Pointer Analysis

Rupesh Nasre.

CS6843 Program Analysis
[IT Madras
Jan 2016

Outline

Introduction

Pointer analysis as a DFA problem
Design decisions

Andersen's analysis, Steensgaard's analysis
Pointer analysis as a graph problem

- Optimizations

Pointer analysis as graph rewrite rules
Applications

Parallelization

- Constraint based

- Replication based

Points-to Analysis as a Graph Problem

Each pointer as a node, directed edge q — p indicates points-to set of g is
a subset of that of p.

Input: set C of points-to constraints

Process address-of constraints
Add edges to constraint graph G using copy constraints
repeat

Propagate points-to information in G

Add edges to G using load and store constraints

until fixpoint

Points-to Analysis as a Graph Problem

*e=c,c=*a,e=d,b=a *a=p

Initially, a—{a,q,r,s,t}, p—{b,c,d}

a {aqrst}
arst{} bl
cf{}

p {bed}

e{}

Points-to Analysis as a Graph Problem

*e=c,c=*a,e=d,b=a *a=p

Initially, a—{a,q,r,s,t}, p—{b,c,d}

Iteration O
a{agrst} e=d
arst{} e o
) e
p {bed) 0 S
()

Points-to Analysis as a Graph Problem

*e=c,c=*ae=d,b=a *a=p
Initially, a—{a,q,r,s,t}, p—{b,c,d}

Iteration 1
a {aqrst} e=d
qrst{} // g ‘:7”7”7::7”) b {aqrst} __b_f_:a__
I 1 ool
/ *g =
{ocd) 00 2
e}

Points-to Analysis as a Graph Problem

*e=c,c=*a,e=d,b=a, *a=p

Initially, a—{a,q,r,s,t}, p—{b,c,d}

Iteration 2
9\'{abcdqrst}
qrst {bcd} - ’\b {abcdarst}
% = B \' ¢ {abcdqrst}
oo,
el}

Points-to Analysis as a Graph Problem

*e=c,c=*a,e=d,b=a,*a=p

Initially, a—{a,q,r,s,t}, p—{b,c,d}

Iteration 3

a {abcdqrst}
—~
/ b {abcdgrst
grst {bcd} ~ o { arstt

—tc {abcdqrst}

L

e {‘bcd}

Points-to Analysis as a Graph Problem

*e=c,c=*a,e=d,b=a, *a=p

Initially, a—{a,q,r,s,t}, p—{b,c,d}

Iteration 4

a {abcdqrst}
g b {abcdqgrst
. {abcdarst}

\. c {abcdqrst}

{bcd},,,,,,,,,,,,,,,,,.d/{abcdqrst}

qgrst {bcd}

e {abcdgrst}

Points-to Analysis as a Graph Problem

*e=c,c=*a,e=d,b=a *a=p

Initially, a—{a,q,r,s,t}, p—{b,c,d}

Iteration 5: fixed-point

a {abcdqrst}
N b {abcdgrst}
o
{bedy > {abcdgqrst}
e {abcdqrst}

Why a Graph Formulation?

« A naive formulation offers no benefits over the

constraint-based formulation.

* We need to exploit structural properties of the

constraint graph for efficient execution.

- Online cycle detection
- Online dominator detection

- Propagation order: Topological sort, Depth first

Pointer Equivalence

» Two pointers are equivalent if they have the

same points-to sets. Simple.

* If we identify such pointers before computing
their points-to information, we can reduce the
number of pointers tracked during the analysis.

* Now let's go back to the constraint graph.

Why a Graph Formulation?

If the program contains statementsa =b, b = a,

what can you say about the points-to sets of a
and b at the fixed-point?

« How does the constraint graph look like?(a)(2)

* Howabouta=b,b=c¢c,c=2a?

* How abouta =c, b = *p, c = b?

Online Cycle Detection

* Edges get added to the graph dynamically.

* So, cycle detection is performed online.

* Cycles are collapsed — usually replaced with a
representative.

* Can use union-find.

Online Dominator Detection

« If two nodes in a constraint graph have the
same dominator, they are pointer equivalent.

* Adominator and its dominees are pointer

equivalent.

« doms is a transitive relation.

?
9
Ly

b doms g

!(b doms f)

a doms b |:\,
By transitivity, a doms g

Offline Variable Substitution

* But some constraints were easy to check for
equivalence without running the analysis.

-a=b,b=a
-a=%p,*p=a
- a=Db, c=a, c=Dband no other incoming edge to c.

* OVS is performed before running pointer
analysis.

Propagation Order

» Atopological ordering is beneficial for
propagating points-to information (wave
propagation)

* The information may also be propagated in
depth-first manner (deep propagation)

» DP is helpful to reuse the difference in points-to

information

How About Constraint Order?

» Given a set of constraints, find an optimal way
of evaluating them

* Like most CS problems, this is NP-Complete
* Reducible from Set Cover

Reduction from Set Cover

« Given an instance of Set Cover SC(U, S, K)

- U: universe of elements

S={1, 4} {2, 5}, 2, 4, 5}, {3}
Solution Two: {1, 4}, {2, 4, 5}, {3}
Solution One: {1, 4}, {2, 5}, {3}

- S: set of subsets Si

- K: some number
whether there exists a set of K subsets covering U
« Reduce to PTA(C, S, K) where
- Cis a set of copy constraints
- Sis a variable of interest w.r.t. fixed-point
- Kiis the number of steps in which the fixed-point is reached

19

SC > PTA

« SC(U, S, K) > PTA(C, S, K)
¢ Linear time reduction

- foreach s € S add s to ptsto(S))
' ! NP-Hard

- for each set S, create a copy statement S = S,

¢ A solution to PTA = A solution to SC
NPC

¢ Asolution to PTA <« A solution to SC

« Poly-time verification b e

20

How About Constraint Order?

» Given a set of constraints, find an optimal way
of evaluating them

Like most CS problems, this is NP-Complete
Reducible from Set Cover
Need to depend upon heuristics

What would be a good heuristic?

21

Constraint Priority

* Priority of a constraint in iteration i is the
amount of new points-to information it adds in
iteration (i — 1).

» Constraints are grouped in different priority
levels which are ordered based on their priority.

* A constraint may jump across multiple priority
levels during the analysis.

Bucketization

Iteration 1 Iteration 2 Iteration 3 Iteration n

Level 5
Level 4
Level 3

Level 2
Level 1
Level 0

Bucketization

Iteration 1 Iteration 2 Iteration 3 Iteration n

Level 5
Level 4
Level 3

Level 2
Level 1
Level 0

Bucketization

Iteration 1 Iteration 2 Iteration 3 Iteration n

Level 5

Level 4

Level 3

Level 2
Level 1
Level 0

[c1fcd]

Level 5
Level 4
Level 3

Level 2
Level 1
Level 0

Skewed Evaluation

Iteration 1 Iteration 2 Iteration 3

[c1]

Iteration n

Prioritized Points-to Analysis

Bucketization
Iteration 1 Iteration 2 Iteration 3 Iteration n
C5
/ ce6 | cs Eil
c2 c2
ci|ca cé | ca
cifc2]cs3
U c3 c3
c4alcs|ce
Skewed Evaluation
Iteration 1 Iteration 2 Iteration 3 Iteration n

Level 5
Level 4
Level 3

Level 2
Level 1
Level 0

[c1]

ca

Prioritized Points-to Analysis

a {abcdqrst}

qgrst {bed}

ef{}

Prioritized Points-to Analysis

a {abcdarst}

b {aqrst}

grst {bcd}

ef{} ef{}

3

1

Prioritized Points-to Analysis

a {abcdqrst}

qgrst {bcd}

e {bcd}

b {abedarst} grst {abcdqr:

a {abcdqrst}

e {abcdqrst}

Prioritized Points-to Analysis

a {abcdqrst} a {abcdqrst}

b {abcdqrst}

grst {bcd} qgrst {bcd}

e{} e {abcdgrst}

32

Prioritized Points-to Analysis

a {abcdqrst} a {abcdqrst}

b {abcdqrst}

grst {bcd} qgrst {abcdqr:

e {bcd} e {abcdqrst}

33

