Pointer Analysis

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras
Jan 2015

Outline

- Introduction
- Pointer analysis as a DFA problem
- Design decisions
- Andersen's analysis, Steensgaard's analysis
- Pointer analysis as a graph problem
 - Optimizations
- Pointer analysis as graph rewrite rules
- Applications
- Parallelization
 - Constraint based
 - Replication based

What is Pointer Analysis?

```
a = &x;
b = a;
if (b == *p) {
} else {
```

```
a points to x
a = \&x;
b = a;
if (b == *p) {
} else {
```

```
a points to x
a = &x;
                         a and b are aliases
b = a
if (b == *p) {
} else {
```

```
a points to x
a = &x=
                           a and b are aliases
b = a
                 Is this condition always satisfied?
if (b == *p)
} else {
```

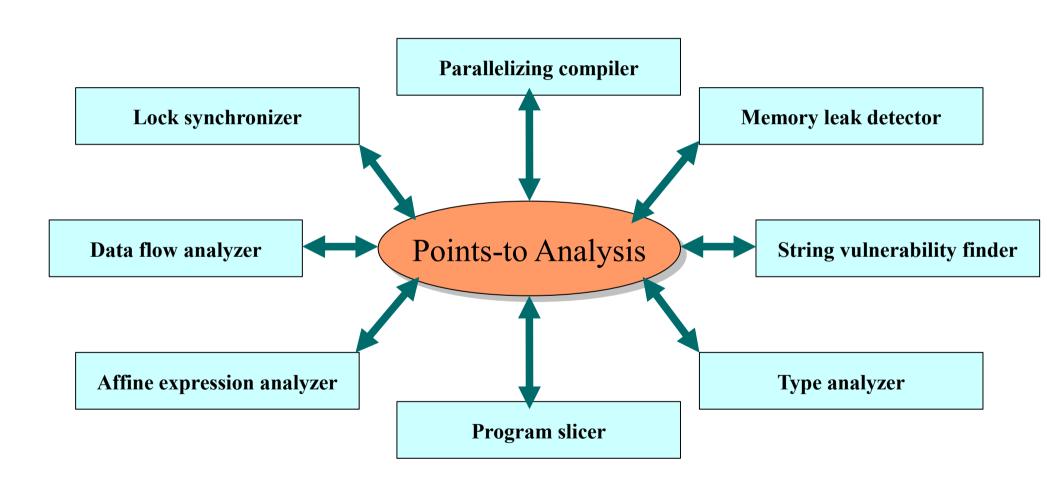
```
a points to x
a = &x;
b = a;
                             a and b are aliases
if (b == *p) Is this condition always satisfied?
} else {
                       Pointer Analysis is a mechanism to statically
                           find out run-time values of a pointer.
```

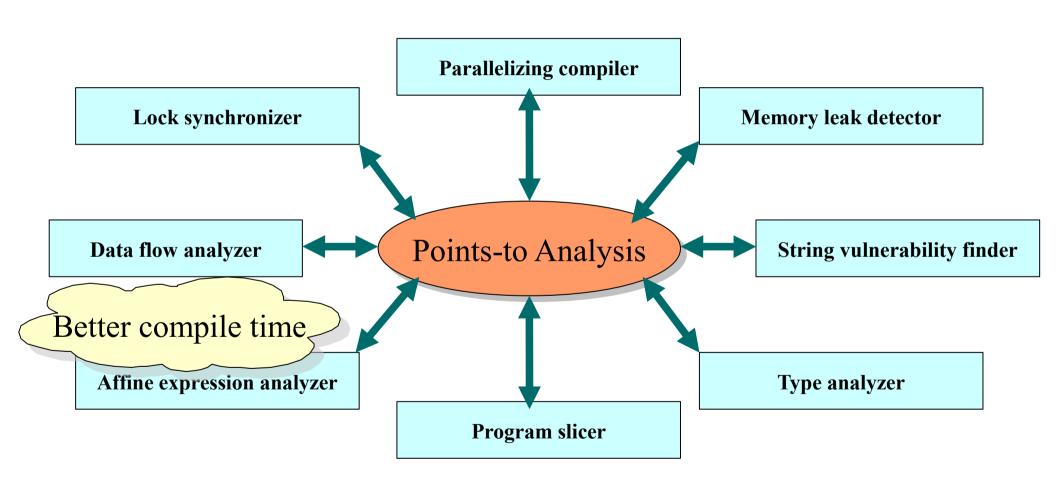
Why Points-to Analysis?

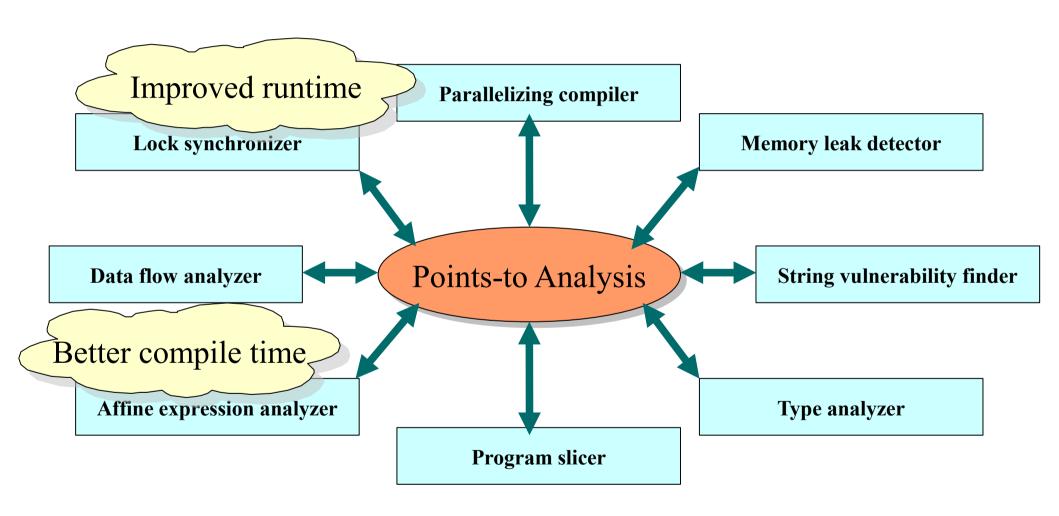
- for Parallelization
 - fun(p) || fun(q)
- for Optimization
 - a = p + 2;
 - b = q + 2;
- for Bug-Finding
- for Program Understanding

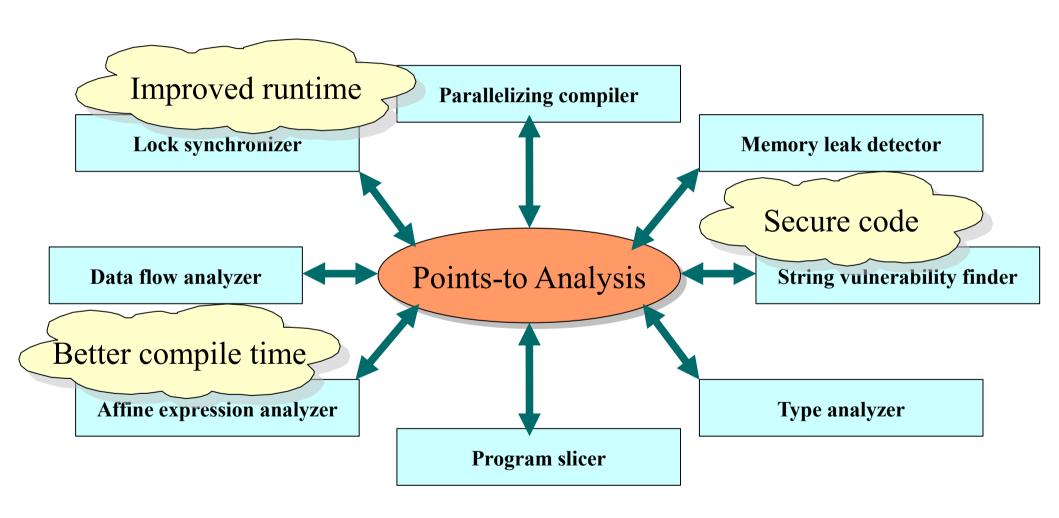
•

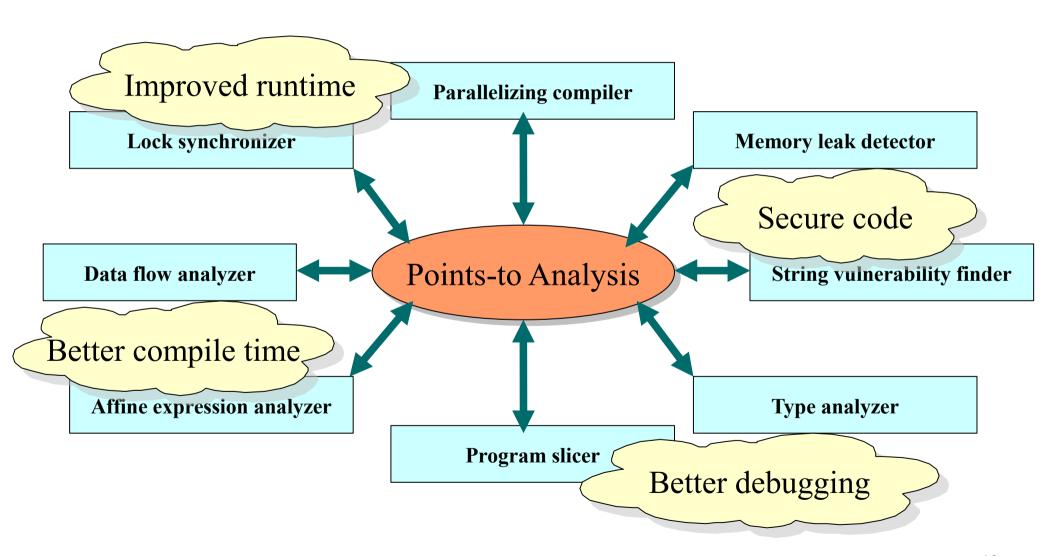
Clients of Points-to Analysis











A C program can be normalized to contain only four types of pointer-manipulating statements or constraints.

Points-to constraints

```
p = &q address-of

p = q copy

p = *q load

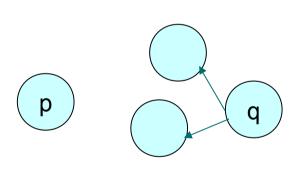
*p = q store
```

A C program can be normalized to contain only four types of pointer-manipulating statements or constraints.

p

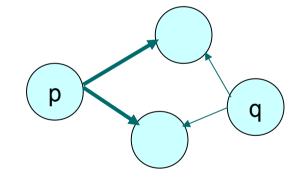
Points-to constraints

A C program can be normalized to contain only four types of pointer-manipulating statements or constraints.

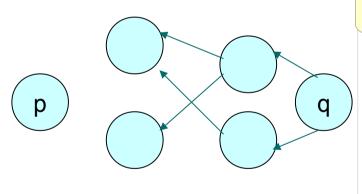


Points-to constraints

store

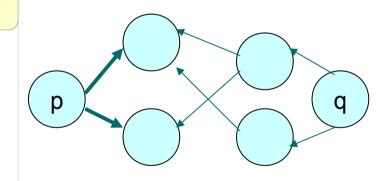


A C program can be normalized to contain only four types of pointer-manipulating statements or constraints.

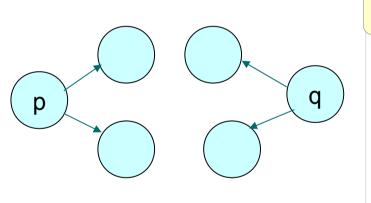


Points-to constraints

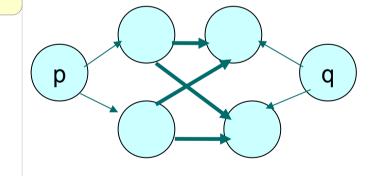
$$*p = q$$
 store



A C program can be normalized to contain only four types of pointer-manipulating statements or constraints.



Points-to constraints



Definitions

- Points-to analysis computes points-to information for each pointer.
- Alias analysis computes aliasing information for all pointers.
- Aliasing information can be computed using points-to information, but not vice versa.
- Clients often query for aliasing information, but storing it is expensive O(n²), hence frameworks store pointsto information.
- If $a \rightarrow x$, x is often called a pointee of a.

Points-to information

$$a \rightarrow \{x, y\}$$

$$b \rightarrow \{y, z\}$$

$$c \rightarrow \{z\}$$

Aliasing information

	a	b	c
a		Yes	No
b			Yes
c			

Nomenclarure

- Pointer analysis: Ambiguous usage in literature.
 We will use it to refer to both points-to analysis and alias analysis.
- In the context of Java-like languages, it is called reference analysis.
- Also called as heap analysis.

Algebraic Properties

- Aliasing relation is reflexive, symmetric, but not transitive.
- Points-to relation is neither reflexive, nor symmetric, not even transitive.
- The points-to relation induces a restricted DAG for strictly typed languages.

Cyclic Dependence

As a DFA

```
a = \&x: gen{a \rightarrow x}

a = b: gen{a \rightarrow x} if \{b \rightarrow x\}

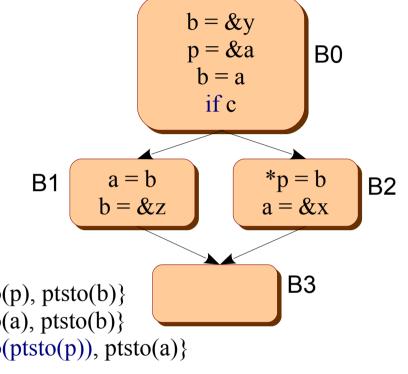
a = *p: gen{a \rightarrow x} if \{p \rightarrow b \rightarrow x\}

*p = a: gen{b \rightarrow x} if \{p \rightarrow b \text{ and } a \rightarrow x\}

kill{b \rightarrow x} if \{p \rightarrow b \text{ and } b \rightarrow x\}

In(B) = U Out(P) \text{ where } P \in Pred(B)

Out(B) = Gen(B) U (In(B) - Kill(B))
```



```
gen(B0) = \{p \rightarrow a, b \rightarrow x \text{ if } a \rightarrow x\}
gen(B1) = \{a \rightarrow x \text{ if } b \rightarrow x, b \rightarrow z\}
gen(B2) = \{a \rightarrow x, m \rightarrow n \text{ if } p \rightarrow m \text{ and } kill(B2) = \{ptsto(p), ptsto(b)\}
kill(B1) = \{ptsto(p), ptsto(b)\}
kill(B2) = \{ptsto(ptsto(p)), ptsto(a)\}
b \rightarrow n \text{ and } m \neq a\}
gen(B3) = \{\}
kill(B3) = \{\}
```

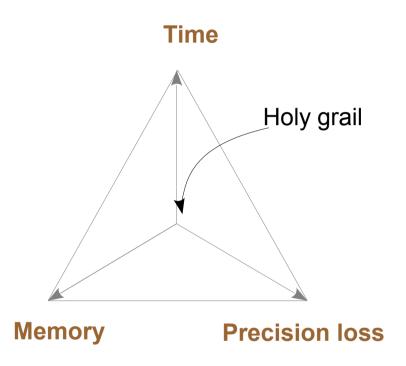
	ın1	out1	in2	out2	in3	out3
В0	{}	{p→a}	{}	$\{p \rightarrow a, b \rightarrow \{x, z\}\}$	{}	$\{p \rightarrow a, b \rightarrow \{x, z\}\}$
B1	{}	$\{b{ ightarrow}z\}$	out1(B0)	${p \rightarrow a, a \rightarrow \{x, z\}, b \rightarrow \{z\}}$	out2(B0)	${p \rightarrow a, a \rightarrow \{x, z\}, b \rightarrow \{z\}}$
B2	{}	$\{a \rightarrow x\}$	out1(B0)	$\{p \rightarrow a, a \rightarrow \{x\}, b \rightarrow \{x,z\}\}$	out2(B0)	${p \rightarrow a, a \rightarrow \{x\}, b \rightarrow \{x,z\}}$
В3	{}	{}	out1(B1) U out1(B2)	${p \rightarrow a, a \rightarrow \{x,z\}, b \rightarrow \{x,z\}}$	out2(B1) U out2(B2)	${p \rightarrow a, a \rightarrow \{x,z\}, b \rightarrow \{x,z\}}$

As a DFA: Notes

- Gen and Kill are dynamic (not fixed before analysis).
- Gen/Kill and Points-to Information are cyclically dependent.
- Single copy of a variable leads to imprecision.
 - e.g., a's points-to set doesn't reach B0 in any execution, but the analysis treats it otherwise.

Design Decisions

- Analysis dimensions
- Heap modeling
- Set implementation
- Call graph, function pointers
- Array indices



Analysis Dimensions

An analysis's precision and efficiency is guided by various design decisions.

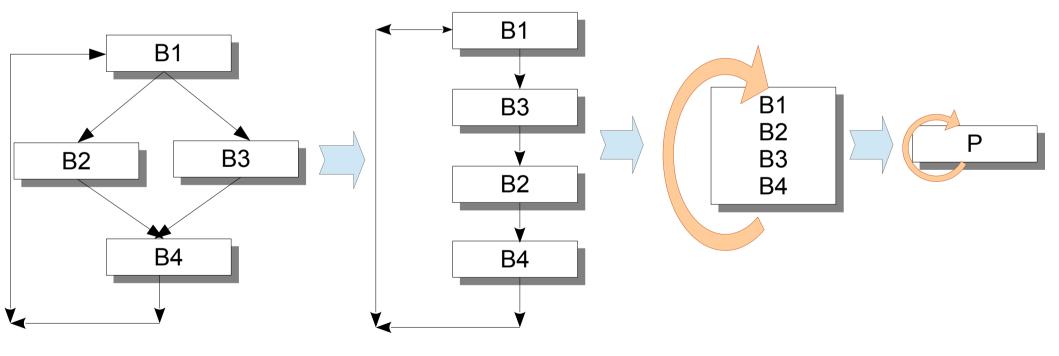
- Flow-sensitivity
- Context-sensitivity
- Path-sensitivity
- Field-sensitivity

Flow-sensitivity

```
L0: a = &x;
L1: a = &y;
L2: ...
```

Flow-sensitive solution: at L1 a points to x, at L2 a points to y Flow-insensitive solution: in the program a's points-to set is $\{x, y\}$

Flow-insensitive analyses ignore the control-flow in the program.



Context-sensitivity

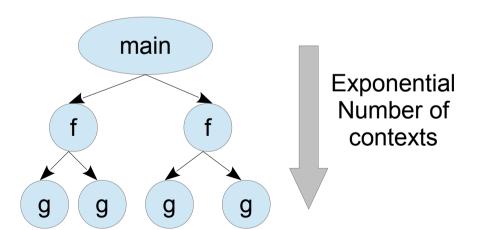
```
main() {
    L0: fun(&x);
    L1: fun(&y);
}
```

Context-sensitive solution:

b points to x along L0, b points to y along L1

Context-insensitive solution:

b's points-to set is {x, y} in the program



```
Along main-f1-g1, ...
Along main-f1-g2, ...
Along main-f2-g1, ...
Along main-f2-g2, ...
```

Exponential time requirement

Exponential storage requirement

Context-sensitivity

```
main() {
    L0: fun(&x);
    L1: fun(&y);
}
```

Context-sensitive solution:

b points to x along L0, b points to y along L1

Context-insensitive solution:

Inter-procedural

b's points-to set is {x, y} in the program intra-procedural
b's points-to set is {all address-taken variables}

Path-sensitivity

```
if (a == 0)
b = &x;
else
b = &y;
```

Path-sensitive solution:

b points-to x when a is 0, b points-to y when a is not 0

Path-insensitive solution:

b's points-to set is {x, y} in the program

```
if (c1)
  while (c2) {
    if (c3)
    ...
    else
    for (; c4; )
    ...
  }
else
...
```

```
c1 and c2 and c3, ...
c1 and c2 and !c3 and c4, ...
c1 and c2 and !c3 and !c4, ...
c1 and !c2, ...
!c1 ...
```

Field-sensitivity

```
struct T s;

s.a = &x;

s.b = &y;
```

```
Field-sensitive solution: s.a points-to x, s.b points-to y
```

Field-insensitive solution: s's points-to set is {x, y}

Aggregates are collapsed into a single variable. e.g., arrays, structures, unions.

This reduces the number of variables tracked during the analysis and reduces precision.

Andersen's Analysis

- Inclusion-based / subset-based / constraint-based analysis
- Flow-insensitive analysis

```
For a statement p = q,
create a constraint ptsto(p) \supseteq ptsto(q)
where p is of the form *a, a, and q is of the form *a, a, &a.
```

Solving these inclusion constraints results into the points-to solution.

Andersen's Analysis: Example

Program

a = &x; b = &y; p = &a; c = b; *p = c;

Constraints

```
ptsto(a) \supseteq \{x\}
ptsto(b) \supseteq \{y\}
ptsto(p) \supseteq \{a\}
ptsto(c) \supseteq ptsto(b)
ptsto(*p) \supseteq ptsto(c)
```

fixed-point

Pointers	Iteration 0	Iteration 1	Iteration 2	
a	{}	$\{x,y\}$		Imprecision
b	{}	{y}		
c	{}	{y}		
p	{}	{a}		
X	{}			
y	{}			33

Andersen's Analysis: Modified Example

Program

Constraints

```
ptsto(a) \supseteq \{x\}
ptsto(b) \supseteq \{y\}
ptsto(p) \supseteq \{a\}
ptsto(*p) \supseteq ptsto(c)
ptsto(c) \supseteq ptsto(b)
```

Order does not matter for correctness, but it does matter for efficiency.

fixed-point

Pointers	Iteration 0	Iteration 1	Iteration 2	Iteration 3
a	{}	{x}	$\{x, y\}$	
b	{}	{y}		
c	{}	{y}		
p	{}	{a}		
X	{}			
у	{}			

Andersen's Analysis: Classwork

Program

*p = c; b = &y; b = *p; p = &a; a = &x; *p = c; c = p; c = &z;

Constraints

```
ptsto(*p) \supseteq ptsto(c)
ptsto(b) \supseteq \{y\}
ptsto(b) \supseteq ptsto(*p)
ptsto(p) \supseteq \{a\}
ptsto(a) \supseteq \{x\}
ptsto(*p) \supseteq ptsto(c)
ptsto(c) \supseteq ptsto(p)
ptsto(c) \supseteq \{z\}
```

fixed-point

Pointers	Iteration 0	Iteration 1	Iteration 2	Iteration 3
a	{}	{x}	$\{a, x, z\}$	
b	{}	{y}	$\{a, x, y, z\}$	
c	{}	{a, z}	{a, z}	
p	{}	{a}	{a}	
X	{}			
у	{}			
Z				

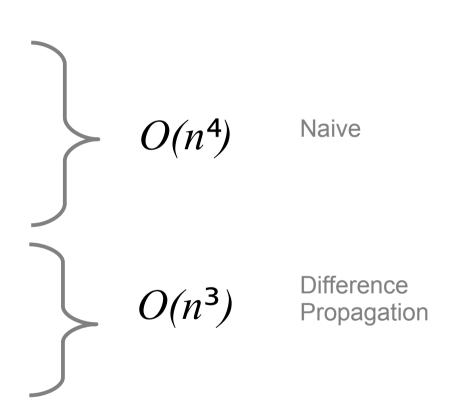
Andersen's Analysis: Optimizations

- Avoid duplicates
- Reorder constraints
- Process address-of constraints once
- Difference propagation

Andersen's Analysis: Complexity

- Total information computed (storage) = $O(n^2)$
- From each pointer
 To each other pointer
 Propagate O(n) information

 O(n) times
- From each pointer
 To each other pointer
 Propagate O(n) information



Open: Can you reduce the gap between storage and time complexities?

Steensgaard's Analysis

- Unification-based
- Almost linear time $O(n\alpha(n))$
- More imprecise

For a statement p = q, merge the points-to sets of p and q.

In subset terms, $ptsto(p) \supseteq ptsto(q)$ and $ptsto(q) \supseteq ptsto(p)$ with a single representative element.

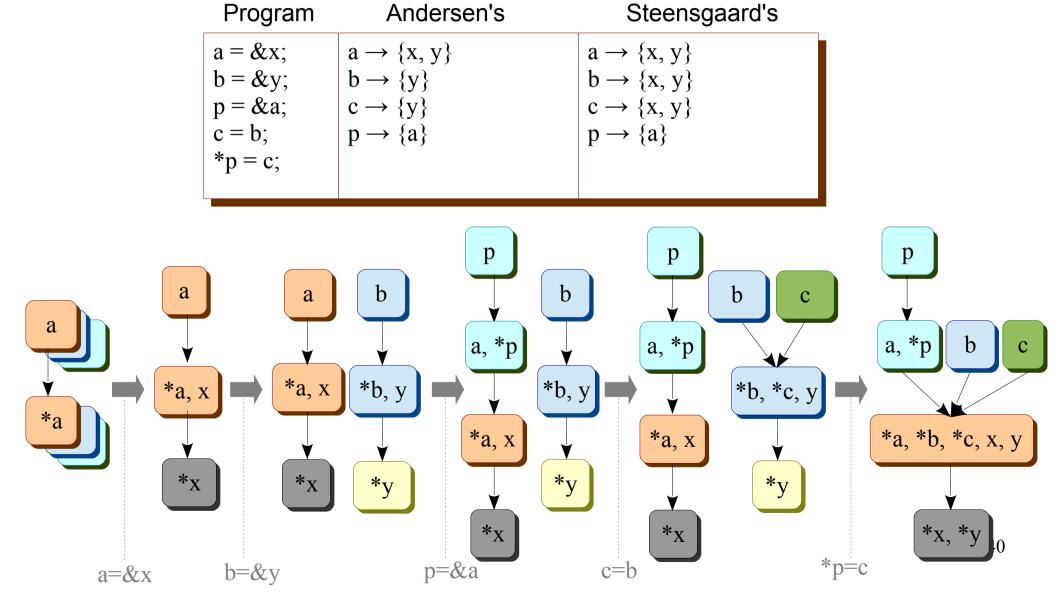
Steensgaard's Analysis: Example

Program	Andersen's	Steensgaard's
a = &x b = &y p = &a c = b; *p = c;	$a \rightarrow \{x, y\}$ $b \rightarrow \{y\}$ $c \rightarrow \{y\}$ $p \rightarrow \{a\}$	$a \rightarrow \{x, y\}$ $b \rightarrow \{x, y\}$ $c \rightarrow \{x, y\}$ $p \rightarrow \{a\}$

Pointers	Iteration 0	Iteration 1
a	{*a}	{*a, *b, *c, x, y}
b	{*b}	{*a, *b, *c, x, y}
c	{*c}	$\{*a, *b, *c, x, y\}$
p	{*p}	{*p, a}
X	{*x}	
у	{*y}	

Only one iteration

Steensgaard's Hierarchy



Classwork

Program

Andersen's

$$a \rightarrow \{a, x, z\}$$

$$b \rightarrow \{a, x, y, z\}$$

$$c \rightarrow \{a, z\}$$

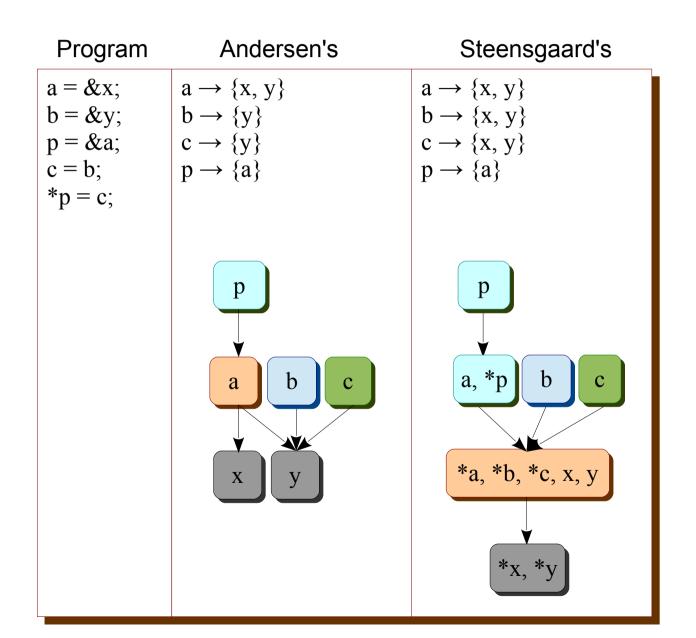
$$p \rightarrow \{a\}$$

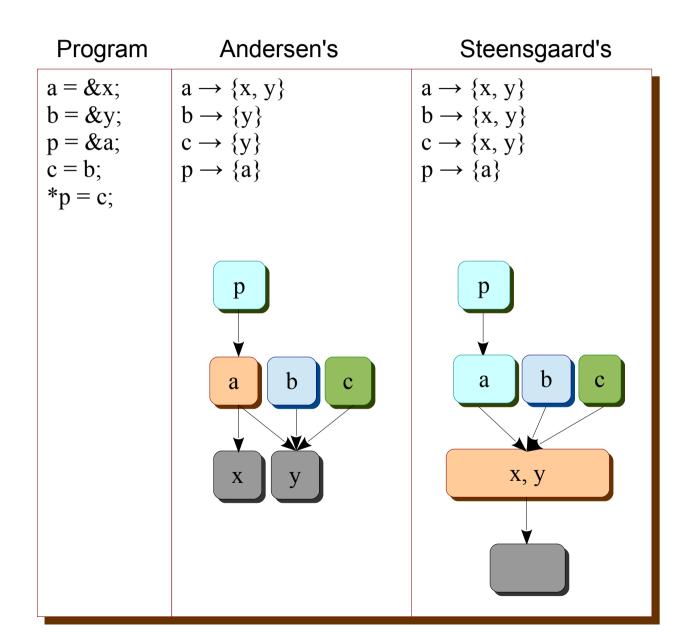
Steensgaard's

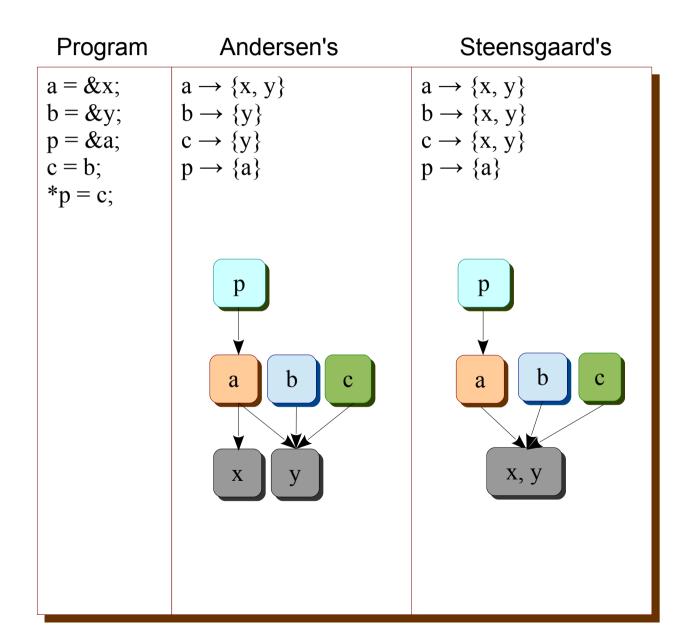
Steensgaard's Hierarchy

- What is its structure?
- How many incoming edges to each node?
- How many outgoing edges from each node?
- Can there be cycles?
- What happens to p = &p?
- What is the precision difference between Andersen's and Steensgaard's analyses?
- If for each P = Q, we add Q = P and solve using Andersen's analysis, would it be equivalent to Steensgaard's analysis?

- Steensgaard's hierarchy is characterized by a single outgoing edge.
- Andersen's points-to graph can have arbitrary number of outgoing edges (maximum n).
- Number of edges in between the two provide precision-scalability trade-off.







Steensgaard's Program Andersen's a = &x; $a \rightarrow \{x, y, z\}$ $a \rightarrow \{x, y, z\}$ b = &x; p = &a; c = b; $d \rightarrow \{x, y\}$ $b \rightarrow \{y\}$ $c \rightarrow \{y\}$ $p \rightarrow \{a\}$ $b \rightarrow \{x, y, z\}$ $c \rightarrow \{x, y, z\}$ $p \rightarrow \{a\}$ p = c; a = &z;a x, y, z

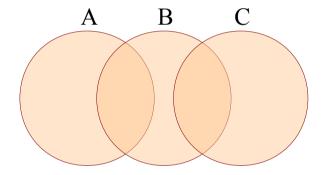
In between Program Steensgaard's Andersen's a = &x; $a \rightarrow \{x, y, z\}$ $a \rightarrow \{x, y, z\}$ $a \rightarrow \{x, y, z\}$ b = &x; p = &a; c = b; $b \rightarrow \{y\}$ $c \rightarrow \{y\}$ $p \rightarrow \{a\}$ $b \to \{x, y, z\}$ $b \rightarrow \{x, y\}$ $c \rightarrow \{x, y, z\}$ $c \rightarrow \{x, y\}$ $p \rightarrow \{a\}$ $p \rightarrow \{a\}$ *p = c;a = &z;a x, y x, y, z What if x and z are merged?

Unifying Model One

- Steensgaard's unification can be viewed as equality of points-to sets.
- Thus, if a = b merges their points-to sets and become aliases!
 Thus, if a = b merges their points-to sets, then a and c become aliases!
- Remember: aliasing is not transitive.
- So, unification adds transitivity to the aliasing relation.

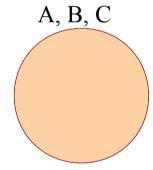
Unifying Model One

Andersen's



Aliasing is non-transitive

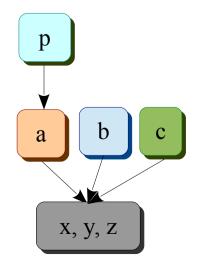
Steensgaard's



Aliasing becomes transitive

Back to Steensgaard's

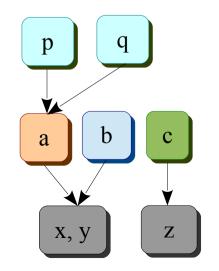
- Aliasing relation is transitive.
- We know that it is also reflexive and symmetric.
- This means aliasing becomes an equivalence relation.
- Steensgaard's unification partitions pointers into equivalent sets.



All predecessors of a node form a partition. The equivalence sets are $\{p\}$, $\{a, b, c\}$, $\{x, y, z\}$.

Back to Steensgaard's

- Aliasing relation is transitive.
- We know that it is also reflexive and symmetric.
- This means aliasing becomes an equivalence relation.
- Steensgaard's unification partitions pointers into equivalent sets.



All predecessors of a node form a partition. The equivalence sets are $\{p,\,q\},\,\{a,\,b\},\,\{c\},\,\{x,\,y\},\,\{z\}.$

Realizable Facts

Statements Andersen's points-to

```
a = &c a \to \{b, c\}

b = &a b \to \{a, b, c\}

c = &b c \to \{b\}

b = a d \to \{a, b, c\}

*b = c

d = *a
```

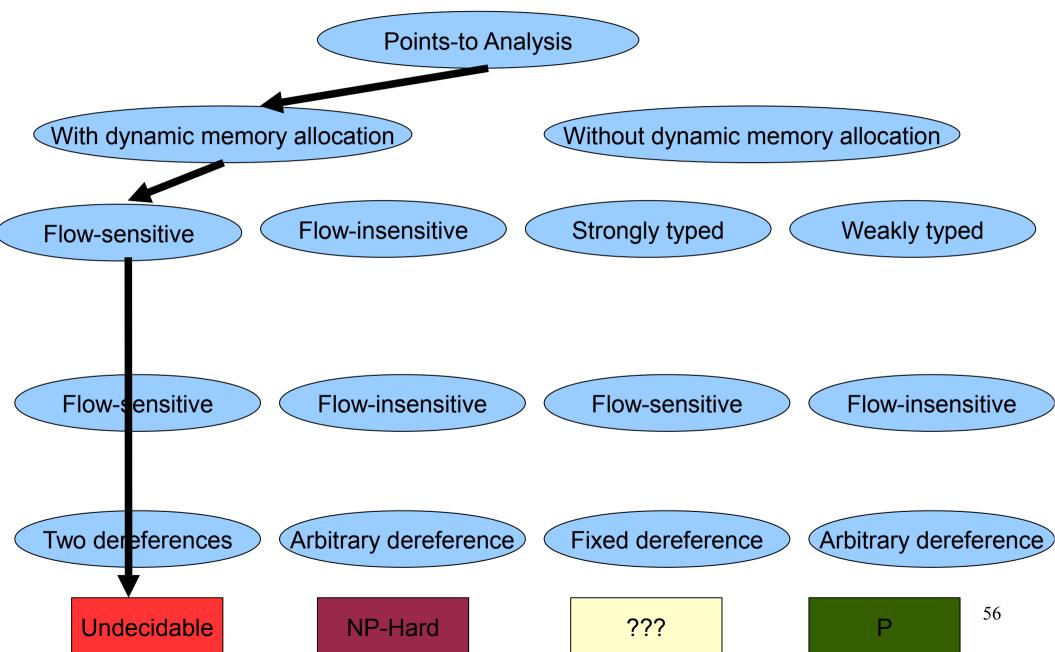
A realizability sequence is a sequence of statements such that a given points-to fact is satisfied.

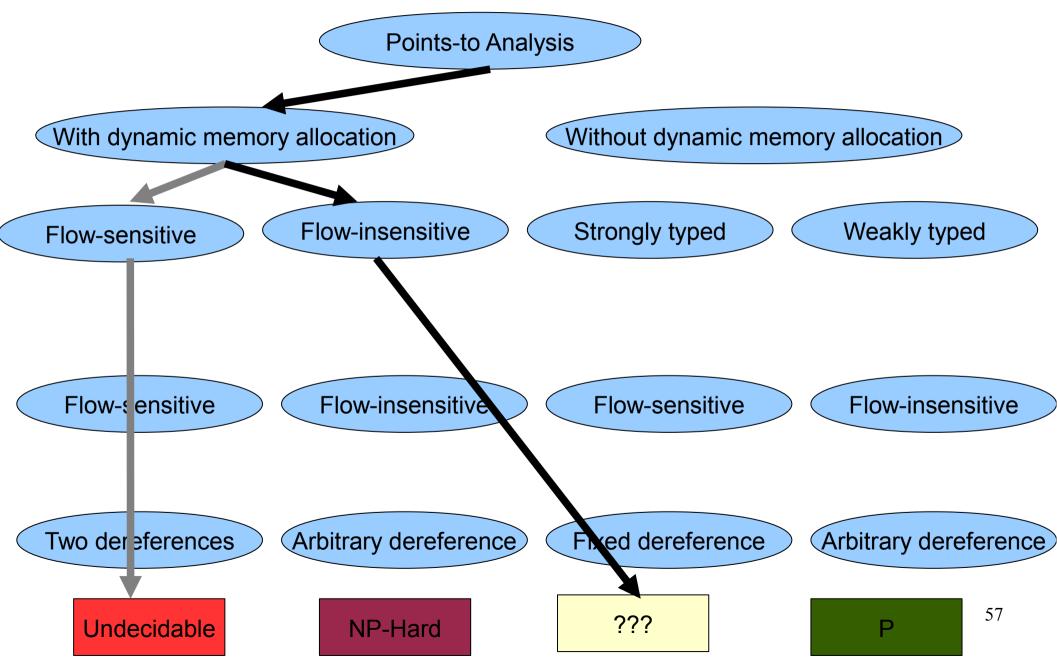
The realizability sequence for $b\rightarrow c$ is a=&c, b=a. The realizability sequence for $a\rightarrow b$ is c=&b, b=&a, *b=c. Classwork: What is the realizability sequence for $d\rightarrow a$? $a\rightarrow b$ and $b\rightarrow c$ are realizable individually, but not simultaneously.

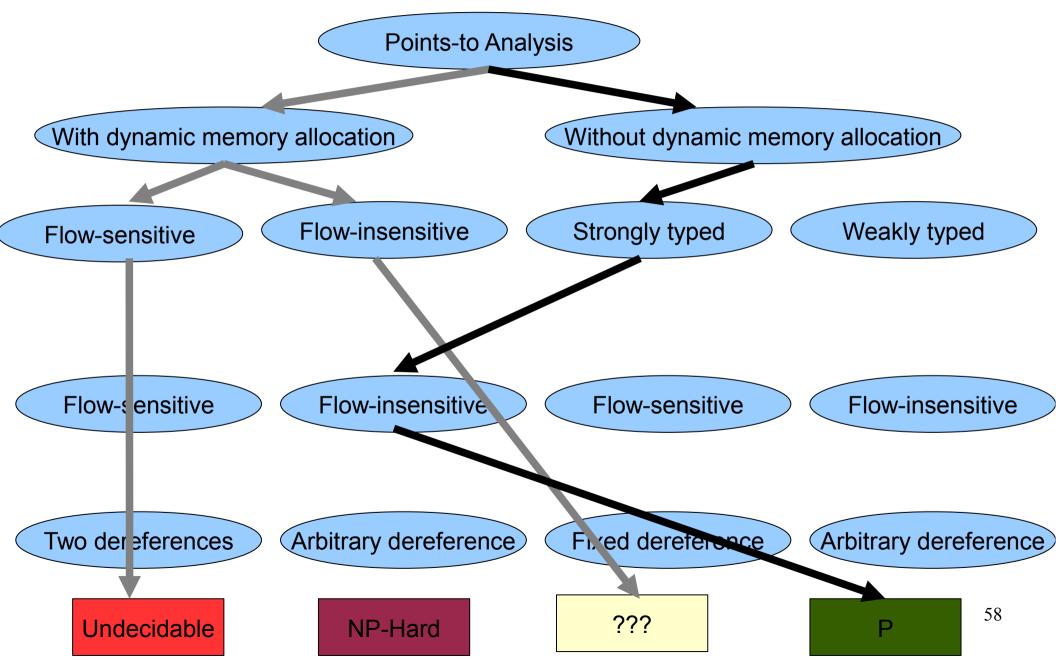
```
int *fun(int *a, int *b) {
     int *c:
     if(*a == *b) {
          c = b:
     } else {
           c = a:
     return c;
int *g;
void main() {
     int *x, *y, *z, **w;
     int m = 0, n = 1;
     char *str;
     x = \&m:
     y = &n;
     str = (char *)malloc(30);
     w = (int *) \& str;
     if (m < n) {
           strcpy(str, "m is smaller\n");
           z = fun(y, x);
     } else {
           printf("m is \geq = n \setminus n");
           w = \&x:
           *w = fun(x, y);
     printf("**w=%d\n", **w);
```

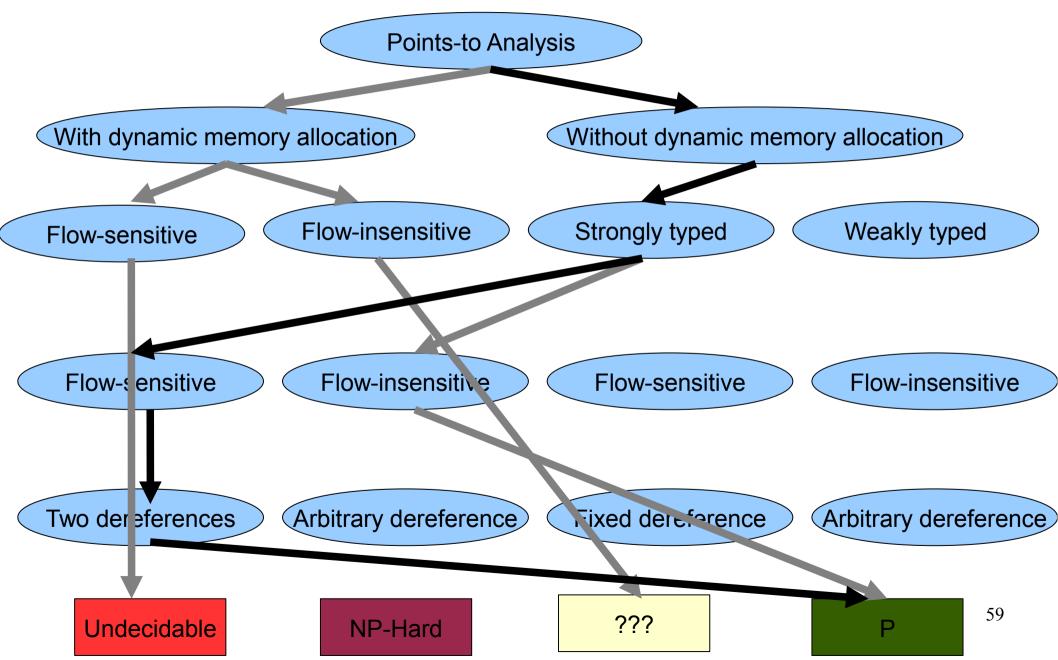
- How do we take care of malloc?
- How do we take care of type-casts?
- Find the set of normalized statements for intra-procedural pointer analysis.
- Perform intra-procedural Andersen's analysis.
- How do we take care of strcpy and printf? How about the global g?
- Perform inter-procedural contextinsensitive Andersen's analysis.
- Perform Steensgaard's analysis.

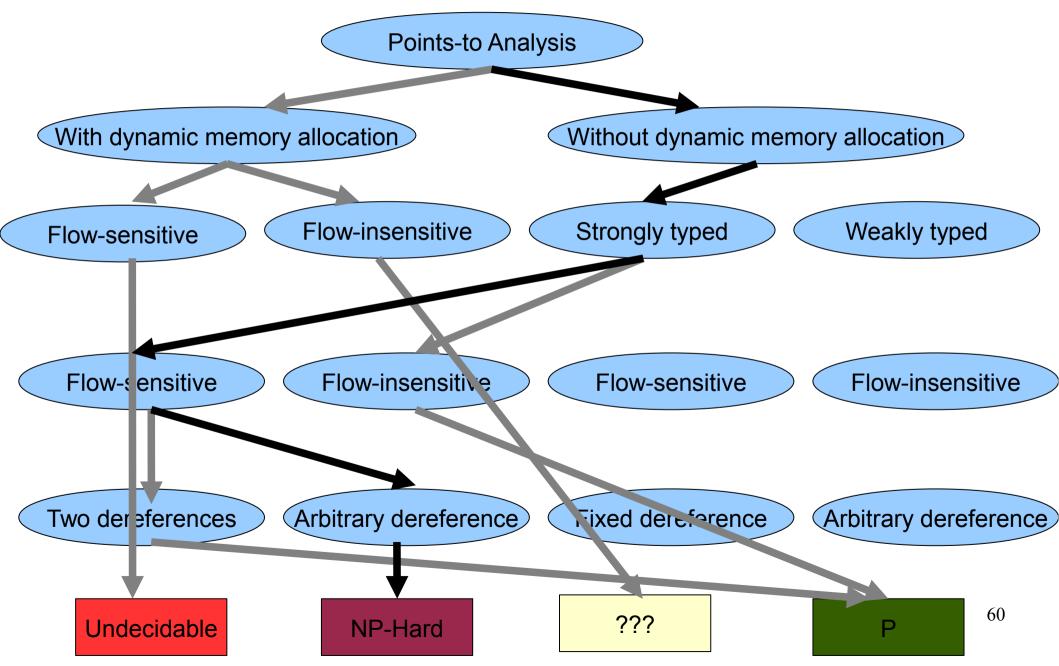
Extra

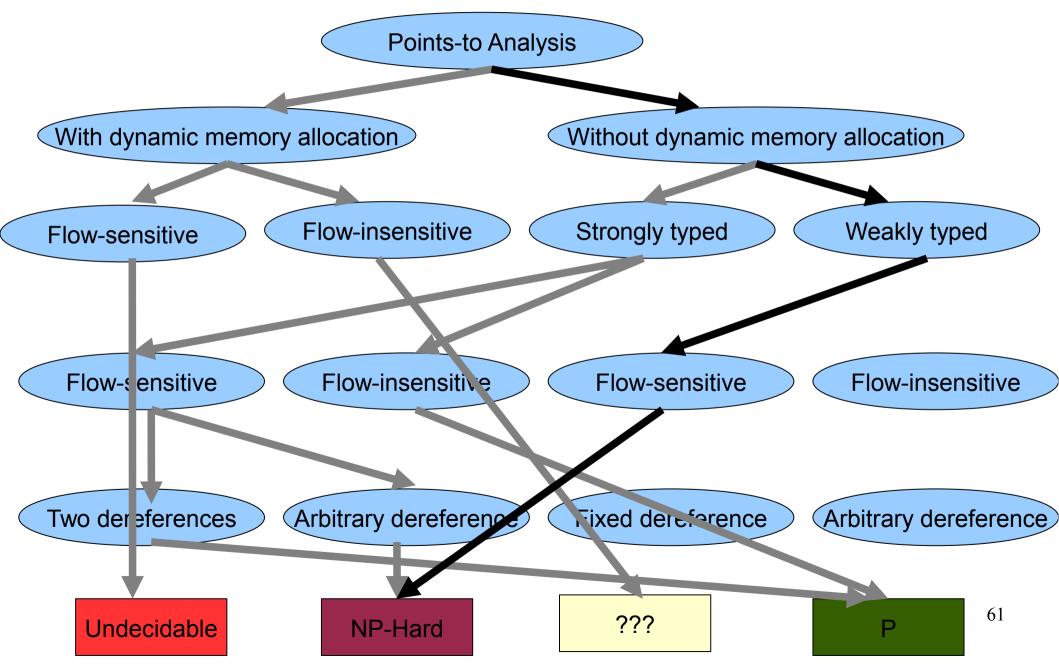


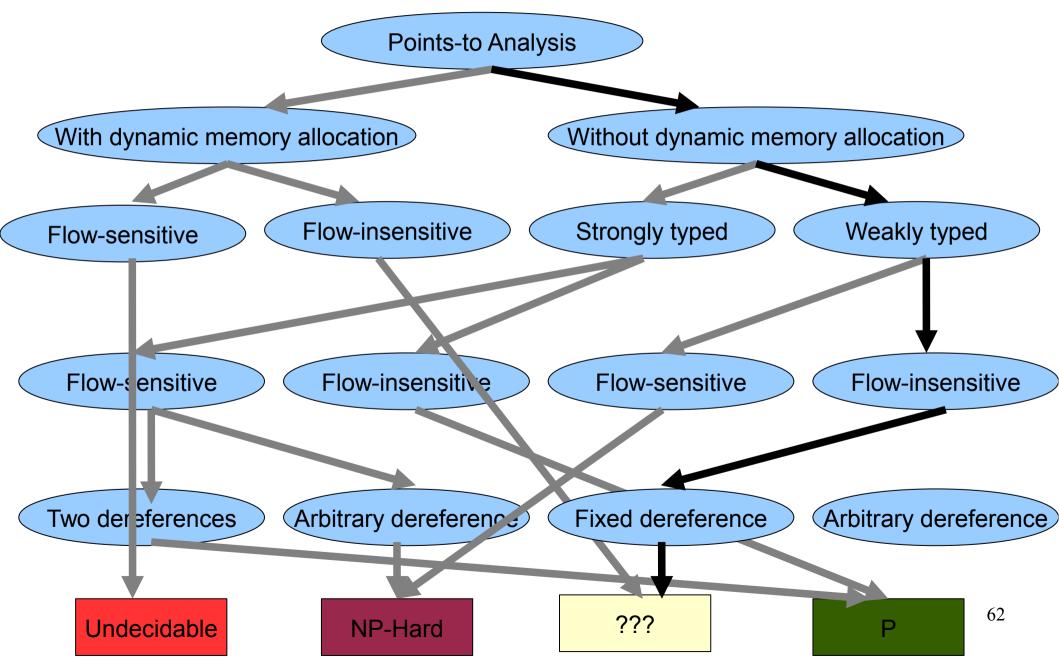


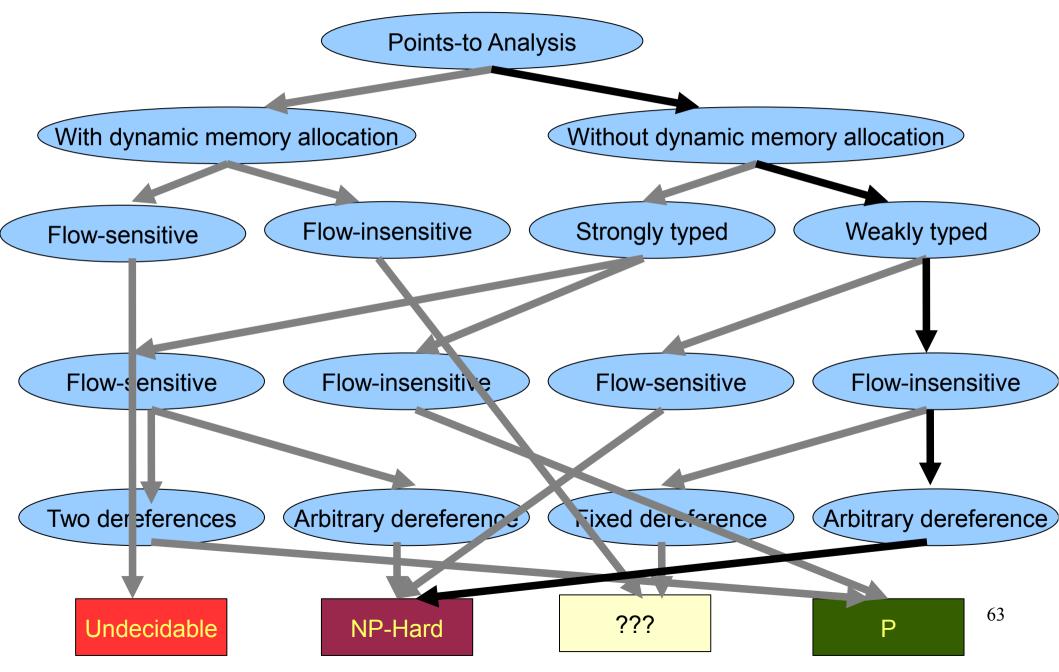












Related Work

Precision		-		
		Context-Sensitive	Context-Insensitive	
Precision	Flow-Sensitive	Landi, Ryder 92 Choi et al. 93 Emami et al. 94 Reps et al. 95 Hind et al. 99 Kahlon 08	Zheng 98 Hardekopf, Lin 09	
	Flow-insensitive	Liang, Harrold 99 Whaley, Lam 04 Zhu, Calman 04 Lattner et al. 07	Andersen 94 Steensgaard 96 Shapiro, Horwitz 97 Fahndrich et al. 98 Das 00 Rountev, Chandra 00 Berndl et al. 03 Hardekopf, Lin 07 Pereira, Berlin 09 Mendez-Lojo 10	
	Surveys	Hind, Pioli 00 Qiang, Wu 06		