a}

Program Andersen's Steensgaard's

42

Steensgaard's Hierarchy

● What is its structure?
● How many incoming edges to each node?
● How many outgoing edges from each node?
● Can there be cycles?
● What happens to p = &p?
● What is the precision difference between

Andersen's and Steensgaard's analyses?
● If for each P = Q, we add Q = P and solve using

Andersen's analysis, would it be equivalent to
Steensgaard's analysis?

43

Unifying Model Two

● Steensgaard's hierarchy is characterized by a
single outgoing edge.

● Andersen's points-to graph can have arbitrary
number of outgoing edges (maximum n).

● Number of edges in between the two provide
precision-scalability trade-off.

44

Unifying Model Two

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

Program Andersen's

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

*a, *b, *c, x, y*a, *b, *c, x, y

pp

*x, *y*x, *y

a, *pa, *p bb ccaa

xx yy

bb cc

pp

45

Unifying Model Two

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

Program Andersen's

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

x, yx, y

pp

aa bb ccaa

xx yy

bb cc

pp

46

Unifying Model Two

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

Program Andersen's

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

x, yx, y

bb cc

pp

aa

pp

aa

xx yy

bb cc

47

Unifying Model Two

a = &x;
b = &y;
p = &a;
c = b;
*p = c;
a = &z;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;
a = &z;

Program Andersen's

a → {x, y, z}
b → {y}
c → {y}
p → {a}

a → {x, y, z}
b → {y}
c → {y}
p → {a}

a → {x, y, z}
b → {x, y, z}
c → {x, y, z}
p → {a}

a → {x, y, z}
b → {x, y, z}
c → {x, y, z}
p → {a}

Steensgaard's

x, y, zx, y, z

bb cc

pp

aa

pp

aa

xx yy

bb cc

zz

48

Unifying Model Two

a = &x;
b = &y;
p = &a;
c = b;
*p = c;
a = &z;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;
a = &z;

Program Andersen's

a → {x, y, z}
b → {y}
c → {y}
p → {a}

a → {x, y, z}
b → {y}
c → {y}
p → {a}

a → {x, y, z}
b → {x, y, z}
c → {x, y, z}
p → {a}

a → {x, y, z}
b → {x, y, z}
c → {x, y, z}
p → {a}

a → {x, y, z}
b → {x, y}
c → {x, y}
p → {a}

a → {x, y, z}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

pp

x, y, zx, y, z

bb cc aa

x, yx, y zz

bb cc

pp

In between

aa

pp

aa

xx yy

bb cc

zz

What if x and
z are merged?

49

Unifying Model One

● Steensgaard's unification can be viewed as
equality of points-to sets.

● Thus, if a = b merges their points-to sets and b
= c merges their points-to sets, then a and c
become aliases!

● Remember: aliasing is not transitive.
● So, unification adds transitivity to the aliasing

relation.

50

Unifying Model One

A B C

Aliasing is non-transitive Aliasing becomes transitive

A, B, C

Andersen's Steensgaard's

51

Back to Steensgaard's
● Aliasing relation is transitive.
● We know that it is also reflexive and symmetric.
● This means aliasing becomes an equivalence

relation.
● Steensgaard's unification partitions pointers into

equivalent sets.

x, y, zx, y, z

bb cc

pp

aa

All predecessors of a node form a partition.
The equivalence sets are {p}, {a, b, c}, {x, y, z}.

52

Back to Steensgaard's
● Aliasing relation is transitive.
● We know that it is also reflexive and symmetric.
● This means aliasing becomes an equivalence

relation.
● Steensgaard's unification partitions pointers into

equivalent sets.

x, yx, y

bb cc

pp

aa

All predecessors of a node form a partition.
The equivalence sets are {p, q}, {a, b}, {c}, {x, y},
{z}.

zz

qq

53

Realizable Facts

a = &c
b = &a
c = &b
b = a
∗b = c
d = a∗

a = &c
b = &a
c = &b
b = a
∗b = c
d = a∗

a → {b, c}
b → {a, b, c}
c → {b}
d → {a, b, c}

a → {b, c}
b → {a, b, c}
c → {b}
d → {a, b, c}

A realizability sequence is a sequence of statements such that a
given points-to fact is satisfied.

The realizability sequence for b→c is a=&c, b=a.
The realizability sequence for a→b is c=&b, b=&a, *b=c.
Classwork: What is the realizability sequence for d→a?
 a→b and b→c are realizable individually, but not simultaneously.

Statements Andersen's points-to

54

int *fun(int *a, int *b) {
int *c;
if (*a == *b) {

c = b;
} else {

c = a;
}
return c;

}
int *g;
void main() {

int *x, *y, *z, **w;
int m = 0, n = 1;
char *str;
x = &m;
y = &n;
str = (char *)malloc(30);
w = (int *)&str;
if (m < n) {

strcpy(str, “m is smaller\n”);
z = fun(y, x);

} else {
printf(“m is >= n\n”);
w = &x;
*w = fun(x, y);

}
printf(“**w=%d\n”, **w);

}

int *fun(int *a, int *b) {
int *c;
if (*a == *b) {

c = b;
} else {

c = a;
}
return c;

}
int *g;
void main() {

int *x, *y, *z, **w;
int m = 0, n = 1;
char *str;
x = &m;
y = &n;
str = (char *)malloc(30);
w = (int *)&str;
if (m < n) {

strcpy(str, “m is smaller\n”);
z = fun(y, x);

} else {
printf(“m is >= n\n”);
w = &x;
*w = fun(x, y);

}
printf(“**w=%d\n”, **w);

}

● How do we take care of malloc?
● How do we take care of type-casts?
● Find the set of normalized

statements for intra-procedural
pointer analysis.

● Perform intra-procedural
Andersen's analysis.

● How do we take care of strcpy and
printf? How about the global g?

● Perform inter-procedural context-
insensitive Andersen's analysis.

● Perform Steensgaard's analysis.

55

Extra

56

Complexity of Points-to Analysis
Points-to Analysis

With dynamic memory allocation Without dynamic memory allocation

Flow-sensitive Flow-insensitive Strongly typed Weakly typed

Flow-sensitive Flow-insensitive Flow-sensitive Flow-insensitive

Two dereferences Arbitrary dereference Fixed dereference Arbitrary dereference

Undecidable ??? PNP-Hard

57

Complexity of Points-to Analysis
Points-to Analysis

With dynamic memory allocation Without dynamic memory allocation

Flow-sensitive Flow-insensitive Strongly typed Weakly typed

Flow-sensitive Flow-insensitive Flow-sensitive Flow-insensitive

Two dereferences Arbitrary dereference Fixed dereference Arbitrary dereference

Undecidable ??? PNP-Hard

58

Complexity of Points-to Analysis
Points-to Analysis

With dynamic memory allocation Without dynamic memory allocation

Flow-sensitive Flow-insensitive Strongly typed Weakly typed

Flow-sensitive Flow-insensitive Flow-sensitive Flow-insensitive

Two dereferences Arbitrary dereference Fixed dereference Arbitrary dereference

Undecidable ??? PNP-Hard

59

Complexity of Points-to Analysis
Points-to Analysis

With dynamic memory allocation Without dynamic memory allocation

Flow-sensitive Flow-insensitive Strongly typed Weakly typed

Flow-sensitive Flow-insensitive Flow-sensitive Flow-insensitive

Two dereferences Arbitrary dereference Fixed dereference Arbitrary dereference

Undecidable ??? PNP-Hard

60

Complexity of Points-to Analysis
Points-to Analysis

With dynamic memory allocation Without dynamic memory allocation

Flow-sensitive Flow-insensitive Strongly typed Weakly typed

Flow-sensitive Flow-insensitive Flow-sensitive Flow-insensitive

Two dereferences Arbitrary dereference Fixed dereference Arbitrary dereference

Undecidable ??? PNP-Hard

61

Complexity of Points-to Analysis
Points-to Analysis

With dynamic memory allocation Without dynamic memory allocation

Flow-sensitive Flow-insensitive Strongly typed Weakly typed

Flow-sensitive Flow-insensitive Flow-sensitive Flow-insensitive

Two dereferences Arbitrary dereference Fixed dereference Arbitrary dereference

Undecidable ??? PNP-Hard

62

Complexity of Points-to Analysis
Points-to Analysis

With dynamic memory allocation Without dynamic memory allocation

Flow-sensitive Flow-insensitive Strongly typed Weakly typed

Flow-sensitive Flow-insensitive Flow-sensitive Flow-insensitive

Two dereferences Arbitrary dereference Arbitrary dereference

Undecidable ??? PNP-Hard

Fixed dereference

63

Complexity of Points-to Analysis
Points-to Analysis

With dynamic memory allocation Without dynamic memory allocation

Flow-sensitive Flow-insensitive Strongly typed Weakly typed

Flow-sensitive Flow-insensitive Flow-sensitive Flow-insensitive

Two dereferences Arbitrary dereference Fixed dereference Arbitrary dereference

Undecidable ??? PNP-Hard

64

Related Work
Context-Sensitive Context-Insensitive

Flow-Sensitive Landi, Ryder 92
Choi et al. 93
Emami et al. 94
Reps et al. 95
Hind et al. 99
Kahlon 08

Zheng 98
Hardekopf, Lin 09

Flow-insensitive Liang, Harrold 99
Whaley, Lam 04
Zhu, Calman 04
Lattner et al. 07

Andersen 94
Steensgaard 96
Shapiro, Horwitz 97
Fahndrich et al. 98
Das 00
Rountev, Chandra 00
Berndl et al. 03
Hardekopf, Lin 07
Pereira, Berlin 09
Mendez-Lojo 10

Surveys Hind, Pioli 00
Qiang, Wu 06

Precision

Precision

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

