

Pointer Analysis

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras

Jan 2016

Outline

● Introduction

● Pointer analysis as a DFA problem

● Design decisions

● Andersen's analysis, Steensgaard's analysis

● Pointer analysis as a graph problem

– Optimizations
● Pointer analysis as graph rewrite rules

● Applications

● Parallelization

– Constraint based

– Replication based

3

Points-to Analysis as a Graph Problem

Input: set C of points-to constraints

Process address-of constraints

Add edges to constraint graph G using copy constraints

repeat

 Propagate points-to information in G

 Add edges to G using load and store constraints

until fixpoint

Each pointer as a node, directed edge q → p indicates points-to set of q is
a subset of that of p.

4

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {aqrst}

b { }

c { }

e { }

qrst { }

p {bcd}
d { }

5

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {aqrst}

b { }

c { }

e { }

qrst { }

p {bcd}
d { }

e = d
b = a

*e = c
c = *a
*a = p

Iteration 0

6

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {aqrst}

b {aqrst}

c { }

e { }

qrst { }

p {bcd}
d { }

e = d
b = a

*e = c
c = *a
*a = p

Iteration 1

7

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

e = d
b = a

*e = c
c = *a
*a = p

Iteration 2

8

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {bcd}

qrst {bcd}

p {bcd}
d {bcd}

e = d
b = a

*e = c
c = *a
*a = p

Iteration 3

9

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {bcd}

p {bcd}
d {abcdqrst}

e = d
b = a

*e = c
c = *a
*a = p

Iteration 4

10

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {abcdqrst}

p {bcd}
d {abcdqrst}

e = d
b = a

*e = c
c = *a
*a = p

Iteration 5: fixed-point

11

Why a Graph Formulation?

● A naïve formulation offers no benefits over the
constraint-based formulation.

● We need to exploit structural properties of the
constraint graph for efficient execution.
– Online cycle detection
– Online dominator detection
– Propagation order: Topological sort, Depth first

12

Pointer Equivalence

● Two pointers are equivalent if they have the
same points-to sets. Simple.

● If we identify such pointers before computing
their points-to information, we can reduce the
number of pointers tracked during the analysis.

● Now let's go back to the constraint graph.

13

Why a Graph Formulation?

● If the program contains statements a = b, b = a,
what can you say about the points-to sets of a
and b at the fixed-point?

● How does the constraint graph look like?

● How about a = b, b = c, c = a?

● How about a = c, b = *p, c = b?

aa bb

14

Online Cycle Detection

● Edges get added to the graph dynamically.
● So, cycle detection is performed online.
● Cycles are collapsed – usually replaced with a

representative.
● Can use union-find.

15

Online Dominator Detection

● If two nodes in a constraint graph have the
same dominator, they are pointer equivalent.

● A dominator and its dominees are pointer
equivalent.

● doms is a transitive relation.

bb

ddcc

ff gg

ee

aa

b doms g
!(b doms f)
a doms b
By transitivity, a doms g

a,b,c,d,ga,b,c,d,g

ee

ff

16

Offline Variable Substitution

● But some constraints were easy to check for
equivalence without running the analysis.

– a = b, b = a
– a = *p, *p = a
– a = b, c = a, c = b and no other incoming edge to c.

● OVS is performed before running pointer
analysis.

17

Propagation Order

● A topological ordering is beneficial for
propagating points-to information (wave
propagation)

● The information may also be propagated in
depth-first manner (deep propagation)

● DP is helpful to reuse the difference in points-to
information

18

How About Constraint Order?

● Given a set of constraints, find an optimal way
of evaluating them

● Like most CS problems, this is NP-Complete
● Reducible from Set Cover

19

Reduction from Set Cover

● Given an instance of Set Cover SC(U, S, K)

– U: universe of elements

– S: set of subsets S
i

– K: some number

whether there exists a set of K subsets covering U

● Reduce to PTA(C, S, K) where

– C is a set of copy constraints

– S is a variable of interest w.r.t. fixed-point

– K is the number of steps in which the fixed-point is reached

S = {1, 4}, {2, 5}, {2, 4, 5}, {3}
Solution Two: {1, 4}, {2, 4, 5}, {3}
Solution One: {1, 4}, {2, 5}, {3}

20

SC ≽ PTA
● SC(U, S, K) PTA(C, S, K)≽

● Linear time reduction

– for each s ∈ S
i
add s to ptsto(S

i
)

– for each set S
i
 create a copy statement S = S

i

● A solution to PTA A solution to ⇒ SC

● A solution to PTA A solution to ⇐ SC

● Poly-time verification

NP-Hard

NP

NPC

21

How About Constraint Order?

● Given a set of constraints, find an optimal way
of evaluating them

● Like most CS problems, this is NP-Complete
● Reducible from Set Cover
● Need to depend upon heuristics

What would be a good heuristic?What would be a good heuristic?

22

Constraint Priority

● Priority of a constraint in iteration i is the
amount of new points-to information it adds in
iteration (i – 1).

● Constraints are grouped in different priority
levels which are ordered based on their priority.

● A constraint may jump across multiple priority
levels during the analysis.

23

Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 3

Level 4

Iteration n

24

Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1
Level 2

Level 3

Level 4

Iteration n

C1

C2

C3

C4

C5C6

25

Level 3

Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0
C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 4

Iteration n

C1

C2

C3

C4

C5C6 C1

C2

C3

C4

C5

C6

26

Level 3

Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 4

Iteration n

C1

C2

C3

C4

C5C6 C1

C2

C3

C4

C5

C6

C1 C2 C3

C4 C5 C6

27

Level 4

Level 5

Skewed Evaluation

Iteration 1 Iteration 2 Iteration 3 …

Level 0
C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 3

Iteration n

C1

C2

C3

C4

C5C6

28

Level 4

Level 5

Skewed Evaluation

Iteration 1 Iteration 2 Iteration 3 …

Level 0
C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 3

Iteration n

C1

C2

C3

C4

C5C6

29

Prioritized Points-to Analysis

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

30

Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

Priority: Iteration 1

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

31

Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

Priority: Iteration 1

a {aqrst}

b {aqrst}

e { }

qrst { }

p {bcd}
d { }

Andersen: Iteration 1

c { }

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Fixed Processing order

*e = c
c = *a
*a = p

Fixed Processing order

*e = c
c = *a
*a = p

32

Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {bcd}

p {bcd}
d {abcdqrst}

Processing order

*a = p (6)
c = *a (0)

*e = c (10)

Processing order

*a = p (6)
c = *a (0)

*e = c (10)

Priority: Iteration 2

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

Andersen: Iteration 2

Fixed Processing order

*e = c
c = *a
*a = p

Fixed Processing order

*e = c
c = *a
*a = p

33

Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {abcdqrst}

p {bcd}
d {abcdqrst}

Processing order

*e = c (20)
*a = p (0)
c = *a (0)

Processing order

*e = c (20)
*a = p (0)
c = *a (0)

Priority: Iteration 3

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {bcd}

qrst {bcd}

p {bcd}
d {bcd}

Andersen: Iteration 3

Fixed Processing order

*e = c
c = *a
*a = p

Fixed Processing order

*e = c
c = *a
*a = p

34

Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {abcdqrst}

p {bcd}
d {abcdqrst}

Processing order

*e = c (0)
*a = p (0)
c = *a (0)

Processing order

*e = c (0)
*a = p (0)
c = *a (0)

Priority: fixed-point

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {bcd}

qrst {bcd}

p {bcd}
d {bcd}

Andersen: Iteration 4

Fixed Processing order

*e = c
c = *a
*a = p

Fixed Processing order

*e = c
c = *a
*a = p

