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Outline

● Introduction

● Pointer analysis as a DFA problem

● Design decisions

● Andersen's analysis, Steensgaard's analysis

● Pointer analysis as a graph problem

– Optimizations
● Pointer analysis as graph rewrite rules

● Applications

● Parallelization

– Constraint based

– Replication based
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What is Pointer Analysis?

a = &x;

b = a;

if (b == *p) {

    …

} else {

    …

}
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What is Points-to Analysis?

a = &x;

b = a;

if (b == *p) {

    …

} else {

    …

}

a points to xa points to x
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What is Points-to Analysis?

a = &x;

b = a;

if (b == *p) {

    …

} else {

    …

}

a and b are aliasesa and b are aliases

a points to xa points to x
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What is Points-to Analysis?

a = &x;

b = a;

if (b == *p) {

    …

} else {

    …

}

Is this condition always satisfied?Is this condition always satisfied?

a and b are aliasesa and b are aliases

a points to xa points to x
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What is Points-to Analysis?

a = &x;

b = a;

if (b == *p) {

    …

} else {

    …

}

Is this condition always satisfied?Is this condition always satisfied?

Pointer Analysis is a mechanism to statically 
find out run-time values of a pointer.

Pointer Analysis is a mechanism to statically 
find out run-time values of a pointer.

a and b are aliasesa and b are aliases

a points to xa points to x
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Why Points-to Analysis?

● for Parallelization
 fun(p) || fun(q)

● for Optimization
 a = p + 2;
 b = q + 2;

● for Bug-Finding
● for Program Understanding
● ...

Clients of 
Points-to Analysis
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Placement of Points-to Analysis

Points-to AnalysisPoints-to Analysis

Parallelizing compiler

String vulnerability finder

Program slicer

Data flow analyzer

Lock synchronizer

Affine expression analyzer

Memory leak detector

Type analyzer
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Points-to AnalysisPoints-to Analysis
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Better compile timeBetter compile time
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Placement of Points-to Analysis

Points-to AnalysisPoints-to Analysis

Parallelizing compiler

String vulnerability finder

Program slicer

Data flow analyzer

Lock synchronizer

Affine expression analyzer

Memory leak detector

Type analyzer

Improved runtimeImproved runtime

Secure codeSecure code

Better debuggingBetter debugging

Better compile timeBetter compile time
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Points-to Analysis

p = &q address-of
p = q copy
p = *q load
*p = q store

Points-to constraints

A C program can be normalized to contain only four types of 
pointer-manipulating statements or constraints.
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Points-to Analysis

p = &q address-of
p = q copy
p = *q load
*p = q store

Points-to constraints

p q p q

A C program can be normalized to contain only four types of 
pointer-manipulating statements or constraints.
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Points-to Analysis

p = &q address-of
p = q copy
p = *q load
*p = q store

Points-to constraints

p q p
q

A C program can be normalized to contain only four types of 
pointer-manipulating statements or constraints.
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Points-to Analysis

p = &q address-of
p = q copy
p = *q load
*p = q store

Points-to constraints

qp qp

A C program can be normalized to contain only four types of 
pointer-manipulating statements or constraints.
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Points-to Analysis

A C program can be normalized to contain only four types of 
pointer-manipulating statements or constraints.

p = &q address-of
p = q copy
p = *q load
*p = q store

Points-to constraints

qpqp
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Definitions

● Points-to analysis computes points-to 
information for each pointer.

● Alias analysis computes aliasing 
information for all pointers.

● Aliasing information can be computed 
using points-to information, but not 
vice versa.

● Clients often query for aliasing 
information, but storing it is expensive 
O(n2), hence frameworks store points-
to information.

● If a→x, x is often called a pointee of a.

a → {x, y}
b → {y, z}
c → {z}

a → {x, y}
b → {y, z}
c → {z}

a b c

a -- Yes No

b -- -- Yes

c -- -- --

Points-to information

Aliasing information
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Nomenclarure

● Pointer analysis: Ambiguous usage in literature. 
We will use it to refer to both points-to analysis 
and alias analysis.

● In the context of Java-like languages, it is called 
reference analysis.

● Also called as heap analysis.
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Algebraic Properties

● Aliasing relation is reflexive, symmetric, but not 
transitive.

● Points-to relation is neither reflexive, nor 
symmetric, not even transitive.

● The points-to relation induces a restricted DAG 
for strictly typed languages.
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Cyclic Dependence

● Call graph ↔ function pointers
● Optimization ↔ points-to information
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As a DFA
a = &x: gen{a → x}
a = b: gen{a → x} if {b → x}
a = *p: gen{a → x} if {p → b → x}
*p = a: gen{b → x} if {p → b and a → x}

kill{b → x} if {p → b and b → x}

In(B) = U Out(P) where P ∈ Pred(B)
Out(B) = Gen(B) U (In(B) – Kill(B))

a = &x: gen{a → x}
a = b: gen{a → x} if {b → x}
a = *p: gen{a → x} if {p → b → x}
*p = a: gen{b → x} if {p → b and a → x}

kill{b → x} if {p → b and b → x}

In(B) = U Out(P) where P ∈ Pred(B)
Out(B) = Gen(B) U (In(B) – Kill(B))

b = &y
p = &a
b = a
if c

b = &y
p = &a
b = a
if c

a = b
b = &z
a = b

b = &z
*p = b
a = &x
*p = b
a = &x

B0

B1 B2

B3gen(B0) = {p→a, b→x if a→x} kill(B0) = {ptsto(p), ptsto(b)}
gen(B1) = {a→x if b→x, b→z} kill(B1) = {ptsto(a), ptsto(b)}
gen(B2) = {a→x,m→n if p→m and kill(B2) = {ptsto(ptsto(p)), ptsto(a)}

    b→n and m ≠ a}
gen(B3) = { } kill(B3) = { }

in1 out1 in2 out2 in3 out3

B0 {} {p→a} {} {p→a,b→{x,z}} {} {p→a,b→{x,z}}

B1 {} {b→z} out1(B0) {p→a,a→{x,z},b→{z}} out2(B0) {p→a,a→{x,z},b→{z}}

B2 {} {a→x} out1(B0) {p→a,a→{x},b→{x,z}} out2(B0) {p→a,a→{x},b→{x,z}}

B3 {} {} out1(B1) U out1(B2) {p→a,a→{x,z},b→{x,z}} out2(B1) U out2(B2) {p→a,a→{x,z},b→{x,z}}
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As a DFA: Notes

● Gen and Kill are dynamic (not fixed before 
analysis).

● Gen/Kill and Points-to Information are cyclically 
dependent.

● Single copy of a variable leads to imprecision.
– e.g., a's points-to set doesn't reach B0 in any 

execution, but the analysis treats it otherwise.
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Design Decisions

● Analysis dimensions
● Heap modeling
● Set implementation
● Call graph, function pointers
● Array indices

Time

Memory Precision loss

Holy grail
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Analysis Dimensions

An analysis's precision and efficiency is guided 
by various design decisions.

● Flow-sensitivity
● Context-sensitivity
● Path-sensitivity
● Field-sensitivity
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Flow-sensitivity

L0:  a = &x;
L1:  a = &y;
L2:  ...

L0:  a = &x;
L1:  a = &y;
L2:  ...

Flow-sensitive solution: at L1 a points to x, at L2 a points to y
Flow-insensitive solution: in the program a's points-to set is {x, y}

Flow-insensitive analyses ignore the control-flow in the program.

B1B1

B2B2 B3B3

B4B4

B1B1

B3B3

B2B2

B4B4

B1
B2
B3
B4

B1
B2
B3
B4

PP



28

Context-sensitivity

main() {
L0:  fun(&x);
L1:  fun(&y);

}

main() {
L0:  fun(&x);
L1:  fun(&y);

}

fun(int *a) {
b = a; 

}

fun(int *a) {
b = a; 

}

Context-sensitive solution: 
    b points to x along L0, b points to y along L1

Context-insensitive solution:
    b's points-to set is {x, y} in the program

main

f f

g g g g

...

Exponential
Number of 
contexts

Along main-f1-g1, …
Along main-f1-g2, …
Along main-f2-g1, …
Along main-f2-g2, ...

Exponential storage requirementExponential time requirement
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Context-sensitivity

Inter-procedural
intra-procedural

main() {
L0:  fun(&x);
L1:  fun(&y);

}

main() {
L0:  fun(&x);
L1:  fun(&y);

}

fun(int *a) {
b = a; 

}

fun(int *a) {
b = a; 

}

Context-sensitive solution: 
    b points to x along L0, b points to y along L1

Context-insensitive solution:
    b's points-to set is {x, y} in the program
    b's points-to set is {all address-taken variables}
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Path-sensitivity

if (a == 0)
b = &x;

else
b = &y;

if (a == 0)
b = &x;

else
b = &y;

Path-sensitive solution: 
   b points-to x when a is 0, b points-to y when a is not 0

Path-insensitive solution: 
   b's points-to set is {x, y} in the program

if (c1)
   while (c2) {
      if (c3)
        …
      else
        for (; c4; )
           ...
    }
else
    ...

if (c1)
   while (c2) {
      if (c3)
        …
      else
        for (; c4; )
           ...
    }
else
    ...

c1 and c2 and c3, …
c1 and c2 and !c3 and c4, …
c1 and c2 and !c3 and !c4, …
c1 and !c2, …
!c1 ... 
...
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Field-sensitivity

struct T s;

s.a = &x;
s.b = &y;

struct T s;

s.a = &x;
s.b = &y;

Field-sensitive solution: 
   s.a points-to x, s.b points-to y

Field-insensitive solution: 
   s's points-to set is {x, y}

Aggregates are collapsed into a single variable.
  e.g., arrays, structures, unions.

This reduces the number of variables tracked during 
the analysis and reduces precision.
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Andersen's Analysis

● Inclusion-based / subset-based / constraint-based analysis

● Flow-insensitive analysis

For a statement p = q, 
    create a constraint ptsto(p) ⊇ ptsto(q)

    where p is of the form *a, a, and q is of the form *a, a, &a.

Solving these inclusion constraints results into the points-to 
solution.
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Andersen's Analysis: Example

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

ptsto(a) ⊇ {x}
ptsto(b) ⊇ {y}
ptsto(p) ⊇ {a}
ptsto(c) ⊇ ptsto(b)
ptsto(*p) ⊇ ptsto(c)

Program Constraints

Pointers Iteration 0 Iteration 1 Iteration 2

a { } {x, y}

b { } {y}

c { } {y}

p { } {a}

x { }

y { }

fixed-point

ImprecisionImprecision
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Andersen's Analysis: Modified Example

a = &x;
b = &y;
p = &a;
*p = c;
c = b;

a = &x;
b = &y;
p = &a;
*p = c;
c = b;

ptsto(a) ⊇ {x}
ptsto(b) ⊇ {y}
ptsto(p) ⊇ {a}
ptsto(*p) ⊇ ptsto(c)
ptsto(c) ⊇ ptsto(b)

ptsto(a) ⊇ {x}
ptsto(b) ⊇ {y}
ptsto(p) ⊇ {a}
ptsto(*p) ⊇ ptsto(c)
ptsto(c) ⊇ ptsto(b)

Program Constraints

Pointers Iteration 0 Iteration 1 Iteration 2 Iteration 3

a { } {x} {x, y}

b { } {y}

c { } {y}

p { } {a}

x { }

y { }

fixed-point

Order does not matter
for correctness,

but it does matter
for efficiency.

Order does not matter
for correctness,

but it does matter
for efficiency.
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Andersen's Analysis: Classwork

*p = c;
b = &y;
b = *p;
p = &a;
a = &x;
*p = c;
c = p;
c = &z;

*p = c;
b = &y;
b = *p;
p = &a;
a = &x;
*p = c;
c = p;
c = &z;

ptsto(*p) ⊇ ptsto(c)
ptsto(b) ⊇ {y}
ptsto(b) ⊇ ptsto(*p)
ptsto(p) ⊇ {a}
ptsto(a) ⊇ {x}
ptsto(*p)  ptsto(c)⊇
ptsto(c) ⊇ ptsto(p)
ptsto(c)  {z}⊇

ptsto(*p) ⊇ ptsto(c)
ptsto(b) ⊇ {y}
ptsto(b) ⊇ ptsto(*p)
ptsto(p) ⊇ {a}
ptsto(a) ⊇ {x}
ptsto(*p)  ptsto(c)⊇
ptsto(c) ⊇ ptsto(p)
ptsto(c)  {z}⊇

Program Constraints

Pointers Iteration 0 Iteration 1 Iteration 2 Iteration 3

a { } {x} {a, x, z}

b { } {y} {a, x, y, z}

c { } {a, z} {a, z}

p { } {a} {a}

x { }

y { }

z

fixed-point
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Andersen's Analysis: Optimizations

● Avoid duplicates
● Reorder constraints
● Process address-of constraints once
● Difference propagation
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Andersen's Analysis: Complexity

● Total information computed (storage) = O(n2)
● From each pointer

To each other pointer
Propagate O(n) information

O(n) times

● From each pointer

To each other pointer
Propagate O(n) information

O(n⁴)

O(n³)

Open: Can you reduce the gap between storage and time complexities?Open: Can you reduce the gap between storage and time complexities?

Difference 
Propagation

Naive
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Steensgaard's Analysis

● Unification-based
● Almost linear time O(nα(n))
● More imprecise

For a statement p = q, merge the points-to sets of 
p and q. 

In subset terms, ptsto(p) ⊇ ptsto(q) and ptsto(q) ⊇ 
ptsto(p) with a single representative element.
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Steensgaard's Analysis: Example

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

Program Andersen's

a → {x, y}
b → {y}
c → {y}
p → {a}

Pointers Iteration 0 Iteration 1

a {*a} {*a, *b, *c, x, y}

b {*b} {*a, *b, *c, x, y}

c {*c} {*a, *b, *c, x, y}

p {*p} {*p, a}

x {*x}

y {*y}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

Only one iterationOnly one iteration
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Steensgaard's Hierarchy

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

Program Andersen's

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

aa

*a*a

aa

*a, x*a, x

*x*x

aa

*a, x*a, x

*a, x*a, x

pp

bb

*b, y*b, y

*y*y

bb

*b, y*b, y

*x*x

*x*x

a, *pa, *p

*y*y

*a, x*a, x

pp

*x*x

a, *pa, *p

bb

*b, *c, y*b, *c, y

*y*y

cc

*a, *b, *c, x, y*a, *b, *c, x, y

pp

*x, *y*x, *y

a, *pa, *p bb cc

a=&x b=&y p=&a c=b *p=c
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Classwork

*p = c;
b = &y;
b = *p;
p = &a;
a = &x;
*p = c;
c = p;
c = &z;

*p = c;
b = &y;
b = *p;
p = &a;
a = &x;
*p = c;
c = p;
c = &z;

a → {a, x, z}
b → {a, x, y, z}
c → {a, z}
p → {a}

a → {a, x, z}
b → {a, x, y, z}
c → {a, z}
p → {a}

Program Andersen's Steensgaard's
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Steensgaard's Hierarchy

● What is its structure?
● How many incoming edges to each node?
● How many outgoing edges from each node?
● Can there be cycles?
● What happens to p = &p?
● What is the precision difference between 

Andersen's and Steensgaard's analyses?
● If for each P = Q, we add Q = P and solve using 

Andersen's analysis, would it be equivalent to 
Steensgaard's analysis?
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Unifying Model Two

● Steensgaard's hierarchy is characterized by a 
single outgoing edge.

● Andersen's points-to graph can have arbitrary 
number of outgoing edges (maximum n).

● Number of edges in between the two provide 
precision-scalability trade-off.
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Unifying Model Two

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

Program Andersen's

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

*a, *b, *c, x, y*a, *b, *c, x, y

pp

*x, *y*x, *y

a, *pa, *p bb ccaa

xx yy

bb cc

pp
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Unifying Model Two

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

Program Andersen's

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

x, yx, y

pp

aa bb ccaa

xx yy

bb cc

pp
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Unifying Model Two

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;

Program Andersen's

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {y}
c → {y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

a → {x, y}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

x, yx, y

bb cc

pp

aa

pp

aa

xx yy

bb cc



47

Unifying Model Two

a = &x;
b = &y;
p = &a;
c = b;
*p = c;
a = &z;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;
a = &z;

Program Andersen's

a → {x, y, z}
b → {y}
c → {y}
p → {a}

a → {x, y, z}
b → {y}
c → {y}
p → {a}

a → {x, y, z}
b → {x, y, z}
c → {x, y, z}
p → {a}

a → {x, y, z}
b → {x, y, z}
c → {x, y, z}
p → {a}

Steensgaard's

x, y, zx, y, z

bb cc

pp

aa

pp

aa

xx yy

bb cc

zz
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Unifying Model Two

a = &x;
b = &y;
p = &a;
c = b;
*p = c;
a = &z;

a = &x;
b = &y;
p = &a;
c = b;
*p = c;
a = &z;

Program Andersen's

a → {x, y, z}
b → {y}
c → {y}
p → {a}

a → {x, y, z}
b → {y}
c → {y}
p → {a}

a → {x, y, z}
b → {x, y, z}
c → {x, y, z}
p → {a}

a → {x, y, z}
b → {x, y, z}
c → {x, y, z}
p → {a}

a → {x, y, z}
b → {x, y}
c → {x, y}
p → {a}

a → {x, y, z}
b → {x, y}
c → {x, y}
p → {a}

Steensgaard's

pp

x, y, zx, y, z

bb cc aa

x, yx, y zz

bb cc

pp

In between

aa

pp

aa

xx yy

bb cc

zz

What if x and 
z are merged?
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Unifying Model One

● Steensgaard's unification can be viewed as 
equality of points-to sets.

● Thus, if a = b merges their points-to sets and   b 
= c merges their points-to sets, then a and c 
become aliases!

● Remember: aliasing is not transitive.
● So, unification adds transitivity to the aliasing 

relation.
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Unifying Model One

A B C

Aliasing is non-transitive Aliasing becomes transitive

A, B, C

Andersen's Steensgaard's
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Back to Steensgaard's
● Aliasing relation is transitive.
● We know that it is also reflexive and symmetric.
● This means aliasing becomes an equivalence 

relation.
● Steensgaard's unification partitions pointers into 

equivalent sets.

x, y, zx, y, z

bb cc

pp

aa

All predecessors of a node form a partition.
The equivalence sets are {p}, {a, b, c}, {x, y, z}.
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Back to Steensgaard's
● Aliasing relation is transitive.
● We know that it is also reflexive and symmetric.
● This means aliasing becomes an equivalence 

relation.
● Steensgaard's unification partitions pointers into 

equivalent sets.

x, yx, y

bb cc

pp

aa

All predecessors of a node form a partition.
The equivalence sets are {p, q}, {a, b}, {c}, {x, y}, 
{z}.

zz

qq
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Realizable Facts

a = &c
b = &a
c = &b
b = a
∗b = c
d = a∗

a = &c
b = &a
c = &b
b = a
∗b = c
d = a∗

a → {b, c}
b → {a, b, c}
c → {b}
d → {a, b, c}

a → {b, c}
b → {a, b, c}
c → {b}
d → {a, b, c}

A realizability sequence is a sequence of statements such that a 
given points-to fact is satisfied.

The realizability sequence for b→c is a=&c, b=a.
The realizability sequence for a→b is c=&b, b=&a, *b=c.
Classwork: What is the realizability sequence for d→a?
  a→b and b→c are realizable individually, but not simultaneously.

Statements Andersen's points-to
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int *fun(int *a, int *b) {
int *c;
if (*a == *b) {

c = b;
} else {

c = a;
}
return c;

}
int *g;
void main() {

int *x, *y, *z, **w;
int m = 0, n = 1;
char *str;
x = &m;
y = &n;
str = (char *)malloc(30);
w = (int *)&str;
if (m < n) {

strcpy(str, “m is smaller\n”);
z = fun(y, x);

} else {
printf(“m is >= n\n”);
w = &x;
*w = fun(x, y);

}
printf(“**w=%d\n”, **w);

}

int *fun(int *a, int *b) {
int *c;
if (*a == *b) {

c = b;
} else {

c = a;
}
return c;

}
int *g;
void main() {

int *x, *y, *z, **w;
int m = 0, n = 1;
char *str;
x = &m;
y = &n;
str = (char *)malloc(30);
w = (int *)&str;
if (m < n) {

strcpy(str, “m is smaller\n”);
z = fun(y, x);

} else {
printf(“m is >= n\n”);
w = &x;
*w = fun(x, y);

}
printf(“**w=%d\n”, **w);

}

● How do we take care of malloc?
● How do we take care of type-casts?
● Find the set of normalized 

statements for intra-procedural 
pointer analysis.

● Perform intra-procedural 
Andersen's analysis.

● How do we take care of strcpy and 
printf? How about the global g?

● Perform inter-procedural context-
insensitive Andersen's analysis.

● Perform Steensgaard's analysis.
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Complexity of Points-to Analysis
Points-to Analysis

With dynamic memory allocation Without dynamic memory allocation

Flow-sensitive Flow-insensitive Strongly typed Weakly typed

Flow-sensitive Flow-insensitive Flow-sensitive Flow-insensitive

Two dereferences Arbitrary dereference Fixed dereference Arbitrary dereference

Undecidable ??? PNP-Hard
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Fixed dereference
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