
  

Pointer Analysis

Rupesh Nasre.

CS6843 Program Analysis
IIT Madras
Jan 2015



  

Outline

● Introduction

● Pointer analysis as a DFA problem

● Design decisions

● Andersen's analysis, Steensgaard's analysis

● Pointer analysis as a graph problem

– Optimizations
● Pointer analysis as graph rewrite rules

● Applications

● Parallelization

– Constraint based

– Replication based



3

Points-to Analysis as a Graph Problem

Input: set C of points-to constraints

Process address-of constraints

Add edges to constraint graph G using copy constraints

repeat

    Propagate points-to information in G

    Add edges to G using load and store constraints

until fixpoint

Each pointer as a node, directed edge p → q indicates points-to set of q is 
a subset of that of p.



4

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {aqrst}

b { }

c { }

e { }

qrst { }

p {bcd}
d { }



5

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {aqrst}

b { }

c { }

e { }

qrst { }

p {bcd}
d { }

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 0



6

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {aqrst}

b {aqrst}

c { }

e { }

qrst { }

p {bcd}
d { }

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 1



7

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 2



8

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {bcd}

qrst {bcd}

p {bcd}
d {bcd}

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 3



9

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {bcd}

p {bcd}
d {abcdqrst}

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 4



10

Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {abcdqrst}

p {bcd}
d {abcdqrst}

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 5: fixed-point



11

Why a Graph Formulation?

● A naïve formulation offers no benefits over the 
constraint-based formulation.

● We need to exploit structural properties of the 
constraint graph for efficient execution.
– Online cycle detection

– Online dominator detection

– Propagation order: Topological sort, Depth first



12

Pointer Equivalence

● Two pointers are equivalent if they have the 
same points-to sets. Simple.

● If we identify such pointers before computing 
their points-to information, we can reduce the 
number of pointers tracked during the analysis.

● Now let's go back to the constraint graph.



13

Why a Graph Formulation?

● If the program contains statements a = b, b = a, 
what can you say about the points-to sets of a 
and b at the fixed-point?

● How does the constraint graph look like?
● How about a = b, b = c, c = a?
● How about a = c, b = *p, c = b?

aa bb



14

Online Cycle Detection

● Edges get added to the graph dynamically.
● So, cycle detection is performed online.
● Cycles are collapsed – usually replaced with a 

representative.
● Can use union-find.



15

Online Dominator Detection

● If two nodes in a constraint graph have the 
same dominator, they are pointer equivalent.

● A dominator and its dominees are pointer 
equivalent.

● doms is a transitive relation.

bb

ddcc

ff gg

ee

aa

b doms g
!(b doms f)
a doms b
By transitivity, a doms g

a,b,c,d,ga,b,c,d,g

ee

ff



16

Offline Variable Substitution

● But some constraints were easy to check for 
equivalence without running the analysis.
– a = b, b = a

– a = *p, *p = a

– a = b, c = a, c = b and no other incoming edge to c.

● OVS is performed before running pointer 
analysis.



17

Propagation Order

● A topological ordering is beneficial for 
propagating points-to information (wave 
propagation)

● The information may also be propagated in 
depth-first manner (deep propagation)

● DP is helpful to reuse the difference in points-to 
information



18

How About Constraint Order?

● Given a set of constraints, find an optimal way 
of evaluating them

● Like most CS problems, this is NP-Complete
● Reducible from Set Cover



19

Reduction from Set Cover

● Given an instance of Set Cover SC(U, S, K)

– U: universe of elements

– S: set of subsets S
i

– K: some number

whether there exists a set of K subsets covering U

● Reduce to PTA(C, S, K) where 

– C is a set of copy constraints 

– S is a variable of interest w.r.t. fixed-point

– K is the number of steps in which the fixed-point is reached

S = {1, 4}, {2, 5}, {2, 4, 5}, {3}
Solution Two: {1, 4}, {2, 4, 5}, {3}
Solution One: {1, 4}, {2, 5}, {3}



20

SC  ≽PTA

● SC(U, S, K)  PTA(C, S, K)≽
● Linear time reduction

– for each s ∈ S
i 
add s to ptsto(S

i
)

– for each set S
i
 create a copy statement S = S

i

● A solution to PTA  A solution to ⇒ SC

● A solution to PTA  A solution to ⇐ SC

● Poly-time verification

NP-Hard

NP

NPC



21

How About Constraint Order?

● Given a set of constraints, find an optimal way 
of evaluating them

● Like most CS problems, this is NP-Complete
● Reducible from Set Cover 
● Need to depend upon heuristics

What would be a good heuristic?What would be a good heuristic?



22

Constraint Priority

● Priority of a constraint in iteration i is the 
amount of new points-to information it adds in 
iteration (i – 1).

● Constraints are grouped in different priority 
levels which are ordered based on their priority.

● A constraint may jump across multiple priority 
levels during the analysis.



23

Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 3

Level 4

Iteration n



24

Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1
Level 2

Level 3

Level 4

Iteration n

C1

C2

C3

C4

C5C6



25

Level 3

Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 4

Iteration n

C1

C2

C3

C4

C5C6 C1

C2

C3

C4

C5

C6



26

Level 3

Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 4

Iteration n

C1

C2

C3

C4

C5C6 C1

C2

C3

C4

C5

C6

C1 C2 C3

C4 C5 C6



27

Level 4

Level 5

Skewed Evaluation

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 3

Iteration n

C1

C2

C3

C4

C5C6



28

Level 4

Level 5

Skewed Evaluation

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 3

Iteration n

C1

C2

C3

C4

C5C6



29

Prioritized Points-to Analysis

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Processing order

*a = p (18)
c = *a (8)
*e = c (0)



30

Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

Priority: Iteration 1

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Processing order

*a = p (18)
c = *a (8)
*e = c (0)



31

Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

Priority: Iteration 1

a {aqrst}

b {aqrst}

e { }

qrst { }

p {bcd}
d { }

Andersen: Iteration 1

c { }

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Fixed Processing order

*e = c
c = *a 
*a = p

Fixed Processing order

*e = c
c = *a 
*a = p



32

Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {bcd}

p {bcd}
d {abcdqrst}

Processing order

*a = p (6)
c = *a (0)

*e = c (10)

Processing order

*a = p (6)
c = *a (0)

*e = c (10)

Priority: Iteration 2

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

Andersen: Iteration 2

Fixed Processing order

*e = c
c = *a 
*a = p

Fixed Processing order

*e = c
c = *a 
*a = p



33

Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {abcdqrst}

p {bcd}
d {abcdqrst}

Processing order

*e = c (20)
*a = p (0)
c = *a (0)

Processing order

*e = c (20)
*a = p (0)
c = *a (0)

Priority: Iteration 3

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {bcd}

qrst {bcd}

p {bcd}
d {bcd}

Andersen: Iteration 3

Fixed Processing order

*e = c
c = *a 
*a = p

Fixed Processing order

*e = c
c = *a 
*a = p



34

Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {abcdqrst}

p {bcd}
d {abcdqrst}

Processing order

*e = c (0)
*a = p (0)
c = *a (0)

Processing order

*e = c (0)
*a = p (0)
c = *a (0)

Priority: fixed-point

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {bcd}

qrst {bcd}

p {bcd}
d {bcd}

Andersen: Iteration 4

Fixed Processing order

*e = c
c = *a 
*a = p

Fixed Processing order

*e = c
c = *a 
*a = p


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

