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Points-to Analysis as a Graph Problem

Input: set C of points-to constraints

Process address-of constraints

Add edges to constraint graph G using copy constraints

repeat

    Propagate points-to information in G

    Add edges to G using load and store constraints

until fixpoint

Each pointer as a node, directed edge p → q indicates points-to set of q is 
a subset of that of p.
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Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {aqrst}

b { }

c { }

e { }

qrst { }

p {bcd}
d { }
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Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {aqrst}

b { }

c { }

e { }

qrst { }

p {bcd}
d { }

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 0
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Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {aqrst}

b {aqrst}

c { }

e { }

qrst { }

p {bcd}
d { }

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 1
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Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 2
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Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {bcd}

qrst {bcd}

p {bcd}
d {bcd}

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 3
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Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {bcd}

p {bcd}
d {abcdqrst}

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 4
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Points-to Analysis as a Graph Problem

*e = c, c = *a, e = d, b = a, *a = p

Initially, a→{a,q,r,s,t}, p→{b,c,d}

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {abcdqrst}

p {bcd}
d {abcdqrst}

e = d
b = a

---------
*e = c
c = *a
*a = p

Iteration 5: fixed-point
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Why a Graph Formulation?

● A naïve formulation offers no benefits over the 
constraint-based formulation.

● We need to exploit structural properties of the 
constraint graph for efficient execution.
– Online cycle detection

– Online dominator detection

– Propagation order: Topological sort, Depth first
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Pointer Equivalence

● Two pointers are equivalent if they have the 
same points-to sets. Simple.

● If we identify such pointers before computing 
their points-to information, we can reduce the 
number of pointers tracked during the analysis.

● Now let's go back to the constraint graph.
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Why a Graph Formulation?

● If the program contains statements a = b, b = a, 
what can you say about the points-to sets of a 
and b at the fixed-point?

● How does the constraint graph look like?
● How about a = b, b = c, c = a?
● How about a = c, b = *p, c = b?

aa bb
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Online Cycle Detection

● Edges get added to the graph dynamically.
● So, cycle detection is performed online.
● Cycles are collapsed – usually replaced with a 

representative.
● Can use union-find.
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Online Dominator Detection

● If two nodes in a constraint graph have the 
same dominator, they are pointer equivalent.

● A dominator and its dominees are pointer 
equivalent.

● doms is a transitive relation.

bb

ddcc

ff gg

ee

aa

b doms g
!(b doms f)
a doms b
By transitivity, a doms g

a,b,c,d,ga,b,c,d,g

ee

ff
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Offline Variable Substitution

● But some constraints were easy to check for 
equivalence without running the analysis.
– a = b, b = a

– a = *p, *p = a

– a = b, c = a, c = b and no other incoming edge to c.

● OVS is performed before running pointer 
analysis.
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Propagation Order

● A topological ordering is beneficial for 
propagating points-to information (wave 
propagation)

● The information may also be propagated in 
depth-first manner (deep propagation)

● DP is helpful to reuse the difference in points-to 
information
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How About Constraint Order?

● Given a set of constraints, find an optimal way 
of evaluating them

● Like most CS problems, this is NP-Complete
● Reducible from Set Cover
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Reduction from Set Cover

● Given an instance of Set Cover SC(U, S, K)

– U: universe of elements

– S: set of subsets S
i

– K: some number

whether there exists a set of K subsets covering U

● Reduce to PTA(C, S, K) where 

– C is a set of copy constraints 

– S is a variable of interest w.r.t. fixed-point

– K is the number of steps in which the fixed-point is reached

S = {1, 4}, {2, 5}, {2, 4, 5}, {3}
Solution Two: {1, 4}, {2, 4, 5}, {3}
Solution One: {1, 4}, {2, 5}, {3}
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SC  ≽PTA

● SC(U, S, K)  PTA(C, S, K)≽
● Linear time reduction

– for each s ∈ S
i 
add s to ptsto(S

i
)

– for each set S
i
 create a copy statement S = S

i

● A solution to PTA  A solution to ⇒ SC

● A solution to PTA  A solution to ⇐ SC

● Poly-time verification

NP-Hard

NP

NPC
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How About Constraint Order?

● Given a set of constraints, find an optimal way 
of evaluating them

● Like most CS problems, this is NP-Complete
● Reducible from Set Cover 
● Need to depend upon heuristics

What would be a good heuristic?What would be a good heuristic?
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Constraint Priority

● Priority of a constraint in iteration i is the 
amount of new points-to information it adds in 
iteration (i – 1).

● Constraints are grouped in different priority 
levels which are ordered based on their priority.

● A constraint may jump across multiple priority 
levels during the analysis.



23

Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 3

Level 4

Iteration n
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Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1
Level 2

Level 3

Level 4

Iteration n

C1

C2

C3

C4

C5C6
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Level 3

Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 4

Iteration n

C1

C2

C3

C4

C5C6 C1

C2

C3

C4

C5

C6
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Level 3

Level 5

Bucketization

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 4

Iteration n

C1

C2

C3

C4

C5C6 C1

C2

C3

C4

C5

C6

C1 C2 C3

C4 C5 C6
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Level 4

Level 5

Skewed Evaluation

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 3

Iteration n

C1

C2

C3

C4

C5C6
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Level 4

Level 5

Skewed Evaluation

Iteration 1 Iteration 2 Iteration 3 …

Level 0 C1 C2 C3

C4 C5 C6

Level 1

Level 2

Level 3

Iteration n

C1

C2

C3

C4

C5C6
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Prioritized Points-to Analysis

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Processing order

*a = p (18)
c = *a (8)
*e = c (0)
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Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

Priority: Iteration 1

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Processing order

*a = p (18)
c = *a (8)
*e = c (0)
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Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

Priority: Iteration 1

a {aqrst}

b {aqrst}

e { }

qrst { }

p {bcd}
d { }

Andersen: Iteration 1

c { }

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Processing order

*a = p (18)
c = *a (8)
*e = c (0)

Fixed Processing order

*e = c
c = *a 
*a = p

Fixed Processing order

*e = c
c = *a 
*a = p
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Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {bcd}

p {bcd}
d {abcdqrst}

Processing order

*a = p (6)
c = *a (0)

*e = c (10)

Processing order

*a = p (6)
c = *a (0)

*e = c (10)

Priority: Iteration 2

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e { }

qrst {bcd}

p {bcd}
d { }

Andersen: Iteration 2

Fixed Processing order

*e = c
c = *a 
*a = p

Fixed Processing order

*e = c
c = *a 
*a = p
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Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {abcdqrst}

p {bcd}
d {abcdqrst}

Processing order

*e = c (20)
*a = p (0)
c = *a (0)

Processing order

*e = c (20)
*a = p (0)
c = *a (0)

Priority: Iteration 3

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {bcd}

qrst {bcd}

p {bcd}
d {bcd}

Andersen: Iteration 3

Fixed Processing order

*e = c
c = *a 
*a = p

Fixed Processing order

*e = c
c = *a 
*a = p
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Prioritized Points-to Analysis

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {abcdqrst}

qrst {abcdqrst}

p {bcd}
d {abcdqrst}

Processing order

*e = c (0)
*a = p (0)
c = *a (0)

Processing order

*e = c (0)
*a = p (0)
c = *a (0)

Priority: fixed-point

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

e {bcd}

qrst {bcd}

p {bcd}
d {bcd}

Andersen: Iteration 4

Fixed Processing order

*e = c
c = *a 
*a = p

Fixed Processing order

*e = c
c = *a 
*a = p
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