Pointer Analysis

Rupesh Nasre.

CS6843 Program Analysis IIT Madras Jan 2015

Outline

- Introduction
- Pointer analysis as a DFA problem
- Design decisions
- Andersen's analysis, Steensgaard's analysis
- Pointer analysis as a graph problem
 - Optimizations
- Pointer analysis as graph rewrite rules
- Applications
- Parallelization
 - Constraint based
 - Replication based

Each pointer as a node, directed edge $p \rightarrow q$ indicates points-to set of q is a subset of that of p.

Input: set C of points-to constraints

Process address-of constraints

Add edges to constraint graph G using copy constraints

repeat

Propagate points-to information in G

Add edges to G using load and store constraints

until fixpoint

*e = c, c = *a, e = d, b = a, *a = p Initially, $a \rightarrow \{a,q,r,s,t\}, p \rightarrow \{b,c,d\}$

*e = c, c = *a, e = d, b = a, *a = p

*e = c, c = *a, e = d, b = a, *a = p

Initially, $a \rightarrow \{a,q,r,s,t\}, p \rightarrow \{b,c,d\}$

Iteration 1 a {aqrst} b {aqrst} c {} e {}

e = d b = a *e = c c = *a *a = p

*e = c, c = *a, e = d, b = a, *a = p

*e = c, c = *a, e = d, b = a, *a = p

*e = c, c = *a, e = d, b = a, *a = p

*e = c, c = *a, e = d, b = a, *a = p

Initially, $a \rightarrow \{a,q,r,s,t\}, p \rightarrow \{b,c,d\}$

e = d

b = a

*e = c

c = *a

*a = p

Why a Graph Formulation?

- A naïve formulation offers no benefits over the constraint-based formulation.
- We need to exploit structural properties of the constraint graph for efficient execution.
 - Online cycle detection
 - Online dominator detection
 - Propagation order: Topological sort, Depth first

Pointer Equivalence

- Two pointers are equivalent if they have the same points-to sets. Simple.
- If we identify such pointers *before* computing their points-to information, we can reduce the number of pointers tracked during the analysis.
- Now let's go back to the constraint graph.

Why a Graph Formulation?

- If the program contains statements a = b, b = a, what can you say about the points-to sets of a and b at the fixed-point?
- How does the constraint graph look like?
- How about a = b, b = c, c = a?
- How about a = c, b = *p, c = b?

Online Cycle Detection

- Edges get added to the graph dynamically.
- So, cycle detection is performed online.
- Cycles are collapsed usually replaced with a representative.
- Can use union-find.

Online Dominator Detection

- If two nodes in a constraint graph have the same dominator, they are pointer equivalent.
- A dominator and its dominees are pointer equivalent.
- doms is a transitive relation.

b doms g !(b doms f) a doms b By transitivity, a doms g

Offline Variable Substitution

• But some constraints were easy to check for equivalence without running the analysis.

$$- a = b, b = a$$

-
$$a = *p, *p = a$$

- a = b, c = a, c = b and no other incoming edge to c.
- OVS is performed before running pointer analysis.

Propagation Order

- A topological ordering is beneficial for propagating points-to information (wave propagation)
- The information may also be propagated in depth-first manner (deep propagation)
- DP is helpful to reuse the difference in points-to information

How About Constraint Order?

- Given a set of constraints, find an optimal way of evaluating them
- Like most CS problems, this is NP-Complete
- Reducible from Set Cover

Reduction from Set Cover

- Given an instance of Set Cover SC(U, S, K)
 - U: universe of elements
 - S: set of subsets S_i
 - K: some number

 $S = \{1, 4\}, \{2, 5\}, \{2, 4, 5\}, \{3\}$ Solution Two: $\{1, 4\}, \{2, 4, 5\}, \{3\}$ Solution One: $\{1, 4\}, \{2, 5\}, \{3\}$

whether there exists a set of K subsets covering U

- Reduce to PTA(C, S, K) where
 - C is a set of copy constraints
 - S is a variable of interest w.r.t. fixed-point
 - K is the number of steps in which the fixed-point is reached

$SC \geq PTA$

- $SC(U, S, K) \geq PTA(C, S, K)$
- Linear time reduction
 - for each $s \in S_i$ add s to ptsto(S_i)
 - for each set S_i create a copy statement $S = S_i$
- A solution to $PTA \Rightarrow A$ solution to SC
- A solution to $PTA \leftarrow A$ solution to SC
- Poly-time verification

How About Constraint Order?

- Given a set of constraints, find an optimal way of evaluating them
- Like most CS problems, this is NP-Complete
- Reducible from Set Cover
- Need to depend upon heuristics

What would be a good heuristic?

Constraint Priority

- Priority of a constraint in iteration *i* is the amount of new points-to information it adds in iteration (i 1).
- Constraints are grouped in different priority levels which are ordered based on their priority.
- A constraint may jump across multiple priority levels during the analysis.

Level 5			
Level 4		C6 C5	
Level 3		C2	
Level 2		C1 C4	
Level 1			
Level 0	C1 C2 C3 C4 C5 C6	C3	74

Level 5					C5			
Level 4				C6 C5	C1			
Level 3				C2	C2			
Level 2				C1 C4	C6 C4			
Level 1								
Level 0	C1	C2	C3		62	C1	C2	C3
	C4	C5	C6	03	63	C4	C5	C6

Skewed Evaluation

Skewed Evaluation

Processing order	
*a = p (18) c = *a (8) *e = c (0)	
*e = c (0)	

