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Points-to Analysis as a Graph Problem

Each pointer as a node, directed edge q — p indicates points-to set of g is
a subset of that of p.

Input: set C of points-to constraints

Process address-of constraints
Add edges to constraint graph G using copy constraints
repeat

Propagate points-to information in G

Add edges to G using load and store constraints

until fixpoint

Points-to Analysis as a Graph Problem
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Points-to Analysis as a Graph Problem
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Points-to Analysis as a Graph Problem
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Points-to Analysis as a Graph Problem

*e=c,c=*a,e=d,b=a, *a=p

Initially, a—{a,q,r,s,t}, p—{b,c,d}

Iteration 4
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Points-to Analysis as a Graph Problem

*e=c,c=*a,e=d,b=a *a=p

Initially, a—{a,q,r,s,t}, p—{b,c,d}

Iteration 5: fixed-point
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Why a Graph Formulation?

« A naive formulation offers no benefits over the

constraint-based formulation.

* We need to exploit structural properties of the

constraint graph for efficient execution.

- Online cycle detection
- Online dominator detection

- Propagation order: Topological sort, Depth first

Pointer Equivalence

» Two pointers are equivalent if they have the

same points-to sets. Simple.

* If we identify such pointers before computing
their points-to information, we can reduce the
number of pointers tracked during the analysis.

* Now let's go back to the constraint graph.



Why a Graph Formulation?

If the program contains statementsa =b, b = a,

what can you say about the points-to sets of a
and b at the fixed-point?

« How does the constraint graph look like?(a)(2)

* Howabouta=b,b=c¢c,c=2a?

* How abouta =c, b = *p, c = b?

Online Cycle Detection

* Edges get added to the graph dynamically.

* So, cycle detection is performed online.

* Cycles are collapsed — usually replaced with a
representative.

* Can use union-find.

Online Dominator Detection

« If two nodes in a constraint graph have the
same dominator, they are pointer equivalent.

* Adominator and its dominees are pointer

equivalent.

« doms is a transitive relation.
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Offline Variable Substitution

* But some constraints were easy to check for
equivalence without running the analysis.

-a=b,b=a
-a=%p,*p=a
- a=Db, c=a, c=Dband no other incoming edge to c.

* OVS is performed before running pointer
analysis.

Propagation Order

» Atopological ordering is beneficial for
propagating points-to information (wave
propagation)

* The information may also be propagated in
depth-first manner (deep propagation)

» DP is helpful to reuse the difference in points-to

information

How About Constraint Order?

» Given a set of constraints, find an optimal way
of evaluating them

* Like most CS problems, this is NP-Complete
* Reducible from Set Cover



Reduction from Set Cover

« Given an instance of Set Cover SC(U, S, K)

- U: universe of elements

S={1, 4} {2, 5}, 2, 4, 5}, {3}
Solution Two: {1, 4}, {2, 4, 5}, {3}
Solution One: {1, 4}, {2, 5}, {3}

- S: set of subsets Si

- K: some number
whether there exists a set of K subsets covering U
« Reduce to PTA(C, S, K) where
- Cis a set of copy constraints
- Sis a variable of interest w.r.t. fixed-point
- Kiis the number of steps in which the fixed-point is reached
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SC > PTA

« SC(U, S, K) > PTA(C, S, K)
¢ Linear time reduction

- foreach s € S add s to ptsto(S))
' ! NP-Hard

- for each set S, create a copy statement S = S,

¢ A solution to PTA = A solution to SC
NPC

¢ Asolution to PTA <« A solution to SC

« Poly-time verification b e
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How About Constraint Order?

» Given a set of constraints, find an optimal way
of evaluating them

Like most CS problems, this is NP-Complete
Reducible from Set Cover
Need to depend upon heuristics

What would be a good heuristic?

21

Constraint Priority

* Priority of a constraint in iteration i is the
amount of new points-to information it adds in
iteration (i — 1).

» Constraints are grouped in different priority
levels which are ordered based on their priority.

* A constraint may jump across multiple priority
levels during the analysis.

Bucketization
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Prioritized Points-to Analysis
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Prioritized Points-to Analysis
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Prioritized Points-to Analysis
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